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Abstract 

Research has shown participants associate high pitch tones with small 

objects, and low pitch tones with large objects. Yet it remains unclear when 

these associations emerge in neural signals, and whether or not they are 

likely the result of predictive coding mechanisms being influenced by 

multisensory priors. Here we investigated these questions using a modified 

version of the implicit association task, 128-channel human EEG, and two 

approaches to single-trial analysis (linear discriminant and mutual 

information). During two interlaced discrimination tasks (auditory high/low tone 

and visual small/large circle), one stimulus was presented per trial and the 

auditory stimulus-response assignment was manipulated. On congruent trials 

preferred pairings (high tone, small circle) were assigned to the same 

response key, and on incongruent trials non-preferred pairings were (low 

tone, small circle). The results showed participants (male and female) 

responded faster during auditory congruent than incongruent trials. The EEG 

results showed that acoustic pitch and visual size were represented early in 

the trial (~100 ms and ~220 ms), over temporal and frontal regions. Neural 

signals were also modulated by congruency early in the trial for auditory 

(<100ms) and visual modalities (~200ms). For auditory trials, EEG 

components were predictive of reaction times, but for visual trials they were 

not. These EEG results were consistent across analysis methods, 

demonstrating they are robust to the statistical methodology used. Overall, 

our data support an early origin of cross-modal associations, and suggest that 

these may originate during early sensory processing potentially due to 

predictive coding mechanisms.  

Introduction  

Humans exhibit implicit perceptual associations across the different senses. 

For example, high-pitched tones are often associated with small objects and 

low-pitched tones with large objects (Gallace and Spence, 2006; Parise and 

Spence, 2008, 2009, 2012; Evans and Treisman, 2010). These interactions 

are known as “cross-modal associations”, with preferred pairings defined as 

“congruent” and non-preferred pairings defined as “incongruent”.  

In contrast to multisensory integration, cross-modal associations are 

situations where information from different sensory modalities interacts with 

one another, but which does not necessarily result in one percept or a 

significantly different bimodal neural response (Calvert et al., 2012).  

However, cross-modal associations have been shown to modulate 

behavioural performance. For example, participants perform better on 

congruent compared to incongruent trials (Bien et al., 2012, Parise & Spence, 
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2008) across a variety of stimulus combinations (Gallace & Spence, 2006). 

Parise & Spence (2012) even showed that response times were faster for 

congruent pairings than incongruent pairings, even when only a single 

stimulus was presented on a trial.  

Despite this, where and when associations emerge in neural signals is still 

unclear (Spence, 2011; Spence and Deroy, 2013; Knoeferle et al., 2017). 

Bien et al., (2012) examined an auditory pitch-visual size association using an 

EEG-TMS paradigm, and showed parietal and frontal ERP components were 

modulated by cross-modal congruency early in the trial (250-300 ms). Kovic, 

Plunkett, and Westermann, (2010) found early ERP effects at occipital 

(~140 ms) and parietal (~340 ms) sites which reflected the learned 

association between semantic (auditory) words and visual objects. Using 

fMRI, Revill et al., (2014) also showed increased activation in the left superior 

parietal cortex in response to sound-symbolic pairings of words (e.g. big-

slow/small-fast). Finally, Sadaghiani, Maier, and Noppeney, (2009) used fMRI 

to demonstrate that associations between auditory and visual motion signals 

emerged in motion areas, whereas higher-level speech-motion associations 

emerged in fronto-parietal areas.  

However, these studies relied on few recording sites (Kovic et al., 2010), 

sampled brain activity at low temporal resolution (Sadaghiani et al., 2009), or 

relied on paradigms presenting two stimuli simultaneous. Together this makes 

it difficult to determine whether stimulus dependent modulations in 

behavioural responses are due to a genuine cross-modal association or some 

form of attention dividing or selection (Bien et al., 2012), and as a result it is 

hard to draw clear conclusions about where and when brain activity reflects 

cross-modal associations. 

In this study we addressed these questions by examining when effects of an 

auditory pitch – visual size cross-modal association emerged in neural 

signals. We used the modified version of the implicit association test (IAT) as 

in Parise & Spence (2012), combined with EEG and two approaches to 

single-trial analysis. Importantly, using the IAT overcomes the methodological 

issues mentioned above: it presents only one stimulus per trial (avoiding 

attentional or multisensory confounds), manipulates congruency by changing 

the stimulus-response key mapping across blocks (avoiding explicit matching 

and subjective reports), and presents a single stimulus per trial, which allows 

us to extract sensory-specific processes from brain activity and relate these to 

behaviour on a trial-by-trial basis. We hypothesised that reaction times would 

be faster when congruent pairs of stimuli were assigned to the same response 

key compared to incongruent pairs. We had two hypotheses regarding the 

EEG data: a) that brain activity sensitive to the task-relevant sensory feature 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/423939doi: bioRxiv preprint 

https://doi.org/10.1101/423939
http://creativecommons.org/licenses/by-nc-nd/4.0/


should be modulated by congruency, and b) that these neural correlates 

sensitive to the cross-modal congruency should be predictive of participants’ 

single trial reaction times. We had no prior hypothesis as to when these 

effects would manifest during a trial or where they would localize; however, if 

the association arises at an early perceptual level, one would expect their 

neural correlates to emerge with short latencies after stimulus onset, likely 

over early sensory areas.  

Methods 

Participants  

20 participants (13 females; age range 19-32) took part in the study. One 

participant’s data (S19) had to be discarded due to noisy EEG channels. The 

sample size was set to 20, based on sample sizes used in previous EEG 

studies and general recommendations (Simmons et al., 2011). All participants 

reported normal or corrected to normal vision and normal hearing. 

Participants were recruited via the University of Glasgow Subject Pool, and 

received £6 per hour for their participation. The study was approved by the 

local ethics committee (application number: 300130001, College of Science 

and Engineering, University of Glasgow) and conducted in accordance with 

the Declaration of Helsinki. 

Stimuli  

Stimuli were created and presented using MATLAB (MathWorks) and the 

Psychophysics Toolbox Extensions (Brainard, 1997). Visual stimuli consisted 

of two light grey circles (‘small’ and ‘large’, 2cm and 5cm, 1.1 ° and 2.8 ° of 

visual angle respectively) presented for 300 ms atop a darker grey 

background (Figure 1). Auditory stimuli consisted of two 300 ms pure tones 

(‘high’ and ‘low’ pitch, 2000Hz and 100Hz respectively). The sound intensity of 

each tone was matched to 72 DbA SPL (left and right ear) using a sound level 

meter. Auditory stimuli were presented using Sennheiser headphones and 

visual stimuli were presented on a Hansol 2100A CRT monitor at a refresh 

rate of 85 Hz.  

Task 

The task was a modified version of the IAT (Greenwald et al., 1998), as used 

in Parise & Spence, (2012). The IAT measures implicit associations via 

manipulating stimulus-response key mapping, and assumes response times 

will be faster when associated pairs of stimuli are assigned to the same  
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Figure 1 | Task. Subjects were presented with one stimulus (either auditory or visual) on 

each trial and were asked to indicate which of the two stimuli within that modality was 

presented (e.g. small vs large circle, high vs low tone) as quickly and accurately as 

possible. On each block, the assignment of the auditory features to the two response 

keys was manipulated (left, congruent block pairings; right, incongruent block pairings). 

 

 
response key compared to when associated pairs are assigned to different 

response keys. In this modified version, on each block, one auditory and one 

visual stimulus are assigned to the left response key, and one auditory and 

one visual stimulus are assigned to the right (two stimuli per key, see 

Congruency section for assignment). Participants are then presented with one 

stimulus per trial, and have to identify which was presented as quickly and 

accurately as possible using the appropriate response keys. In this particular 

experiment, cross-modal associations are then measured via reaction time 

modulations.  

Congruency 

Congruency was manipulated by changing the stimulus-response key pairings 

across blocks (Figure 1). On congruent blocks the small circle and high tone 

were assigned to the left response key and the large circle and low tone were 

assigned to the right key. On incongruent blocks the small circle and low tone 

were assigned to the left response key and the large circle and high tone were 

assigned to the right response key. Importantly, the auditory assignment 

changed across blocks, while the visual assignment always remained fixed. In 

total, participants completed 8 blocks (4 congruent and 4 incongruent 

presented in a randomised order) for a total of 1280 trials (160 trials per block, 

40 trials for each stimulus type).  

In this experiment, the stimulus response mapping from one block to the next 

remained constant for the visual stimulus and only changed for the auditory 

stimulus for two reasons. First, during informal pilot testing of the stimuli, we 

found that participants also exhibited a cross-modal association between 

small visual objects and the left keyboard button, and between large visual 
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objects and the right keyboard button. In order to ensure we did not have 

confounding effects between associations, we decided to hold the visual 

stimuli constant and manipulate only the auditory stimuli. Second, each 

experimental session was approximately three hours long (~2 hour for EEG 

set up/clean up, and 1.5 hours for the task of 1280 trials). These issues made 

it difficult to design an implicit association experiment where the visual and 

auditory stimuli were counterbalanced, and the participants were not asked to 

spend more than three hours in the lab per session. For these reasons, we 

chose to only manipulate auditory stimulus congruency.  

Procedure  

The experiment was carried out in a dark and electrically shielded room. Each 

block began with instructions on the mapping between stimuli and response 

keys (see Congruency). Participants were given as much time as they needed 

to memorise the instructions for the upcoming block. Each trial started with a 

fixation cross presented centrally for a randomised period (uniform distribution 

in 500 to 1000 ms). Then one of the four stimuli (see Stimuli) was selected 

randomly, and presented for 300 ms (Figure 1). Participants had to respond 

as quickly as possible using the left and right keyboard keys, as defined by 

the block instructions (see Congruency). Feedback was provided after each 

trial (green fixation cross for correct answers, red fixation cross for incorrect 

answers) for a randomised duration (uniform distribution from 300 ms to 

600 ms). 

EEG Recording and Preprocessing  

EEG data was recorded using a 128-channel BioSemi system and ActiView 

recording software (Biosemi, Amsterdam, Netherlands). Signals were digitised 

at 512 Hz and band-pass filtered online between 0.16 and 100 Hz. Signals 

originating from ocular muscles were recorded from four additional electrodes 

placed below and at the outer canthi of each eye.  

Data from individual blocks were preprocessed in MATLAB using the FieldTrip 

toolbox (Oostenveld et al., 2011) and custom scripts. Epochs of 2 seconds (-

0.5 to 1.5 seconds relative to stimulus onset) were extracted and filtered 

between 0.5 and 90 Hz (Butterworth filter) and down-sampled to 200 Hz. 

Potential signal artefacts were removed using independent component 

analysis (ICA) as implemented in the FieldTrip toolbox (Oostenveld et al., 

2011), and components related to typical eye blink activity or noisy electrode 

channels were removed. Horizontal, vertical and radial EOG signals were 

computed using established procedures (Hipp & Siegel, 2013; Keren, Yuval-

Greenberg, & Deouell, 2010) and trials where there was a high correlation 
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between eye movements and components in the EEG data were removed. 

Remaining trials with amplitudes exceeding ±120 μV were also removed. 

Successful cleaning was verified by visual inspection of single trials.  

Analysis Methods 

Analysis of Behavioural Data 

For each participant, overall performance (proportion correct) and median 

reaction time (RT) were calculated separately for each modality and 

congruency. Trials with very fast (<300 ms) or slow (>1200 ms) responses 

were excluded. Both RT and performance scores were submitted to Wilcoxon 

Signed rank tests for analysis (see Statistics). All reported RTs are calculated 

with respect to stimulus onset.  

Analysis of EEG: Linear Discriminant Analysis 

We used single-trial, multivariate linear discriminant analysis (Parra et al., 

2005; Sajda et al., 2009; Philiastides et al., 2014) to extract discriminant 

components related to stimulus type, for each modality separately (high 

versus low pitch; small versus big circle). Prior to analysis, the data was band-

pass filtered between 1 and 30 Hz. Next, the classifier (based on regularised 

linear discriminant analysis, Philiastides et al., 2014), was applied to the EEG 

activity in sliding time windows of 30 ms, at each 5 ms time point in the 

window from -300 ms pre-stimulus onset to 1 second post stimulus onset. The 

discriminant output (Y) was always aligned to the onset of the 30 ms window. 

Classification performance (Az) was determined using the receiver operator 

characteristic (ROC) and 10 fold cross-validation along with randomisation 

testing (see Statistics). Scalp topographies showing the normalised 

correlation between the discriminant output and the EEG activity were 

estimated via the forward model (Philiastides et al., 2014). 

To assess how these neural correlates of sensory evidence were modulated 

by congruency, the discriminant output (Y) for congruent trials was compared 

to that for incongruent trials using a cluster randomisation technique (see 

Statistics). To examine the relationship between neural and behavioural data, 

we used linear regression to investigate whether the information contained in 

the discriminant component (Y) was predictive of behavioural reaction times. 

As we were interested in whether the quality of the sensory information 

reflected by the EEG component (i.e. the distance from zero, regardless of 

sign) was predictive of auditory reaction times, the discriminant output (Y) was 

flipped for trials that had been assigned to a negative value during 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 25, 2018. ; https://doi.org/10.1101/423939doi: bioRxiv preprint 

https://doi.org/10.1101/423939
http://creativecommons.org/licenses/by-nc-nd/4.0/


classification (e.g. stimulus labels assigned to 0 were multiplied by -1). The 

discriminant output (Y) for each trial was then regressed against individual 

participant reaction times at each time point during the trial. Significance 

levels for both congruency and regression analyses were calculated using a 

cluster randomisation technique (see Statistics).  

Analysis of EEG: Mutual Information 

To assess how robust our effects were, we performed a complementary 

analysis based on mutual information (MI) (Gross et al., 2013; Ince et al., 

2015, 2017; Kayser et al., 2015). MI can be thought of as a likelihood ratio 

test for dependence between two variables of interest (e.g. between stimulus 

type and EEG, or between EEG and reaction times). A particular advantage of 

MI is that it provides a common meaningful effect size scale (bits) across a 

wide range of statistical tests (Ince, Giordano, et al., 2017).    

We calculated MI using a semi-parametric estimator: Gaussian Copula Mutual 

Information (GCMI) (Ince, Giordano, et al., 2017). This provides a data-

efficient and robust lower bound approximation to MI by modelling the 

dependence between the variables with a Gaussian copula. However, no 

assumption is made on the marginal distributions of the variables. To allow 

direct comparison of the results obtained from MI analysis and the linear 

discriminant analysis, we follow the same pre-processing steps described in 

the previous section. EEG data were band-pass filtered between 1 and 30 Hz, 

and then averaged in sliding windows of 30 ms from stimulus onset to 545 ms 

post stimulus onset in steps of 5 ms (with the data aligned to the onset of the 

30 ms window). For each sensor we calculated the single trial central finite 

difference temporal derivative of the filtered EEG signal. At each time point of 

each trial, we added this temporal derivate to the voltage to obtain a bivariate 

response. GCMI allows us to estimate MI using this bivariate response. When 

a biphasic evoked potential is modulated by an experimental condition, 

considering voltage alone can often result in a double peak statistical effect, 

because of the zero crossing where the modulation changes sign (e.g. at the 

zero crossing of an amplitude modulated bi-phasic waveform). Since MI is an 

unsigned effect size this results in two positive peaks separated by a time 

period in which there is no significant effect. Including the EEG voltage and its 

instantaneous rate of change at each time point addresses this, since at the 

zero crossing ongoing modulation of the signal can be detected in the 

gradient. This gives a more balanced picture of the time window over which 

the EEG signal is modulated by the experimental condition (Ince, Giordano, et 

al., 2017). GCMI was computed between stimulus type (high/low tone and 

small/large circle) and the 2D EEG voltage response (EEG data, temporal 
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derivative) for each modality, time point and electrode separately. Statistical 

significance was determined using randomisation analysis (see Statistics).  

To examine when this MI statistic was affected by cross-modal congruency, 

for each modality we compared MI values (about high/low tone and 

small/large circle) computed from the congruent trials to MI values obtained 

from the incongruent trials at each time point. Significant clusters were 

determined using a cluster randomisation procedure (see Statistics). To 

examine the relationship between neural activity and behavioural responses, 

the EEG data in these significant clusters was then averaged over all 

significant electrodes and a 30 ms epoch over the centre cluster peak. This 

shorter epoch was chosen as averaging EEG activity over long (>100 ms) 

windows can cause problems with biphasic evoked potentials due to 

cancellation of positive and negative periods of the signal. Based on our 

filtering parameters, we chose a 30ms window around the peak to reduce 

noise and avoid including periods of signal with different sign.  

The resulting single-trial EEG data in these clusters was then regressed 

against the single-trial reaction times for each participant using multiple linear 

regression (with each cluster as a predictor). Significance was determined by 

applying a permutation based t-test across participants on the group level 

regression weights for each time point, and significant clusters determined 

using a cluster randomisation technique (see Statistics).  

Statistics  

All Z values reported were generated from a two-sided Wilcoxon signed rank 

test after testing assumptions of normality (which did not hold). Effect sizes 

were calculated by dividing the Z value by the square root of N (where N = the 

number of observations rather than participants) (Rosenthal, 1994). P-values 

were checked for inconsistencies using the R software package “statcheck” 

(Nuijten et al., 2016). 

Statistical significance of classification performance (Az) were determined by 

randomly shuffling the condition allocated to each trial 2000 times, computing 

the group averaged Az value (area under ROC curve, see Methods) for each 

randomisation, and taking the maximal Az value over time for each 

randomisation. This built a distribution of Az values from which we extracted 

the 99th percentile. Because of the maximum operation, this provides a Family-

Wise Error Rate (FWER) of p = 0.01, corrected for the multiple comparisons 

over time points (Holmes et al., 1996; Nichols and Holmes, 2001).   
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Significance for group-level effects of congruency on the discriminant output 

(Y) were obtained by comparing congruent and incongruent trials across 

participants at each time point using a permutation based paired t-test across 

participants (shuffled participant labels, 1000 permutations). Significant 

clusters were then determined using a cluster randomisation technique which 

compared the true t-value (resulting from comparing congruent to incongruent 

Y signals using true participant labels) to the shuffled t-value, based on a 

cluster threshold of t = 1.8 (p<0.05), maxsum cluster forming, minimum cluster 

size of 2, and cluster p-value = 0.05. Effect sizes were indicated as the 

equivalent r value that is bounded between 0 and 1 (Rosenthal & Rubin, 

2003). 

Significance levels for the LDA regression analysis were generated by 

randomly shuffling the trial specific reaction times and performing the 

regression analysis (between the decoding signal and reaction times) 1000 

times. Significance was determined by applying a t-test (against zero) across 

participants on the group level regression weights for each time point, and 

significant clusters determined using a cluster randomisation technique (with 

cluster thresholds set as described above).  

Finally, statistical significance for the MI analysis was calculated using a 

randomisation test together with the method of maximum statistics (Holmes et 

al., 1996). For each time point, sensor, condition, and participant, GCMI was 

calculated 1000 times with permuted stimulus class labels. The maximum MI 

value over electrodes and time across permutations was calculated, and the 

99th percentile used as the threshold for significance. MI values computed 

from congruent and incongruent trials were then compared at each electrode 

and time point using the same cluster randomisation technique (and settings) 

described above.  

Results 

Behavioural Results 

Figure 2 presents the behavioural results. In line with our hypothesis median 

reaction times were shorter for congruent versus incongruent trials (auditory 

congruent to incongruent: 959 ms to 993 ms, visual congruent to incongruent: 

898 ms to 929 ms, calculated from stimulus offset). As expected, this 

difference was significant only for auditory stimuli (Wilcoxon sign rank tests: 

auditory, Z = -2.1328, p = 0.033, effect size = -0.3372; visual, Z = -1.14487, 

p = 0.127, effect size = -0.229). Performance score did not significantly differ 

between incongruent and congruent trials (Wilcoxon sign rank tests: auditory,  
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Figure 2 | Behavioural Results. (A) Median reaction time difference (Incongruent RT – 

Congruent RT) across all trials shown for each participant (grey circles). (B) Accuracy 

Difference (Incongruent – Congruent proportion correct). Asterisk (*) represents significant 

difference (p<0.05, Wilcoxon Signed Rank test). 

 

median change congruent to incongruent, 94.3% to 94.1%, Z = -0.402, 

p = 0.688, effect size = -0.064; visual, median change congruent to 

incongruent, 97.4 % to 97.4%, Z = 0, p = 1, effect size = 0.002).  

EEG Decoding  

Figure 3-1 A displays the discriminant performance for auditory and visual 

trials. For auditory stimuli, significant performance emerged between 25ms 

after stimulus onset and 535 ms (Figure 3-1 A, blue horizontal dotted line, 

cluster permutation test, p<0.01, Az value = 0.5387). The corresponding scalp 

models obtained from the correlation between the discriminant output and the 

EEG data (averaged over a 30 ms time window centred on the two 

classification performance peaks) revealed the strongest effects originated 

over posterior, central and temporal electrodes for both peaks (Figure 3-1 A, 

topographical inserts, top row). These two topographies were very similar but 

of opposite sign. For visual stimuli, significant decoding performance emerged 

between 40ms after stimulus onset and 660 ms (Figure 3-1 A, yellow  

horizontal dotted line, cluster permutation test, p<0.01 Az value = 0.5432). 

The corresponding scalp models (Figure 3-1 A, topographical inserts, bottom   
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row) showed strongest correlations between the discriminant output (Y) and 

the EEG activity over posterior and frontal regions (for the first classification 

peak and second classification peak respectively). These results indicate that 

the linear classifier could identify EEG components carrying significant task-

relevant sensory information, and that these components were different for 

auditory and visual trials.  

Figure 3-1 B (left) shows the discriminant output (Y) for the auditory modality, 

separately for congruent and incongruent trials (with the signal Y flipped in 

order to map all trials to positive values, see Methods). For the auditory 

modality we found one cluster where the discriminant output (Y) was 

significantly different for congruent compared to incongruent trials (cluster 

randomisation test, cluster 1: t = 8.576, p<0.001, effect size = 0.4599). This 

emerged early in the trial, from 95 ms to 110 ms after stimulus onset, and 

revealed there was more information (i.e. higher value decoding signal) about 

stimulus type in the congruent signals compared to incongruent signals. The 

corresponding scalp topographies represent the raw EEG amplitude 

Figure 3.1 | EEG Linear Discriminant Analysis. (A) Group averaged performance of a 
linear classifier discriminating between stimulus type (auditory: high vs. low tone; visual: 
small vs. large circle). Auditory classification performance shown in blue, visual 
classification shown in orange. Horizontal dotted lines represent the threshold for statistical 
significance (FWER p<0.01, blue for auditory, orange for visual). Vertical dotted line 
represents the last time point (545 ms) both auditory and visual discrimination are 
significant (used as a time window cut-off for following analysis). Scalp topographies 
display the forward models (correlation between discriminant output Y and underlying EEG 
activity) for a 30ms time window centred on each peak in classification performance 
(auditory first peak: 105ms, second peak: 180 ms; visual first peak: 170 ms, second peak: 
235 ms). (B) Group averaged discriminant output (Y) for auditory trials separated by 
congruency. Black dots represent significant congruency effect (p<0.05, cluster 
randomisation test). Error bars represent standard eror of the mean. Scalp topographies 
represent the group-averaged raw EEG activity underlying this significant time window of 
interest (averaged across time) for congruent and incongruent trials separately. Bottom 
scalp topography (group averaged, time window averaged, raw EEG data) shows the 
difference in raw EEG activity (Congruent – Incongruent) (C) Group averaged discriminant 
output (Y) for visual trials, separated by congruency, with significant time points again 
denoted with black circles. Error bars represent standard eror of the mean. All scalp 
topographies as in (B), but for the first cluster showing significant differences in the visual 
modality. Note: we have only included the topographies underlying the first cluster here as 
this was the only one which occurred during stimulus presentation. To see scalp 
topographies for the final two significant clusters (cluster 2, 3 occurring after stimulus 
offset), see Figure 3-2. (D) Group-level regression weights (beta values) for the regression 
of single trial RTs against the discriminant output for auditory (left) and visual (right). 
Significant time points represented with black circles (p<0.05, cluster permutation test). In 
all figure panels, grey background represents the time period of stimulus presentation 
(0 ms to 300 ms). 
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underlying this time window of interest, shown separately for congruent 

(Figure 3-1 B, top row, left) and incongruent trials (Figure 3-1 B, top row, 

right). These revealed similar activation patterns over posterior-temporal 

regions for auditory congruent and incongruent trials. However, examining the 

difference (congruent-incongruent) between these raw EEG topographies 

(Figure 3-1 B bottom row) revealed positive differences over left frontal 

regions, and right temporal and posterior regions.  

Figure 3-1 C (left) displays the discriminant output (Y) for the visual modality, 

separately for congruent and incongruent trials (again, with the Y signal 

flipped to map all trials to positive values, see Methods). There were three 

clusters where the discriminant output was modulated by congruency. The 

first emerged from 220ms to 235ms (cluster randomisation test, cluster 1: 

t(18) = -7.761, p<0.001, effect size = 0.426). The corresponding scalp 

topographies displaying the raw EEG activity underlying this time window of 

interest revealed strong occipital activity for both congruent and incongruent 

trials (Figure 3-1 C top row, left and right respectively). Examining the 

difference between congruent and incongruent trials revealed strong positive 

differences over central frontal and right temporal electrodes. The second 

cluster emerged after stimulus offset at 460ms to 465ms (cluster 

randomisation test, cluster 2: t(18) = 4.0906, p<0.001, effect size = 0.441). At 

this cluster, there was strong negative activity over fronto-central electrodes 

for both congruent and incongruent trials (Figure 3-2 A, top row, left and right 

respectively).  Examining the difference (congruent – incongruent) between 

these topographies showed a localised central effect (Figure 3-2 A, bottom 

row). Finally, the third significant cluster which showed differences based on  

visual congruency occurred from 530ms to 545ms (cluster randomisation test, 

cluster 3: t(18) = 9.038, p<0.001, effect size = 0.480). This time, the cluster 

was associated with strong negative activity over right frontal and temporal 

electrodes (Figure 3-2 B, top row, left and right respectively). Comparing the 

scale of the topoplots between auditory and visual conditions (Figure 3-1 B 

and 3-1 C) shows the early significant auditory condition difference is smaller 

in amplitude than the later visual one. The similar scale of group mean Az 

values, the mean and standard error of the discriminant filter Y and the within 

condition topologies suggests a broadly equivalent signal to noise in terms of 

stimulus discrimination across the two modalities. The difference in 

congruency between modalities could be due to higher trial-to-trial variability 

of the congruence effect, or due to the different congruency mechanisms, 

either across modalities or early vs later. Finally, examining the EEG signal 

difference between congruency conditions again revealed a weaker positive 

difference over frontal regions between congruent and incongruent trials 

(Figure 3-2 B, bottom row).  
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Figure 3.2 Significant visual LDA clusters (after stimulus offset). (A) Scalp topographies 

represent the group-averaged raw EEG activity underlying the second significant cluster 

(cluster 2) where congruency differences were found, averaged across time for congruent 

and incongruent trials separately. Bottom scalp topography (group averaged, time window 

averaged, raw EEG data) shows the difference in raw EEG activity (Congruent – 

Incongruent). (B) Shows the same as (A) for the third significant visual cluster.  

 

 

Figure 3-1 D (left) displays the results generated from regressing the auditory 

decoding signal against auditory trial reaction times. Here we found that the 

discriminant EEG signals were significantly predictive of reaction times at two 

clusters during stimulus presentation: from 65 ms to 135 ms, and from 180 ms 

to 205 ms (cluster randomisation tests: first cluster, t(18) = 40.479, p<0.001, 

effect size = 0.541; second cluster, t(18) = 14.538, p<0.001, effect size = 

0.504). Figure 3-1 D (right) displays result from regressing the visual decoding 

signal against visual trial reaction times. Here, we found that visual 

discriminant signals were not predictive of reaction times at any point in the 

trial (cluster randomisation test, p>0.01).  

To summarise the LDA analysis, the results indicated possible differences in 

the contributions of EEG activity to sensory discrimination and congruency 

due to the varying time windows and locations of effects. They also 

demonstrated that congruency effects emerge early during the auditory trials 

(during stimulus presentation) yet later during visual trials (around stimulus 

offset and closer to the behavioural response). Finally, the results showed that 

auditory discriminant EEG signals are predictive of behavioural response 

times, whilst visual signals are not.  
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Mutual Information 

Figure 4 A shows the results from the mutual information analysis, for auditory 

and visual trials separately. For auditory trials, stimulus information (high/low 

tone) was represented in the EEG signal early in the trial, with significant MI 

values emerging from 50 ms to 245 ms after stimulus onset (Figure 4 A, blue 

horizontal dotted line, randomisation test, 99th percentile). This information 

was highest over left posterior and temporal electrodes (Figure 4 A, 

topographical inserts, top row). For the visual trials, stimulus information 

(small/large circle) was represented in the EEG signal early in the trial, with 

significant MI values emerging from 60ms to 545ms for incongruent trials 

(Figure 4 A, yellow horizontal dotted line, randomisation test, 99th percentile). 

This time, the highest information was centred over right posterior electrodes 

(Figure 4 A, topographical inserts, bottom row). Note that as MI is an  

unsigned quantity the signs of the values are different, but the spatial patterns 

obtained from the sensor-wise MI analysis are very similar to the absolute 

value of the patterns obtained through the LDA forward model (Figure 3-1 A).  

Figure 4-B (left) displays the results from the congruency comparison for 

auditory trials, with congruent and incongruent trials shown separately. This 

revealed stronger MI between the EEG signal and stimulus for congruent 

compared to incongruent trials, emerging early in the trial. The scalp 

topographies show that the highest MI for both congruent and incongruent 

trials occurred over left posterior and right temporal electrodes (Figure 4-B, 

topographical inserts, top row, MI averaged over a 30 ms time window 

centred on peak). Comparing MI values between congruent and incongruent 

auditory trials revealed three significant spatio-temporal clusters: one 

emerging from 65 ms to 145 ms over frontal electrodes (cluster randomisation 

test, cluster 1: t(18) = 160.1086, p =0.004, effect size = 0.4176), one 

emerging 65 ms to 195 ms over left posterior electrodes (cluster 

randomisation test, cluster 2: t(18) = 180.649, p = 0.004, effect size = 0.4389), 

and one from 230 ms to 275 ms over right temporal electrodes (cluster 

randomisation test, cluster 3: t(18) = -131.843, p < 0.001, effect = 0.4751). To 

avoid artifactual effects in the scalp topographies occurring a result of 

averaging over these long significant cluster time windows, we reduced the 

window length of the significant clusters to a 30 ms time window centred on 

each MI cluster (cluster 1 centre, 105ms; cluster 2 centre, 130ms; cluster 3 

centre, 250ms). Figure 4-B (topographical inserts, bottom row) displays the 

early differences found over frontal (bottom left), temporal (bottom middle), 

and posterior (bottom right) electrodes for each shorter spatio-temporal 

cluster (Figure 4 B, topographical inserts, bottom row).  
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Figure 4 | EEG Mutual Information Analysis. (A) Group level mutual information (MI) 

between EEG and stimulus type (auditory: high vs. low tone, visual: small vs. large circle) 

averaged over electrodes. Auditory MI shown in blue, visual MI shown in orange. Dotted lines 

show time windows where the MI for each condition was significant (blue dotted line = 

auditory significance, orange dotted line = visual significance). Scalp topographies (right) 

show the MI at peak time points for auditory (top row) and visual (bottom row) separately. (B) 

Congruency difference between congruent and incongruent auditory MI (averaged over 

electrodes). Significant time points where there was a difference between congruent and 

incongruent MI represented with black circles (p<0.05, cluster randomisation test). Scalp 

topography (B, top row) shows MI underlying congruent (left) and incongruent (right) auditory 

trials underlying peak MI (averaged over 30ms around centre of peak MI difference). Scalp 

topography (B, bottom row) shows the MI difference (Congruent – Incongruent) for the three 

clusters where there was a significant congruency effect (again, topographies are activity 

averaged over 30ms around centre of each significant cluster). (C) Same as in (B), but for 

visual trials. (D) Regression weights (beta values) generated from regressing EEG activity 

against reaction time for the three clusters of interest for auditory (left) and visual (right) trials. 

Grey circles represent individual subject beta weights, and asterisks represent clusters where 

EEG activity significantly predicted reaction time. Again, in all panels grey background 

represents the time of stimulus presentation (0 ms to 300 ms). 

 

 
 

Figure 4 C (left) displays the results from the congruency comparison for 

visual trials, with congruent and incongruent trials shown separately. Again, 

this revealed stronger MI between the EEG signal and stimulus for congruent 

compared to incongruent visual trials. The scalp topographies indicated that 

MI between the EEG signal and stimulus type was strongest over left 

posterior electrodes and frontal electrodes (Figure 4 C, topographical inserts, 

top row, MI averaged over a 30ms time window centred on peak). In contrast 

to the auditory modality, comparing congruent and incongruent visual MI 

revealed significant differences at two spatio-temporal clusters later in the 

trial: one from 220 to 365ms (cluster randomisation test, cluster 1: t(18) = 

250.67, p <0.001, effect = 0.4848) over frontal and right temporal electrodes, 

and one from 385 to 445ms (cluster randomisation test, cluster 2: t(18) = -

99.309, p <0.001, effect = 0.4309) over temporal electrodes. Again, the time 

window for displaying each spatio-temporal cluster was reduced to a 30 ms 

time window centred on each cluster which showed significant differences 

based on congruency (cluster 1 centre, 290ms; cluster 2 centre, 415ms). 

Figure 4-C (topographical inserts, bottom row) displays the differences found 

over frontal (bottom left) and temporal (bottom right) electrodes for each 

shorter spatio-temporal cluster.  

Finally, Figure 4-D displays the results of the regression analysis between the 

EEG activity underlying the significant clusters and single-trial reaction times 

for auditory (left) and visual (right) separately. As a reminder, to calculate the 
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regression weights we averaged the EEG activity over all significant 

electrodes (shown in Figure 4-B and 4-C, white circles) and over the shorter, 

30ms windows centred over the cluster peaks (defined above) and regressed 

the activity in each cluster against behavioural reaction times. For auditory 

trials, this regression analysis demonstrated that the EEG in both the early 

frontal and later temporal cluster was predictive of reaction times (cluster 1: 

90 ms to 120 ms, t(18) = -4.3073, p = 0.00042, effect size = -0.988; cluster 3: 

235 ms to 265 ms, t(18) = -2.2979, p = 0.0338, effect size = -0.5272 for frontal 

and temporal respectively). However, auditory activity in the posterior cluster 

was not significantly predictive of reaction times (cluster 2: 115 ms to 145 ms, 

t(18), = 1.349, p = 0.194, d = 0.309). For the visual trials, the EEG activity in 

both the frontal and temporal clusters was not significantly predictive of visual 

trial reaction times.  

To summarise, the MI analysis results indicated that the encoding of acoustic 

information was affected by congruency early in the trial, and activity over 

frontal and temporal electrodes was significantly predictive of reaction times at 

these early latencies.  In contrast, the encoding of visual information was 

affected by congruency only later in the trial over frontal and temporal 

electrodes, and this activity was not significantly predictive of reaction times.  

Consistency of Results 

Both EEG analyses revealed that the EEG signal contained information about 

stimulus type during stimulus presentation, with the highest information 

emerging over posterior and temporal regions for auditory trials, and over 

posterior regions for visual trials (see Figure 3-1 A and Figure 4 A). In both 

analyses, effects of stimulus congruency emerged early in the trial for auditory 

(Figure 3-1 B and Figure 4 B), and the strongest differences appeared over 

posterior, temporal and frontal regions. In both analyses, effects of stimulus 

congruency for visual trials emerged later in the trial with the strongest 

differences over frontal and temporal regions (Figure 3-1 C and Figure 4 C). 

Finally, both analyses demonstrated that neural activity was predictive of 

behavioural reaction time during stimulus presentation for auditory trials, and 

that neural activity underlying visual trials was not predictive of behavioural 

reaction time (see Figure 3-1 D, Figure 4 D). Overall, these similar findings 

across methods are encouraging, and demonstrate that our results are robust. 

While both methods detect representation of the two stimuli in both modalities 

with effects well above the threshold for statistical significance, we note that 

mutual information seems more sensitive to differences in the strength of the 

effect between congruence conditions, with larger proportional differences in 

effect size and larger significant clusters. This suggests the particular 

properties of the mutual information effect size scale might be well suited to 
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this sort of between condition comparison that are common in neuroimaging 

(Kayser et al., 2015; Park et al., 2015; Keitel et al., 2017). 

 

Discussion 

In this experiment we examined the neural mechanisms underlying an 

auditory pitch-visual size cross-modal association. Overall, participants 

responded faster on auditory congruent than incongruent trials. The EEG data 

showed that stimulus information could be extracted from EEG activity during 

stimulus presentation for both auditory and visual trials, and that effects 

related to stimulus type were strongest over posterior and temporal regions 

respectively. Auditory neural correlates were modulated by congruency early 

in the trial (<100 ms), and these differences emerged from frontal, posterior 

and temporal regions. Visual neural correlates were modulated by congruency 

later in the trial (>250ms) over frontal and temporal areas. Finally, auditory 

activity underlying a congruency modulated representation of the auditory 

stimulus in frontal and temporal regions was also significantly predictive of 

single trial auditory reaction times, indicating that these activations reflect a 

neural correlate of the underlying perceptual association. In contrast, activity 

underlying a congruency modulated visual stimulus representation was not 

significantly predictive of visual reaction times. Importantly, these results were 

consistent across two separate analysis methods, showing our results are 

robust.  

Effect of Cross-modal Congruency on Behaviour 

The behavioural results showed that participants had faster reaction times for 

auditory congruent stimulus-response assignments than incongruent ones. 

This provides further evidence supporting the existence of an acoustic pitch – 

visual size association, which has been reported in various experimental 

paradigms before (Bien, ten Oever, Goebel, & Sack, 2012; Evans & 

Treisman, 2010; Gallace & Spence, 2006; Marks, Ben-Artzi, & Lakatos, 2003; 

Parise & Spence, 2008; Parise & Spence, 2009; Parise & Spence, 2012). 

More importantly, our results demonstrate that a cross-modal association 

between pitch and size can occur even when only a single stimulus is 

presented on a trial. This finding replicates the work using the IAT carried out 

by Parise & Spence (2012). Furthermore, as the IAT presents only one 

stimulus per a trial, it rules out the possibility that our effects are due to 

general multisensory benefits (i.e. due to spatial and temporal congruency), or 

to attentional differences caused by dividing attention between two stimuli.  
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Early Neural Correlates of Pitch-Size Association 

Our results revealed that auditory neural signals were modulated by the 

congruency of sensory information early during the trial (<100 ms after 

stimulus onset), while visual trials were modulated later (>220ms). The early 

onset of these results suggests that these cross-modal auditory associations 

arise at an early stage, suggesting they are possibly perceptual in origin 

rather than exclusively decision related. Supporting this interpretation, a 

recent study by Mostert, Kok, & de Lange, (2015) used MEG, two tasks (one 

sensory, one sensory and decision making), and a dual decoding approach to 

demonstrate that sensory related processes emerged in occipital areas from 

130 ms, whereas decisional related processes emerged later, around 250 ms. 

These timings are broadly consistent with our work, with both auditory and 

visual modulations occurring earlier than 220ms after stimulus onset.  

The timing of our results are also broadly in line with previous neuroimaging 

studies. For example Kovic et al., (2010) found neural signals were modulated 

around 140 ms to 180 ms by congruency (sound-symbolic association), while 

Bien et al., (2011) found effects emerging at 250 ms. The short latency onset 

of these effects occurring in response to the presentation of two associated 

arbitrary stimulus properties led both sets of authors to conclude that these 

associations arise in the early stages of the multisensory integration process, 

in line with past work that has shown multisensory interactions occurring in 

neural signals at very short latencies after stimulus onset (Giard & Peronnet, 

1999; Molholm et al., 2002; Sperdin et al., 2009). However, in our study the 

early modulations we observe cannot be due to multisensory integration, as 

on each trial only a single stimulus was presented. We suggest that the 

congruency effects we observed may be due to some form of top-down 

perceptual feedback influencing signals in the different modalities at an early 

stage during the perceptual process.  

Alternatively, it could relate to some existing underlying mapping of the 

perceptual priors of a pitch-size association, which automatically influences 

early sensory processing. The acoustic pitch – visual size association 

considered here is strongly reflected in the statistics of the natural world, due 

to the physics of acoustic resonance (where larger objects resonate at lower 

frequencies than smaller ones). Given that such cross-modal associations 

reflect a naturally occurring link between stimuli (Parise et al., 2014), this 

could lead to a strong Bayesian prior on this relationship (Kersten et al., 2004; 

Knill and Pouget, 2004; de-Wit et al., 2010; Huang and Rao, 2011). Therefore, 

one interpretation is that the early sensory effects we observe could be 

related to influences of such priors in the framework of predictive coding. For 

example, if caused by top-down signals to early sensory areas, this feedback 

might embed the environmental prior. If caused by existing underlying 
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mapping in early sensory areas, this suggests that long term environmental 

priors maybe implemented directly in early sensory areas. Important to note, 

this particular association may be more intrinsic, innate, and based on real 

world acoustic properties than other cross-modal associations are (Asano et 

al., 2015). Consequently, the effects of this particular association as 

measured by an implicit task may arise earlier in neural signals, than would 

effects of a semantic association measured via an indirect task.  

Finally, we observed that early (<100 ms) neural correlates of auditory 

congruency were predictive of behavioural reaction times, while visual 

correlates emerged later (>200ms) and were not. Given that we also find an 

effect of congruency on behaviour for auditory trials, but not for visual trials, 

this suggests that the auditory modulations are more behaviourally relevant 

than the visual. The early auditory modulations could therefore represent the 

updating of audio-visual congruency, whereas the visual modulations could 

represent a stable decisional related correlate based on visual congruency. 

Alternatively, the modulations in auditory signals could represent a very early 

decision stage, which specifically relates to the mapping between stimulus 

and response key and arises from the early encoding of congruency during 

stimulus presentation. In the current paradigm, it is difficult to conclusively 

prove whether the early auditory modulations arise relate to perceptual 

process or a decision-making. However, the early onset of the effect (<100 

ms after stimulus onset), leads us to speculate that these modulations are 

potentially perceptual in origin.  

Finally, it is important to note that the divergent results between auditory and 

visual stimuli is almost certainly due to the experimental design whereby the 

auditory congruency is manipulated while visual congruency is held constant. 

The results presented here do not mean that cross-modal associations follow 

different rules in the auditory and visual modalities. Rather, they show how 

congruency is affected in auditory signals and it can allow us to hypothesise 

that if the design were reversed (i.e. visual congruency is manipulated and 

auditory held constant), we would find early modulations in visual signals.  

Spatial Distribution of Early Cross-Modal Effects 

Both the LDA and MI analysis revealed that congruency differences emerged 

over frontal, temporal and posterior areas for auditory trials, and frontal and 

temporal electrodes for visual trials. These findings are consistent with other 

studies investigating how neural activity is modulated during cross-modal 

associations: Bien et al., (2012) found modulations in ERPs over frontal 

regions, and using fMRI Sadaghiani, Maier, & Noppeney, (2009) 
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demonstrated that higher-level speech-motion cross-modal associations 

emerged in fronto-parietal areas.  

Interestingly, modulations in parietal activity are the most common finding in 

previous studies examining the neural underpinnings of cross-modal 

associations. Bien et al., (2012) found that parietal ERPs (200 ms - 300 ms) 

were modulated by congruency, and that TMS applied over parietal cortex 

reduced the amplitude difference between congruent and incongruent trials, 

and the behavioural congruency effect. Similarly, Kovic, Plunkett, & 

Westermann, (2010) found early ERP modulations over parietal sites, and 

Sadaghiani, Maier, & Noppeney, (2009) found an interaction in fronto-parietal 

areas in response to audio-visual motion stimuli. In our experiment, we found 

that parietal activity was not predictive of behaviour or modulated by 

congruency, and so our findings are at odds with these previous results. Yet 

the findings of these previous studies are confounded with the issue of 

multisensory integration and attention (as described in the introduction), and 

so parietal activity observed in these previous studies may be reflecting 

multisensory processing or attention, rather than reflecting a pure cross-modal 

association. As a result, the effects of parietal TMS on cross-modal effects in 

the Bien study might simply disrupt multisensory integration processes rather 

than specific cross-modal association processes, and the parietal activation 

seen in the Kovic et al., (2010) and Sadaghiani, Maier and Noppeney (2009) 

study may reflect audio-visual processing or divided attention. In contrast, in 

our experiment we presented only a single stimulus on each trial, thus ruling 

out effects of multisensory integration or divided attention. We propose that 

this suggests the parietal component represents effects due to multisensory 

integration or attention, and that the effects we describe here may provide a 

more accurate picture behaviourally relevant effects of cross-modal 

associations on early sensory processing in the brain.  
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