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Abstract 13 

The midbrain superior colliculus (SC) generates a rapid saccadic eye movement to a sensory stimulus 14 

by recruiting a population of cells in its topographically organized motor map. Supra-threshold 15 

electrical microstimulation in the SC reveals that the site of stimulation produces a normometric 16 

saccade vector with little effect of the stimulation parameters. Moreover, electrically evoked saccades 17 

(E-saccades) have kinematic properties that strongly resemble natural, visual-evoked saccades (V-18 

saccades). These findings support models in which the saccade vector is determined by a center-of-19 

gravity computation of activated neurons, while its trajectory and kinematics arise from downstream 20 

feedback circuits in the brainstem. Recent single-unit recordings, however, have indicated that the SC 21 

population also specifies instantaneous kinematics. These results support an alternative model, in 22 

which the desired saccade trajectory, including its kinematics, follows from instantaneous summation 23 
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of movement effects of all SC spike trains. But how to reconcile this model with microstimulation 24 

results? Although it is thought that microstimulation activates a large population of SC neurons, the 25 

mechanism through which it arises is unknown. We developed a spiking neural network model of the 26 

SC, in which microstimulation directly activates a relatively small set of neurons around the electrode 27 

tip, which subsequently sets up a large population response through lateral synaptic interactions. We 28 

show that through this mechanism the population drives an E-saccade with near-normal kinematics 29 

that are largely independent of the stimulation parameters. Only at very low stimulus intensities the 30 

network recruits a population with low firing rates, resulting in abnormally slow saccades.  31 

 32 

 33 

 34 

 35 

 36 

 37 

Author Summary 38 

 39 

The midbrain Superior Colliculus (SC) contains a topographically organized map for rapid goal-40 

directed gaze shifts, in which the location of the active population determines size and direction of the 41 

eye-movement vector, and the neural firing rates specify the eye-movement kinematics. Electrical 42 

microstimulation in this map produces eye movements that correspond to the site of stimulation with 43 

normal kinematics. We here explain how intrinsic lateral interactions within the SC network of spiking 44 

neurons sets up the population activity profile in response to local microstimulation to explain these 45 

results.    46 

 47 

 48 

Keywords: saccades, motor map, spatial-temporal transformation, lateral synaptic interactions,  49 

                   population coding, vector averaging, linear summation. 50 

 51 

  52 
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1 Introduction 53 

High-resolution foveal vision covers only 2% of the visual field. Thus, the visual system has to gather 54 

detailed information about the environment through rapid goal-directed eye movements, called 55 

saccades. Saccades reach peak eye velocities well over ~1000 deg/s in monkey, and last for only 40-56 

100 ms, depending on their size. The stereotyped relationships between saccade amplitude and 57 

~duration (described by a straight line) and ~peak eye velocity (a saturating function) are termed the 58 

'saccade main sequence' (Bahill et al., 1975). The acceleration phase of saccades has a nearly constant 59 

duration for all amplitudes, leading to positively skewed velocity profiles (Van Opstal et al., 1987). In 60 

addition, the horizontal and vertical velocity profiles of oblique saccades are coupled, such that they 61 

are scaled versions of each other (through component stretching), and the resulting saccade trajectories 62 

are approximately straight (Van Gisbergen et al., 1985). These kinematic properties all imply that the 63 

saccadic system contains a nonlinearity in its control (Van Gisbergen et al., 1981, 1985; Smit et al., 64 

1990). More recent theories hold that this nonlinearity reflects an optimization strategy for speed-65 

accuracy trade-off, which copes with the spatial uncertainty in the retinal periphery, and internal noise 66 

in the sensorimotor pathways (Harris and Wolpert, 1998; Tanaka et al., 2006; Van Beers, 2008; 67 

Goossens and Van Opstal, 2012). 68 

 69 

The neural circuitry responsible for saccade programming and execution extends from the 70 

cerebral cortex to the pons in the brainstem. The midbrain superior colliculus (SC) is the final common 71 

terminal for all cortical and subcortical inputs, and it has been hypothesized to specify the vectorial 72 

eye-displacement command for downstream oculomotor circuitry (Robinson, 1972; Scudder, 1988; 73 

Moschovakis, 1998). The SC contains an eye-centered topographic map of visuomotor space, in which 74 

the saccade amplitude is mapped logarithmically along its rostral-caudal anatomical axis (u, in mm) 75 
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and saccade direction maps roughly linearly along the medial-lateral axis (v, in mm; Robinson, 1972). 76 

The afferent map (Eqn. 1a) and its efferent inverse (Eqn. 1b) can be described by (Ottes et al., 1986):  77 

 78 

𝑢 = 𝐵$ ln'
((𝑥 + 𝐴). + 𝑦.

𝐴
0

𝑣 = 𝐵2 atan 5
𝑦

𝑥 + 𝐴6																	
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𝑣
𝐵2
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 80 

with parameters Bu≈1.4 mm, Bv≈1.8 mm/rad, and A≈3 deg. Each saccade is associated with a 81 

translation-invariant Gaussian-shaped population within this map, the center of which corresponds to 82 

the saccade vector, (x,y), and a width of σ≈0.5 mm (Ottes et al., 1986; Van Opstal et al., 1990). It is 83 

generally assumed that each recruited neuron, n, in the population encodes a vectorial movement 84 

contribution to the saccade vector, which is determined by both its anatomical location within the motor 85 

map, (un,vn), and its activity, Fn.  86 

 87 

Precisely how individual cells contribute to the saccade is still debated in the literature. Two 88 

competing models have been proposed for decoding the SC population: weighted averaging of the cell 89 

vector contributions (Lee et al., 1988; Port and Wurtz, 2003; Walton et al., 2005; Eqn. 2a) vs. linear 90 

summation (Van Gisbergen et al., 1985; Goossens and Van Opstal, 2006, 2012; Eqn. 2b), respectively, 91 

which can be formally described as follows: 92 

 93 

𝑺LMN =
∑ 𝐹Q ∙ 𝑴Q
S
QTU

∑ 𝐹QS
QTU

		(2a)													versus															𝑺Z[\(𝑡) = ^ ^ 𝛿(𝑡 − 𝜏Q,b) ∙ 𝒎Q	

defg

bTU

										(2b)
S

QTU

 94 

N is the number of active neurons in the population, Kn<t the number of spikes in the burst of neuron 95 

n up to time t, Fn its mean (or peak) firing rate, and Mn=(xn,yn) is the saccade vector in the motor map 96 

encoded at SC site (un,vn) (Eqn. 1b). 97 
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mn = ζMn is the small, fixed vectorial contribution of cell n in the direction of Mn, for each of its spikes, 98 

with ζ a fixed, small scaling constant that depends on the adopted cell density in the map and the 99 

population size, and δ(t-τk,n) is the k’th spike of neuron n, fired at time τk,n.  100 

 101 

The vector-averaging scheme of Eqn. (2a) only specifies the amplitude and direction of the 102 

saccade vector, and thus puts the motor map of the SC outside the kinematic control loop of its 103 

trajectory. It assumes that the nonlinear saccade kinematics are generated by the operation of horizontal 104 

and vertical dynamic feedback circuits in the brainstem (Jürgens et al. 1981, Robinson 1975; Lee et 105 

al., 1988), or cerebellum (Lefèvre et al 1998, Quaia et al. 1999). Note also that vector averaging is a 106 

nonlinear operation because of the division by the total population activity.  107 

 108 

In contrast, the linear dynamic ensemble-coding model of Eqn. (2b) encodes the full kinematics 109 

of the desired saccade trajectory at the level of the SC motor map through the temporal distribution of 110 

spikes by all cells in the population (Goossens and Van Opstal, 2006; 2012). As a result, the 111 

instantaneous firing rates of all neurons in the population, fn(t), together encode the desired vectorial 112 

saccadic velocity profile: 113 

 114 

𝒗Zijj(𝑡) = ^𝑓Q(𝑡) ∙ 𝒎Q			with				𝑓Q(𝑡) = ^
1

𝜎√2𝜋
∙ 𝑒r

sgrgt,eu
v

.wv

Ze

bTU

							(𝜎 = 8	ms)					(3)
S

QTU

 115 

 116 

where Sn is the number of spikes of cell n, with the spikes occurring at times tk,n.  117 

 118 

Although the models of Eqn. 2a,b cannot both be right, each is supported by different lines of 119 

evidence. For example, electrical microstimulation produces fixed-vector (E-)saccades with normal 120 

main-sequence kinematics that are insensitive to a large range of stimulation parameters (Robinson, 121 
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1972; Van Opstal et al., 1990; Stanford et al., 1993; Katnani and Ghandi, 2012). If one supposes that 122 

electrical stimulation directly activates a large population of SC cells, and that the firing rates follow 123 

the (typically rectangular) stimulation profile, a vector-averaging scheme with downstream dynamic 124 

feedback circuitry readily explains why E-saccades are normal main-sequence, since the center of 125 

gravity of the population specifies the desired saccade vector only, regardless the firing rates.  126 

 127 

In addition, reversible inactivation of a small part of the SC motor map produces particular 128 

deficits in the metrics of visually-evoked (V-)saccades that may not be readily explained by the linear 129 

summation model of Eqn. 2b (Lee et al., 1988). As the amplitude and direction of a V-saccade to the 130 

center of the lesioned site remain unaffected, saccades to locations around that site are directed away 131 

from the lesion. For example, V-saccades for sites rostral to the lesion undershoot the target, while V-132 

saccades for sites caudal to the lesion will overshoot the target.  133 

 134 

The simple vector-summation model of Eqn. 2b yields saccades that would always undershoot 135 

targets, as the lesioned population produces fewer output spikes than under normal control conditions. 136 

However, Goossens and Van Opstal (2006, 2012) observed that their estimate of the total number of 137 

spikes from the SC population, was remarkably constant, regardless saccade amplitude, direction, or 138 

speed. Yet, they also observed that many cells in the normal SC fire some post-saccadic spikes. They 139 

therefore assumed that saccades are actively terminated by a downstream mechanism, whenever the 140 

criterion of a fixed number of spikes, NTOT, is reached:   141 

^^𝛿(𝑡 − 𝜏Q,b) ≤ 𝑁}~}

de

bTU

S

QTU

												(4) 142 

 143 

They demonstrated, by simulating the summation model of Eqn. 2b with actual recordings from ~150 144 

cells, that by including the criterion of Eqn. 4 (which constitutes a cut-off nonlinearity in the model), 145 
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the pattern of saccadic over- and undershoots to a focal SC lesion can be fully explained. In addition, 146 

the extended summation model of Eqns. 2b and 4 also accounts for weighted averaging of double-147 

target stimulation in the motor map (Robinson, 1972; Van Opstal and Van Gisbergen, 1989; Van 148 

Opstal, 2016).  Moreover, although the vector-averaging model (Eqn. 2a) correctly predicts the pattern 149 

of saccadic dysmetrias, it fails to explain the substantial slowing of the lesioned saccades (Lee et al., 150 

1988). As this latter observation is also accounted for by Eqns. 2b and 4 (Goossens and Van Opstal, 151 

2006), it further supports the hypothesis that the SC population encodes both the saccade-vector, and 152 

its kinematics.  153 

 154 

Interestingly, electrical microstimulation experiments have also shown that at low current 155 

strengths, just above threshold, the evoked saccade vectors become smaller and slower than main 156 

sequence (Van Opstal et al., 1990; Katnani and Ghandi, 2012). These results do not follow from vector 157 

averaging but are readily predicted by dynamic summation (Eqns. 2b and 4).  158 

 159 

However, if microstimulation would produce a large square-pulse population profile around 160 

the electrode tip (mimicking the profile of the imposed current pulses, as is typically assumed), the 161 

summation model would generate severely distorted saccade-velocity profiles, which are not observed 162 

in experiments. Yet, little is known about the actual activity profiles in the motor map evoked by 163 

electrical microstimulation, as simultaneous multi-electrode recordings during microstimulation are 164 

not available and would be obscured by the large stimulation artefacts (Histed et al., 2013).  165 

 166 

Under microstimulation, two factors contribute to neuronal activation: (1) direct (feedforward) 167 

current stimulation of cell bodies and axons by the stimulation pulses of the electrode, and (2) synaptic 168 

activation through lateral (feedback) interactions among neurons in the motor map. How each of these 169 

factors contributes to the population activity in the SC is unknown. It is conceivable, however, that 170 
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current strength falls off rapidly with distance from the electrode tip (at least by ~1/r2), and that hence 171 

a relatively small number of SC neurons would be directly stimulated by the electric field of the 172 

electrode.  173 

 174 

Indeed, a recent two-photon imaging study, carried out in frontal eye fields (FEF), showed that 175 

microstimulation at physiological current strengths activates only a sparse set of neurons directly 176 

around the immediate vicinity of the stimulation site (Histed et al., 2009). These considerations 177 

therefore suggest that the major factor in explaining the effects of microstimulation in the SC motor 178 

map may be synaptic transmission through lateral excitatory-inhibitory connections among the cells. 179 

Such a functional organization in the SC is supported by anatomical studies (Behan and Kime, 1996; 180 

Olivier et al., 1998), by electrophysiological evidence (Munoz and Istvan, 1998; Phongphanphanee et 181 

al., 2011; 2014), and by pharmacological studies (Meredith and Ramoa, 1998).  182 

 183 

We recently constructed a biologically plausible, yet simple, spiking neural network model for 184 

ocular gaze-shifts by the SC population to visual targets (Kasap and Van Opstal, 2017). This 185 

minimalistic (one-dimensional) model with lateral interactions can account for the experimentally 186 

observed firing properties of saccade-related cells in the gaze-motor map (Goossens and Van Opstal, 187 

2006, 2012), by assuming an invariant input pattern from sources upstream from the motor map (e.g., 188 

FEF).  189 

We here extended that simple spiking neural network model to account for microstimulation 190 

results over a wide range of stimulation parameters, and to generate appropriate saccadic command 191 

signals across the two-dimensional oculomotor range. 192 

 193 

 194 
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2. Methods 195 

2.1 Log-polar afferent mapping  196 

The afferent mapping function (Eqn. 1a) translates a target point in visual space to the anatomical 197 

position of the center of the corresponding Gaussian-shaped population in the SC motor map. It follows 198 

a log-polar projection of retinal coordinates onto Cartesian collicular coordinates (Eqn. 1a; Ottes et al., 199 

1986). To allow for a simple 2D matrix representation of the map in our network model, we simplified 200 

the afferent motor map to the complex logarithm: 201 

 202 

𝑢(𝑅) = 𝐵$ ⋅ ln(𝑅) 	and		𝑣(𝜙) = 	𝐵2 ⋅ 𝜙,		with	𝑅 = (𝑥. + 𝑦.		and			𝜙 = atan 5
𝑦
𝑥6					(5) 203 

 204 

with 𝐵$ = 1 mm and 𝐵2 = 1 mm/rad (isotropic map). Thus, the contribution, m, of a single spike at 205 

site (u,v) to the eye movement is computed from the efferent mapping function as: 206 

 207 

𝑚� = 𝜁 ∙ exp(𝑢) ⋅ cos(𝑣)	 	and	𝑚� = 𝜁 ∙ exp(𝑢) ⋅ sin(𝑣)												(6) 208 

 209 

We thus constructed a spiking neural network model as a rectangular grid of 201 x 201 neurons. The 210 

network represents the gaze motor-map with 0 < 𝑢 < 5 mm (i.e., up to amplitudes of 148 deg), and 211 

– �
.
< 𝑣 < �

.
	 mm. The network generates saccadic motor commands of different directions and 212 

amplitudes into the contralateral visual hemispace through a spatial-temporal population activity 213 

profile. The location of the population in the motor map determines the direction and amplitude of the 214 

saccade target, whereas the temporal activity profile encodes the eye-movement kinematics, through 215 

Eqn. 2b. As described below, and in our previous study (Kasap and Van Opstal, 2017), the eye-216 
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movement main-sequence kinematics result from location-dependent biophysical properties of the 217 

neurons within the map, together with their lateral interconnections.  218 

2.2  The AdEx neuron model 219 

We investigated the dynamics of the network model numerically through simulations developed in 220 

C++/CUDA (Nickolls et al., 2008). The motor map is represented as a rectangular grid of neurons with 221 

a Mexican hat-type pattern of lateral interactions. The neural activities were simulated by custom code 222 

utilizing dynamic parallelism to accelerate spike propagation on a GPU (Kasap and Van Opstal, 2018). 223 

The code was developed and tested on a Tesla K40 with CUDA Toolkit 7.0, Linux Ubuntu 16.04 LTS 224 

(repository under https://bitbucket.org/bkasap/sc_microstimulation). Simulations ran with a time 225 

resolution of 0.01 ms. Brute-force search and genetic algorithms, described below, were used for 226 

parameter identification and network tuning since there exists no analytical solution for the system. 227 

 228 

The neurons in the network were described by the adaptive exponential integrate-and-fire 229 

(AdEx) neuron model (Brette and Gerstner, 2005), which accommodates for a variety of bursting 230 

dynamics with a minimum set of free parameters. The AdEx model is a conductance-based integrate-231 

and-fire model with an exponential membrane potential dependence. It reduces Hodgkin-Huxley’s 232 

model to only two state variables: the membrane potential, 𝑉, and an adaptation current, 𝑞. The 233 

temporal dynamics of the system are given by the following differential equations for neuron 𝑛: 234 

 235 

𝐶	
𝑑𝑉Q
𝑑𝑡 = 	−𝑔�

(𝑉Q −	𝐸�) +	𝑔�𝜂 exp @
𝑉Q −	𝑉}

𝜂 D −	𝑞Q + 𝐼�Q�,Q(𝑡)													(7𝑎) 236 

𝜏�,Q
𝑑𝑞Q
𝑑𝑡 = 𝑎	(𝑉Q −	𝐸�) −	𝑞Q																																																																														(7𝑏) 237 

 238 
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where 𝐶 is the membrane capacitance, 𝑔� is the leak conductance, 𝐸�  is the leak reversal potential, 𝜂 239 

is a slope factor, VT is the neural spiking threshold, 𝜏� is the adaptation time constant, 𝑎 is the sub-240 

threshold adaptation constant, and 𝐼�Q�,Q is the total synaptic input current. In our previous paper (Kasap 241 

and Van Opstal, 2017) the input-layer of Frontal Eye Field (FEF) neurons had identical biophysical 242 

properties, and only received a fixed external input current, 𝐼�Q�,Q = 𝐼��g. In the present simulations, 243 

we did not include a FEF input layer, as the electrical stimulation was applied within the SC motor 244 

map as an external current.  245 

 246 

Two parameters specify the biophysical properties of the SC neurons: the adaptation time 247 

constant, 𝜏�,Q (which is assumed to be location dependent), and the synaptic input current, 𝐼�Q�,Q =248 

𝐼��Q,Q + 𝐼  (where 𝐼��Q,Q is a location- and activity-dependent synaptic current, and 𝐼  is the applied 249 

microstimulation current). Both variables change systematically with the spatial location of the cells 250 

within the network (rostral to causal). The remaining parameters, 𝐶, 𝑔�, 𝐸� , 𝜂, 𝑉} and 𝑎, were tuned 251 

such that the cells showed neural bursting behavior (see Table 1 for the list and values of all parameters 252 

used in the simulations, and Fig. 1 for some example responses). 253 

 254 

The AdEx neuron model employs a smooth spike initiation zone between VT and Vpeak, instead 255 

of a strict spiking threshold. Once the membrane potential crosses 𝑉}, the exponential term in Eqn. 7a 256 

starts to dominate and the membrane potential can in principle increase without bound. We applied a 257 

practical spiking ceiling threshold at 𝑉��ib  = -30 mV for the time-driven simulations. For each spiking 258 

event at time 𝜏, the membrane potential is reset to its resting potential, 𝑉¡�g, and the adaptation current, 259 

𝑞, is increased by 𝑏 to implement the spike-triggered adaptation: 260 

 261 

𝑉(𝜏) → 𝑉¡�g 										and										𝑞(𝜏) → 𝑞(𝜏) + 𝑏												(8) 262 
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 263 

After rescaling the equations, the neuron model has four free parameters (plus the input current) 264 

(Touboul, 2008). Two of these parameters characterize the sub-threshold dynamics: the ratio of time 265 

constants, 𝜏�/𝜏¤ (with the membrane time constant 𝜏¤ = 𝐶/𝑔� ) and the ratio of conductances, 𝑎/𝑔� 266 

(𝑎 can be interpreted as the stationary adaptation conductance). Furthermore, the resting potential 𝑉¡  267 

and the spike-triggered adaptation parameter	𝑏 characterize the emerging spiking patterns of the model 268 

neurons (regular/irregular spiking, fast/slow spiking, tonic/phasic bursting, etc.). 269 

2.3 Current spread function  270 

We applied electrical stimulation by the input current, centered around the site at [uE,vE], according to 271 

Eqn. 5.   We incorporated an exponential spatial decay of the electric field from the tip of the electrode: 272 

𝐼 (𝑢, 𝑣, 𝑡) = 𝐼¥ ⋅ exp 5−𝜆 ∙ ((𝑢 − 𝑢 ). + (𝑣 − 𝑣 ).6 ∙ 𝑃(𝑡)													(9) 273 

with λ (mm-1) a spatial decay constant, I0 the current intensity (in pA), and a rectangular stimulation 274 

pulse given by P(t) = 1 for 0 < t < DS, and 0 elsewhere. Thus, only a small set of neurons around the 275 

stimulation site will be directly activated with this input current (see Results). Throughout this paper, 276 

we used a fixed input current profile (I0 = 150 pA, 𝜆=10 mm-1 and DS=100 ms) except for the final 277 

section, where we explore the effect of microstimulation parameters on the resulting saccade. These 278 

parameters were determined by the neural tuning of the AdEx neurons in their bursting regime (see 279 

Neural tuning and bursting mechanism section in Results). 280 

 281 

Remark on the current scale.  In SC microstimulation experiments, one typically applies extracellular 282 

currents in the micro-Ampère range (10–50 µA) to evoke a saccade. In our simulations, we instead 283 

take the effective intracellularly applied current, which amounts to only a tiny fraction of the total 284 

extracellular current leaving the electrode.  285 
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 286 

2.4  The SC model: synapses and lateral connections 287 

The total input current for an SC neuron, n, located at (un,vn), is governed by the spiking activity of 288 

surrounding neurons, through conductance-based synapses, and by the externally applied electrical 289 

stimulation input (Eqn. 9): 290 

 291 

𝐼�Q�,Q(𝑡) = 𝑔Q��j(𝑡)s𝐸� − 𝑉Q(𝑡)u +	𝑔Q�Q©(𝑡)s𝐸� − 𝑉Q(𝑡)u + 𝐼 (𝑢Q, 𝑣Q, 𝑡)														(10) 292 

 293 

where 𝑔Q��j and 𝑔Q�Q©are excitatory and inhibitory synaptic conductances acting upon neuron 𝑛, 𝐸�  and 294 

𝐸� are excitatory and inhibitory reversal potentials respectively. These conductances increase 295 

instantaneously for each presynaptic spike by a factor determined by the synaptic strength between 296 

neurons, and they decay exponentially otherwise, according to: 297 

𝜏��j
𝑑𝑔Q��j

𝑑𝑡 = 	−	𝑔Q��j +	𝜏��j 	 ^ 𝑤�,Q��j
S«¬«

�

^ 𝛿s𝑡 −	𝜏�,�u

S«t
®

�

												(11𝑎) 298 

𝜏�Q©
𝑑𝑔Q�Q©

𝑑𝑡 = 	−	𝑔Q�Q© +	𝜏�Q© 	 ^ 𝑤�,Q�Q©
S«¬«

�

^ 𝛿s𝑡 −	𝜏�,�u													(11𝑏)

S«t
®

�

 299 

with 𝜏��j and 𝜏�Q©, the excitatory and inhibitory time constants; 𝑤�,Q��j and 𝑤�,Q�Q© are the intracollicular 300 

excitatory and inhibitory lateral connection strengths between neuron 𝑖 and 𝑛, respectively (Eqn. 12a,b) 301 

and 𝜏�,� is the spike timing of the presynaptic SC neurons that project to neuron n. With conductance-302 

based synaptic connections, spike propagation occurs in a biologically realistic way, since the 303 

postsynaptic projection of a presynaptic spike depends on the instantaneous membrane potential of the 304 

postsynaptic neuron. In this way, the state of a neuron determines its susceptibility to presynaptic 305 

spikes. 306 
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 307 

We incorporated a Mexican hat-type lateral connection scheme in the model, where the net 308 

synaptic effect is given by the difference between two Gaussians (Trappenberg, 2001). Accordingly, 309 

neurons were connected with strong short-range excitatory and weak long-range inhibitory synapses, 310 

which implements a dynamic soft winner-take-all (WTA) mechanism: not only one neuron remains 311 

active, but the “winner” affects the temporal activity patterns of the other active neurons. The central 312 

neuron governs the population activity, since it is the most active one in the recruited population. As a 313 

result, all recruited neurons exhibit similarly-shaped bursting profiles as the central neuron, leading to 314 

synchronization of the spike trains within the population (Kasap and Van Opstal, 2017). Two Gaussians 315 

describe the excitatory and inhibitory connection strengths between collicular neurons as function of 316 

their spatial separation: 317 

𝑤�,Q��j = 𝑠Q ∙ 𝑤±��j exp ²−
‖𝑢� − 𝑢Q‖.

2𝜎��j.
´																(12𝑎) 318 

𝑤�,Q�Q© = 𝑠Q ∙ 𝑤±�Q© exp ²−
‖𝑢� − 𝑢Q‖.

2𝜎�Q©.
´																(12𝑏) 319 

 320 

with 𝑤±��j > 𝑤±�Q©	and 𝜎¶�Q© > 𝜎¶��j, and 𝑠Q is a location-dependent synaptic weight-scaling parameter, 321 

which accounts for the location-dependent change in sensitivity of the neurons due to the variation in 322 

adaptation time constants.  323 

 324 

2.5   Network tuning 325 

 326 

Electrophysiological experiments have indicated that the neural responses are well characterized by 327 

four principles: (i) a fixed number of spikes for each neuron associated with its preferred saccade vector 328 

𝑁$,2 ≅ 20 spikes, (ii) a systematic dependence of the neuron’s cumulative spike count on the saccade 329 
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vector (dynamic movement field), 𝑁$,2(𝑅, 𝜙, 𝑡), (iii) scaled and synchronized burst profiles of the 330 

neurons in the population, resulting in a high cross-correlation, 𝐶�¸�s𝑓Q(𝑡), 𝑓¤(𝑡)u ≈ 𝛿Q¤, between 331 

the firing rates of recruited neurons, and (iv) a systematic decrease of the peak firing rate of central 332 

neurons in the population, 𝐹��ib, along the rostral-caudal axis, together with an increase of burst 333 

duration, 𝑇»$¡�g, and burst skewness, 𝑆»$¡�g.  334 

 335 

Goossens and Van Opstal (2012) argued that these properties follow from a systematic tuning 336 

of the gaze-motor map, and that they are responsible for the observed saccade kinematics. Here we 337 

applied these principles to determine a similarity measure between our simulated responses, and the 338 

experimentally recorded gaze motor-map features. In our network model, these features emerge from 339 

the interplay between intrinsic biophysical properties of the SC neurons, and the lateral interactions 340 

between them. 341 

 342 

2.5.1 Distinct biophysical properties 343 

The intrinsic biophysical properties of the neurons were enforced by systematically varying the 344 

adaptation time constant, 𝜏�,Q, and the synaptic weight-scaling parameter, 𝑠Q, in the motor map. 345 

Changes in the adaptive properties of the neurons result in a varying susceptibility to synaptic input. 346 

The synaptic weight-scaling parameter corrects for the total input activity. These distinct biophysical 347 

properties capture the systematically changing firing properties of SC cells along the rostral-caudal 348 

axis of the motor map, while keeping a fixed number of spikes for the neurons’ preferred saccades 349 

𝑁$,2(𝑅, 𝜙). Following the brute-force algorithm from our recent paper (Kasap and Van Opstal, 2017), 350 

the location-dependent [𝜏�,Q, 𝑠Q] value pairs for the neurons were fitted to ensure a fixed number of 351 

spikes per neuron under a given microstimulation condition, and the subsequent excitation through 352 

lateral interactions (see below, Eqns. 16 and 17). These parameters were first tuned for isolated 353 
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neurons. The lateral interactions ensured that the bursting profiles in the population remained scaled 354 

versions of each other and had their peaks synchronized (evidenced from a high cross-correlation, 𝐶�¸�, 355 

between the burst profiles across the population). The	𝑠Q values of Eqn. 12a,b were scaled by the 356 

number of neurons in the population. 357 

 358 

2.5.2 Lateral connectivity 359 

The single-unit recordings also suggested that for each saccade the recruited population size, and hence 360 

its total number of spikes, is invariant across the motor map. The widths of the Mexican-hat 361 

connectivity (𝜎��j	and 𝜎�Q©) govern the spatial range of a neuron's spike influence in the network, and 362 

directly affect the size of the neural population. In our model, these widths were fixed, such that they 363 

yielded local excitation and global inhibition. The connection strengths (𝑤±��j	and	𝑤±�Q©), on the other 364 

hand, affect the spiking behavior and local network dynamics, as they control how much excitation 365 

and inhibition will be received by each single neuron, and transmitted to others, based on the ongoing 366 

activity. Strong excitation would result in an expansion of the population, whereas a strong inhibition 367 

would fade out the neural activity altogether. Thus, balanced intra-collicular excitation and inhibition 368 

would be required to establish a large, but confined, Gaussian population. 369 

 370 

The parameters for the lateral connection strengths were found by a genetic algorithm, as 371 

described in our previous paper (Kasap and Van Opstal, 2017). In the current model we used eight 372 

saccade amplitudes for each generation to calculate the fitness of each selection (selected as 𝑅= [2, 3, 373 

5, 8, 13, 21, 33, 55] deg, and 𝜙=0 deg, to cover equidistant locations on the rostral-to-caudal plane: u= 374 

[0.69, 1.08, 1.60, 2.07, 2.56, 3.04, 3.49, 4.00] mm, and v=0 mm, respectively).  375 

 376 
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The genetic algorithm minimized the root-mean squared errors (RMSE) between the spiking 377 

network responses and the rate-based model of Van Opstal and Goossens (2008): from the fitness 378 

evaluation for each generation, we calculated the RMSE between the peak firing rates, 𝐹��ib; the 379 

number of elicited spikes from the central cells in the population, 𝑁$,2(𝑅,𝜙); burst durations, 𝑇»$¡�g; 380 

and burst skewness, 𝑆»$¡�g. Furthermore, the cross-correlations, 𝐶�¸�, between all active neurons and 381 

the central cell were included too to ensure that the experimentally observed gaze-motor map 382 

characteristics were taken into account for parameter identification. The fitness function was defined 383 

by a weighted RMSE summation: 384 

Fitness	=	

⎩
⎨

⎧ 10rU ∙ RMSEs𝐹��ib�u

+10 ∙ RMSE 5𝑁$,2(𝑅,𝜙)6

+10Ç ∙ RMSEs𝐶�¸�u	

																				(14) 385 

where the weights (0.1, 10, 103) were empirically chosen to cover similar ranges, since the Fpeaks vary 386 

from roughly 430-750 spikes/s, the number of spikes varies between 18 and 22, and the cross-387 

correlation values are < 1. 388 

 389 

Peak firing rates of the central neurons from each population were calculated by convolving 390 

the spike trains with a Gaussian kernel (Eqn. 3; 8 ms kernel width), to determine spike-density 391 

functions of instantaneous firing rate. RMSE values for Fpeak along the rostral-caudal axis of the motor 392 

map were subsequently tuned by approximating the following relation: 393 

𝐹��ib(𝑟) =
𝐹¥

(1 + 𝛽 ∙ 𝑅
																				(15) 394 

where F0 = 800 spikes/s and β = 0.07 ms/deg (taken from Van Opstal and Goossens, 2008). The RMSE 395 

of the total spike counts during the burst from the central cells in the population were tuned to Nu,v = 396 

20 spikes, and was required to be independent of the neuron’s position in the map. Synchrony of the 397 
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neural activity within the recruited population was quantified by the RMSE of deviations for the cross-398 

correlations between the central cell and all other active cells in the recruited population. 399 

 400 

2.6 Generating eye movements 401 

 402 

Eye movements were generated by the population activity following the linear ensemble-coding model 403 

of Eqns. 2b and 3. We applied the two-dimensional efferent motor map of Eqn. 5. For any network 404 

configuration throughout this paper, the unique scaling factor of the efferent motor map (ζ) was 405 

calibrated for a horizontal saccade at (x,y) = (21,0) deg. The resulting eye-displacement vector, 𝑆(𝑡), 406 

was calculated from the spike trains by interpolation with a first-order spline to obtain equidistant time 407 

samples. The interpolated data were further smoothed with a Savitzky-Golay filter, to obtain smooth 408 

velocity profiles.  409 

 410 

Microstimulation Parameters 

𝜆  10 mm-1 Spatial decay constant 

𝐼¥ 150 (40-280) pA Intracellular current intensity 

𝑃(𝑡)  I0 (for 0<t<Ds) Rectangular stimulus pulse  

𝐷Z  100 (25 - 250) ms Stimulation duration 

Neural Parameters 

𝐶 600 pF Membrane capacitance 

𝑔�  20 nS Leak conductance 

𝐸� -53 mV Leak reversal potential 

𝜂 2 mV Spike slope factor 

𝑉} -50 mV Exponential threshold  

𝑉��ib -30 mV Spiking threshold 
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𝑉¡�g  -45 mV Reset potential 

𝑎 0 nS Sub-threshold adaptation 

𝑏 120 pA Spike-triggered adaptation 

𝜏� 

 

ζ 

100-30 ms 

 

5.087⋅10-5 

Location-dependent adaptation time constant; 

varies with (𝑢Q) 

Efferent map mini-vector scaling factor 

Synaptic parameters 

𝐸��j 0 mV Excitatory reversal potential 

𝐸�Q© -80 mV Inhibitory reversal potential 

𝜏��j  5 ms Excitatory conductance decay 

𝜏�Q©  10 ms Inhibitory conductance decay 

Lateral connectivity parameters 

𝑤±��j  45 pS Excitatory scaling factor 

𝜎��j 0.4 mm Range of excitatory synapses 

𝑤±�Q©  14 pS Inhibitory scaling factor 

𝜎�Q© 1.2 mm Range of inhibitory synapses 

𝑠Q 0.0112-0.0147 Location-dependent synaptic scaling parameter; 

varies with (𝑢Q) 

Table 1 List of all parameters used in the simulations. 411 

 412 

 413 

  414 
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3. Results 415 

 416 

3.1 Neural tuning and bursting mechanism  417 

 418 

Figure 1 shows the membrane potential traces for three model neurons, differing in their adaptation 419 

time constants, 𝜏�, which were stimulated under different microstimulation paradigms. The electrical 420 

stimulus strength increased from a low amplitude (I0=50 pA; light blue traces) to a high intensity 421 

(I0=250 pA, dark-blue traces), for stimulation durations between 25 and 225 ms. Note that for these 422 

different microstimulation regimes, the burst onsets and burst shapes (i.e., the instantaneous firing 423 

rates) could differ, even when the number of elicited spikes would be the same. These responses 424 

illustrate how the biophysical properties of the neurons affected their bursting behavior.  425 

 426 

First, the neuron could respond after the stimulation had terminated. Such a feature, as well as 427 

the bursting behavior, is only captured by more complex spiking neuron models. Even when the input 428 

current amplitude cannot drive a neuron rapidly to its first spike to initialize the burst (light traces), it 429 

suffices if the neuron’s membrane potential crosses a certain threshold (𝑉} in the AdEx neuron). The 430 

neuron can then elicit a spike after the stimulation is over (visible for stimulation durations < 75 ms).  431 

 432 

Second, the stimulation amplitude determines the response onset: as the amplitude increases, 433 

the first spike occurs earlier. Such a behavior is to be expected, since the neuron model acts as an 434 

integrator (Katnani and Gandhi, 2012); higher input currents thus drive a neuron faster to its spiking 435 

threshold.  436 

 437 
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Third, the different neurons respond differently to long stimulation trains (>175 ms). While the 438 

neuron with a longer adaptation time constant (𝜏� =84.6 ms; Fig.1A) responds with repetitive bursts 439 

of 4 to 5 spikes, separated by a silent period, the faster recovering neuron (𝜏� =52.4 ms; Fig.1C) elicits 440 

more and more spikes after the initial burst, especially for the higher current amplitudes (dark traces).    441 

 442 

Interestingly, the neurons with the intermediate (Fig. 1B) and short (Fig. 1C) adaptation time 443 

constants switch between different bursting behaviors as the current amplitude increases along with 444 

longer stimulation durations. Regular short bursts with silent periods in between result from the slow 445 

decay of the adaptation current, which acts on the membrane potential as an inhibitory current. Hence, 446 

the adaptation time constant determines how fast a neuron will recover after each spike in a burst. 447 

Therefore, the strongly adapting neuron with a long 𝜏� will require more input current to elicit another 448 

spike (Fig. 1A and B for stimulation duration >175 ms), and thus after the fourth spike in the burst, the 449 

adaptation current is already high enough to break the bursting cycle. The fast recovering neuron (Fig. 450 

1C, short 𝜏�) continues its burst with more spikes (dark traces at longer durations (B, C). 451 
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 452 

Figure 1: Responses of three SC model neurons to different microstimulation parameters. The three 453 

neurons differed in their adaptation time constants (A: 𝜏� = 84.6	𝑚𝑠, B: 𝜏� = 70.95	𝑚𝑠, and C:	𝜏� =454 

52.4	𝑚𝑠). Each row shows the membrane potentials, V(t), for the same electrical stimulus, at a 455 

particular intensity (see color code for the different lines, top), and delivered at a particular stimulus 456 

duration, DS. Note the clear differences in neuronal membrane responses. Stimulus timings and 457 

durations are indicated above the traces by black lines, ranging from DS=25 ms (bottom) to DS=225 458 

ms (top). Symbols x, o, and +: selected responses, further analyzed in Fig. 2. 459 

A phase plot of the instantaneous adaptation current vs. the membrane potential provides a graphical 460 

analysis of the effects of changing the neural parameters, the current input, and the initial state, on the 461 
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evolution of the dynamical system. Figure 2 shows a number of phase-trajectories for the Adex model, 462 

for the parameters used in the simulations of the SC motor map. Nullclines illustrate the boundaries of 463 

the vector fields in the AdEx neuron’s phase plane. The V-nullcline (Vnull; i.e., dV/dt=0 for Eqn. 7a) 464 

and the q-nullcline (qnull; i.e., dq/dt=0 for Eqn. 7b) are shown as gray lines. Fixed points of the system 465 

lie at the intersections of these nullclines. A stable fixed point of the system is found at [-53 mV, 0 466 

nA]. In all subfigures that is the starting point of the trajectories, and the state variables of the neurons 467 

will converge to this stable fixed point in the absence of input.  468 

 469 

The q-nullcline follows a linear trajectory, whereas the V-nullcline represents a convex function 470 

because of the superposition of two V-dependent parts. For 𝑉 < 𝑉}, the exponential term can be 471 

omitted and the linear 𝑉 dependence will have a slope of 𝑔�. For 𝑉 > 𝑉}, the exponential term will 472 

dominate with a sharp increase as 𝑉 increases. When a neuron receives input, the V-nullcline shifts 473 

upward by as much as the current density, and the response of the neuron follows a trajectory on the 474 

phase plane toward the spiking threshold. The blue trajectories show the evolution of the state variables 475 

for three neurons with different 𝜏� values, and stimulated at different current strengths. The horizontal 476 

arrows show the membrane potential in the spike initiation zone, 𝑉 > 𝑉}. Spikes occur when the 477 

membrane potential overcomes the spiking threshold, 𝑉 > 𝑉g©¡. After a spike, the membrane potential 478 

is reset, and the adaptation current is increased by 𝑏 (Eqn. 7). The spiking threshold, 𝑉g©¡, and the reset 479 

potential, 𝑉¡�g, are indicated by the vertical dashed lines. With each spike, the adaptive current increases 480 

more and once it reaches values above the V-nullcline, the adaptive current is high enough to suppress 481 

the neuron from continued bursting, and hyperpolarizes. 482 

 483 
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 484 

Figure 2: Bursting mechanism of the AdEx neuron model. Phase plots of V(t) vs. q(t) of the neural 485 

dynamics of the same three neurons of Figure 1. Biophysical parameters of the neurons were selected 486 

for their bursting responses to a ramp stimulus, with varying current amplitude and durations (traces 487 

are marked in Figure 1: A: a burst with 5 spikes (x); B: two burst cycles with 6 and 5 spikes (o); C: a 488 

burst cycle with more than 10 spikes (+). 489 

In Fig. 2A, the phase trajectory crosses values over 𝑉Q$ÍÍ + 150	𝑝𝐴 after 5 spikes. Due to the 490 

hyperpolarization, the membrane potential starts to drop. The phase plot shows that the 491 

microstimulation is finished when the membrane potential decreases to -58 mV, and the smooth 492 

trajectory is seen disrupted. In Fig. 2B, there is a second burst cycle since the microstimulation duration 493 

is much longer. After the first burst cycle crosses 𝑉Q$ÍÍ + 200	𝑝𝐴 with 6 spikes (arrows are placed 494 

closer to 𝑉g©¡), neuron follows the trajectory to the spike initiation zone for a second burst cycle with 495 

5 spikes. The end of the microstimulation coincides with the second burst cycle and afterwards the 496 

membrane potential decreases fast due to the high adaptive current acting on the neuron. In Fig. 2C, 497 

the neuron gets stuck in its first cycle and continues spiking repetitively. This pattern is due to the fast 498 

decay of the adaptive current, which drops by more than 𝑏 after each spike. Therefore, the neuron 499 

would continue spiking repetitively, as long as the current is applied. 500 

 501 

The neurons in the network were tuned to respond with a fixed number of spikes in a burst cycle (as in 502 

Fig. 2A). This initial burst sets up a large population activity through the lateral connections. 𝑉Q$ÍÍ  503 
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fluctuates for each neuron with the network dynamics, depending on the input from other neurons in 504 

the population. Microstimulation parameters were chosen such that the central neuron of the population 505 

would respond with a burst cycle of 4-5 spikes (typically, DS =100 ms, and I0 =150 pA), independent 506 

of the biophysical properties of the neuron. To that end, the adaptation time constant, 𝜏�,Q, and the 507 

synaptic weight-scaling parameter, 𝑠Q, for each neuron were determined by applying a fifth order 508 

polynomial fit to produce a fixed number of spikes (N=20) for self-exciting neurons: 509 

 510 

𝑠Q = (8.808 ⋅ 10rÏ ⋅ 𝜏�,QÐ − 3.280 ⋅ 10rÑ ⋅ 𝜏�,QÒ + 4.855 ⋅ 	10rÒ ⋅ 𝜏�,QÇ − 3.607 ⋅ 10r. ⋅ 𝜏�,Q. + 511 

																												1.383 ⋅ 𝜏�,Q − 8.396) ⋅ 10rÇ                                                                              (16) 512 

 513 

The self-excitation mimics the population activity, since the central cell’s burst profile is representative 514 

for the entire population activity, due to burst synchronization across the active neurons. The adaptive 515 

time constant, 𝜏�,Q, varied from 100-30 ms in a linear way with the anatomical rostral-caudal location 516 

of the neurons, according to: 517 

 518 

												𝜏�,Q = 100 − 14 ∗ 𝑢Q				with		𝑢Q ∈ [0, 5]	mm																																											(17) 519 

 520 

3.2 Microstimulation without lateral interactions 521 

The current density drops rapidly with distance from the microelectrode tip, as given by the current 522 

spread function (Eqn. 9, with λ=10 mm-1, DS=100 ms, and I0=150 pA). Figure 3A illustrates this decay 523 

of current density on the motor map surface. The pulsed input current is presented onto the collicular 524 

surface at a site corresponding to the visual image point (𝒖(𝑹), 𝒗(𝝓)	in Eqn. 5; Fig 3B and C). 525 

Microstimulation directly activated only a small set of neurons within a 250 𝝁m radius. Figure 3B and 526 

C shows the number of spikes elicited by the activated neurons in the absence of intra-collicular lateral 527 
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interactions. Each activated neuron elicited only 4-6 spikes within a given input duration range, 528 

regardless the electrode’s location. These spikes arose from the initial bursting regime of the neurons 529 

until the adaptation current built up with repetitive spikes that canceled the microstimulation input (see 530 

Fig. 2). The input amplitude affected the response delay of the neurons between stimulation onset and 531 

their first spike. Thus, in the model these small neuronal subsets generated only a brief pulse signal 532 

that is supposed to set up the entire population activity through lateral connections.  533 

 534 

Figure 3: Spatial properties of input current and neural response. (A) Input stimulus of 150 pA (100 535 

ms), is presented to the network around the vicinity of the tip of the electrode. Current amplitude drops 536 

exponentially away from the tip location at 0 with λ=10 mm-1. (B,C) Spike counts of neurons activated 537 

by microstimulation, without including lateral connections in the motor map. The gaze-motor map is 538 

stimulated at the corresponding locations prescribed by the logarithmic afferent mapping function (B: 539 

𝑅 = 	5	deg, 𝜙 = 0	deg; C: 𝑅 = 	31	deg, 𝜙 = 30	deg).  540 

 541 

3.3 Including lateral interactions  542 

 543 

We next tested the collicular network response to the same microstimulation parameters as in Fig. 3, 544 

while including the lateral interactions. Figure 4A-C shows the recruited neural population at the rostral 545 

stimulation site. Clearly, the number of recruited neurons had increased substantially as a result of the 546 

network dynamics. The diameter of the circular population extended to about 1 mm in the motor map. 547 
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In addition, the cumulative activity elicited by the central cells had now increased from about 5 to 20 548 

spikes. Figure 4B shows the neuronal bursts (top spike patterns) from a number of selected cells in the 549 

population, together with the associated spike-density functions. The peak firing rate of the central 550 

cells was close to 700 spikes/s and dropped in a regular fashion with distance from the population 551 

center. Note also that the cells near the fringes of the population were recruited slightly later than the 552 

central cells, but that their peak firing rates were reached nearly simultaneously. Moreover, the bursts 553 

all appeared to have the same shape. Figure 4C shows the saccade that was elicited by this neural 554 

population, together with its velocity profile. The saccade had an amplitude of 5 deg, reaching a peak 555 

velocity of about 200 deg/s.  556 

 557 

Figure 4D-F shows the results for stimulation at the more caudal location in the motor map, 558 

yielding an oblique saccade with an amplitude of 31 deg. The size of the resulting population activity 559 

is very similar to that of the rostral population, and also the number of spikes elicited by the cells is the 560 

same.  The peak firing rates of the neurons, however, were markedly lower, reaching a maximum of 561 

about 450 spikes/s. As a result, the burst durations increased accordingly, from about 50 ms at the 562 

rostral site, to more than 70 ms at the caudal site. Note that the saccade reached a much higher peak 563 

velocity (about 900 deg/s) than the smaller saccade in Fig. 4C, but its duration was prolonged. Note 564 

also that the horizontal and vertical velocity profiles were scaled versions, indicating a straight saccade 565 

trajectory. 566 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/424127doi: bioRxiv preprint 

https://doi.org/10.1101/424127
http://creativecommons.org/licenses/by/4.0/


Kasap and Van Opstal: Microstimulation in a spiking neural network model  

 
28 

567 

 568 

Figure 4 (A,D) Spike counts from the gaze-motor map represents the recruited population to 569 

microstimulation with lateral interactions. Peak firing rates of the cells decrease with distance from 570 

the population center. (B,E) Temporal burst profiles of the recruited neurons (taken at 0.1 mm intervals 571 

from the central neuron) portray synchronized population activity, here shown along the rostral-572 

caudal direction in the map. Burst durations increase, but the total number of spikes from the 573 

population remains the same. (C,F) Emerging eye displacements and eye velocity profiles, generated 574 

by the linear dynamic ensemble-coding model (Eqns. 2b and 3). Horizontal (green), vertical (yellow), 575 

and vectorial (purple) eye-displacement traces.  576 

 577 

 578 

In Fig. 5 we quantified the collicular bursts in response to microstimulation at different sites along the 579 

rostral-caudal axis in the motor map. Figure 5A shows how the evoked collicular bursts of the central 580 

cells in the population systematically reduce their peak firing rates, and increase their duration, as the 581 
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microelectrode moves from rostral (R=2 deg) to caudal sites (R=31 deg). In Fig. 5B we show three 582 

major relationships for the bursts of the central cells in the population, for saccade amplitudes between 583 

2 and 65 deg: the peak firing rate (green) drops from about 750 spikes/s to 300 spikes/s, burst duration 584 

(purple) increases from about 40 ms to 125 ms, whereas the number of spikes in the burst (light green) 585 

remains constant at N=20 spikes. These burst properties, which are due to a precise tuning of the 586 

biophysical cell parameters, underlie the kinematic main-sequence properties of saccadic eye 587 

movements (Van Opstal and Goossens, 2009; Goossens and Van Opstal, 2012; Kasap and Van Opstal, 588 

2017). 589 

 590 

Figure 5 (A) Spike trains and burst profiles for the central neurons of different populations (electrode 591 

tip positioned at R = 2, 7, 11, 15, 21 and 31 deg). (B) Peak firing rates (dark green), number of spikes 592 

from the central cells (light green), and the durations of the central cell bursts (purple) for different 593 

neural populations between R=2 and 65 deg. Note that the number of spikes for the central cell is 594 

constant at about 20 spikes throughout the motor map, while the peak firing rate at caudal sites drops 595 

to barely 50% of the rostral stimulation site. Note also that the durations of the central cell bursts 596 

increase monotonically with the movement amplitude.  597 

3.4 Properties of electrically evoked eye movements. 598 

Figure 6A shows the amplitudes and directions of 45 elicited saccades across the 2D oculomotor range 599 

(stimulation parameters: I0=120 pA, DS = 100 ms). We avoided stimulating near the vertical meridian, 600 
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as our model included only the left SC motor map (e.g., Van Opstal et al., 1990), and stimulation at 601 

very caudal sites (R>40 deg), where edge effects of the finite motor map would lead to truncation of 602 

the elicited population at the caudal end. Crosses indicate the coordinates of the corresponding motor 603 

map locations where stimulation took place; blue dots give the coordinates of the evoked saccade 604 

vectors. There is a close correspondence between the motor map coordinates and the elicited saccade 605 

vectors. Only for the most caudal sites the saccade vectors tended to show a slight undershoot. We 606 

have not attempted to compensate for these minor effects, e.g. by including heuristic changes to the 607 

efferent mapping function. The panels of Fig. 6B,C show the evoked saccades for the nine stimulation 608 

sites along the horizontal meridian. Note that the saccade duration increased with the saccade 609 

amplitude, and that the peak eye velocity showed a less than linear increase with saccade size.   610 

 611 

Figure 6 (A) Saccade endpoints for stimulation at different sites in the motor map. The scaling 612 

parameter of the SC motor map was tuned for a 21 deg horizontal saccade (red circle). (B) Eye 613 

displacement traces for horizontal saccades (𝜙 = 0	𝑑𝑒𝑔) [movement amplitudes are highlighted by 614 

the thin horizontal lines]. (C) Saccadic eye velocity profiles for the corresponding position traces in 615 

B. Note the clear increase in saccade duration, and the associated saturation of peak eye velocity as 616 

function of saccade amplitude. 617 

 618 
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 619 

Figure 7 presents three examples of saccade position and ~ velocity traces for stimulation at sites 620 

encoding three different directions, but with a fixed amplitude of R=21 deg. The elicited track-velocity 621 

profiles are direction-independent. Panels 7B and C also indicate the behavior of the horizontal and 622 

vertical saccade components. As these are precisely synchronized with the saccade vector, the ensuing 623 

saccade trajectories are straight (not shown).  624 

 625 

626 

Figure 7 Eye-displacement traces and saccadic eye velocity profiles for three directions (𝜙 =627 

0, 30, 60	𝑑𝑒𝑔) (A, B, C) with the same amplitude of R = 21 deg. (purple: total vectorial 628 

displacement/velocity, green: horizontal, yellow: vertical saccade component). 629 

 630 

The main-sequence behavior of the model’s E-saccades is quantified in Fig. 8. Figure 8A shows the 631 

nonlinear amplitude vs. peak eye-velocity relationship, described by the following saturating 632 

exponential function: 633 

 634 

𝑣��ib = 1172 ∙ (1 − exp(−0.04 ∙ 𝑅))		deg/s									(18) 635 

 636 

From Fig. 8B, the straight-line amplitude-duration relation was approximated to 637 
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 638 

𝐷�ijj = 28.7 + 1.1 ∙ 𝑅				ms										(19) 639 

 640 

These main-sequence relations were combined into a single, characteristic linear relationship that 641 

captures all saccades, normal and slow (Fig. 8C) by: 642 

 643 

𝑣��ib ∙ 𝐷�ijj = 1.72 ∙ 𝑅				deg										(20) 644 

 645 

All three relations correspond well to the normal main-sequence properties, as have been reported for 646 

monkey and human saccades (e.g., Van Opstal and Van Gisbergen, 1987). 647 

 648 

649 

Figure 8 Nonlinear main-sequence behavior of the model, here shown for stimulation at 16 sites along 650 

the horizontal meridian of the motor map. (A) Saturating amplitude-peak eye velocity relation. (B) A 651 

straight-line increase of saccade duration with amplitude. (C) Saccade amplitude and the product of 652 

peak eye velocity and saccade duration, Vpk⋅D, are linearly related with slope, k = 1.7. 653 

 654 

 655 

Importantly, the main-sequence behavior of E-saccades was largely insensitive to the applied current 656 

strength as soon as it exceeded the stimulation threshold. This feature of the model is illustrated in Fig. 657 

9, which shows E-saccade peak eye-velocity as function of current strength for a fixed stimulation 658 
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duration of DS=100 ms (Fig. 9A). The stimulation was applied at three different sites on the horizontal 659 

meridian (corresponding to R=15, 21 and 31 deg). Below I0=80 pA no movement was elicited, but 660 

around the threshold, between 90-120 pA, stimulation evoked slow eye movements, which eventually 661 

yielded the final amplitude (Fig. 9B). Immediately above the threshold at 130-140 pA, the evoked 662 

movement amplitudes and velocities reached their final, site-specific size (Fig. 9AB), which did not 663 

change with current strength over the full range between 140-220 pA. The associated peak eye velocity 664 

followed a similar current-dependent behavior for changes in stimulus duration (at a fixed current 665 

strength of 150 pA; Fig. 9C). Thus, the quantity that determines evoked saccade initiation is the total 666 

amount of current (current amplitude times duration; e.g., Katnani and Gandhi, 2012). 667 

 668 

 669 

Figure 9 (A) Peak eye velocity as function of current strength for stimulation at a site corresponding 670 

to R=15 (light), 21 (medium) and 31 (dark) deg, for 100 ms stimulation duration. Beyond the threshold 671 

at 140 pA, the evoked eye velocity is virtually independent of the stimulation current. (B) Total eye 672 

displacement as function of microstimulation strength for stimulation at a site corresponding to R=15 673 

(light), 21 (medium) and 31 (dark) deg for 100 ms stimulation duration. Beyond the threshold at 90 674 

pA, the total eye displacement is independent of the stimulation current. (C) Peak eye velocity as a 675 

function of microstimulation duration from the same locations at a fixed stimulation strength of 150 676 

pA.   677 

 678 

 679 
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4. Discussion 680 

 681 

Summary. The simple linear ensemble-coding model of Eqn. 2b (Van Gisbergen et al., 1987; Goossens 682 

and Van Opstal, 2006; Van Opstal and Goossens, 2008) seems inconsistent with the results of 683 

microstimulation, when it is assumed that (i) the rectangular stimulation input profile directly dictates 684 

the firing patterns of the neural population in the motor map, and (ii) that the neurons are independent, 685 

without synaptic interactions.  686 

 687 

We here argued that these assumptions are neither supported by experimental observation, nor 688 

do they incorporate the possibility that a major factor determining the recruitment of SC neurons is 689 

caused by synaptic transmission within the motor map, rather than by direct activation through the 690 

electrode’s electric field. We implemented circular-symmetric, Mexican-hat like interactions in a 691 

spiking neural network model of the SC motor map and assumed that the current profile from the 692 

electrode rapidly decreased with distance from the electrode tip (Fig. 3A). As a consequence, only 693 

neurons in the direct vicinity of the electrode were activated by the external electric field (Fig. 3B,C; 694 

Histed et al., 2009; 2013).  695 

 696 

Once neurons were recruited by the stimulation pulse, however, local excitatory synaptic 697 

transmission among nearby cells rapidly spread the activation to create a neural activity pattern which, 698 

within 10-15 ms, was dictated by the bursting dynamics of the most active central cells in the 699 

population (Fig. 4). As a result, all cells yielded their peak firing rates at the same time, and the burst 700 

shapes of the cells within the population were highly correlated. Similar response features have been 701 

reported for natural, sensory-evoked saccadic eye movements (Goossens and Van Opstal, 2012), and 702 

it was argued this high level of neuronal synchronization ensures an optimally strong input to the 703 

brainstem saccadic burst generator to accelerate the eye with the maximally possible innervation.   704 
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 705 

Network tuning. The site-dependent tuning of the biophysical parameters of the AdEx neurons, in 706 

particular their adaptive time constants and lateral-interaction weightings specified by Eqns. 16-17, 707 

caused the peak firing rates of the cells to drop systematically along the rostral-to-caudal axis, while 708 

keeping the total number of spikes constant (Fig. 5). As a result, the saccade kinematics followed the 709 

nonlinear main-sequence properties that are observed for normal (visually-evoked) saccadic eye 710 

movements (Figs. 6-8). In addition, the long-range weak inhibition ensured that the size of the 711 

population remained fixed to about 1.0  mm in diameter, and resulted to be largely independent of the 712 

applied current strength and the current-pulse duration (Fig. 9).  713 

 714 

The lateral excitatory-inhibitory synaptic interactions ensured three important aspects of 715 

collicular firing patterns that underlie the saccade trajectories and their kinematics: (i) they set up a 716 

large, but limited, population of cells in which the total activity (quantified by the number of spikes 717 

elicited by the recruited cells) can be described by a circular-symmetric Gaussian with a width 718 

(standard deviation) of approximately 0.5 mm (Fig. 4A,D), (ii) the temporal firing patterns of the 719 

central cells (their peak firing rate, burst shape, and burst duration) solely depend on the location in the 720 

motor map (Eqn. 15), but the number of evoked spikes remains invariant across the map, and for a 721 

wide range of electrical stimulation parameters (Fig. 5), and (iii) already within the first couple of 722 

spikes, the recruited neurons all became synchronized throughout the population, in which the most 723 

active cells (those in the center) determined the spike-density profiles of all the others (Fig. 4B,E). 724 

 725 

Here we described the consequences of this model on the ensuing kinematics and metrics of E-726 

saccades as function of the electrical stimulation parameters. We showed that the network could be 727 

tuned such that stimulation at an intensity of 150 pA and a total input current duration of DS = 100 ms, 728 

sets up a large population of activated neurons, in which the firing rates resembled the activity patterns 729 
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as measured under natural visual stimulation conditions. As a result, the kinematics of the evoked 730 

saccades faithfully followed the nonlinear main-sequence relations of normal, visually evoked 731 

saccades (Fig. 8). Importantly, above threshold the saccade properties were unaffected by the electrical 732 

stimulation parameters (Fig. 9).  733 

 734 

Network normalization. Only close to the stimulation threshold, the evoked activity remained 735 

much lower than for supra-threshold stimulation currents, leading to excessively slow eye movements, 736 

that started at a longer latency with respect to stimulation onset. Similar results have been demonstrated 737 

in microstimulation experiments (e.g. Van Opstal et al., 1990; Katnani and Gandhi, 2012). The saccade 738 

peak eye velocity of the model saccades followed a psychometric curve as function of the amount of 739 

applied current (Fig. 9).  We found that the kinematics of the evoked eye movements at near-threshold 740 

microstimulation were much slower than main sequence (Fig. 9). Although this property is readily 741 

predicted by the linear summation model (Eqn. 2b), it does not follow from center-of-gravity 742 

computational schemes (like Eqn. 2a), in which the activity patterns themselves are immaterial for the 743 

evoked saccade kinematics.  744 

 745 

Conceptually, the lateral interactions serve to normalize the population activity. Therefore, the 746 

total number of spikes emanating from the SC population remains invariant across the motor map, and 747 

to a large range of (sensory or electrical) stimulation parameters at any given site. The nonlinear 748 

saturation criterion of Eqn. 4 is thus automatically implemented through the intrinsic organization of 749 

the SC network dynamics, and do not seem to require an additional downstream ‘spike-counting’ 750 

mechanism in order to terminate the saccade response, e.g. during synchronous double stimulation at 751 

different collicular sites (see, e.g. Van Opstal and Van Gisbergen, 1989a).  752 

 753 
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Although other network architectures, relying e.g. on presynaptic inhibition across the dendritic 754 

tree, have been proposed to accomplish normalization of the population activity and vector averaging 755 

(Van Opstal and Van Gisbergen, 1989a,b; Carandini and Heeger, 1994; Groh, 2001; Van Opstal and 756 

Goossens, 2008), substantial anatomical evidence in the oculomotor system to support such nonlinear 757 

mechanisms is lacking. We here showed, however, that simple linear summation of the effective 758 

synaptic inputs at the cell’s membrane, which is a well-recognized physiological mechanism of basic 759 

neuronal functioning, can implement the normalization when it is combined with excitatory-inhibitory 760 

communication among the neurons within the same, topographically organized structure. Such a 761 

simple mechanism could suffice to ensure (nearly) invariant gaze-motor commands across a wide range 762 

of competing neuronal inputs.  763 

 764 

Future work. The two-dimensional extension of our model is a substantial improvement over 765 

our earlier one-dimensional spiking neural network model (Van Opstal and Kasap, 2017). It can 766 

account for a much wider variety of neurophysiological phenomena. Yet, we have not attempted to 767 

mimic every experimental result of microstimulation. A few aspects in our model have not been 768 

incorporated yet, or some of its results seem to deviate slightly from experimental observations, which 769 

we briefly summarize here.  770 

 771 

First, although the network output is invariant across a wide variety of stimulation parameters, and 772 

evoked saccade kinematics drop markedly around the threshold (Fig. 9), the present model did not 773 

produce small-amplitude, slow movements near the stimulation threshold. This behavior has 774 

sometimes been observed for near-threshold stimulation intensities (Van Opstal et al., 1990; Katnani 775 

and Gandhi, 2012). In our model, the saccade amplitude behaved as an all-or-nothing phenomenon 776 

(Fig. 9B), which is caused by the strong intrinsic mechanisms that keep the number of spikes of the 777 

central cells fixed. Although we have not tested different parameter sets at length, we conjecture that 778 
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a major factor that is lacking in the current model is the presence of intrinsic noise in the parameters 779 

and neuronal dynamics that would allow some variability of the evoked responses for small inputs. 780 

When near the threshold the elicited number of spikes starts to fluctuate, and becomes less than the 781 

cell’s maximum, the evoked saccades will become smaller (and slower) too. 782 

 783 

Second, although the main-sequence relations of the model’s E-saccades (Eqns. 18-20) 784 

faithfully capture the major kinematic properties of normal eye movements, the shape of the evoked 785 

saccade velocity profiles were not as skewed as seen for visually-evoked saccades. As a result, the 786 

peak velocity is not reached at a fixed acceleration period, but at a moment that slightly increased with 787 

the evoked saccade amplitude (Fig. 6C). We have not attempted to remediate this slight discrepancy, 788 

which in part depends on the applied spike-density kernels (here: Gaussian, with width σ=8 ms, Eqn. 789 

3), and in part on the biophysical tuning parameters of the AdEx neurons. However, it should also be 790 

noted that a detailed quantification of E-saccade velocity profiles, beyond the regular main-sequence 791 

parametrizations (Van Opstal et al., 1990; Katnani and Ghandi, 2012), is not available in the published 792 

literature. It is therefore not known to what extent E-saccade velocity profiles and V-saccade velocity 793 

profiles are really the same or might slightly differ in particular details.  794 

 795 

Third, the electrical stimulation inputs were described by simple rectangular pulses, rather than 796 

by a train of short-duration stimulation delta-pulses, in which case also the pulse intervals, pulse 797 

durations, pulse heights, and the stimulation frequency would all play a role in the evoked E-saccades 798 

(Stanford et al. 1996; Katnani and Ghandi, 2012). We deemed exploring the potential results 799 

corresponding to these different current patterns as falling beyond the scope of this study, which merely 800 

concentrated on the proof-of-principle that large changes in the input for the proposed architecture of 801 

a spiking neural network led to largely invariant results. Note, however, that in our previous paper 802 

(Kasap and Van Opstal, 2017) the presumed input from FEF cells to the SC motor map did indeed 803 
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provide individual spike trains to affect the SC-cells.  We there demonstrated that the optimal network 804 

parameters could be found with the same genetic algorithm for such spiky input patterns, as applied 805 

here (Eqn. 14). The small differences in neuronal tuning parameters for the 1D model with FEF input, 806 

compared to the 2D model tuned to electrical pulse input, are mostly due to these fundamentally 807 

different input dynamics.  808 

 809 

Finally, double-stimulation experiments at different sites within the SC motor map have shown 810 

that the resulting saccade vector appears a weighted average between the saccades evoked at the 811 

individual sites (Robinson, 1972; Katnani et al., 2012). In the present paper, we have not implemented 812 

double stimulation, although an earlier study had indicated that Mexican-hat connectivity profiles in 813 

the motor map effectively embed the necessary competition between sites to result in effective 814 

weighted averaging (Van Opstal and Van Gisbergen, 1989a). In a follow-up study we will explore the 815 

spatial-temporal dynamics of our model to double stimulation at different sites, and at different 816 

stimulus onset delays.  817 

 818 
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