- A Hybrid *de novo* Assembly of the Sea Pansy (*Renilla muelleri*) Genome
- 3
- 4 Justin Jiang¹, Andrea M. Quattrini^{1*}, Warren R. Francis², Joseph F. Ryan³, Estefanía Rodríguez⁴,
- 5 Catherine S. McFadden¹
- 6
- ⁷ ¹Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave, Claremont, CA 91711,

8 USA

- ⁹ ² University of Southern Denmark, Dept. of Biology, Campusvej 55, Odense M 5230, Denmark
- ³ Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd.
- 11 St. Augustine, FL 32080, USA
- ⁴ Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at
- 13 79th Street, New York, NY 10024, USA
- 14
- 15 Justin Jiang: jjiang990@gmail.com
- 16 Andrea Quattrini: aquattrini@g.hmc.edu
- 17 Warren R. Francis: wfrancis@biology.sdu.dk
- 18 Joseph F. Ryan: joseph.ryan@whitney.ufl.edu
- 19 Estefanía Rodríguez: erodriguez@amnh.org
- 20 Catherine S. McFadden: mcfadden@g.hmc.edu

- 22 *Corresponding Author
- 23

Abstract 24

44

Background: Over 3,000 species of octocorals (Cnidaria, Anthozoa) inhabit an expansive range 25 26 of environments, from shallow tropical seas to the deep-ocean floor. They are important foundation species that create coral "forests" which provide unique niches and three-dimensional 27 living space for other organisms. The octocoral genus *Renilla* inhabits sandy, continental shelves 28 29 in the subtropical and tropical Atlantic and eastern Pacific Oceans. Renilla is especially interesting because it produces secondary metabolites for defense, exhibits bioluminescence, and 30 produces a luciferase that is widely used in dual-reporter assays in molecular biology. Although 31 several chidarian genomes are currently available, the majority are from hexacorals. Here, we 32 present a de novo assembly of the R. muelleri genome, making this the first complete draft 33 34 genome from an octocoral. Findings: We generated a hybrid *de novo* assembly using the Maryland Super-Read Celera 35 Assembler v.3.2.6 (MaSuRCA). The final assembly included 4,825 scaffolds and a haploid 36 37 genome size of 172 Mb. A BUSCO assessment found 88% of metazoan orthologs present in the genome. An Augustus *ab initio* gene prediction found 23,660 genes, of which 66% (15,635) had 38 39 detectable similarity to annotated genes from the starlet sea anemone, *Nematostella vectensis*, or 40 to the Uniprot database. Although the R. muelleri genome is smaller (172 Mb) than other 41 publicly available, hexacoral genomes (256-448 Mb), the *R. muelleri* genome is similar to the 42 hexacoral genomes in terms of the number of complete metazoan BUSCOs and predicted gene 43 models.

Conclusions: The *R. muelleri* hybrid genome provides a novel resource for researchers to

investigate the evolution of genes and gene families within Octocorallia and more widely across 45

46 Anthozoa. It will be a key resource for future comparative genomics with other corals and for

47 understanding the genomic basis of coral diversity.

48

49 Keywords: octocoral, hybrid assembly, gene prediction, Augustus, PacBio, MaSuRCA

50

51 Data Description

52 Organism Description

Octocorallia is a subclass of Anthozoa (Phylum: Cnidaria) that is comprised of three 53 orders: Alcyonacea, Helioporacea, and Pennatulacea [1]. The Pennatulacea, commonly known as 54 55 sea pens, are a monophyletic group [1, 2] and are the most morphologically distinct group of octocorals [1, 3]. Sea pens differ from other octocorals by exhibiting the most integrated colonial 56 behavior, with colonies arising from an axial polyp that develops into a peduncle-used to 57 anchor the animal into soft-sediments or onto hard surfaces-and a rachis that supports 58 59 secondary polyps [1, 3-4]. There are 14 valid families of Pennatulacea distinguished by the arrangement of the secondary polyps around the rachis [1, 4]. The monogeneric family 60 Renillidae Lamarck, 1816 consists of seven species [5], unique because of their foliate colony 61 62 growth form [1, 4].

Renilla is found naturally on sandy, shallow sea floors along the Atlantic and Pacific
coasts of North and South America [3, 4, 6]. The brilliant bioluminescence and endogenous
fluorescence of these animals have led to them becoming important organisms in microscopy
and molecular biology. Isolated originally from *R. reniformis*, the enzyme luciferase (Renillaluciferin 2-monooxygenase) is used in dual luciferase reporter assays, which are commonly used
to study gene regulation and expression, signaling pathways, and the structure of regulatory

genes [7-8]. The green fluorescent protein from *Renilla* has medical applications as well as
general molecular biology and imagery uses [9]. In addition, the compounds produced by *Renilla*for chemical defense [10] may be important sources for discovery of marine natural products
[11]. Thus, a genome of the octocoral *Renilla* is highly valuable to the scientific community,
providing a novel resource that has a range of important uses— from molecular biology to
comparative genomics.

Due to the known difficulties of resolving lengthy repeat regions with Illumina-only data [12-13], we used a hybrid assembly approach [13-14], combining long-read Pacific Biosciences (PacBio) data with short-read Illumina data. Studies have shown that a hybrid approach results in a more complete assembly with less genome fragmentation [15-17]. Our hybrid approach used low coverage PacBio reads (15x coverage) along with high coverage Illumina HiSeq reads (105x coverage) to assemble a draft genome of *R. muelleri* Schultze in Kölliker, 1872, a sea pen common to shallow waters of the Gulf of Mexico [6].

82

83 Methods and Results

84 Data Collection

A live specimen of *R. muelleri* was obtained from Gulf Specimen Marine Lab (Panacea,
FL, USA), which collects specimens off the panhandle of Florida in the Gulf of Mexico. Upon
receiving the specimen, it was flash frozen in liquid nitrogen. Genomic DNA was then extracted
using a modified CTAB protocol [18]. A total of 5.6 μg of DNA was sent to Novogene
(Sacramento, CA, USA) for library preparation and sequencing. 350 bp insert DNA libraries that
were PCR free were prepared and then multiplexed with other organisms on two lanes of an
Illumina HiSeq 2500 (150 bp PE reads). In addition, Illumina MiSeq and PacBio sequencing

92	were performed at the Weill Cornell Medicine Epigenomics Core Facility in New York. For the
93	Illumina MiSeq run, the Renilla library was prepared with TruSeq LT and then multiplexed with
94	eight other corals and sequenced (300 bp PE reads, MiSeq v3 Reagent kit). For PacBio
95	sequencing, a DNA library was prepared from 5 ug of DNA using the SMRTbell template prep
96	kit v 1.0. Sequencing was carried out on 10 SMRT cells on a RSII instrument using P6-C4
97	chemistry. PacBio SMRT Analysis 2.3 subread filtering module was used to produce the subread
98	files for assembly.
99	As part of another study, we sequenced total RNA from a congeneric species, R.
100	reniformis. The specimen was collected alive on the beach in North Flagler County, Florida,
101	USA. RNA was extracted from the whole adult colony and sequenced on a NextSeq500 (150 bp
102	PE reads) instrument. Library preparation and sequencing were performed at the University of
103	Florida's Interdisciplinary Center for Biotechnology.
104	
105	DNA Read Processing
106	A total of 246,744,426 PE reads were obtained from the HiSeq and 6,725,072 PE reads
107	were obtained from the MiSeq. In total, we generated 39,029,185,500 bases of Illumina data.
108	Adapters were trimmed from all raw Illumina reads using Trimmomatic v.0.35
109	(ILLUMINACLIP:2:30:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:20 MINLEN:3;
110	Trimmomatic, RRID:SCR_011848) [19], resulting in 38.98 Gb of reads. These reads were then
111	filtered with Kraken v.1.0 (Kraken, RRID:SCR_005484) [20] using the MiniKraken 8GB
112	database [21] to screen for possible microbial, viral and archaeal contamination. A total of 960
113	Mb were removed from the read files, resulting in 36.23 Gb of 150 bp reads and 1.79 Gb of 300
114	bp reads.

115	A total of 1,227,306 PacBio subreads were obtained and screened against the NCBI
116	environmental nucleotide database (env_nt.00 to env_nt.23) [22] using BLASTn v.2.2.31 (-
117	evalue 1e-10, -out_fmt 5, RRID:SCR_001598) [23] to identify reads with environmental
118	contaminants. The subreads that did not contain contaminants were extracted using
119	MEtaGenome ANalyzer v.6.4.16 (MEGAN, RRID:SCR_011942) [24-25], resulting in 5.22 Gb
120	in 1,195,521 reads.
121	
122	RNA-Seq Read Processing
123	We generated 119,604,588 PE reads of RNA-Seq data. We used Trimmomatic (version
124	0.36 (-phred33, ILLUMINACLIP:/usr/local/Trimmomatic-0.32/adapters/TruSeq3-
125	PE.fa:2:30:12:1:true, MINLEN:36; Trimmomatic, RRID:SCR_011848) [19] to remove Illumina
126	adapters. Trinity v 2.4.0 (seqType fqmax_memory 250GCPU 6left trim.R1.fqright
127	trim.R2.fqfull_cleanup; Trinity RRID_SCR:013048) [26] was used to assemble the
128	transcriptome.
129	
130	Hybrid Genome Assembly
131	Two hybrid de novo assemblies were performed, one with the Maryland Super-Read
132	Celera Assembler v.3.2.6 (MaSuRCA, RRID:SCR_010691) [27] and the other with SPAdes
133	v.3.11.0 (SPAdes, RRID:SCR_000131; k-mer lengths 21,33,55,77) [28]. The Benchmarking
134	Universal Single-Copy Orthologs v.3.0.2 (BUSCO, RRID:SCR_015008) [29] program with
135	default settings was used to screen the Renilla genome assemblies for 978 orthologs from the
136	Metazoan dataset as a method to evaluate the completeness of each assembly. BUSCO used
137	BLAST v.2.2.31 [23] and HMMER v.3.1.b2 (HMMER, RRID:SCR_005305) [30] in its pipeline.

138	The stats.sh program from BBMAP v.36.14 (bbmap) [31] was used to generate general assembly
139	statistics for genomes produced by both programs (Table 1).
140	The MaSuRCA assembly resulted in a 147-fold decrease in the number of scaffolds
141	generated, and a 70-fold increase in the N50 contig size (70.522 KB) as compared to the SPades
142	assembly (1.007 KB); it also had more complete BUSCOs present (Table 1). Other statistics also
143	indicate that the MaSuRCA assembly is much less fragmented than the SPAdes assembly (Table
144	1). Therefore, we used the MaSuRCA assembly in further analyses.
145	To improve the quality of the draft MaSuRCA assembly, six iterations of Pilon v.1.21
146	(Pilon, RRID:SCR_014731) [32] were used to fix assembly errors and fill assembly gaps.
147	Bowtie2 v.2.3.2 (Bowtie2, RRID:SCR_016368) [33] was used to align Illumina HiSeq and
148	Illumina MiSeq genomic reads to the draft assembly, and the resulting alignments were input to
149	Pilon, which was run on default settings. A total of 52,668 SNPs were corrected, along with
150	14,702 small insertions and 11,841 small deletions (Supplementary Table S1).
151	To remove haploid contigs that were not merged during assembly, we ran BLASTn
152	against the contigs themselves (-max_target_seqs 10, -evalue 1e-40) to find contigs that were
153	highly similar. The custom script haplotypeblastn.py version 1.0 [34] filtered the BLASTn
154	results by flagging matches that were greater than 75% identical and longer than 500 bp in
155	length. The contigs that were identified as unmerged were subsequently removed using the
156	select_contigs.pl script [35]. A total of 59 scaffolds, which amounted to 67 contigs and 384 kb,
157	were removed from the assembly.
158	The bbmap program stats.sh was used to generate assembly statistics on the haplotype-
159	removed assembly [i.e., "final assembly", (Table 1)]. BUSCO analysis using the metazoan
160	orthologs was again used to estimate the completeness of the final assembly, with the flag

160 orthologs was again used to estimate the completeness of the final assembly, with the flag *-long*

161	to produce higher quality training data for the downstream annotation. 857 (87.63%) orthologs
162	were present in the final assembly (Table 1). This final <i>R. muelleri</i> assembly was masked, using
163	RepeatMasker v.open-4.0.6 (-species eukaryota -gccalc -div 50; RepeatMasker,
164	RRID:SCR_012954) [36], for downstream gene annotation. The final annotation consists of
165	172,512,580 bp in 4,925 scaffolds.
166	
167	Genome Annotation
168	Stampy v.1.0.31 (Stampy, RRID:SCR_005504) [37] was used to align 18.06 Gb of RNA-
169	Seq data from <i>R. reniformis</i> to the masked genome to generate intron hints. The resulting bam
170	file was processed by filtering out raw alignments using <i>filterBam</i> [38] per the recommended
171	Augustus procedures [39]. A total of 1,837,637 intron hints were generated.
172	Augustus v.3.3 (<i>UTR=offallow_hinted_splicesites=atacalternatives-from-</i>
173	evidence=true; Augustus, RRID:SCR_008417) [40] was used to predict a gene model for <i>R</i> .
174	muelleri. Augustus training was performed with the hint data from R. reniformis, as it has been
175	shown to improve <i>ab initio</i> predictions [40-41]. The BUSCO-generated training data was also
176	included to help predict a gene model. A modified extrinsic weight file was used in Augustus to
177	penalize predicted introns that were unsupported by hint evidence and reward predicted introns
178	that were supported by hint evidence by 1e2.
179	Augustus predicted 23,660 genes that had an average exon length of 249 bp and an
180	average intron length of 524 bp as calculated by gfstats.py [42] (Table 2). BUSCO with the
181	metazoan lineage (-m prot) orthologs was used to assess the quality of the prediction, finding
182	84.87% (830/978) orthologs (Table 2).

184 Functional Annotations

BLASTp v.2.2.31+ (-evalue 1e-10 -seg yes -soft masking true -lcase masking, BLASTp, 185 186 RRID:SCR 001010) [23] was used to map the predicted gene models of *R. muelleri* to filtered protein models of another anthozoan, the sea anemone, Nematostella vectensis (Joint Genome 187 Institute, JGI, v 1.0) [43]. A total of 63% (14,931) of the predicted genes (23,660) mapped to N. 188 189 vectensis proteins (27,273). A custom python script, *filterGenes.py* [44] was used to filter the matches by selecting the highest bit score; in cases where bit scores were identical, the match 190 191 with the highest percent length of all matches was used as a tiebreaker. Of the 14,931 genes that mapped to N. vectensis proteins, 12,279 genes were annotated with GO function, KOG function 192 and/or InterPro domains; 8,101 genes were assigned GO terms; 11,067 genes were assigned 193 KOG functions; and 10,126 genes were assigned InterPro domains (Supplemental File 1). The 194 8,729 genes that did not hit N. vectensis proteins were remapped with BLASTp using a lower e-195 value (1e-5) and filtered with the aforementioned python script with the same settings; an 196 197 additional 2,002 of the genes mapped to N. vectensis. Of these, 1,512 genes were annotated with GO functions, KOG functions and/or InterPro domains (Supplemental File 1). The remaining 198 199 6.727 genes that did not match N. vectensis annotations were mapped to the UniProt database 200 (UniProt, RRID:SCR 002380) [45-46] with BLASTp (-evalue 1e-5), and 1,844 of these were assigned a UniProt function. In total, 79.36% (18,777/23,660) of the predicted gene models were 201 202 mapped to either N. vectensis predicted proteins or the UniProt database, and 66.08% 203 (15,635/23,660) of the predicted Renilla genes have either functional annotations or InterPro 204 domain information associated with them. We also used BLASTp (-evalue 1e-10 -seg yes -soft masking true -lcase masking) to 205

206 map the predicted genes against a newer *N. vectensis* dataset that was generated using RNA-Seq

207	(hereafter called the Vienna dataset) [47-48]. A total of 63% (15,001) of the predicted genes
208	(23,660) mapped to the Vienna dataset (25,729) (Supplemental File 2). As above, the predicted
209	genes that did not map were remapped with a lower e-value (1e-5), resulting in 2,071 additional
210	predicted genes mapping to the N. vectensis Vienna dataset. In total, 72.15% (17,072) of
211	predicted genes mapped to the Vienna dataset. This dataset did not have associated functional
212	annotations. Combining all gene model annotation methods, 79.82% (18,886) of genes from the
213	Augustus gene model were mapped to the JGI N. vectensis annotations, the N. vectensis Vienna
214	dataset, or the UniProt database (Supplemental Files 1-3).
215	
216	Genome Assembly Comparisons
217	We compared the <i>R. muelleri</i> genome assembly to previously published anthozoan (e.g.,
218	corals, anemones) genomes using a variety of assessment statistics (Supplemental Table S2).
219	BUSCO was used (- <i>m geno</i>) to assess the completeness of six hexacoral genomes and a draft <i>R</i> .
220	reniformis genome and compare these results to the hybrid R. muelleri assembly (Fig. 1). We
221	found the BUSCO-completeness of our <i>R. muelleri</i> assembly (857) to be more similar to the
222	well-curated assembly of the model organism N. vectensis (893) [49-50] than to the other
223	anthozoans. BUSCOs from the other five hexacoral genomes were less complete, with complete
224	BUSCOs ranging from 728 (Acropora digitifera) to 839 (Discosoma sp.) [50-57]. Only 800
225	complete BUSCOs were recovered from the other hybrid assembly, the hexacoral Montastraea
226	cavernosa [57]. The only other publicly-available octocoral genome, R. reniformis, had
227	considerably fewer complete BUSCOs (356, Fig.1) [58].
228	The number of predicted genes was highly similar across all anthozoan genomes
229	(Supplementary Table S2). The range of predicted genes was 21,372 to 30,360 across the six

hexacorals. The number of predicted genes (23,360) for *R. muelleri* was similar to the 23,668
genes predicted for *A. digitifera*.

232	Interestingly, the genome size of <i>R. muelleri</i> is considerably smaller (172 Mb) than other
233	hexacoral genomes (256-448 Mb). Of the hexacorals, the anemone Exaiptasia pallida has the
234	smallest genome size of 256 Mb, while the others have genome sizes >300 Mb. As indicated by
235	[56], E. pallida has smaller and less frequent introns. Similar to E. pallida, exon sizes were
236	larger in R. muelleri (249 bp) compared to the hexacorals (208 to 230 bp). These results suggest
237	that there may be comparatively fewer non-coding regions in <i>R. muelleri</i> because the number of
238	predicted gene models in <i>R. muelleri</i> is similar to hexacorals, yet the exon sizes are larger and
239	the genome size is smaller in R. muelleri. In addition, repetitive elements in the R. muelleri
240	genome may be less frequent, however, this remains to be further examined.
241	We also compared the mitochondrial genome to the previously published mitogenome of
242	R. muelleri [59]. We used BLASTn to search for the mitogenome among the contigs (included as
243	the last contig in the assembly) and recovered the entire 18,641 bp circularized, mitogenome.
244	Compared to the published mitogenome, there were just two, single bp differences and one bp
245	indel.
246	

247 Conclusions

We present the first octocoral genome assembly and showcase the feasibility of the MaSuRCA hybrid assembler for marine invertebrate genomics. The *R. muelleri* genome is one of the smallest anthozoan genomes discovered to date, yet it is comparable to other coral and anemone genomes in terms of predicted gene models. The identification of 88% of complete metazoan BUSCOs in the *R. muelleri* genome highlights that a quality genome assembly can be

253	obtained from relatively low coverage sequencing of short and long read data. Although more
254	data are needed to further increase size and reduce number of scaffolds, and further functional
255	annotation is needed, the genome of the sea pansy, R. muelleri, provides a novel resource for the
256	scientific community to further investigations of gene family evolution, comparative genomics,
257	and the genomic basis of coral diversity.
258	
259	Availability of supporting data
260	The final hybrid assembly and predicted proteins generated by this study are in the GigaDB
261	repository [60] and on the reefgenomics website [61]. Raw Illumina and PacBio reads are
262	available in NCBI's Sequence Read Archive (PRJNA491947). RNA-Seq reads have been
263	uploaded to the European Nucleotide Archive (PRJEB28688).
264	
265	Abbreviations
266	bp: base pair, BUSCO: Benchmarking Universal Single-Copy Orthologs, Gb: gigabp,
267	Mb: megabp, MY: million years, PE: paired end, Pacbio: Pacific Biosciences
268	
269	Additional Files
270	Supplementary Table S1. Summary of Pilon changes per iteration
271	Supplemental Table S2. Renilla muelleri genome assembly and annotation comparisons to
272	other anthozoan genomes.
273	Supplemental File 1. Gene model annotations of Renilla muelleri using the Nematostella
274	vectensis Joint Genome Institute filtered protein model.
275	Supplemental File 2. Gene annotations of Renilla muelleri using the Nematostella vectensis

- 277 **Supplemental File 3.** Reference file that includes annotations for the predicted gene models.
- 278 This dataset includes GO terms, KOG IDs, and InterPro domains as annotated in the
- 279 Nematostella vectensis filtered protein models (Joint Genome Institute).

280

281 Competing interests

282 The authors declare no competing interests.

283

284 Funding

285 This study was funded by NSF-DEB Award 1457817 to C.S. McFadden and NSF-DEB Award

286 1457581 to E. Rodriguez. Additional funding came from startup funds from the University of

287 Florida DSP Research Strategic Initiatives #00114464 and University of Florida Office of the

288 Provost Programs to J.F. Ryan.

289

290 Authors' Contributions

- 291 Justin Jiang: Conceptualization, Investigation, Formal Analysis, Software Programming,
- 292 Methodology, Validation, Data Curation, Writing Original Draft Preparation, Writing Review

293 & Editing, Visualization

- 294 Andrea M. Quattrini: Conceptualization, Supervision, Investigation, Formal Analysis,
- 295 Methodology, Validation, Data Curation, Writing Original Draft Preparation, Writing Review

296 & Editing, Visualization

297 Warren R. Francis: Software Programming, Methodology, Validation, Writing - Review &

298 Editing

299	Josep	h F. Ryan: Methodology, Validation, Data Curation, Writing - Review & Editing	
300	Estefa	nia Rodriguez: Conceptualization, Writing - Review & Editing	
301	Cathe	rine S. McFadden: Conceptualization, Supervision, Writing - Original Draft Preparation,	
302	Writin	g - Review & Editing	
303			
304	Ackno	owledgements	
305	We thank N. Alexander, C. Mason, and the Weill Cornell Medicine Epigenetics Core Facility		
306	and staff for MiSeq and PacBio sequencing. Thanks to M. Brugler, C. Schnitzler, and S. Herrera		
307	for adv	vice. B. Macdonald generated the filterGenes.py script. We thank M. Heloski for collection	
308	of Renilla reniformis sample used for RNA-Seq.		
309			
310	Refer	ences	
311	1.	Daly M, Brugler MR, Cartwright P et. al. The phylum Cnidaria: A review of	
312		phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa. 2007;1668:127-	
313		182.	
314	2.	McFadden CS, France SC, Sánchez JA et. al. A molecular phylogenetic analysis of the	
315		Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences.	
316		Molecular Phylogenetics and Evolution. 2006;41(3):513:527.	
317	3.	Williams GC. The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea).	
318		PLoS One. 2011;6:e22747	
319	4.	Williams GC. Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea):	
320		illustrated key and synopsis. Zoological Journal of the Linnean Society. 1995;113:93-	
321		140.	

322	5.	World Register of Marine Species: World List of Octocorallia Renillidae.
323		http://marinespecies.org/aphia.php?p=taxdetails&id=266953, Accessed 19 Aug 2018.
324	6.	Cairns SD, Bayer FM. Octocorallia (Cnidaria) of the Gulf of Mexico. In: Felder DL,
325		Camp DK, editors. Gulf of Mexico-Origins, Waters, and Biota. Volume 1.
326		Biodiversity. College Station, Texas: Academic; 2009:321-331.
327	7.	Sherf BA, Navarro SL, Hannah RR, Wood KV. Dual-luciferase reporter assay: an
328		advanced co-reporter technology integrating firefly and Renilla luciferase
329		assays. Promega Notes. 1996;56:2.
330	8.	Saito K, Chang YF, Horikawa K et al. Luminescent Proteins for High-Speed Single-Cell
331		and Whole-Body Imaging. Nature Communications. 2012; doi:10.1038/ncomms2248.
332	9.	Stepanenko OV, Verkhusha VV, Kuznetsova IM, Uversky VN, Turoverov KK. Current
333		Protein & Peptide Science. 2008; doi:10.2174/138920308785132668
334	10	Clavico EE, De Souza AT, Da Gama BA, Pereira RC. Antipredator defense and
335		phenotypic plasticity of sclerites from Renilla muelleri, a tropical sea pansy. The
336		Biological Bulletin, 2007;213(2):135-140.
337	11.	Ledoux JB, Antunes A. Beyond the beaten path: improving natural products
338		bioprospecting using an eco-evolutionary framework-the case of the octocorals. Critical
339		Reviews in Biotechnology. 2018;38(2):184-198.
340	12.	Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends in
341		Genetics. 2008;24(3):142-149.
342	13.	Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Phillippy AM.
343		Hybrid error correction and de novo assembly of single-molecule sequencing
344		reads. Nature biotechnology, 2012;30(7):693.

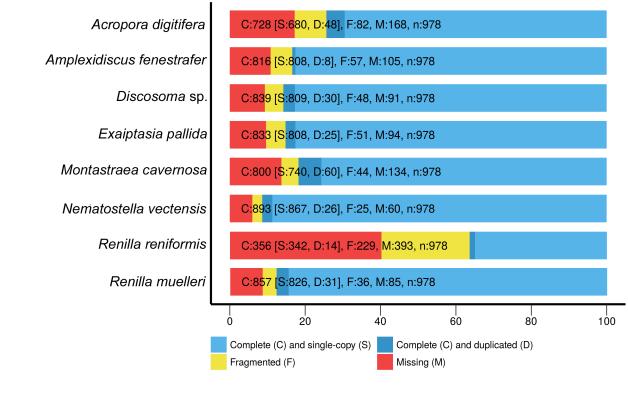
345	14. English AC, Richards S, Han Y et al. Mind the gap: Upgrading genomes with Pacific
346	Biosciences RS long-read sequencing technology. PLoS ONE. 2012;
347	doi:10.1371/journal.pone.0047768.
348	15. Bashir A, Klamer AA, Robins WP et al. A hybrid approach for the automated finishing of
349	bacterial genomes. Nature Biotechnology. 2012; doi:10.1038/nbt.2288.
350	16. Giordano F, Aigrain L, Quail MA et al. De novo yeast genome assemblies from MinION,
351	PacBio and MiSeq platforms. Scientific Reports. 2017; doi:10.1038/s41598-017-03996-z.
352	17. Tan MH, Austin CM, Hammer MP et al. Finding Nemo: hybrid assembly with Oxford
353	Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris)
354	genome assembly. GigaScience. 2018; doi:10.1093/gigascience/gix137.
355	18. McFadden CS, Alderslade P, Ofwegen LP van, Johnsen H, Rusmevichientong A.
356	Phylogenetic relationships within the tropical soft coral genera Sarcophyton and
357	Lobophytum (Anthozoa, Octocorallia). Invertebrate Biology 2006;125:288-305.
358	19. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
359	data. Bioinformatics 2014;30(15):2114-20.
360	20. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using
361	exact alignments. Genome Biology. 2014;15(3):R46.
362	21. Wood DE. Minikraken 8 GB database, Johns Hopkins University,
363	https://ccb.jhu.edu/software/kraken/dl/minikraken_20171019_8Gb.tgz (August 7 2018,
364	date last accessed)
365	22. National Center for Biotechnology Information: Trivial HTTP: env_nt.00 to env_nt.23.
366	ftp://ftp.ncbi.nlm.nih.gov/blast/db/

367	23. Boratyn GM, Camacho C, Cooper PS et al. BLAST: a more efficient report with usability
368	improvements. Nucleic Acids Research 2013;41(W1):W29-33.
369	24. Huson DH, Mitra S, Ruscheweyh HJ et al. Integrative analysis of environmental
370	sequences using MEGAN4, Genome Research, 2011;21:1552-1560.
371	25. Huson DH, Auch AF, Qi J et al. MEGAN analysis of metagenomic data, Genome
372	Research, 2007;17(3):377-86.
373	26. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, MacManes
374	MD. De novo transcript sequence reconstruction from RNA-seq using the Trinity
375	platform for reference generation and analysis. Nature protocol. 2013;8(8):1494.
376	27. Zimin AV, Marçais G, Puiu D et al. The MaSuRCA genome assembler. Bioinformatics
377	2013;29(21):2669–77.
378	28. Bankevich A, Nurk S, Antipov D, et al. SPAdes: A New Genome Assembly Algorithm
379	and Its Applications to Single-Cell Sequencing; Journal of Computational Biology. 2012;
380	doi: <u>10.1089/cmb.2012.0021</u>
381	29. Simão FA, Waterhouse RM, loannidis P et al. BUSCO: Assessing Genome Assembly
382	and Annotation Completeness with Single-Copy Orthologs. Bioinformatics. 2015;
383	doi:10.1093/bioinformatics/btv351.
384	30. Finn RD, Clements J, Eddy SR et al. HMMER Web Server: Interactive Sequence
385	Similarity Searching. Nucleic Acids Research. 2011; doi:10.1093/nar/gkr367.
386	31. Bushnell B. BBMap Short Read Aligner. Berkeley, CA: University of California; 2016.
387	https://sourceforge.net/projects/bbmap/ (August 7 2018, date last accessed).

- 388 32. Walker BJ, Abeel T, Shea T et al. Pilon: an integrated tool for comprehensive microbial
- variant detection and genome assembly improvement. PLoS One. 2014;
- doi:10.1371/journal.pone.0112963
- 391 33. Langmead B, Salzberg SL. Fast Gapped-Read Alignment with Bowtie 2. Nature
- 392 Methods. 2012; doi:10.1038/nmeth.1923.
- 393 34. Francis WR *haplotypeblastn.py*;
- 394 https://bitbucket.org/wrf/sequences/raw/f23b4dd3c965cc1774b9e10eb433242a18c13c65/
- 395 <u>haplotypeblastn.py</u> (August 7 2018, date last accessed).
- 396 35. Hahn C select contigs.pl; https://github.com/chrishah/phylog/blob/master/scripts-
- 397 <u>external/select_contigs.pl</u> (August 7 2018, date last accessed).
- 398 36. Smit AFA, Hubley R, Green P. RepeatMasker; <u>http://repeatmasker.org</u>
- 399 37. Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of
- 400 Illumina sequence reads. Genome Research. 2011;21(6):936-939.
- 401 38. Pena-Centeno T; *filterBam*,
- 402 https://github.com/nextgenusfs/augustus/tree/master/auxprogs/filterBam
- 403 39. <u>https://computationalbiologysite.wordpress.com/2013/07/25/incorporating-rnaseq-tophat-</u>
- 404 <u>to-augustus</u>, (August 7 2018, date last accessed).
- 40. Stanke M, Steinkamp R, Waack S et al. AUGUSTUS: a web server for gene finding in
 406 eukaryotes. Nucleic Acids Research 2004;32(suppl-2):W309–12.
- 407 41. Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with
- 408 a generalized hidden Markov model that uses hints from external sources. BMC
- 409 Bioinformatics. 2006; doi:10.1186/1471-2105-7-62.

- 410 42. Francis WR, Wörheide G. Similar ratios of introns to intergenic sequence across animal
- 411 genomes. Genome Biology and Evolution; 2017;9(6):1582-1598.
- 412 43. Joint Genomics Institute: Trivial HTTP, Nemve1.
- 413 <u>https://genome.jgi.doe.gov/portal/Nemve1/Nemve1.download.ftp.html</u> (7 August 2018,
- 414 date last accessed)
- 415 44. Macdonald B. filterGenes.py.
- 416 https://github.com/mcfaddenlab/filterGenes.py/blob/master/README.md (August 7,
- 417 2018, date last accessed)
- 418 45. Uniprot Consortium. UniProt: the Universal Protein Knowledgebase. Nucleic Acids
- 419 Research. 2018; doi:10.1093/nar/gky092
- 420 46. UniProt Consortium, Reviewed Swiss-Prot data,
- 421 ftp://ftp.uniprot.org/pub/databp/uniprot/current_release/knowledgebase/complete/uniprot
- 422 ______sprot.fasta.gz (August 7, 2018, date last accessed)
- 423 47. <u>https://ndownloader.figshare.com/files/1215191</u>, (August 7 2018, date last accessed).
- 424 48. Moran Y, Fredman D, Praher D et al. Cnidarian MicroRNAs frequently regulate targets
- 425 by cleavage. Genome Research. 2014; doi:10.1101/gr.162503.113.
- 426 49. Joint Genome Institute. *Nematostella vectensis* genome. Version 1.
- 427 https://genome.jgi.doe.gov/portal/Nemve1/Nemve1.download.html (August 7, 2018, date
- 428 last accessed).
- 429 50. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov, A, et al. Sea
- 430 anemone genome reveals ancestral eumetazoan gene repertoire and genomic
- 431 organization. Science 2007;317(5834):86-94.

432	51. Shinzato C, Shoguchi E, Kawashima T et al. National Center for Biotechnology
433	Information, Acropora digitifera genome Version 1.
434	https://www.ncbi.nlm.nih.gov/nuccore/BACK00000000.1 (November 2015, date last
435	accessed).
436	52. Shinzato C, Shoguchi E, Kawashima T, et al. Using the Acropora digitifera genome to
437	understand coral responses to environmental change. Nature. 2011;476:7360-320.
438	53. Liew YJ, Aranda M, Voolstra CR. Reefgenomics.Org - a repository for marine genomics
439	data. Database (Oxford) 2016, 1–4 Amplexidiscus fenestrafer and Discosoma sp.
440	genomes. http://corallimorpharia.reefgenomics.org (August 7, 2018, date last accessed).
441	54. Wang X, Liew YJ, Li Y, Zoccola D, Tambutte S, Aranda M. Draft genomes of the
442	corallimorpharians Amplexidiscus fenestrafer and Discosoma sp. Molecular Ecology
443	Resources 2017; 17(6); 187-195.
444	55. Baumgarten E, Simakov O, Esherick LY et al. National Center for Biotechnology
445	Information, (Ex)aiptasia pallida genome Version 1.1
446	ftp:// <u>ftp.ncbi.nlm.nih.gov/sra/wgs_aux/LJ/WW/LJWW01/LJWW01.1.fsa_nt.gz</u> (August
447	7 2018, date last accessed).
448	56. Baumgarten S, Simakov O, Esherick LY et al. The genome of Aiptasia, a sea anemone
449	model for coral symbiosis. Proceedings of the National Academy of Sciences
450	2015;112(38):11893-11898.
451	57. Matz Lab. Montastraea cavernosa genome. Jul 2018 version.


452 <u>https://matzlab.weebly.com/data--code.html</u> (August 7, 2018, date last accessed).

453	58. Kayal E, Bentlage B, Pankey MS et al. Phylogenomics provides a robust topology of the
454	major cnidarian lineages and insights on the origins of key organismal traits. BMC
455	Evolutionary Biology 2018;18:68.
456	59. Kayal E, Roure B, Phillipe H et al. Cnidarian phylogenetic relationships as revealed by
457	mitogenomics. BMC Evolutionary Biology, 2013;13:5.
458	60. Jiang J, Quattrini AM, Francis WR, et al. A hybrid de novo assembly of the sea pansy
459	(Renilla muelleri) genome. GigaScience Database 2018. doi:XXXXX
460	61. Liew YJ, Aranda M, Voolstra CR. Reefgenomics.Org - a repository for marine genomics
461	data. Database (Oxford) 2016, 1-4 Renilla muelleri genome http://rmue.reefgenomics.org
462	(August 7, 2018, date last accessed)
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	

475 Figure Captions

- 476 Figure 1. BUSCO-generated chart showing relative completeness of six hexacoral genomes, one
- 477 octocoral genome, and the *Renilla muelleri* assembly.

478

	MaSuRCA hybrid	SPAdes hybrid	Final MaSuRCA hybrid
scaffold total	4,984	725,809	4,925
contig total	5,263	725,809	5,196
scaffold sequence total	172,512,580	231,255,108	172,160,214
contig sequence total	172.472 Mb	231.255 Mb	172.091 Mb
scaffold L/N50	635/70.423 Kb	33702/1.007 Kb	633/70.522 Kb
contig L/N50	687/64.492 Kb	33702/1.007 Kb	684/64.781 Kb
Max scaffold /contig length	513.145 Kb	323.009 Kb	513.151 Kb
Number of scaffolds > 50 Kb	960	14	961
% genome in scaffolds > 50 Kb	61.07%	0.95%	61.23%
GC%	36.18%	36.97%	36.17%
N%	0.042%	0.000%	0.040%
BUSCO assessment:			
Complete	858 (87.73%)	508 (51.94%)	857 (87.63%)
Complete and single-copy	826 (84.46%)	493 (50.41%)	826 (84.46%)
Complete and Duplicated	32 (3.27%)	15 (1.53%)	31 (3.17%)
Fragmented	36 (3.68%)	200 (20.45%)	36 (3.68%)
Missing	84 (8.59%)	270 (27.61%)	85 (8.69%)

Table 1. General statistics and BUSCO-completeness of both initial hybrid assemblies and the
 final hybrid assembly.

489 Unmerged haplotypes were removed in the final assembly, which was also error-corrected with
 490 Pilon.

	Number
Genes	23,660
Exons	140,384
Introns	117,838
Average Exon Length	249
Exons Per Gene	5.93
Average Intron Length	524
Introns Per Gene	4.98
BUSCO assessment:	
Complete	830 (84.87%)
Complete and single-copy	798 (81.60%)
Complete and Duplicated	32 (3.27%)
Fragmented	64 (6.54%)
Missing	84 (8.59%)

Table 2. Statistics for the gene model predicted by Augustus.

514 Supplemental Table S1. Summary of Pilon changes per iteration

515							
		First Iteration	Second Iteration	Third Iteration	Fourth Iteration	Fifth Iteration	Sixth Iteration
	Single-nucleotide polymorphism changes	32,292	10,039	4,688	2,790	1,697	1,152
	Ambiguous bp	567	199	99	50	41	26
	Small Insertions	9,180 (54,855 bp)	1,982 (15,381 bp)	1,231 (14,443 bp)	858 (11,391 bp)	810 (12,777 bp)	641 (10,596 bp)
	Small Deletions	6706 (41,808 bp)	1,925 (16,566 bp)	1038 (11,922 bp)	848 (12,916 bp)	640 (10,603 bp)	684 (12,319 bp)
516 517							
518							
519							
520							
521							
522							
523							
524							
525							
526							
527							
528							
529							

Supplemental Table S2. Renilla muelleri genome assembly and annotation comparisons to 530

other anthozoan genomes. 531

	Genome Size (Mb)	Total # Complete BUSCOs**	Contig N50 (KB)	Exon length (bp)	# Predicted Gene models
Acropora digitifera	420	728	10.6	230	23,668
Amplexidiscus fenestrafer	350	816	20.0	218	21,372
Discosoma sp.	428	839	18.7	226	23,199
Exaiptasia pallida	256	833	14.4	NA	26,042
Montastraea cavernosa	448	800	343	NA	30,360
Nematostella vectensis*	329	893	19.8	208	27,273
Renilla reniformis	132	356	1.8	NA	12,689
Renilla muelleri	172	857	64.8	249	23,360

532

533

* Data taken from [52] and [56] **Complete BUSCOs generated from analysis herein 534