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Abstract 
Achievements of near human-level performances in object recognition by deep neural 
networks (DNNs) have triggered a flood of comparative studies between the brain and DNNs. 
Using a DNN as a proxy for hierarchical visual representations, our recent study found that 
human brain activity patterns measured by functional magnetic resonance imaging (fMRI) 
can be decoded (translated) into DNN feature values given the same inputs. However, not all 
DNN features are equally decoded, indicating a gap between the DNN and human vision. 
Here, we present a dataset derived through the DNN feature decoding analyses including 
fMRI signals of five human subjects during image viewing, decoded feature values of DNNs 
(AlexNet and VGG19), and decoding accuracies of individual DNN features with their rankings. 
The decoding accuracies of individual features were highly correlated between subjects, 
suggesting the systematic differences between the brain and DNNs. We hope the present 
dataset will contribute to reveal the gap between the brain and DNNs and provide an 
opportunity to make use of the decoded features for further applications. 
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Background & Summary 
 
Building models that achieve human-level performance has motivated researchers to 
construct computational models that mimic the architectural and representational 
properties of the human brain. Adopting the hierarchical architecture of the human visual 
system, deep neural networks (DNNs) have demonstrated utility in various applications, 
including object recognition in computer vision, where near human-level performances are 
achieved. This achievement has led to many comparative studies on the similarity between 
the brain and DNNs, providing empirical support for the correspondence between the 
hierarchical representations of the brain and DNNs1-8.  
 
On the basis of the hierarchical representational similarity between the brain and DNNs, our 
recent study demonstrated that human brain activity measured by functional magnetic 
resonance imaging (fMRI) can be decoded (translated) into DNN feature values6. Combining 
those decoded DNN features and techniques developed with DNNs, recent work has started 
to develop new technologies to read out richer contents in the brain as demonstrated in the 
generic decoding of seen, imagined, and dreamed objects6,7 and in the reconstruction of 
seen and imagined images9. As exemplified by these studies, decoding of DNN features from 
brain activity patterns can then provide opportunities to develop new technologies for 
further applications in brain machine interfacing. 
 
In addition to the capability of the DNN feature decoding approach as a generative model of 
DNN signal patterns from the brain, the decoding approach also has an advantage allowing 
to characterize individual DNN units in terms of their decodability from brain activity 
patterns. Our decoding analysis of DNN features showed that not all DNN feature units were 
equally decoded6, indicating a gap between the DNN and human vision. Thus, evaluating the 
decodability of individual DNN units will help to further elucidate finer levels of 
representational similarity between the brain and DNNs, enabling to select highly decodable 
features for further analyses10. 
 
In this report, we present a dataset derived through the DNN feature decoding analyses from 
human brain activity patterns (Figure 1). The dataset consists of fMRI signals measured while 
subjects viewed natural images, DNN feature values of all individual units decoded from the 
measured brain activity patterns, and decoding accuracies of individual units with their 
rankings among units.  
 
The fMRI dataset was originally collected in Horikawa and Kamitani (2017a)6, which 
consisted of fMRI signals from five subjects measured while the subjects viewed sequences 
of natural images (image presentation experiment). This image presentation experiment had 
two sessions: a training image session and a test image session. Data from the training and 
test image sessions consisted of fMRI responses to a total of 1,200 and 50 images (“training” 
and “test” datasets).  
 
The fMRI dataset was used to generate decoded DNN features for individual subjects. Using 
two types of DNN models, AlexNet11 and VGG1912, we first computed DNN feature values 
from the images presented in the fMRI experiments. We then trained a set of statistical 
linear regression models (decoders) to predict DNN feature values of presented images using 
visual cortical activity patterns of the training dataset. The trained decoders were applied to 
the test dataset to produce decoded feature values of the DNNs for the 50 test images for all 
individual DNN units.  
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The “decodability” of the individual DNN units were then evaluated for individual subjects. 
For each DNN unit, a Pearson correlation coefficient was calculated between a sequence of 
decoded feature values and that of true feature values for the presented 50 test images. 
Then, the rankings of the decodability were estimated among a set of units within each DNN 
layer. 
 
Our validation analysis showed that while the decodability was largely varied across units, 
they were highly correlated across subjects for most DNN layers of the tested DNN models. 
The results indicate systematic differences between the DNN and the human brain in 
representing visual images. 
 
To summarize, the present dataset contains a set of resources that is made use of for the 
DNN feature decoding and for further analyses. We hope that this dataset will offer 
opportunities to the neuroscience and computer science communities for developing new 
brain-DNN hybrid applications based on decoded features and for comparative studies 
aiming at revealing the gap between the brain and DNNs. 
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Figure 1 | Overview of the data generation procedures. Stimulus images were presented to 
human subjects in the fMRI experiments to collect fMRI signals. DNN feature decoders were 
first trained to decode DNN feature values of presented images from the training fMRI data, 
and were applied to test fMRI data for producing sequences of decoded feature values for all 
DNN units. The same stimulus images were also provided to DNNs as inputs and sequences 
of DNN feature values were computed for all DNN units. For each individual DNN unit, 
decoding accuracy (or “decodability”) was evaluated using Pearson correlation coefficient 
between the sequences of decoded and true feature values. The estimated decodability was 
used to rank DNN units within each DNN layer. Examples of preferred image of high rank 
units are shown at the right bottom.  
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Methods 

The data used in this study comes from a previous study performed at our laboratory6. 
According to the journal policy, here, we provide a self-contained description of the subjects, 
datasets, and preprocessing of the MRI data for the main experiments to make it possible to 
understand and reproduce the experiments and analyses without referring to associated 
publications. 
 
Subjects  
Five healthy subjects (one female and four males, aged between 23 and 38) participated in 
this study. All subjects had normal or corrected-to-normal visual acuity, and had substantial 
experience participating in fMRI experiments. All studies were performed with the written 
informed consent of the subjects, and were approved by the Ethics Committee of ATR. 
 
Stimuli 
The stimuli consisted of sequences of natural images collected from an online image 
database ImageNet13 (2011, fall release). We first selected 200 representative object 
categories (synsets) from the database, and then randomly assigned them to 150 training 
and 50 test categories. Eight or one images were selected from those training and test 
categories, respectively. The selected images were cropped to the center. 
 
Experimental design 
The subjects participated in an image presentation experiment, a retinotopy experiment and 
a functional localizer experiment. All visual stimuli were rear-projected onto a screen in an 
fMRI scanner bore using a luminance-calibrated LCD projector. Data from each subject were 
collected over multiple scanning sessions spanning approximately 2 months for the image 
presentation experiment. On each experiment day, one consecutive session was conducted 
for at most 2 hours. Subjects were given adequate time for rest between runs (every 3~10 
minutes), and were allowed to take a break or stop the experiment at any time. 
 
The image presentation experiment consisted of two distinct types of sessions: training 
image sessions and test image sessions, each of which consisted of 24 and 35 separate runs 
(9 minutes 54 seconds for each run), respectively. Each run contained 55 stimulus blocks 
consisting of 50 blocks with different images and 5 randomly interspersed repetition blocks 
where the same image as in the previous block was presented. In each stimulus block an 
image (12 × 12 degrees of visual angle) was flashed at 1 Hz for 9 seconds. Images were 
presented at the center of the display with a central fixation spot. The color of the fixation 
spot changed from white to red for 0.5 seconds before each stimulus block began to indicate 
the onset of the block. Extra 33-second and 6-second rest periods were added to the 
beginning and end of each run, respectively. Subjects were instructed to maintain steady 
fixation on the fixation spot throughout each run, and performed a one-back repetition 
detection task on the images, responding with a button press for each repetition to maintain 
their attention on the presented images (mean task performance across five subjects; 
sensitivity = 0.930; specificity = 0.995). In the training image session, a total of 1,200 images 
from 150 categories (eight images from each category) were each presented once. In the test 
image session, a total of 50 images from 50 object categories (one image from each 
category) were presented 35 times each. The presentation order of the categories was 
randomized across runs. 
 
The retinotopy experiment was performed by following the conventional protocol14,15 using a 
rotating wedge and an expanding ring of a flickering checkerboard. The data were used to 
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delineate the borders between each visual cortical area, and to identify the retinotopic map 
(V1–V4) on the flattened cortical surfaces of individual subjects. 
 
The functional localizer experiment was performed to identify the lateral occipital complex 
(LOC)16, fusiform face area (FFA)17, and parahippocampal place area (PPA)18 for each 
individual subject. The localizer experiment consisted of four to eight runs (varied across 
subjects) and each run contained 16 stimulus blocks. In this experiment, intact or scrambled 
images (12 × 12 degrees of visual angle) from face, object, house, and scene categories were 
presented at the center of the screen. Each of eight stimulus types (four categories × two 
conditions) was presented twice per run. Each stimulus block consisted of a 15-second intact 
or scrambled image presentation. The intact and scrambled stimulus blocks were presented 
successively (the order of the intact and scrambled stimulus blocks was randomized), 
followed by a 15-second rest period consisting of a uniform gray background. Extra 33-
second and 6-second rest periods were added to the beginning and end of each run, 
respectively. In each stimulus block, 20 different images of the same type were presented for 
0.3 seconds, followed by an intervening blank screen of 0.45 seconds. 
 
MRI acquisition 
MRI data were collected using 3.0-Tesla Siemens MAGNETOM Trio A Tim scanner located at 
the ATR Brain Activity Imaging Center. An interleaved T2*-weighted gradient-EPI scan was 
performed to acquire functional images to covering the entire brain (image presentation and 
localizer experiments: TR, 3,000 ms; TE, 30 ms; flip angle, 80 deg; FOV, 192 × 192 mm; voxel 
size, 3 × 3 × 3 mm; slice gap, 0 mm; number of slices, 50) or the entire occipital lobe 
(retinotopy experiment: TR, 2,000 ms; TE, 30 ms; flip angle, 80 deg; FOV, 192 × 192 mm; 
voxel size, 3 × 3 × 3 mm; slice gap, 0 mm; number of slices, 30). T2-weighted turbo spin echo 
images were scanned to acquire high-resolution anatomical images of the same slices used 
for the EPI (image presentation and localizer experiments: TR, 7,020 ms; TE, 69 ms; flip angle, 
160 deg; FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 3.0 mm; retinotopy experiment: TR, 
6,000 ms; TE, 57 ms; flip angle, 160 deg; FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 3.0 
mm). T1-weighted magnetization-prepared rapid acquisition gradient-echo (MP-RAGE) fine-
structural images of the entire head were also acquired (TR, 2,250 ms; TE, 3.06 ms; TI, 900 
ms; flip angle, 9 deg, FOV, 256 × 256 mm; voxel size, 1.0 × 1.0 × 1.0 mm). 
 
MRI data preprocessing 
The first 9-second scans for experiments with TR = 3 seconds (three volumes; image 
presentation and localizer experiments) and 8-second scans for experiments with TR = 2 
seconds (four volumes; retinotopy experiment) of each run were discarded to avoid MRI 
scanner instability. The acquired fMRI data underwent three-dimensional motion correction 
using SPM5 (http://www.fil.ion.ucl.ac.uk/spm). The data were then coregistered to the 
within-session high-resolution anatomical image of the same slices used for EPI and 
subsequently to the whole-head high-resolution anatomical image. The coregistered data 
were then reinterpolated by 3 × 3 × 3 mm voxels.  
 
For the data from the image presentation experiment, data samples were created by first 
regressing out nuisance parameters from each voxel amplitude for each run, including a 
constant baseline, a linear trend, and temporal components proportional to the six motion 
parameters calculated from the SPM motion correction procedure. The data were then 

despiked to reduce extreme values (beyond ± 3SD for each run). The voxel amplitudes 
were then averaged within each 9-second stimulus block (three volumes) after shifting the 
data by 3 seconds (one volume) to compensate for hemodynamic delays.  
 
Region of interest (ROI) selection  
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V1, V2, V3, and V4 were delineated by the standard retinotopy experiment14,15. The data 
from the retinotopy experiment were transformed to Talairach coordinates and the visual 
cortical borders were delineated on the flattened cortical surfaces using BrainVoyager QX 
(http://www.brainvoyager.com). The voxel coordinates around the gray-white matter 
boundary in V1–V4 were identified and transformed back into the original coordinates of the 
EPI images. The LOC, FFA, and PPA were identified using conventional functional localizers16-

18. The data from the functional localizer experiment were analyzed using SPM5. The voxels 
showing significantly higher responses to intact object, face, or scene images than to 
corresponding scrambled images (two-sided t-test, uncorrected P < 0.05 or 0.01) were 
identified, and defined as LOC, FFA, and PPA, respectively. A contiguous region covering the 
LOC, FFA, and PPA was manually delineated on the flattened cortical surfaces, and the region 
was defined as the “higher visual cortex” (HVC). Voxels from V1–V4 and the HVC were 
combined to define the “visual cortex” (VC). In the regression analysis, voxels showing the 
highest correlation coefficient with the target variable in the training dataset were provided 
to decoders constructed for individual feature units (with a maximum of 500 voxels).  
 
Deep neural networks (DNNs) 
We used the Caffe implementation of the AlexNet11 and VGG1912 deep neural network 
models (available from https://github.com/BVLC/caffe/), both of which were pre-trained 
with images in ImageNet (Deng et al., 2009) to classify 1,000 object categories. The AlexNet 
consisted of five convolutional layers (conv1, conv2, conv3, conv4, and conv5) and three 
fully-connected layers (fc6, fc7, and fc8). The VGG19 model consisted of a total of sixteen 
convolutional layers (conv1_1, conv1_2, conv2_1, conv2_2, conv3_1, conv3_2, conv3_3, 
conv3_4, conv4_1, conv4_2, conv4_3, conv4_4, conv5_1, conv5_2, conv5_3, conv5_4), and 
three fully-connected layers (fc6, fc7, and fc8). The outputs from the units in each of the 

DNN layers (immediately after convolutional or fully connected layers, before 
rectification) were used as target variables in the following feature decoding analysis. 
 
Deep neural network feature decoding 
We used a set of linear regression models to construct multivoxel decoders to decode DNN 
feature values of a seen image from a fMRI activity pattern.  In this study, we used the sparse 
linear regression (SLR) algorithm19 that can automatically select the important voxels for 
prediction. In our analysis, a single regression model (decoder) was constructed to predict 
feature values of a single DNN unit. In the following, we explain the regression model for a 
single DNN unit. We individually trained multiple models for predicting feature values of all 
DNN units in the tested DNN layers and models. 
 

Given an fMRI data sample 𝐱 = {𝑥1, … , 𝑥𝑑}T consisting of 𝑑 voxels’ activities as input, the 
regression function can be expressed by 

𝑦(𝐱) = ∑ 𝑤𝑖𝑥𝑖 + 𝑤0

𝑑

𝑖=1

, 

where 𝑥𝑖 is the fMRI amplitude of the voxel 𝑖, 𝑤𝑖 is the weight of voxel 𝑖, and 𝑤0 is the bias. 

For simplicity, the bias 𝑤0 is included into the weight vector such that 𝐰 = {𝑤0, … , 𝑤𝑑}T. 

The dummy variable 𝑥0 = 1 is introduced into the data such that 𝐱 = {𝑥0, … , 𝑥𝑑}T. Using this 
regression function, we modelled the activity of a DNN unit as a target variable 𝑡 that is 
explained by the regression function 𝑦(𝐱) with additive Gaussian noise as described by 

 𝑡 = 𝑦(𝐱) + 𝜖 
where 𝜖 is a zero mean Gaussian random variable with noise precision 𝛽.  
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Given a training data set, SLR computes the weights for the regression function such that the 
regression function optimizes an objective function. To construct the objective function, we 
first express the likelihood function by  

𝑃(𝐭|𝐗, 𝐰, 𝛽) = ∏
1

(2𝜋)1/2
𝛽1/2exp {−

1

2
𝛽(𝑡𝑛 − 𝐰T𝐱𝑛)2} ,

𝑁

𝑛=1

 

where 𝑁 is the number of samples, 𝐗 is an 𝑁 × (𝑑 + 1) fMRI data matrix whose nth row is 

the 𝑑 + 1-dimensional vector 𝐱𝑛, and 𝐭 = {𝑡1, … , 𝑡𝑁}T are the samples of a DNN unit.  
 
To introduce sparsity into the weight estimation, we performed Bayesian parameter 
estimation, and adopted the automatic relevance determination (ARD) prior19. We 
considered the estimation of the weight parameter 𝐰 given the training data sets {𝐗, 𝐭}. We 
assumed a Gaussian distribution prior for the weights 𝐰 and non-informative priors for the 

weight precision parameters 𝛂 = {α0, …α𝑑}T and the noise precision parameter 𝛽, which 
are described as 

𝑃0(𝐰|𝛂) = ∏
1

(2𝜋)1/2
α𝑖

1/2exp {−
1

2
α𝑖w𝑖

2} ,

𝑑

𝑖=0

 

𝑃0(𝛂) = ∏
1

α𝑖
,

𝑑

𝑖=0

 

𝑃0(𝛽) =
1

𝛽
. 

 
In the Bayesian framework, we considered the joint probability distribution of all the 
estimated parameters, and the weights can be estimated by evaluating the following joint 
posterior probability of 𝐰: 

 𝑃(𝐰, 𝛂, 𝛽|𝐗, 𝐭) =
𝑃(𝐭, 𝐰, 𝛂, 𝛽|𝐗)

∫ d𝐰d𝛂d𝛽 𝑃(𝐭, 𝐰, 𝛂, 𝛽|𝐗)
=

𝑃(𝐭|𝐗, 𝐰, 𝛽)𝑃0(𝐰|𝛂)𝑃0(𝛂)𝑃0(𝛽)

∫ d𝐰d𝛂d𝛽 𝑃(𝐭, 𝐰, 𝛂, 𝛽|𝐗)
. 

 
Given that the evaluation of the joint posterior probability 𝑃(𝐰, 𝛂, 𝛽|𝐗, 𝐭) is analytically 
intractable, we approximated it using the variational Bayesian method19-21. While the results 
presented in this manuscript were obtained from the models with the ARD prior, 
qualitatively similar results were obtained using other regression models (e.g., ordinary least 
square regression model).  
 
We trained linear regression models that decode feature values of individual feature units 
for seen images given fMRI samples in the training image session. For test dataset, fMRI 
samples corresponding to the same images (35 samples for each of the 50 test images) were 
averaged across trials to increase the signal to noise ratio of the fMRI signals. Using the 
learned models, we decoded feature values of seen images from averaged fMRI samples. 
Feature decoding accuracy of each DNN unit was evaluated by the Pearson correlation 
coefficient between the true and decoded feature values of each feature unit. The estimated 
correlation coefficients (“decodability”) from individual subjects and their averages were 
ranked within each DNN layers and models separately. We assigned nan values to the 
decodability and their ranks for units not showing any responses (DNN signals) to images in 
the training or test datasets. 
 
Preferred images of individual units 
We used the activation maximization technique to generate preferred images of individual 
units in each DNN layer22-25. Generating preferred images starts from a random image and 
optimizes the image to maximally activate a target DNN unit by iteratively calculating how 
the image should be changed via backpropagation. This analysis was implemented using 
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custom software written in MATLAB based on Python codes provided in a series of blog 
posts (Mordvintsev, A., Olah, C., Tyka, M., DeepDream—a code example for visualizing 
Neural Networks, https://github.com/ google/deepdream, 2015; Øygard, A. M., Visualizing 
GoogLeNet Classes, https://github.com/auduno/deepdraw, 2015).  

 
Code availability 

The code for the DNN feature decoding is available at 
https://github.com/KamitaniLab/GenericObjectDecoding. Both MATLAB and Python scripts 
are included in the repository. We also provide a Python API to download and extract data 
from Figshare (Data Citation2: Figshare https://doi.org/10.6084/m9.figshare.6269321), and 
jupyter notebooks for usage example of the data at https://github.com/KamitaniLab/brain-
decoding-datasets. All code is available without any access restrictions.  
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Data Records 
Experimental data 
All data produced from the MRI experiments are hosted at OpenNeuro (Data Citation 1: 
OpenNeuro ds001246). The dataset is based on Brain Imaging Data Structure (BIDS)26. All 
MRI images are saved as NIfTI files. 
 
The data repository contains five directories for the five subjects (sub-01 to sub-05). Each 
directory consists of several subdirectories that include MRI data in a single scanning session. 
ses-anatomy contains a defaced T1-weighted anatomical reference image for the individual 
subject. ses-perceptionTraining* and ses-perceptionTest* directories include fMRI images 
collected in the training and image presentation experiments, respectively (Table 1). fMRI 
images from a single run are stored in a single 4-D NIfTI file. Each run is accompanied by a 
task event file, which describes experiment information such as timing of trials, presented 
stimuli, and subject’s response time (Table 2). The session directories also contain a T2-
weighted anatomical image obtained in the session. Binary mask images for ROIs used in the 
analysis (see above) are placed in sourcedata/<subject>/anat directories (Table 3). 
 
In the task event files, stimuli are represented by a float number, stimulus_id, in which the 
integer part indicates WordNet27 ID for the synset (category) and the decimal part indicates 
image ID. For example, 1518878.005958 represents image 5958 in synset n01518878 
(‘ostrich’). Due to license issues, we do not include the stimulus images in the data repository. 
A script downloading the stimulus images are available at 
https://github.com/KamitaniLab/GenericObjectDecoding. Downloaded image files are 
named as XXXX-YYYY.JPEG, where XXXX and YYYY represents the WordNet ID and image ID, 
respectively (e.g., n01518878_5958.JPEG). 
 
 
DNN feature and decodability 
Decoded feature, true feature, accuracy, and ranking by accuracy are available from Figshare 
(Data Citation2: Figshare https://doi.org/10.6084/m9.figshare.6269321). All data files are 
saved as MATLAB (*.mat) files and zipped by the DNN and the layer. Naming rule of the 
*.mat files and size (shape) of the data in the file are summarized in Table4. 
 
Decoded DNN feature. The decoded features are saved to a file named like ‘decoded-<net>-
<layer>-<subject_id>-<image_id>.mat’, where  <net> takes either “AlexNet” or “VGG19”,  
<layer> takes the layer name of the DNN, <subject_id> is the subject ID, and <image_id> is 
the ImageNet ID of the stimulus image. In the *.mat file, an array whose shape is the same as 
the shape of the output of the <layer> layer in the <net> DNN model (See Table 4) is saved. 
The *.mat files are zipped for each DNN and layer to ‘decodedDNN-decoded-<net>-
<layer>.zip’ file and uploaded to Figshare (Data Citation2: Figshare 
https://doi.org/10.6084/m9.figshare.6269321). 
 
True DNN feature. The true features are saved for each DNN model, layer, and image, and 
named as ‘true-<net>-<layer>-<image_id>.mat’.  Zipped files for each <net> and <layer> are 
uploaded to Figshare. 
 
Decoding accuracy (“decodability”). The decoding accuracy for each DNN, layer, and subject 
are saved in the file named like ‘accuracy-<net>-<layer>-<subject_id>.mat’. In addition, we 
also created averaged accuracy by subject, ‘accuracy-<net>-<layer> -Averaged.mat’. Zipped 
files for each <net> and <layer> are uploaded to Figshare. 
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Decodability ranking. The ranking of feature units by accuracy is provided for each DNN, 
layer, and subject in a *.mat file named as ‘rank-<net>-<layer>-<subject_id>.mat’. In addition, 
we also created a file containing average ranking by subject, ‘rank-<net>-<layer>-
Averaged.mat’. Zipped files for each <net> and <layer> are uploaded to Figshare. 
 
We provide a Python API to download and extract data from Figshare 
(https://github.com/KamitaniLab/brain-decoding-datasets, see Usage Notes section).  
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Technical Validation 
In order to validate the quality of the dataset, we first performed feature decoding analysis 
to decode DNN feature values from fMRI activity patterns, and evaluated the decoding 
accuracy (“decodability”) of individual DNN units for each subject6. After that, we evaluated 
the consistency of the decodability between multiple subjects to demonstrate the 
replicability of the results across subjects. 
 
In the feature decoding analysis, decoders were trained to decode DNN unit activities to 
input image sequences from visual cortical activities measured while the subjects viewed the 
same sequences of stimulus images using the training dataset (1200 samples). The decoders 
were individually trained for each unit in the convolutional (5 and 16 layers for AlexNet and 
VGG19, respectively) and fully-connected layers (3 layers for both of AlexNet and VGG19) of 
the DNN models (see Table4 for the number of units in each layer). The trained decoders 
were then applied to an independent test dataset (50 samples) to evaluate the decodability 
of individual DNN units. The decodability of each DNN unit was evaluated by calculating a 
correlation coefficient (Pearson correlation) between a pair of feature value sequences from 
the DNN (true features) and the brain activity of individual subjects (decoded features).   
 
The obtained decodabilities of individual units were further examined for each DNN layer 
and model, and were compared across subjects. Figure 2a shows the distributions of feature 
decoding accuracies evaluated for each individual layer of each DNN model (AlexNet and 
VGG19), in which the decoding accuracy largely varied across units, layers, and models. To 
assess the degree of consistency of decodability across subjects, we evaluated the unit-by-
unit similarity of the decodability between multiple subjects. Figure 2b shows example 
scatter plots of feature decoding accuracies between two subjects. The decodability of 
individual units from the two subjects densely distributed along the diagonal axis for most 
layers, showing positive correlations between the two subjects. Figure 2c shows the mean 
correlation coefficients across all pair combinations of the five subjects. The decodability 
between subjects show positive correlation coefficients for all layers of the each of the two 
DNN models. The results suggest that the feature decoding from the brain can produce 
replicable results and that the decodability was highly consistent across subjects even at the 
unit level. 
 
Taken together, our analyses support the quality of the present dataset as the data showed 
replicable and consistent results from multiple subjects. The fMRI data made it possible to 
decode DNN feature values from the brain activity patterns, and the estimated decodability 
was highly consistent across subjects. Thus, the present dataset could provide an 
opportunity to utilized for various purposes, including the feature selection in neural 
encoding and decoding analyses4,8,10 and further applications by combining the decoded 
features with deep neural network technology6,9. 
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Figure 2 | Evaluations of DNN feature decoding. (a) Violin plot of feature decoding accuracy 

for each DNN layer and model. Distributions of the decoding accuracy of all individual units 

in each DNN layer are shown (pooled across five subjects). Black bars denote mean decoding 

accuracies averaged across all units and subjects. (b) Scatter plots of decoding accuracies of 

individual DNN units from two subjects (AlexNet). Each dot denotes the decoding accuracy of 

each DNN unit estimated from Subject 1 (vertical axis) and Subject 2 (horizontal axis). The 

color of each dot indicates the density of the plotted dots. For visualization purpose, 

randomly selected subsets of units are shown with a maximum of 1000 units. (c) Mean 

correlation coefficients between decoding accuracies of DNN units from different subjects. 

Pearson correlation coefficients between decoding accuracies of individual DNN units 
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obtained from different subjects were calculated for all pairs of subjects (10 pairs from 5 

subjects). Each dot denotes the correlation coefficients for each pair of subjects.  
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Usage Notes 
The experimental data can be downloaded from OpenNeuro (Data Citation 1: OpenNeuro 
ds001246). To perform DNN feature decoding, the fMRI data need to be preprocessed as 
described in the Methods section. The head motion correction, functional-anatomical 
registration in individual anatomical space, and resampling can be conducted with SPM, and 
the following preprocessing, including regressing-out of nuisance parameters, reduction of 
extreme values, shifting data, and within-block averaging can be conducted with Brain 
Decoder Toolbox 2 (https://github.com/KamitaniLab/BrainDecoderToolbox2). The DNN 
feature decoding analysis can be performed with scripts available at 
https://github.com/KamitaniLab/GenericObjectDecoding (analysis_FeaturePredicion.m for 
MATLAB and analysis_FeaturePrediciton.py for Python). The scripts train feature decoding 
models with fMRI data in the training image presentation experiments, and predict DNN 
features from fMRI data in the test image presentation experiments. To feed data to the 
scripts, the fMRI data must be saved in Brain Decoder Toolbox 2 format. 
 
The decoded DNN features are available at Figshare (Data Citation 2: Figshare 
https://doi.org/10.6084/m9.figshare.6269321). We provide a Python API for downloading 
and extracting data from Figshare (https://github.com/KamitaniLab/brain-decoding-
datasets). The repository also includes a jupyter notebook that replicates results in Fig. 2.  
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Tables 
 
Table 1: Summary of the experimental data. 
Subject Experiment Session # runs 
Subject 1 (sub-01) Training image 

(ses-perceptionTraining) 
1 10 
2 10 
3 4 

Test image 
(ses-perceptionTest) 

1 10 
2 10 
3 5 
4 10 

Subject 2 (sub-02) Training image 
(ses-perceptionTraining) 

1 10 
2 10 
3 4 

Test image 
(ses-perceptionTest) 

1 10 
2 10 
3 10 
4 5 

Subject 3 (sub-03) Training image 
(ses-perceptionTraining) 

1 8 
2 8 
3 8 

Test image 
(ses-perceptionTest) 

1 8 
2 9 
3 8 
4 6 
5 4 

Subject 4 (sub-04) Training image 
(ses-perceptionTraining) 

1 8 
2 8 
3 8 

Test image 
(ses-perceptionTest) 

1 9 
2 9 
3 9 
4 8 

Subject 5 (sub-05) Training image 
(ses-perceptionTraining) 

1 8 
2 4 
3 6 
4 3 
5 3 

Test image 
(ses-perceptionTest) 

1 7 
2 7 
3 5 
4 4 
5 5 
6 7 
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Table 2: Columns in task event files for the image presentation experiments. 

Column Description 

onset Onset time of the event (sec) 

duration Duration of the event (sec) 

trial_no Trial number 

event_type Type of the event (rest or stimulus) 

stim_id Stimulus ID 

response_time 
Subject’s response time (sec; elapsed time from the 
beginning of the run) 
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Table 3: ROI mask images included in the dataset. 

File name ROI 

sub-*_mask_LH_V1.nii.gz Left V1 

sub-*_mask_RH_V1.nii.gz Right V1 

sub-*_mask_LH_V2.nii.gz Left V2 

sub-*_mask_RH_V2.nii.gz Right V2 

sub-*_mask_LH_V3.nii.gz Left V3 

sub-*_mask_RH_V3.nii.gz Right V3 

sub-*_mask_LH_hV4.nii.gz Left V4 

sub-*_mask_RH_hV4.nii.gz Right V4 

sub-*_mask_LH_LOC.nii.gz Left LOC 

sub-*_mask_RH_LOC.nii.gz Right LOC 

sub-*_mask_LH_FFA.nii.gz Left FFA 

sub-*_mask_RH_FFA.nii.gz Right FFA 

sub-*_mask_LH_PPA.nii.gz Left PPA 

sub-*_mask_RH_PPA.nii.gz Right PPA 

sub-*_mask_LH_HVC.nii.gz Left higher visual cortex (HVC) 

sub-*_mask_RH_HVC.nii.gz 
 

Right higher visual cortex (HVC) 
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Table 4: Summary of the DNN feature and decodability datasets. The data files in Figshare 
are named as “<data_type>-<DNN>-<layer>-<subject id>-<image id>.mat”.  List of each 
component and size (shape) of the data are shown. 

<data type> <subject id> <image id> <DNN> <layer> Data size 

accuracy 
decoded 
rank 
true 

S1 
S2 
S3 
S4 
S5 
Averaged (only 
for accuracy and 
rank) 

ImageNet ID for 50 
stimulus images 
like n*****_****. 
(only for decoded 
and true) 

AlexNet 

conv1 55x55x96 

conv2 27x27x256 

conv3 13x13x384 

conv4 13x13x384 

conv5 13x13x256 

fc6 1x1x4096 

fc7 1x1x4096 

fc8 1x1x1000 

conv1_1 224x224x64 

VGG19 

conv1_2 224x224x64 

conv2_1 112x112x128 

conv2_2 112x112x128 

conv3_1 56x56x256 

conv3_2 56x56x256 

conv3_3 56x56x256 

conv3_4 56x56x256 

conv4_1 28x28x512 

conv4_2 28x28x512 

conv4_3 28x28x512 

conv4_4 28x28x512 

conv5_1 14x14x512 

conv5_2 14x14x512 

conv5_3 14x14x512 

conv5_4 14x14x512 

fc6 1x1x4096 

fc7 1x1x4096 

fc8 1x1x1000 
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