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ABSTRACT 

The human brain is understood to follow fundamental principles linking form (such as 

microstructure and anatomical connectivity) to function (perceptual, motor, cognitive, 

emotional, and other processes). Most of this understanding is based on knowledge of 

the cerebral cortex, where functional specialization is thought to be closely linked to 

microstructural variation as well as anatomical connectivity. The Universal Cerebellar 

Transform (UCT) theory has posited that the cerebellum has a different form-function 

organization in which microstructure is uniform, and in which functional specialization is 

determined solely by anatomical connectivity with extracerebellar structures. All 

cerebellar functions may thus be subserved by a common microstructural - and hence 

computational - substrate. Here we tested this hypothesis by measuring microstructural 

variation and functional specialization as indexed by magnetic resonance imaging in 1003 

healthy humans. Cerebral cortex exhibited the expected pattern of microstructure-

function correlation, but functional specialization was independent of microstructural 

variation in the cerebellum. These findings support the idea that cerebellar functional 

specialization is not determined by microstructure, and hence that cerebellar functions 

may be computationally constant across domains. 

 

SIGNIFICANCE STATEMENT 

The cerebellum is estimated to contain more than half the neurons in the human brain, is 

known to be involved in motoric, cognitive, and emotional functions, and is implicated in 

many neurological and neuropsychological disorders, but remains far less studied than 

the cerebral cortex. The Universal Cerebellar Transform (UCT) theory posits that one 
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uniform computation underlies all cerebellar functions across multiple domains, but 

testing that idea has been difficult.  Here we find that unlike the cerebral cortex, in which 

microstructural variation is associated with functional variation, the cerebellum exhibits 

relatively uniform microstructure across functionally distinct regions. These findings 

support UCT theory, and draw a sharp distinction between form-function relations in the 

cerebellum versus the cerebral cortex.  

 

INTRODUCTION 

Anatomical, clinical, behavioral and neuroimaging evidence has determined that the 

cerebellum is functionally heterogenous: It is involved not only in motor control but also 

in multiple aspects of cognitive and affective processing (Buckner et al. 2011, Guell et al. 

2015a, 2018a, Hoche et al. 2016, 2018; Kelly & Strick 2003, Middleton & Strick 1994, 

Schmahmann & Pandya 1991, Schmahmann 1996, Schmahmann & Pandya 1997a,b; 

Schmahmann & Sherman 1998, Stoodley & Schmahmann 2009). Consistent with its 

functional diversity, multiple studies have revealed cerebellar abnormalities in diseases 

that target a wide spectrum of cognitive and affective functions, ranging from Autism 

Spectrum Disorder (Arnold Anteraper et al. 2018) to Alzheimer’s disease (Guo et al. 

2016).  

 

How the cerebellum contributes to movement, thought, and emotion in health and disease 

remains an area of active debate. One line of inquiry investigates mechanisms underlying 

cerebellar function. Non-mutually exclusive hypotheses include generation of internal 

models (Ito 2008), prediction (Lesage et al. 2012), event-timing (Ivry & Keele 1989), error-
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driven adjustment (Ben-Yehudah et al. 2007), and sequencing (Molinari et al. 2008). A 

different line of inquiry has posited the Universal Cerebellar Transform (UCT) theory 

(Schmahmann 1991, 1996, 2000, 2010) that proposes that cerebellar contributions are 

computationally constant across domains. UCT theory is motivated by several 

observations: (1) cerebellar cytoarchitecture is essentially uniform (Ito 1993, Voogd & 

Glickstein 1998); (2) distinct regions of the cerebellum are anatomically (Kelly & Strick 

2003) and functionally connected (Buckner et al. 2011) to distinct extra-cerebellar regions 

– in this way, UCT has access to distinct streams of information processing, and can 

emerge as different functions; (3) cognitive and affective symptoms after cerebellar injury 

show similarities with motor symptoms after cerebellar injury (Guell et al. 2015a); and (4) 

stimulation of two different cerebellar regions in humans results in similar functional 

changes in distinct regions of the cerebral cortex (Farzan et al. 2016). 

 

Here we aim to test for the first time what is arguably the fundamental pillar of the UCT 

theory, namely, that microstructural variations are not associated with functional 

variations in the cerebellum. The absence of a relation between microstructural properties 

of cerebellar tissue and functional variation in the cerebellum would be a striking contrast 

with the cerebral cortex, in which microstructure variations are strongly related to 

functional variations (Amunts et al. 2007, Huntenburg et al. 2017). 

 

To test this hypothesis we related microstructural variation and functional variation in 

1003 humans from the Human Connectome Project (HPC) (Van Essen et al. 2013). The 

measure of microstructure was the T1w/T2w image intensity ratio, an indirect measure of 
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myelin density (Glasser & Van Essen 2011). Myelin density is closely related to brain 

cytoarchitecture (Nieuwenhuys & Broere 2017). The measures of function were functional 

gradients that provide a low-dimensional representation of complex, high-dimensional 

resting-state functional connectivity patterns (Guell et al. 2018b, Margulies et al. 2016). 

Functional gradients thus provide a simple, continuous measure of brain function. 

Correlation analyses between these two measures have been able to capture 

microstructure-function relationships in the cerebral cortex (Huntenburg et al. 2017). Our 

hypothesis in the present study was that microstructural variations are not associated with 

functional variations in the cerebellum, and therefore that T1w/T2w intensity would not 

correlate with functional gradients in the cerebellum. Relating microstructure to function 

would provide a strong test of the idea that there are fundamentally different relations 

between microstructural variations and functional variations in the cerebellum versus the 

cerebral cortex, and the absence of a microstructure-function relation in the cerebellum 

would support UCT theory that cerebellum computations may be constant across 

functional domains. 
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METHODS 

Code accessibility 

All code used in this study is openly available at 

https://github.com/gablab/cerebellum_structurefunction 

 

Data 

MRI data were provided by the Human Connectome Project (HCP), WU-Minn Consortium 

(Van Essen et al. 2013). Informed consent forms were previously approved by the 

Washington University Institutional Review Board. We analyzed cerebellum and cerebral 

cortical data from the HCP 1200 participants release, including (1) group-average resting-

state connectivity data from 1003 participants as provided by HCP (four 15-minutes scans 

per participant; 534 were female; age was distributed as follows: 22-25 years old n=218, 

26-30 n=432, 31-35 n=344, >35 n=9); (2) group-average T1w/T2w data from a subset of 

881 participants as provided directly by HCP; and (3) single-participant T1w/T2w data 

from 100 randomly selected participants. Due to structural image quality thresholds 

imposed by HCP, some participants from the group average resting-state connectivity 

matrix (n=1003) are not included in the group average T1w/T2w data (n=881). 

 

EPI data acquired by the WU-Minn HCP used multi-band pulse sequences (Feinberg et 

al. 2010, Moeller et al. 2010, Setsompop et al. 2012, Xu et al. 2013). HCP structural scans 

are defaced using the algorithm by (Milchenko & Marcus 2013). HCP MRI data pre-

processing pipelines are primarily built using tools from FSL and FreeSurfer (Fischl 2012, 

Glasser et al. 2013, Jenkinson et al. 2012). HCP structural pre-processing includes 
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cortical myelin maps generated by the methods introduced by (Glasser & Van Essen 

2011). Results were visualized in surface and volumetric space using the HCP workbench 

view software, as well as on cerebellar flat maps using the SUIT toolbox (Diedrichsen 

2006, Diedrichsen & Zotow 2015, Diedrichsen et al. 2009). Of note, cerebellum data 

analysis only included data from the cerebellar cortex - cerebellum deep white matter and 

nuclei regions are excluded in the HCP cerebellum grey matter mask. 

 

Experimental Design and Statistical Analysis 

Analysis of T1w/T2w data 

Cerebral cortical group-average T1w/T2w surface data from 881 participants as provided 

directly by HCP includes field inhomogeneity correction as described in (Glasser et al. 

2013). In contrast, cerebellum data in this group-average does not include field 

inhomogeneity correction. We therefore conducted an additional preprocessing step of 

field inhomogeneity correction in volumetric data as implemented in the default bias 

regularization step of the SPM12 segment procedure (Ashburner & Friston 2005). This 

revealed a posterior (lobules Crus I/II) to anterior (lobules I-V, IX) bias (Fig. 1A). Given 

that lobules I-V are the principal motor functional regions of the cerebellum (Guell et al. 

2018a, Schmahmann et al. 2009, Stoodley & Schmahmann 2009, Stoodley et al. 2012), 

inhomogeneity field correction is an important preprocessing step given that higher 

T1w/T2w intensity in lobules I-V would erroneously lead to correlations between T1w/T2w 

intensity and functional gradients of the cerebellum.  

One methodological concern was that cerebellar field inhomogeneity differences may 

exist between participants, and hence that cerebellar field inhomogeneity correction at 
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the average level (881 participants average) may not be optimal. Indeed, when analyzing 

field inhomogeneity in 10 individual participants, we observed between-subject 

differences (Fig. 1B). In order to address this concern, we performed cerebellar field 

inhomogeneity correction in a subset of 100 randomly selected participants, and 

averaged their T1w/T2w intensities after field inhomogeneity correction at the single-

subject level. We compared the results of our analyses in the 881 participants group (with 

average level field inhomogeneity correction) versus in the 100 participants group (with 

single-subject level field inhomogeneity correction). A similar result in both cases would 

indicate that the analytic approach for the larger sample of 881 participants group is 

appropriate. 
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Figure 1. Cerebellum data corrections. (A) Field inhomogeneity analysis of the 881-participants group 

average revealed a posterior (lobules Crus I/II) to anterior (lobules I-V, IX) bias (bottom left figure in A). 

Before field inhomogeneity correction, higher T1w/T2w intensity was observed in the anterior aspects of 

the cerebellum (detail section, yellow circles) as opposed to the posterior aspects (detail section, red 

circles). Accordingly, lobules I-V and IX which have an anterior position in the cerebellum had higher 

T1w/T2w intensity before field inhomogeneity correction (top right boxplot). This effect disappeared after 

field inhomogeneity correction. (B) Field inhomogeneity analysis of 10 individual participants reveals 

differences in field inhomogeneity maps between individuals (for example, see region marked with an 

asterisk in the last two images). This raised the methodological concern that cerebellar field inhomogeneity 

differences may exist between participants, and hence that cerebellar field inhomogeneity correction at the 
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average level (881 participants average) may not be optimal - supplementary analyses with field 

inhomogeneity correction at the single-subject level were performed to address this concern. 

 

The use of T1w/T2w as a proxy measure of brain microstructure has receivied increased 

attention in the literature. T1w images match ex-vivo myelin histology in marmoset (Bock 

et al. 2009), and T1w/T2w intensity has demonstrated excellent agreement with 

neuroimaging maps of cytoarchitectonically defined cortical areas in humans (Glasser & 

Van Essen 2011, Glasser et al. 2016). Further, T1w/T2w images have very similar 

intensity map distributions when compared to T1 images (note that T1 sequences are 

different from T1w or T2w sequences in that they allow quantitative comparison across 

studies) (Huntenburg et al. 2017), and T1 images have been shown to correspond to ex-

vivo myelin histology distribution in multiple studies (Bock et al. 2009, Geyer et al. 2011, 

Stüber et al. 2014). Contrasting with the small number of available T1 image datasets, 

T1w and T2w modalities are commonly included in very large datasets such as the HCP 

(n=881).  Cerebral cortical microstructure-function correlations have been observed when 

using T1w/T2w images (Huntenburg et al. 2017), further supporting the use of T1w/T2w 

for the purposes of the present study. 

 

Analysis of resting-state data 

We calculated functional gradients in the cerebral cortex and in the cerebellum using 

diffusion map embedding (Coifman et al. 2005), a methodology previously used in 

cerebral cortical (Margulies et al. 2016) and cerebellar studies (Guell et al. 2018b). We 

used data from the preprocessed “dense connectome” S1200 HCP release (n=1003), 

which includes correlation values of each brain voxel or surface vertex with the rest of 
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brain voxels or surface vertices. Cerebral cortical functional gradients were calculated 

using correlation values only within the cerebral cortex, while cerebellar functional 

gradients were calculated using correlation values only within the cerebellum. 

 

Diffusion map embedding is a nonlinear dimensionality reduction technique that captures 

similarities between functional connectivity patterns of each voxel or surface vertex. 

Similar to principal component analyses, diffusion map embedding generates a first 

component (functional gradient 1) that accounts for as much of the variability in the data 

as possible. Each following gradient accounts for the highest variability possible under 

the constraint that all gradients are orthogonal to each other. While principal component 

analysis results would take the form of a mosaic (each cerebellar and cerebral cortical 

voxel would be assigned to a particular network with discrete borders), diffusion 

embedding extracts overlapping “gradients” of connectivity patterns. For example, 

previous cerebral cortical analyses using this method have shown that cerebral cortical 

functional gradient 1 extends from primary cortices to Default Mode Network (DMN) 

areas; gradient 2 extends from motor and auditory cortices to the visual cortex. In this 

way, each voxel is assigned a position within each gradient. In the preceding example, a 

voxel corresponding to a DMN area would be assigned an extreme position in gradient 1 

(e.g. a value of 6.6 in a unitless scale from -5.5 to 6.8) and a middle position in gradient 

2 (e.g. a value of 1.9 in a unitless scale from -3.1 to 5.8). The result of diffusion embedding 

is thus not one single mosaic of discrete networks, but multiple, continuous gradients. 

Each gradient reflects a given progression of connectivity patterns (e.g. from DMN to 

sensorimotor, from motor/auditory cortex to visual cortex, etc.), each gradient accounts 
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for a given percentage of variability in the data, and each voxel or surface vertex has a 

position within each gradient. 

 

T1w/T2w and functional gradients relationship analyses 

Cerebral cortical resting-state and T1w/T2w maps as provided by HCP already included 

equal data resolution. In contrast, cerebellum T1w/T2w data had a higher resolution than 

cerebellum resting-state data. To allow the calculation of correlation between cerebellar 

T1w/T2w data and cerebellar functional gradients, cerebellar T1w/T2w data was 

downsampled to 2mm resolution using FSL’s FLIRT (Jenkinson & Smith 2001, Jenkinson 

et al. 2002). Cerebellum nifti files were then transformed to dscalar files to match the 

format of cerebellar functional gradient files using the -cifti-create-dense-from-template 

workbench command. 

 

For cerebral cortical and cerebellar data, T1w/T2w values were plotted against functional 

gradient values using Seaborn’s joint histogram representation in Python. Linear, spline, 

and quadratic or cubic regression models were calculated using py-earth (for splines) and 

numpy polyfit Python tools. Py-earth is a Python implementation of Friedman’s 

Multivariate Adaptive Regression Splines algorithm (Friedman 1991). Splines allow the 

use of piecewise polynomials (for example, two linear equations) in regression analyses. 

Splines are thus a valuable tool when fitting nonlinear distributions -  rather than using 

higher degree polynomials which might overfit data, piecewise polynomials such as two 

linear equations can offer simple models which are nonetheless able to provide high 

coefficients of determination (r2 values, i.e. the proportion of variance in one variable that 
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is predictable from another variable in a model). Cerebellar and cerebral cortical T1w/T2w 

values were also grouped according to previous cerebellar (Buckner et al. 2011) and 

cerebral cortical parcellations (Yeo et al. 2011), and visualized in a boxplot using 

Seaborn’s boxplot representation in Python. 

 

RESULTS 

Functional gradients and T1w/T2w maps in the cerebral cortex 

Functional gradients in the cerebral cortex replicated the findings by (Margulies et al. 

2016) (Fig. 2). Gradient 1 extended from Default Mode Network (DMN) to primary cortices 

(sensorimotor, auditory, and visual). Gradient 2 distinguished between different primary 

cortical areas, extending from sensorimotor and auditory cortices to the visual cortex. 

Gradient 3 extended from DMN to adjacent task-positive regions. T1w/T2w revealed 

higher intensity values in primary cortices (motor, auditory, visual) and lower intensity 

values in multi-modal regions, consistent with previous reports (Glasser & Van Essen 

2011, Glasser et al. 2014). 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2018. ; https://doi.org/10.1101/424176doi: bioRxiv preprint 

https://doi.org/10.1101/424176
http://creativecommons.org/licenses/by/4.0/


14 
 

 

Figure 2. Cerebral cortical functional gradients and T1w/T2w maps. 

 

Functional gradients and T1w/T2w maps in the cerebellar cortex 

Functional gradients in the cerebellum replicated the findings by (Guell et al. 2018b) (Fig. 

3). Gradient 1 extended from Default Mode Network (DMN) to motor aspects of the 

cerebellum. Gradient 2 extended from DMN to task-positive regions. Gradient 3 

distinguished between left and right aspects of the cerebellar hemispheres. T1w/T2w 
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analysis in both the 881 average (group-level inhomogeneity correction) and 100 average 

(single-subject level inhomogeneity correction) analyses revealed a diffuse distribution of 

intensity across the cerebellar hemispheres. Higher intensity values in lobules I-IV, Crus 

I/II, and IX (see T1w/T2w maps in Fig. 3) do not correspond to any known cerebellar 

network distribution (Buckner et al. 2011, Guell et al. 2018a, Keren-Happuch et al. 2014, 

Stoodley & Schmahmann 2009, Stoodley et al. 2012). 

 

 

Figure 3. Cerebellar functional gradients and T1w/T2w maps for 881 participants group average 

(inhomogeneity field correction performed on average data) and 100 group average (inhomogeneity field 

correction performed on single-subject data before averaging). 
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Relationship between functional gradients and T1w/T2w maps in the cerebellar 

cortex and the cerebral cortex 

A strong correlation was observed between T1w/T2w values and functional gradients in 

the cerebral cortex, but not in the cerebellar cortex. Group average analysis (1003 

participants for functional gradients, and a subset of 881 participants for T1w/T2w data) 

revealed r2 values of 0.334, 0.417, and 0.297 when fitting a model using two linear 

equations in gradient 1, 2, and 3, respectively. The same calculations in the cerebellum 

led to values of 0.025, 0.007, and 0.028. Generating a model using a higher (cubic) 

degree polynomial did not result in markedly improved r2 values. Grouping T1w/T2w 

values in the cerebellar cortex and the cerebral cortex based on previous cerebral cortical 

(Yeo et al. 2011) and cerebellar network parcellations (Buckner et al. 2011) showed little 

differences between networks in the cerebellum (Fig. 4D), contrasting with higher 

T1w/T2w values in primary processing networks (visual and somatomotor) in the cerebral 

cortex (Fig. 4C). While cerebellar T1w/T2w variations existed (see x axis in Fig. 4D 

showing cerebellar T1w/T2w values ranging approximately from 0.9 to 2.4), these 

variations were not correlated with functional gradient values, or distinct in any given 

network. These cerebellar T1w/T2w variations most likely correspond to variations in 

distance from cerebellar white matter (see volume maps in Fig. 1A showing higher 

T1w/T2w intensity in cerebellar areas close to white matter; a phenomenon that is also 

present in cerebral cortical T1w/T2w images). Cerebellar results did not change when 

using data from 100 participants who had been corrected for field inhomogeneity at the 

individual subject level (Fig. 5), supporting that failure to observe correlation between 
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T1w/T2w intensity and functional gradients in the cerebellum is not a result of inadequate 

data preprocessing. 

 

 

Figure 4. Functional gradients (1003 group average) and T1w/T2w (881 group average) relationship in the 

cerebellum cortex and the cerebral cortex. A strong relationship is observed between T1w/T2w values and 

functional gradients in the cerebral cortex (A), but not in the cerebellum (B). Spline regressions are shown 

in red lines, linear regressions are shown in black lines, quadratic or cubic regressions are shown in dotted 
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black lines. (C and D) Boxes represents first to third quartile, and whiskers represent smallest and greatest 

datapoint within 1.5 times the interquartile range (third quartile minus first quartile). Differences of T1w/T2w 

intensity between networks are more pronounced in cerebral cortex (C) than in cerebellar cortex (D). p 

value calculation in these analyses is not informative given the very large sample sizes (cerebellar cortex 

includes 17853 data points, cerebral cortex includes 59412 data points) would lead to statistically significant 

results even in the presence of very small effect sizes. For this reason, only data distribution visualization 

and effect size measures (r2) are presented in (A and B), and only data distribution visualization is 

presented in (C and D). Higher T1w/T2w values in cerebellar data when compared to cerebral cortical data 

(see x axis in (D)) most likely correspond to variations in distance to cerebellar white matter in the cerebellar 

cortex. 

 

 

Figure 5. Supplementary analyses. Functional gradients (1003 group average) and T1w/T2w (100 group 

average, including field inhomogeneity correction at the individual-subject level before average) relationship 

in the cerebellar cortex. Result of this analysis is the same as in Fig. 4B, supporting that the observation of 

no correlation between T1w/T2w intensity and functional gradients in the cerebellum in Fig. 4B is not a 

result of inadequate data preprocessing. 
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DISCUSSION 

This study provides evidence for a fundamental dissociation in the relation between 

microstructure and function between the cerebellum (where there is little or no relation) 

versus the cerebral cortex (where there is a significant correlation). Specifically, T1w/T2w 

intensity (a proxy measure of microstructure) did not correlate with resting-state functional 

connectivity gradients (a proxy measure of function) in the cerebellum, whereas there 

was a strong correlation between the same measures in the cerebral cortex. These 

findings support the idea that cerebellar functional specialization is not determined by 

microstructure, and thus reinforce the UCT theory that cerebellar functions may be 

computationally constant across domains. 

 

Relevance for cerebellar neuroscience 

Confirmatory evidence supporting that microstructural variations are not associated with 

functional variations in the human cerebellum in vivo provides new and fundamental 

empirical support for the Universal Cerebellar Transform theory (UCT). This theory holds 

that cerebellum cytoarchitecture is essentially uniform, that variations in cerebellar 

function arise from differences in connectivity rather than microstructure, and hence that 

a uniform computation underlies all cerebellar functions (Guell et al. 2017, Schmahmann 

2000). Support for the UCT theory presented here advances the understanding of 

cerebellar function and dysfunction. First, it guides future research towards the 

description of an underlying cerebellar mechanism that is coherent across motor, 

cognitive, and affective domains. Initial hypotheses have characterized UCT as “the 

cerebellar modulation of behavior, serving as an oscillation dampener maintaining 
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function automatically around a homeostatic baseline and smoothing out performance in 

all domains” (Schmahmann 2004). Second, it supports the generation of analogies 

between cerebellar contributions to motor, cognitive, and affective functions. For 

example, if the cerebellum modulates the rate, rhythm, and accuracy of movement, then 

it may contribute to affect by modulating the speed, capacity, consistence, and 

appropriateness of emotions (Guell et al. 2017, Schmahmann 1991). Third, it informs the 

understanding of cognitive and affective symptoms in diseases that affect the cerebellum. 

As the UCT theory states that a uniform mechanism underlies all cerebellar functions, 

nonmotor symptoms in cerebellar dysfunction may be the manifestation of the same 

neurological impairment that underlies cerebellar motor ataxia (“Dysmetria of Thought” 

theory) (Schmahmann 1991, 1996, 2000, 2010). 

 

Relevance for cerebral cortical neuroscience 

A previous study described a strong and significant correlation between T1w/T2w 

intensity and cerebral cortical functional gradient 1 (see supplementary material in 

(Huntenburg et al. 2017)). Our analysis replicates this finding. Further, our study is the 

first to reveal a correlation between T1w/T2w intensity and cerebral cortical functional 

gradients 2 and 3. 

 

Gradient 1 extends from Default Mode Network (DMN) to primary cortical areas 

(sensorimotor, auditory, and visual) (Margulies et al. 2016). Previous studies have shown 

higher myelin content in primary sensorimotor, visual, and auditory cortices, and lower 

myelin content in multimodal association areas (Glasser & Van Essen 2011, Huntenburg 
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et al. 2017). Myelination is a crucial and precise modulator of axon conduction speed 

(Salami et al. 2003). At the same time, myelin consolidates neural circuits, reducing 

plasticity (McGee et al. 2005). In this way, myelin density differences between primary 

and transmodal areas might have evolved to enable not only higher conduction speed in 

primary cortices, but also higher plasticity in transmodal regions (Glasser & Van Essen 

2011, Huntenburg et al. 2017). The linear relationship observed here between T1w/T2w 

intensity and cerebral cortical functional gradient 1 replicates Huntenburg’s observation 

that microstructural variations are associated with functional variations in the cerebral 

cortex. 

 

The present findings extend this observation by showing that a strong and statistically 

significant microstructure-function correlation also exists in cerebral cortical functional 

gradients 2 and 3, with the caveat that this relationship is not linear. Gradient 2 separates 

distinct primary cortical areas, extending from sensorimotor and auditory to visual cortex. 

Primary cortical areas are thus located at both extreme poles of gradient 2, with 

transmodal (Default Mode Network) regions located at a middle position. The regression 

analysis using two linear equations was thus able to capture a strong and significant “V 

shape” relationship, with a coefficient of determination even higher than that observed in 

gradient 1. Gradient 3 distinguishes between task-positive and task-negative (DMN) 

networks, situating primary cortices at a middle position. Hence, two linear equations in 

our analysis were also able to capture a strong and significant “inverted V shape” 

correlation. These findings further reinforce the notion that microstructure relates to 

function in the cerebral cortex, not only as captured by gradient 1 (primary to transmodal 
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regions), but also as captured by additional orthogonal gradients of functional 

organization. 

 

Limitations 

As T1w/T2w ratio is not independent of MRI sequence parameters, between-subject 

comparisons require additional corrections. Given that we did not perform any between-

subject T1w/T2w statistical comparisons other than averaging, this limitation is not 

immediately relevant in the present study. Further corrections such as using relative 

percent difference values (as suggested by (Glasser & Van Essen 2011)) or using 

additional calibration algorithms (Ganzetti et al. 2014) were therefore not performed in the 

present study beyond what was already implemented in HCP. 

 

Cerebellar field inhomogeneity correction was performed at the group average level, a 

potentially suboptimal approach given that field inhomogeneity might differ between 

participants.  Indeed, field inhomogeneity analysis in a subsample of 10 participants 

revealed some differences between subjects (Fig. 1B). We therefore calculated 

cerebellar field inhomogeneity correction at the individual subject level in a subset of 100 

participants. Analysis in this subsample of 100 participants revealed very similar results 

to our initial calculations where field inhomogeneity correction was performed at the 

average level (note the similarity between the results in Fig. 4B and Fig. 5). This 

observation provides reassurance that the lack of correlation between cerebellar 

T1w/T2w intensity and functional gradients in our larger analysis of 881 participants was 

not a result of inadequate data preprocessing. 
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Previous investigations have highlighted the presence of anatomical and physiological 

variation across the cerebellar cortex. Some authors interpret these characteristics as 

proof against the concept of a Universal Cerebellar Transform (Cerminara et al. 2015). 

However, as we have argued previously (Guell et al. 2017, Schmahmann 2000), the UCT 

theory is based on the notion of an essentially (not completely) uniform cytoarchitecture. 

Uniformity far exceeds the presence of minor variations across the cerebellar cortex, in 

clear contrast with major microstructural variations that are observed across the cerebral 

cortex. 

 

Future studies 

The present study employed T1w/T2w intensity and functional gradients to evaluate the 

relation of microstructural variation to functional variation in the cerebellum. Future 

studies may investigate other measures of topographical variation. For example, gene 

expression studies have revealed sagitally-oriented aggregates of distinct transcriptional 

patterns (“zebrin stripes”) in the cerebellum (Oberdick et al. 1998). T1w/T2w intensity has 

been correlated with transcriptional variation in the human cerebral cortex (Burt et al. 

2018), and this motivates further research as to whether a similar or distinct relationship 

between transcriptional variation and microstructure or function can be observed in the 

cerebellum. Whereas functional gradients or T1w/T2w in the cerebellum do not seem to 

obey a parasagittal organization (Fig. 3), fMRI task activation maps in multiple motor and 

nonmotor domains might follow a somewhat parasagittal distribution (see figure 2 and 
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supplementary figure 1 in (Guell et al. 2018a). Further research may reveal other relations 

between topographic properties and functional variation in the cerebellum. 

 

Here we tested the UCT theory by analyzing in vivo structural and functional 

neuroimaging data in healthy humans. Future investigations might test the presence of 

similarities across motor, cognitive, and affective neuroimaging abnormalities in patients 

with isolated cerebellar injury. Neurophysiological investigations might also test the 

presence of similar physiological properties across distinct cerebellar regions engaged in 

distinct functions. 

 

Conclusion 

The UCT theory has been an influential framework for understanding cerebellar function 

and dysfunction since its proposition more than two decades ago (Schmahmann 1991, 

1996, 2000, 2010). Based on extrapolations from the observation of a uniform cerebellar 

cytoarchitecture (Ito 1993, Voogd & Glickstein 1998) and supported by additional clinical 

(Schmahmann 2000), behavioral (Guell et al. 2015b), and iTBS/EEG (Farzan et al. 2016) 

investigations, the central anatomical and physiological correlates of this theory have 

been elusive to direct testing. The modern neuroimaging and data analysis approaches 

in the present study allowed us to directly test and confirm the cerebellar form-function 

relation that UCT theory predicts. Our study provides a strong test of the idea that there 

are fundamentally different relations between microstructural variations and functional 

variations in the cerebellum versus the cerebral cortex. The absence of a microstructure-
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function relation in the cerebellum supports UCT theory that cerebellar computations are 

constant across functional domains. 
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