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Abstract

Quantification of gene expression levels at the single cell level has revealed that gene expression
can vary substantially even across a population of homogeneous cells. However, it is currently
unclear what genomic features control variation in gene expression levels, and whether common
genetic variants may impact gene expression variation. Here, we take a genome-wide approach to
identify expression variance quantitative trait loci (vQTLs). To this end, we generated single cell
RNA-seq (scRNA-seq) data from induced pluripotent stem cells (iPSCs) derived from 53 Yoruba
individuals. We collected data for a median of 95 cells per individual and a total of 5,447 single
cells, and identified 241 mean expression QTLs (eQTLs) at 10% FDR, of which 82% replicate in
bulk RNA-seq data from the same individuals. We further identified 14 vQTLs at 10% FDR, but
demonstrate that these can also be explained as effects on mean expression. Our study suggests
that dispersion QTLs (dQTLs) which could alter the variance of expression independently of the
mean can have larger fold changes, but explain less phenotypic variance than eQTLs. We estimate
424 individuals as a lower bound to achieve 80% power to detect the strongest dQTLs in iPSCs.
These results will guide the design of future studies on understanding the genetic control of gene
expression variance.

Author summary

Common genetic variation can alter the level of average gene expression in human tissues, and
through changes in gene expression have downstream consequences on cell function, human devel-
opment, and human disease. However, human tissues are composed of many cells, each with its
own level of gene expression. With advances in single cell sequencing technologies, we can now go
beyond simply measuring the average level of gene expression in a tissue sample and directly mea-
sure cell-to-cell variance in gene expression. We hypothesized that genetic variation could also alter
gene expression variance, potentially revealing new insights into human development and disease.
To test this hypothesis, we used single cell RNA sequencing to directly measure gene expression
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variance in multiple individuals, and then associated the gene expression variance with genetic
variation in those same individuals. Our results suggest that effects on gene expression variance
are smaller than effects on mean expression, relative to how much the phenotypes vary between
individuals, and will require much larger studies than previously thought to detect.

Introduction

Robustness, or the ability to maintain a stable phenotype despite genetic mutations and environ-
mental perturbations, is an important property of many key biological processes, such as those
underlying embryogenesis and development [1, 2]. Conversely, evolvability, or the ability to gen-
erate heritable phenotypic variation, is a fundamental requirement of evolutionary processes [3].
A long-standing question in genetics, therefore, is how the balance between these two seemingly
opposite processes has been fine-tuned [4].

We still have a relatively poor understanding of how robustness is achieved, especially at the
molecular level. In model organisms, robustness and evolvability can be studied using experimen-
tal evolution approaches. These approaches typically quantify robustness as the change in trait
variation after applying an experimental perturbation [5, 6]. However, in such experiments the phe-
notypic outcomes, rather than the underlying mechanisms of robustness, are measured. Moreover,
experimental evolution studies have almost always considered population-average measurements of
phenotypes using entire organisms, tissues, or cell cultures, with few exceptions [7, 8]. To truly
understand how robustness and evolvability are established and encoded in the genome, we need
to consider phenotypic variation across individual cells [9], and connect it to genetic variation, an
approach termed “noise genetics” [10].

Using the yeast Saccharomyces cerevisiae as a model system, studies have shown that heterogeneity
in the expression of certain genes across cells is highly heritable and placed under complex genetic
control, suggesting that the level of noise in gene regulation may also differ between individuals
of multicellular organisms depending on their genetic background [11]. Follow-up studies further
demonstrated that gene expression noise mediated by promoter variants can provide a fitness benefit
at times of environmental stress in yeast, highlighting the direct role of genetically controlled
stochastic cell-cell variation in evolutionary robustness [12]. However, the genetic and molecular
circuits that lead to robustness remain largely uncharacterized in mammals.

Here, we take an unbiased, genome-wide approach to identify quantitative trait loci associated
with gene expression variance across cells (vQTLs). We study human induced pluripotent stem
cells (iPSCs), which offer a homogeneous population of cells allowing a relatively simple statistical
model. Investigating iPSCs also provides the possibility to study gene expression variance across
cells during differentiation in follow-up studies. To directly measure the mean and variance of gene
expression within cell populations as phenotypes, we generated single cell RNA-seq (scRNA-seq)
data from cells derived from multiple individuals.
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Results

Sample collection and quality control

Using the Fluidigm C1 platform, we isolated and collected scRNA-seq from 7,585 single cells from
iPSC lines of 54 Yoruba in Ibadan, Nigeria (YRI) individuals. We used unique molecular identifiers
(UMIs) to tag RNA molecules and account for amplification bias in the single cell data [13]. To
estimate technical confounding effects without requiring separate technical replicates, we used a
mixed-individual plate study design (Fig 1A). The key idea of this approach is that having observa-
tions from the same individual under different confounding effects and observations from different
individuals under the same confounding effect allows us to distinguish the two sources of variation
[14].

We excluded data from one individual (NA18498) with evidence of contamination, then filtered poor
quality samples as previously described [14]. After quality control, we analyzed the expression of
9,957 protein-coding genes in a median of 95 cells per individual in 53 individuals (total of 5,597
cells; Fig S1).

To ensure that our measurements are comparable across samples, we first sought to assess the impact
of observed technical variation on the data and to identify unobserved technical confounders. To
this end, we performed principal components analysis (PCA) on the matrix of log counts per million
(log CPM).

We found that across samples, the loading on the top principal component (PC) was correlated
with gene detection rate (the proportion of genes with at least one molecule detected), but not
with the biological variable of interest (individual) or the expected technical confounders (batch
and C1 chip; Fig 1B). Indeed, as previously reported [15], the entire distribution of observed log
CPM (over all genes) varies across samples, and appears to be associated with the gene detection
rate (Fig 1C). After accounting for gene detection rate (Methods), the top PCs were correlated
with individual, batch, and C1 chip, as expected (Fig 1D).

Estimating gene expression mean and variance

We developed a method to estimate the mean and variance of gene expression across cells for
each gene in each individual (Fig 1A; Methods). Briefly, for each individual and each gene, our
method uses maximum likelihood to fit a zero-inflated negative binomial distribution (ZINB) to
the observed UMI counts across cells, and derives the mean and variance of gene expression from
the estimated model parameters. When fitting the ZINB model the method controls for technical
confounders (e.g. C1 chip) and library size, and when deriving the mean and variance it accounts
for Poisson measurement noise in the UMI counts [16, 17]. These desirable features would not
be achieved by directly computing the sample mean and variance of either the UMI counts or log
CPM.

To evaluate the accuracy of the method, we simulated data from the model and compared the
estimated parameters, as well as the derived mean and variance, to the true values used to generate
the data. We fixed the number of cells and number of molecules detected per cell to the median
of those values in our observed data, and varied the ZINB parameters. Assuming that mean
expression is high enough, we found the method produces accurate estimates of the underlying
negative binomial parameters, but not the zero inflation parameter (Fig S2). Despite not accurately
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Figure 1: Study design and quality control. (A) We used a mixed-individual plate design to
be able to distinguish technical effects from biological effects of interest, and used a zero-inflated
negative binomial model to fit the distribution of the data, accounting for technical confounders.
(B) Proportion of variance explained (PVE; top) and a heatmap of the correlations between the
top 10 principal components of gene expression and observed technical covariates (bottom). (C)
Dependence of the distribution of gene expression against gene detection rate (proportion of genes
with at least one molecule detected) for each sample. Each vertical slice is a single cell (according to
the gene detection rate). For each cell, there are 5 points, corresponding to the (0, 0.25, 0.5, 0.75, 1)
quantiles of non-zero log CPM values observed for that cell. (D) PVE and correlation between
principal components and observed covariates after correcting for gene detection rate.
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estimating the zero inflation parameter, the method still produces accurate estimates of the derived
mean and variance for genes that are expressed at intermediate to high levels.

We thus applied our method to the observed data, correcting for batch and C1 chip. Importantly,
we did not correct for gene detection rate, reasoning that the dependence on gene detection rate is
only an artifact introduced by analyzing log CPM. To ensure our method would provide accurate
estimates for the observed data, we filtered genes based on their median expression level across
samples. We then asked what proportion of variance in the expression data was explained by
technical confounders. To do so, we estimated the reduction in residual variance when including the
confounders in the model, and found technical confounding explains 16% of the observed variance on
average across all genes and individuals. Our results emphasize that careful experimental design as
well as careful statistical modeling are required to robustly map effects on gene expression variance
across cells.

Quantitative trait locus mapping

Previous studies have shown a clear relationship between the mean and variance of gene expression
[18, 19]; therefore, apparent genetic effects on the variance could potentially be explained by effects
on the mean. In our model, the mean-variance relationship is controlled by a single dispersion
parameter per gene per individual. We sought to directly map QTLs which could alter the variance
independently of altering the mean by using the estimated dispersion parameter as a quantitative
phenotype. However, we found zero dispersion QTLs (dQTLs) using this approach.

Alternative approaches to decouple the mean-variance relationship include using the coefficient of
variance (CV; ratio of standard deviation to mean) or Fano factor (ratio of variance to mean) as
quantitative phenotypes. However, prior work shows these quantities have predictable relationships
with the mean, and therefore effects could still be explained away [14, 19]. Therefore, we proceeded
to map eQTLs, variance QTLs (vQTLs), CV-QTLs, and Fano-QTLs, and then asked whether we
could discover variance effects which could not be explained as effects on mean expression.

We found 241 eQTLs, 14 vQTLs, 2 CV-QTLs, and 0 Fano-QTLs (FDR 10%). To validate the
eQTLs, we estimated the replication rate against eQTLs discovered in bulk RNA-seq from the
same iPSC lines [20]. We found that 82% of the single cell eQTLs replicate in the matched bulk
data (Fig 2A), and 80% of bulk eQTLs replicate in the single cell data. However, we found 1,390
eQTLs (FDR 10%) using all of the individuals in the bulk RNA-seq study (n = 58), and still
recovered 1,136 eQTLs (FDR 10%) after subsampling to n = 53. Our results therefore suggest that
eQTL discovery in scRNA-seq (as opposed to replication of previously discovered eQTLs) loses
power compared to equal-sized studies in bulk RNA-seq, likely due to increased experimental noise.

We then sought to directly explain away vQTLs as eQTLs by regressing out the mean from the
variance. Treating the residuals from the regression as the phenotype, we recovered zero vQTLs.
Similarly, after regressing out the mean from the coefficient of variation, we recovered zero CV-
QTLs. These results suggest the significant variance effects detected in this study are all likely to
be explained as effects on mean expression.
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A B

Figure 2: Discovery and overlap of expression QTLs and variance QTLs. (A) z-scores
for expression QTL (eQTL) SNP-gene pairs discovered in pooled single cell RNA-seq data against
z-scores of the same SNP-gene pairs in matched bulk RNA-seq data. (B) In the single cell data,
z-scores for 241 eQTL SNP-gene pairs (FDR 10%) against variance QTL (vQTL) z-scores of the
same SNP-gene pairs. vQTL z-scores are stratified based on whether the gene was discovered as a
vQTL at FDR 10%.

Power analysis

Our goal in this study was to find QTLs which alter the variance of gene expression independently
of altering the mean expression. Under our model, these QTLs should explain variation in the
dispersion parameter across individuals; however, we failed to find dQTLs. Further, all of the
vQTLs we were able to identify could be explained by mean effects. In contrast, we were able to
discover eQTLs, but fewer than expected based on bulk RNA-seq in matched samples.

To understand why we failed to discover dQTLs, and why we discovered fewer eQTLs than expected,
we first derived the power function in terms of effect size (log fold change), sample size, noise
ratio (ratio of measurement error variance to phenotypic residual variance), and significance level
(Methods). We then sought to estimate the distribution of QTL effect sizes and the typical noise
ratio, for the both mean expression and dispersion.

To estimate the distribution of QTL effect sizes, we fit a flexible unimodal distribution for the true
effect sizes which maximizes the likelihood of the observed effect sizes and standard errors [21].
Surprisingly, we found that dQTL effects could be larger than eQTL effects (Fig S3). For example,
we estimate that the 99th percentile eQTL effect size is 0.023, but is 0.085 for dQTLs. Given this
result and the power function we derived, there are two possible explanations for why we still failed
to find dQTLs: (1) the noise ratio of dispersion is large (measurement error reduced power), or (2)
the residual variance of dispersion is large (genetic variation explains little phenotypic variance).

To estimate the typical noise ratio, we developed a two-step procedure to estimate the measure-
ment error variance and residual variance per gene (Methods). Briefly, in our approach we have
one measurement error variance per individual, per gene, which equals the sampling variance of
our ZINB model. To estimate each error variance, we used non-parametric bootstrapping. To
estimate the measurement error variance for each gene, we took the median of the estimated mea-
surement error variances across individuals. To estimate the residual variance for each gene, we
fit a flexible unimodal distribution for the true phenotypes which maximizes the likelihood of the
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Figure 3: Power to detect dispersion QTLs. Power is a function of effect size (relative to
phenotypic standard deviation), sample size, noise ratio, and significance level. Gray lines indicate
the 99th percentile of dispersion effect sizes relative to the typical phenotypic standard deviation,
and the power achieved to detect an effect of that size at the typical noise ratio. Power curves are
computed for the current sample size (left), the sample size required to achieve 80% power for that
effect size fixing the number of cells per individual (center), and the minimum sample size assuming
no measurement error (right).

observed phenotypes and measurement errors, and estimated the variance of the posterior mean
true phenotypes.

Using our approach, we estimated that the typical noise ratio of the dispersion is 3.0, compared
to 8.0 for the mean (Figure S4). This result suggests that we did not fail to find dQTLs only
due to measurement error, because the noise ratio was lower for dQTLs than for eQTLs. As
a reference point, a noise ratio equal to 1 has the same impact on power to detect a QTL as
cutting the sample size in half, explaining why out study lost power to detect eQTLs. We found
that the typical phenotypic standard deviation of dispersion is 7.2 fold larger than that of the
mean expression, suggesting we failed to find dQTLs because the effect sizes of dQTLs (relative to
phenotypic standard deviation) are smaller than the effect sizes of eQTLs.

We finally asked how much power our current study had to detect the 99th percentile dQTL effect
size, assuming the typical noise ratio estimated above. We found that our study had only 0.02%
power to detect that effect size at Bonferroni–corrected level α = 5 × 10−6 (Figure 3). Fixing
the typical noise ratio, we estimate 1,702 individuals would be required to achieve 80% power.
As a lower bound, we estimate 424 individuals would be required assuming no measurement error.
Overall, our results suggest a much larger study, both in terms of number of individuals and number
of cells per individual, would be required to detect the strongest dQTLs in iPSCs.

Discussion

Individual cells must tolerate both external and internal perturbations arising from the environment
or mutations. It has long been argued that this outcome of robustness is an inherent property of
biological systems [22], and arises from natural selection [23, 24]. Robustness is especially critical

7

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424192doi: bioRxiv preprint 

https://doi.org/10.1101/424192
http://creativecommons.org/licenses/by-nd/4.0/


in the context of cell fate transitions during differentiation [25]. Other dynamic physiological
processes must also be robust, and as a result, loss of robustness is associated with clinically
relevant phenotypes and complex genetic disease [26, 27].

Cells maintain their identity and other phenotypes despite perturbations because of the robust
regulation of key sets of genes [28]. We hypothesized that QTLs could disrupt the mechanisms
underlying robust regulation, and therefore reveal new insights into the genetic regulation of dif-
ferentiation and disease.

To investigate this hypothesis, we directly observed gene expression variance across multiple in-
dividuals using scRNA-seq, and sought to identify QTLs which could alter the variance of gene
expression across cells within a single individual, independently of altering the mean expression.
However, we failed to discover such QTLs, and demonstrated that QTLs which are associated with
the variance of gene expression can be explained by effects on mean expression. We found that
relative to the phenotypic standard deviation, effects on the dispersion are smaller than effects on
the mean, partially explaining why this study failed to find them.

Our results do not rule out genetic effects on variance independent of mean effects, due to two
main limitations of our analysis. First, our estimated distributions of effect sizes are based on an
empirical Bayes estimate of the underlying effect sizes, given the observed effect sizes. Our results in
simulation and observed data suggest the observed effect sizes may be not be accurately estimated
given the size of the current study. Therefore, the empirical Bayes estimate may not accurately
reflect the true distribution of effect sizes. However, we chose to bias the estimation procedure
towards putting prior mass on zero, so our estimates of effect sizes are conservative. Additionally,
our estimates may not generalize beyond iPSCs, because the distribution of dispersion effect sizes
could vary across cell types and conditions.

Second, we took a modular approach to map QTLs in this study: (1) we estimated parameters for
each individual using only the scRNA-seq data, and then (2) we mapped QTLs using phenotypes
derived from the estimated parameters. An alternative approach would be to include genotype in
the count model for the data, and jointly learn the mean, dispersion, proportion of excess zeros,
and genetic effect sizes for mean and dispersion. Such an approach could borrow information across
cells with common genotypes to improve power, holding the experiment size fixed. However, further
development will be needed to efficiently fit the models at QTL mapping scale.

We stress that our power calculation is only a rough guideline for designing QTL mapping studies
using scRNA-Seq. We based our calculations on typical values of the noise ratio for the mean
expression and dispersion, and chose a conservative significance level. However, we found consid-
erable variation in the noise ratio across genes, suggesting that our results may not generalize even
across genes. Overall, our results suggest that the technical noise introduced by scRNA-seq greatly
reduces the power to discover eQTLs. Our results also suggest that, for iPSC lines, dramatically
larger studies will be required to map both eQTLs and dQTLs from scRNA-seq.

Materials and methods

Sample collection and quality control

We cultured YRI iPSCs [20] in feeder-free conditions for at least ten passages in E8 medium (Life
Technologies) [29]. We collected cells using the C1 Single-Cell Auto Prep IFC microfluidic chip
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(Fluidigm). We used a balanced block-incomplete design to randomize individuals across chips. For
each chip, we freshly prepared a mixture of cell suspensions from four individuals. We measured
live cell number via trypan blue staining (ThermoFisher), to ensure equal cell numbers across
individuals per mixture. We performed single cell capture and library preparation as previously
described using 6 bp Unique Molecular Identifiers [14]. We pooled the 96 samples on each C1 chip
and sequenced them on an Illumina HiSeq 2500 using the TruSeq SBS Kit v3-HS (FC-401-3002).

We mapped the reads to human genome GRCh37 (including the ERCC spike-ins) with Subjunc
[30], deduplicated the UMIs with UMI-tools [31], and counted molecules per protein-coding gene
(Ensembl 75) with featureCounts [32]. We then matched single cells back to YRI individuals using
verifyBamID [33].

We filtered samples on the following criteria, derived as previously described [14]:

• Only one cell observed per well

• Valid identification

• At least 1,011,612 mapped reads

• Less than 49% ERCC reads

• At least 4,730 genes with at least one read

• Linear discriminant analysis predicts one cell

We filtered genes for QTL mapping on the following criteria:

• Number of molecules less than 46 = 4096

• Median log CPM at least 3

We applied principal component analysis (PCA) to the matrix X of log counts per million (log
CPM), using the pseudocount proposed in edgeR [34].

We corrected for gene detection rate by simultaneously regressing out quantiles of gene expression,
correcting for sample-specific and gene-specific means, and performing PCA. Let X = (x1, . . . ,xn)
be observed p-vectors, and let (z1, . . . , zn) be latent k-vectors where k ≪ p. Then, PCA corresponds
to maximum likelihood estimation in the following latent variable model [35]:

xi ∼ N (·;Wzi + µ, σ2I) (1)

In this parameterization, µ denotes a per-coordinate mean (in our application, per-gene). However,
as previously reported [15], we additionally have to account for the per-sample mean.

Our approach is based on the latent variable model:

xij ∼ N (Wjzi + q′
iβj + ui + vj , σ

2I) (2)

where u is an n-vector of per-sample means, v is a p-vector of per-gene means, and Q = (q1, . . . ,qn)
is a k × n matrix of expression quantiles.

We fit the model as follows:
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1. Estimate βj via least squares estimation of the following linear model:

Xj = µj +Qβj + ϵ (3)

2. Construct the residual matrix xij := xij − q′
iβj , then estimate u,v via coordinate descent:

ui :=
1

p

∑
j

xij − vi (4)

vj :=
1

n

∑
j

xij − ui (5)

3. Construct the residual matrix xij := xij −ui− vj , then estimate W via maximum likelihood.
The MLE Ŵ equals the top k singular vectors of residual matrix X [35].

We estimated the squared correlation between each PC and categorical covariates (batch, C1 chip,
individual, well) by recoding each category as a binary indicator, fitting a multiple linear regression
of the PC loadings against the binary indicators, and then estimating the coefficient of determina-
tion of the model.

Estimating gene expression mean and variance

We assume the count data are generated by a zero-inflated negative binomial (ZINB) distribution.
Let:

• rijk be the number of molecules for individual i, cell j, gene k

• Rij be a size factor for each cell

• µik be proportional to relative abundance

• ϕik be the variance of expression noise

• πik be the proportion of excess zeros

• xij be a q-vector of confounders per cell

• βk be a q-vector of confounding effects on gene k

Then, we assume:

rijk ∼ Poisson(·;Rij exp(x
′
ijβk)λijk) (6)

λijk ∼ πikδ0(·) + (1− πik)Gamma(·;µik, ϕik) (7)

Under this model, the mean and variance of gene expression are:

E[λijk] = (1− πik)µik (8)
V[λijk] = (1− πik)µ

2
ikϕik + πik(1− πik)µ

2
ik (9)
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Considering just the non-zero component, marginalizing out λ yields the log likelihood:

l(·) = ln(1− πik) + rijk ln

(
Rijµik

Rijµik + ϕ−1
ik

)
+ ϕ−1

ik ln

(
ϕ−1
ik

Rijµik + ϕ−1
ik

)
+ lnΓ(rijk + ϕ−1

ik )− ln Γ(rijk + 1)− ln Γ(ϕ−1
ik ) (10)

Then, marginalizing over the mixture yields the log likelihood:

ln p(rijk | ·) = ln(πik + exp(l(·))) if rijk = 0 (11)
ln p(rijk | ·) = l(·) otherwise (12)

We estimated the model parameters by maximizing the likelihood using batch gradient descent for
4,000 iterations, accelerated by AMSGrad [36].

We defined the size factor of each cell as the total number of molecules detected (before excluding
genes in QC). To correct for technical confounders, we included C1 chip as an observed confounder,
recoded as binary indicator variables and centered. This approach is sufficient to also correct for
batch, because in our experimental design, batch is a linear combination of C1 chip. Intuitively, if
there were a batch effect independent of C1 chip, then we could add the batch effect to each chip
effect and set the batch effect to 0.

Quantitative trait locus mapping

We imputed dosages for 120 Yoruba individuals from the HapMap project (Phase 3, hg19) as pre-
viously described [37]. We restricted our analysis to 8,472,478 variants with minor allele frequency
at least 0.05.

For each single cell expression phenotype tested, we standardized and quantile-normalized the
phenotype matrix to a standard normal as previously described [38]. We called QTLs and controlled
the gene-level false discovery rate using QTLtools [39]. We included principal components (PCs) of
the normalized expression matrix as covariates for QTL mapping, and selected the number of PCs
for each phenotype by greedily searching for the number of PCs which maximized the number of
QTLs discovered on even chromosomes only at FDR 10%. We additionally recalled eQTLs in the
matched bulk RNA-seq data [20] using the re-processed dosage matrix.

We performed replication testing by taking each SNP-gene pair from the discovery cohort, and
testing that pair in the replication cohort. We defined a hit as replicating if it passed the Benjamini–
Hochberg procedure at level 10% (restricted to the set of SNP-gene pairs tested) and had the same
effect size direction.

Power analysis

For individual i and gene k, we assume the generative model:
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yik = xib+ eik (13)
ỹik = yik + ẽik (14)

where ỹik is the observed phenotype, yik is the true phenotype, xi is the genotype at the SNP of
interest, ẽik ∼ N (0, σ2

m), and eik ∼ N (0, σ2
r ).

To perform QTL mapping, we fit a working model which ignores measurement error:

ỹik = xiβ + ϵik (15)

where ϵik ∼ N(0, σ2). From this model, we estimate β̂. Assuming V[x] = 1, we have σ2 = σ2
r + σ2

m

and:

β̂ ∼ N
(
b,
σ2
r + σ2

m

n

)
(16)

where n is the number of individuals. Under the working model, the power function is:

Pow(·) = Φ

(
Φ−1

(α
2

)
+

b

SE(β̂)

)
(17)

where α denotes the significance level, SE(·) denotes standard error, and Φ(·) denotes the standard
Gaussian CDF. Under the assumed generative model, the power function equals:

Pow(λ, n, δ, α) = Φ

(
Φ−1

(α
2

)
+ λ

√
n

1 + δ

)
(18)

where λ = b/σr, and δ = σ2
m/σ2

r . Parameterized in terms of δ, the power function implies useful
reference points; for example, δ = 1 is equivalent to cutting the sample size in half.

To determine the effect size b, we estimate the distribution of true effect sizes b given observed
effect sizes β̂j and associated standard errors ŝj . We assume the hierarchical model:

β̂j | bj , ŝj ∼ N (bj , ŝ
2
j ) (19)

bj | ŝj ∼ g(·) (20)

where g is a unimodal mixture of Gaussians. We estimate g using adaptive shrinkage (ash) [21].
We took b to be the 99th percentile of the fitted distribution.

Although we assumed a single measurement error variance σ2
m, we actually have measurement errors

for each individual and gene σ2
mik. To estimate σ2

mik, we used non-parametric bootstrapping. For
each individual and gene, we resampled the counts (matched with the library size and technical
confounders) with replacement, and refit the ZINB model. To reduce computational burden, we
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restricted our analysis to 200 randomly chosen genes, warm-started the optimization from the
optimal parameters for the original data, and ran gradient descent for 1,000 iterations.

To estimate the typical noise ratio δ, we estimate a measurement error variance per gene σ2
mk

and a residual variance per gene σ2
rk. We take σ̂2

mk = median(σ2
mik). To estimate σ2

rk, we solve a
deconvolution problem [40]:

ỹik | yik, σ̂2
mik ∼ N (yik, σ̂

2
mik) (21)

yik | σ̂2
mik ∼ g(·) (22)

where g is a unimodal mixture of uniforms, estimated using ash. To fit the model, we centered the
ỹik for each gene k, concatenated them across genes, and assumed a common prior.

Then, the required estimates are:

σ̂2
rk = V̂[E[yik | · ]] (23)

δ̂ = median

(
σ̂2
mk

σ̂2
rk

)
(24)

λ =
b

median(σ̂2
rk)

(25)

where V̂ denotes sample variance.

Code and data availability

All code used to perform the computational analyses is available at https://github.com/jdblischak/
singlecell-qtl. The results of running the analysis code are available at https://jdblischak.
github.io/singlecell-qtl.

The RNA-seq data, sample metadata, and filtered gene expression count matrix have been deposited
under accession number GSE118723. The estimated parameter matrices and QTL summary statis-
tics are available at https://eqtl.uchicago.edu
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Figure S1: Descriptive statistics of the experiment. Number of cells per individual, and
number of molecules per cell after applying quality control filters.
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Figure S2: Estimated ZINB parameters and latent mean and variance in idealized
simulation. Estimates of ln(µ) and latent mean are displayed for logit(π) < 0. Estimates of
ln(ϕ) and latent variance are displayed for ln(µ) > −10, logit(π) < 0. Estimates of logit(π) are
displayed over the entire range of parameter values. In each trial, simulated molecule counts for 95
cells are drawn from the model assuming 114,026 molecules per cell, matching the median number
of cells, and molecules per cell in the observed data.

Figure S3: Estimated distribution of QTL effect sizes. We fit a unimodal mixture of Gaus-
sians to the distribution of observed eQTL (dQTL) effect sizes (in terms of log fold change) using
Empirical Bayes.
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Figure S4: Distribution of estimated noise ratios. Noise ratios (ratio of measurement error
variance to phenotypic variance) are estimated for 200 randomly chosen genes using a two-step
empirical Bayes procedure.
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