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Abstract

Despite considerable studies on the adaptation of plant pathogens to
qualitative resistance, few theoretical studies have investigated whether
and how fast quantitative resistance can select for increased pathogen ag-
gressiveness. In this paper, we formulate an integro-differential model with
nonlocal mutation terms to describe the evolutionary epidemiology of fun-
gal plant pathogens in heterogeneous agricultural environments. Parasites
reproduce clonally and each strain is characterized by several phenotypic
traits corresponding to the basic infection steps (infection efficiency, la-
tent period, sporulation rate depending on the age of infection). We first
derive a general expression of the basic reproduction number R0 for fun-
gal pathogens in heterogeneous environments, typically several cultivars
cultivated in the same field (cultivar mixtures) or in different fields land-
scape (mosaics). Next, by characterizing the evolutionary endpoints of the
coupled epidemiological evolutionary dynamics, we investigate how host
heterogeneity and the effect of resistance on the pathogen traits impact
the evolutionary dynamics of the pathogen population both at equilibrium
and during transient epidemiological dynamics. We then show that the
environmental feedback loop is one-dimensional and that the model ad-
mits an optimization principle relying on an R0 maximization approach.
We then highlight how one may take advantage of evolutionary dynamics
leading to neutral coexistence to increase the durability of quantitative
resistance, in particular for resistance genes targeting infection efficiency.
Our analyses can guide experimentations by providing testable hypotheses
and help plant breeders to design breeding programs.
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1 Introduction

Resistance to parasites, i.e. the capacity of a host to decrease its parasite
development (Raberg et al., 2009; Restif & Koella , 2004), is a widespread
defense mechanism in plants. Two types of resistance have been historically
distinguished according to their phenotype: qualitative and quantitative resis-
tances. Qualitative resistance usually confers disease immunity in such a way
that parasites exhibit a discrete categorical distribution of their disease phe-
notype (“cause disease” versus “do not cause disease”) (McDonald & Linde,
2002; St. Clair, 2010). By contrast, quantitative resistance leads to a reduction
in disease severity (Poland et al., 2009; St. Clair, 2010): parasites exhibit a
continuous distribution of their disease phenotype (McDonald & Linde, 2002;
St. Clair, 2010). Under quantitative resistance, all pathogen genotypes cause
infection and reproduce, but they differ by their quantitative pathogenicity (i.e.
aggressiveness) (Lannou, 2012; Zhan et al., 2015). The inheritance of quanti-
tative resistance most often relies on several genes, each contributing a small
proportion of the resistance level (Pariaud et al., 2009; Poland et al., 2009; Lan-
nou, 2012; Niks et al., 2015). Among plant pathogens, fungal pathogens (sensu
lato, i.e. including Oomycetes) are responsible for nearly one third of emerging
plant diseases (Anderson et al. (2004)). Their pathogenicity is often estimated
in laboratory experiments through a small number of quantitative pathogenicity
traits (Pariaud et al., 2009; Lannou, 2012) expressed during the basic steps of
the host-pathogen interaction: (i) infection efficiency (probability that a spore
deposited on a receptive host surface produces a lesion), (ii) latent period (time
interval between infection and the onset of sporulation), (iii) sporulation rate
(amount of spores produced per lesion and per unit time) and (iv) infectious
period (time from the beginning to the end of sporulation). Quantitative resis-
tance genes alter the expression of these pathogen life-cycle traits, sometimes
through pleiotropic effects (i.e. effects on more than one trait (Parlevliet, 1986;
Richardson et al., 2006).

Plant resistance is often considered the most favorable method to manage
plant diseases in agro-ecosystems for environmental, economic and social reasons
(Mundt, 2014). Until now, plant breeders have mostly used qualitative resis-
tances. Unfortunately this strategy leads frequently, and often rapidly, to resis-
tance “breakdowns” caused by pathogen evolution (McDonald & Linde, 2002;
Mundt, 2014; Zhan et al., 2015). The most important argument for shifting from
qualitative to quantitative resistances in cultivar breeding program is their sup-
posed higher durability, resulting from their more complex genetic determinism
(Niks et al., 2015; Pilet-Nayel et al., 2017). Nevertheless, both experimental
evolution studies and field studies suggested that fungi and viruses adapt to
quantitative resistance (see Pilet-Nayel et al. (2017) for a review). The result-
ing gradual “erosion” of the efficiency of quantitative resistance (McDonald &
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Linde, 2002) corresponds to a gradual increase in quantitative pathogenicity.
The polygenic inheritance of quantitative resistance suggests that multiple ge-
netic changes will small effects are involved in the pathogen population. Without
detailed knowledge of these genetic changes, fungi adaptation can be tracked in
phenotype-fitness landscapes as proposed in Fisher’s geometrical model (Fisher
, 1930; Orr, 2005). The phenotype is represented by n pathogenicity traits
and correlations between traits, observed for plant fungi (Pariaud et al., 2009),
can be taken into account (Martin & Lenormand, 2006). Mutations, produced
by the successive asexual cycles occurring during the cropping season, randomly
displace phenotypes in this n-dimensional space. They facilitate host local adap-
tation as they correspond, on a focal host, to as many cycles of selection for
local adaptation without recombination breaking down locally advantageous al-
lelic combinations (Giraud et al., 2010).

Few theoretical studies have investigated whether and how fast quantitative
resistance can select for increased pathogen aggressiveness in the field (Mundt,
2014). Predicting the dynamics of the erosion of quantitative resistances re-
quires models coupling epidemiological and evolutionary dynamics in hetero-
geneous environment. Such models can be used to address the fundamental
short- and long-term objectives of sustainable management of plant diseases
(Zhan et al., 2015): the short-term goal focuses on the reduction of disease in-
cidence (epidemiology), whereas the longer-term objective is to reduce the rate
of evolution of new pathotypes. In practice, this requires predictions on the
transient evolutionary dynamics of pathogens, which can be formalised using
the evolutionary epidemiology framework (Day & Proulx, 2004; Day & Gan-
don, 2006). Essentially inspired by quantitative genetics, it accounts for the
interplay between epidemiological and evolutionary dynamics on the same time
scale. It can be used to monitor the simultaneous dynamics of epidemics and
dynamics of evolution of any set of pathogen life-history trait of interest. As
far as we know, few studies (Iacono et al., 2012; Papäıx et al., 2018; Rimbaud
et al., 2018) applied the evolutionary epidemiology framework to study quan-
titative resistance erosion in agroecosystems. They showed that quantitative
resistance that reduces the infection efficiency gives a greater yield benefit than
quantitative resistance that reduces the sporulation rate. Moreover the evo-
lutionary epidemiology framework can handle heterogeneous host populations
resulting, for example, from differences in their genetic composition (Gandon &
Day, 2007). Field mixtures, where several cultivars are cultivated in the same
field, and landscapes mosaics, with cultivars cultivated in different fields, are a
typical example. Host heterogeneity impacts parasite adaptive diversification
and strain coexistence through complex spatial and temporal patterns of disrup-
tive selection (Gandon , 2004; Barrett et al., 2008; Metcalf et al., 2015; David
al., 2017).

In this article, we follow this approach and study the evolutionary epidemiol-
ogy of spore-producing pathogens in heterogeneous agricultural environments.
In contrast with previous studies, we use an integro-differential model where
the pathogen traits are represented as a vector of continuous traits, much like
classically assumed in Fisher’s geometrical model. This model extends previous
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results of Djidjou-Demasse et al. (2017) to heterogeneous host populations where
cultivars with quantitative resistances altering different pathogenicity traits are
deployed. First, we investigate how heterogeneous environments differentially
impact the pathogen population structure at equilibrium. This question is ad-
dressed by characterizing the evolutionary endpoints of the coupled epidemio-
logical evolutionary dynamics. A particular emphasis will be put here on the
differences between the cornerstone concepts of R0 in epidemiology (Diekmann
et al., 1990; Van den Driessche & Watmough, 2008) and invasion fitness in
evolution. Secondly we investigate how heterogeneous environments differen-
tially impact the transient behavior of the coupled epidemiological evolutionary
dynamics.

State variables

nc ∈ N∗ Number of host classes.
x ∈ RN ”Label” on the pathogen strain.
Sk(t) Density of healthy tissue of host k at time t.

ik(t, a, x) Density of infected tissue of host k at time t,
which is infected since time a by pathogen strain x.

A(t, x) Density of pathogen spores with strain x at time t.

Model parameters

Parameters Description Unit

Λ Influx of new healthy host tissue HTD · Tu−1

θ Death rate of host tissue Tu−1

δ Rate at which spore becomes unviable Tu−1

dk(a, x) Disease induced mortality of class k host tissue,
infected by the pathogen strain x with age of infection a Tu−1

βk(x) Infection efficiency of the pathogen strain x on host k SD−1 · Tu−1

pk(x) Sporulation rate of the pathogen strain x on host k SD · HTD−1 · Tu−1

τk(x) Latent period of the pathogen strain x on host k Tu
lk(x) Infectious period of the pathogen strain x on host k Tu
ϕk Proportion of host class k at the disease free equilibrium unitless
ε Distance beyond which non-local mutations become ”negligible” unitless

mε(x− y) Mutation probability from pathogen strain x to y unitless

Tu= time unit; SD= spores density; HTD=host tissue density

Table 1: Description of the state variables and parameters of the model.

2 A structured model of epidemiological and evo-
lutionary dynamics

2.1 Host and pathogen populations

We consider an heterogeneous host population with nc ∈ N∗ host classes infected
by a polymorphic spore-producing pathogen population. Here, host heterogene-
ity may refer to different host classes, but also to different host developmental
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stages, sexes, or habitats. The host population is further subdivided into two
compartments: susceptible or healthy host tissue (S) and infectious tissue (I).
In keeping with the biology of fungal pathogens, we do not track individual
plants, but rather leaf area densities (leaf surface area per m2). The leaf surface
is viewed as a set of individual patches corresponding to a restricted host surface
area that can be colonized by a single pathogen individual. Thus only indirect
competition between pathogens strains for a shared resource is considered.

The parasite is assumed to reproduce clonally and to produce spores. Spores
produced by all infectious tissues are assumed to mix uniformly in the air and
then land on any host class according to the law of mass action, that is the
probability of contact between a spore and host k is proportional to the total
susceptible leaf surface area of this host. In the model, the density of airborne
spores is denoted by A. Each strain of the pathogen population is further char-
acterised by four phenotypic pathogenicity traits, corresponding to the 4 basic
steps of the disease infection cycle : (i) infection efficiency (probability that a
spore deposited on a receptive host surface produces a lesion), (ii) latent period
(time interval between infection and the onset of sporulation), (iii) sporulation
rate (number of spores produced per lesion and per unit time) and (iv) infec-
tious period (time from the beginning to the end of sporulation). The model
also takes into account mutations. Mutations are modeled with a multivariate
distribution m representing the random displacement in the phenotypic space
at each generation.

2.2 Model

We introduce a set of integro-differential equations modeling the epidemiological
and the evolutionary dynamics of spore-producing pathogens in a heterogeneous
host population. Table 1 lists the state variables and parameters of the model.
A key feature of our model is that we explicitly track both the age of infection
in infected hosts and the pathogen strain. This leads to the following non-local
age-structured system of equations posed for time t > 0, age since infection
a > 0 and phenotypic value x ∈ RN , for some integer N ≥ 1 (the dimension of
the pathogen phenotypic space),

∂tSk(t) = ϕkΛ− θSk(t)− Sk(t)

∫
RN

βk(y)A(t, y)dy,

(∂t + ∂a) ik(t, a, x) = − (θ + dk(a, x)) ik(t, a, x),

ik(t, 0, x) = βk(x)Sk(t)A(t, x),

∂tA(t, x) = −δA(t, x) +

nc∑
l=1

∫
RN

∫ ∞
0

mε(x− y)rl(a, y)il(t, a, y)dady.

(2.1)
Model (2.1) considers nc host classes. Sk(t) is the density of healthy tissue in
class k at time t, ik(t, a, x) the density of tissue in class k that was infected at
time t−a by a pathogen with phenotypic value x, and A(t, x) denotes the density
of spores with phenotypic value x at time t. Without disease, susceptible hosts
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are produced at rate Λ > 0 and die at rate θ > 0, regardless of their class. ϕk
is the proportion of the host class k at the disease free equilibrium. In presence
of the disease, susceptible hosts can become infected by airbone spores. The
total force of infection on a host in class k is hk(t) =

∫
βk(y)A(t, y)dy. Infected

hosts die at rate θ + dk(a, x) where dk(a, x) is the disease-induced mortality of
infected tissue with age of infection a. Airborne spores produced by infected
hosts become unviable at rate δ > 0. Hosts infected by strain y produce airborne
spores with phenotype x at a rate mε(x − y)rk(a, y), where mε(x − y) is the
probability of mutation from phenotype y to phenotype x and rk(a, y) is the
sporulation function, which depends on host class, age of infection and the
phenotype of the parasite.

The age-specific sporulation function rk = rk(a, x) can take several forms
(Figure 1 A) Segarra et al. (2001). For instance, a block function assumes that
during the infectious period, a lesion produces a constant number of spores per
unit of time:

rk(a, x) =

{
pk(x) if τk(x) ≤ a ≤ τk(x) + lk(x),
0 otherwise,

(2.2)

where pk, τk and lk denote the strain-specific sporulation rate, latent period and
infectious period in the k-class respectively. Alternatively, a gamma distribution
with parameters λ > 0 and n > 0 can be used:

rk(a, x) =

{
pk(x)lk(x)λ

n(a−τk(x))n−1 exp[−λ(a−τk(x))]
Γ(n) if a ≥ τk(x),

0 otherwise.
(2.3)

The kernel mε represents the effects of mutations that randomly displace
phenotypes at each generation. To fix ideas, a multivariate Gaussian distribu-
tion m = N(0,Σ) leads to mε(x − y) = 1

εN
m
(
x−y
ε

)
. The covariance terms of

Σ allow to take into account trade-offs between the pathogen life-history traits
both within- and between host-classes. They emerge from the mutation process
(Gandon , 2004). The mutation kernel m is not restricted to Gaussian distri-
butions, provided it satisfies some properties such as positivity and symmetry
(Appendix B). Finally, note that the formulation of model (2.1) encompasses
several models of the literature (Appendix C).

3 Basic reproduction number in disease-free and
infected environment

3.1 Basic reproduction number

The basic reproduction number (usually denoted R0) is defined as the total
number of infections arising from one newly infected individual introduced into a
healthy (disease-free) host population (Diekmann et al., 1990; Anderson, 1991).
The disease free equilibrium density of susceptible hosts in class k is S0

k = ϕkΛ/θ.
A pathogen with phenotype x will spread if his basic reproduction number in
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Figure 1: A Possible shapes of sporulation curves. Amount of spores produced,
rk(a, x), by an infected tissue which is infected since time a. For the gamma
shape (equation (2.3)), the parameters are the latent period (τk = 4), the sporu-
lation rate (pk = 8), the infectious period (lk = 10), n = 8 and λ = 0.8. For the
block-function shape (equation (2.2)), the parameters τk and lk are the same
as for the gamma distribution. The sporulation rate pk ≈ 1.997 was chosen
such that the area under both curves are the same. B An adaptive landscape
with two local fitness peaks in a dual host environment. The fitness func-
tion Ψ of the pathogen population is described by a Gaussian mixture model:
Ψ = (1−ϕ)G(µS , σS) +ϕG(µR, σR), wherein G(µk, σk) states for the Gaussian
function with expected value µk and variance σ2

k. For the k-host class, µk is the
optimal phenotypic value while 1/σ2

k is its selectivity. ϕ, the proportion of R
host in the environment, is the mixture parameter.
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the environment composed with nc host classes is such that R0(x) > 1, and
where

R0(x) =

nc∑
k=1

Rk0(x), (3.4)

wherein Rk0(x) is the basic reproduction number of a pathogen with phenotype
x in the k-host environment defined by Rk0(x) = Λ

θ ϕkΨk(x), and Ψk(x) is given
by

Ψk(x) =
1

δ
βk(x)

∫ ∞
0

rk(a, x) exp

(
−θa−

∫ a

0

dk(σ, x)dσ

)
da, (3.5)

for all k ∈ {1, . . . , nc}. The function Ψk(x) has an immediate interpretation as
the total effective number of spores with phenotype x landing on host class k
and triggering an infection (see Appendix D for details on calculations).

If dk doesn’t depend on the age of infection, Ψk can be simplified. In par-
ticular, with a block function sporulation curve rk, we obtained

Ψk(x) =
1

δ
· 1

θ + dk(x)
· βk(x) · pk(x) · e−(θ+dk(x))τk(x) ·

[
1− e−(θ+dk(x))lk(x)

]
,

(3.6)

With a gamma shape sporulation curve rk, we obtained

Ψk(x) =
1

δ
· lk(x)

[1 + (θ + dk(x)) /λ]
n · βk(x) · pk(x) · e−(θ+dk(x))τk(x). (3.7)

Terms in equation Ψk(x) represent (i) the life time of an offspring, 1/δ,
(ii) the infection duration, 1/ (θ + dk(x)) or lk(x)/ [1 + (θ + dk(x)) /λ]

n
, (iii)

the probability that an infected host dies before infection ends (as opposed to
recovering), (1−e−(θ+dk(x))lk(x)) and (iv) the probability for an infected host to
survive the latent period, e−(θ+dk(x))τ(x). If furthermore rk is independent of a,
we recover the classical expression of R0 for SIR models (see e.g. Day (2002))

R0(x) =
Λ

θ

nc∑
k=1

ϕk
βk(x)rk(x)

δ(θ + dk(x))
. (3.8)

3.2 Lifetime reproduction success and its proxy

R0 applies to study the spread of a pathogen strain x in an uninfected host
population. To study the spread of a new mutant strain in a host popula-
tion already infected by a resident strain x, we can use the adaptive dynamics
methodology to calculate the invasion fitness (Dieckmann, 2002; Diekmann et
al., 2005; Geritz et al., 1997; Metz et al., 1996). Here, we work in generation
time and use the lifetime reproductive success of a rare mutant as a fitness
proxy. Once the pathogen spreads, let us assume that the population reaches
a monomorphic endemic equilibrium denoted by Ex = (Sxk , i

x
k(·), Ax)k=1,···nc

,
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for some trait x. Note that Ex is the environmental feedback of the resident x.
Calculations are detailed in Appendix D along with the expression of Sxk , ixk(·)
and Ax. A rare mutant with phenotype y will invade the resident population
infected by the strain x if R(x, y) > 1, where

R(x, y) =

nc∑
k=1

SxkΨk(y). (3.9)

Expressions for R(x, y) and R0(x) have a strong analogy. Both expressions
are basic reproduction ratios that measure the weighted contribution of the
pathogen to the subsequent generations, but while R0(x) is calculated in the
disease-free environment E0 =

(
S0

1 , . . . , S
0
nc
, 0, . . . , 0

)
, R(x, y) is calculated in

the environment set by the resident strain Ex. Note that the equation defining
the endemic equilibrium ((D.7) in Appendix D) is simply the resident equilib-
rium condition R(x, x) = 1.
R(x, y) takes the form of a sum of the mutant pathogen’s reproductive suc-

cess in each host class. In a two-class model, Gandon (2004) showed that this
is not generally true, unless between-class transmission can be written as the
product of host susceptibility times pathogen transmissibility. This is equiva-
lent to the more general statement that pathogen propagules all pass through
a common pool, as in our model in the compartment A(.) (see Rueffler & Metz
(2013) for a general treatment).

3.3 R0 maximization and the optimization principle

When infection efficiencies do not differ between host classes (i.e. βk(x) = β(x)

∀ k), the fitness proxyR(x, y) can be written asR(x, y) = Λ
θ+β(x)Ax Ψ(y) = Ψ(y)

Ψ(x) ,

where

Ψ(x) =

nc∑
k=1

ϕkΨk(x). (3.10)

The equality R(x, y) = Ψ(y)/Ψ(x) is obtained from the equation (D.7) in Ap-
pendix D defining the endemic equilibrium. It follows that a rare mutant will
invade the population if Ψ(y) > Ψ(x) or R0(y) > R0(x), which simply means
that pathogen evolution leads to R0 maximisation. In this case, we can use R0

or Ψ as a measure of absolute fitness. However this is not a general property
of host-pathogen systems (see e.g. Lion & Metz (2018) for a more general dis-
cussion). In particular, when infection efficiencies differ between host classes, R
rather than R0 or Ψ must be used as the fitness proxy (Appendix E).

4 Effect of life-cycle components on the evolu-
tionary dynamics

In this section, drawing on an agricultural example, we firstly characterize the
evolutionary endpoints of the coupled epidemiological and evolutionary dynam-
ics described by model (2.1) using the shape of the fitness function Ψ. Then we
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study how the population reaches this equilibrium state through a mutation-
selection process and highlight how these transient dynamics inform manage-
ment strategies.

4.1 Case-study : deployment of a plant resistant cultivar

We consider a monomorphic plant pathogen population resulting from the mono-
culture of a single plant cultivar, called susceptible (S), during a long-time. A
new cultivar bearing a quantitative resistance gene, called resistant (R), is in-
troduced at t = 0 in a proportion ϕ of the environment.

We assume that the quantitative resistance gene alters a single pathogenic-
ity trait, characterized in both cultivars, by normally distributed values. This
leads to Gaussian fitness functions Ψk ↪→ G(µk, σ

2
k) where µk is the optimal

phenotypic value on the host k and 1/σ2
k is the host selectivity (Papäıx et al.,

2013). With two host classes, Ψ = (1−ϕ)ΨS +ϕΨR is a Gaussian mixture with
5 parameters (Figure 1). We assume that the R cultivar is less selective than the
S cultivar (σS ≤ σR). The trade-off ρS,R = |µS −µR|/(

√
2(σ2

S + σ2
R)) measures

to what extent the adaptation to the R cultivar causes maladaptation to the
S cultivar (Papäıx et al., 2013; Débarre & Gandon, 2010). It is closely linked
to the competitive overlap between S and R hosts (Macarthur & Levins, 1967).
If ρS,R < 1, Ψ has a unique maximum and the trade-off is weak (Behboodian,
1970). If ρS,R > 1, Ψ has two local maxima and the trade-off is strong.

We design simulations to analyze how the choices of (i) the pathogenicity
trait targeted by the R gene, (ii) the level of resistance effectiveness (as measured
by the adaptation trade-off ρS,R) and (iii) the deployment strategy (proportion
ϕ of fields sown with the R cultivar) affect the durability of the R cultivar.
The durability was quantified by Tinf, the time when at least 5% of the leaf
area density of the R cultivar is infected (i.e. time t from which the following
inequality is always satisfied

∫
IR(t, x)dx/

(
SR(t) +

∫
IR(t, x)dx

)
≥ 5%). Tinf

characterize the time of the beginning of erosion of the R cultivar. Additionally,
we assessed Tshift, the time when at least 50% of the pathogen population in-
fecting the R cultivar belongs to adapted strains (i.e. time t from which the fol-
lowing inequality is always satisfied IR(t, µR)/ (IR(t, µS) + IR(t, µR)) ≥ 50%).
Finally,we assessed the epidemiological protection provided by the deployment
of the R cultivar using the relative Healthy Area Duration (HAD) gain. Follow-

ing Iacono et al. (2012), we defined relative HAD =
∫ Tmax
0

(SS+SR)(t)|ϕdt∫ Tmax
0

(SS(t))|ϕ=0dt
.

Parameters used for simulations are given in Table 2. Initially, we set
SS(0) = (1 − ϕ)Λ

θ , SR(0) = ϕΛ
θ , IS(0, x) = G(µS , σS/2)(x) and IR(0, x) = 0.

Simulations were sped up using a simplified model, without age structure and
by assuming that the evolution of the density of airborne spores is a fast process
(i.e. the density of airborne spores reach rapidly an equilibrium, ∂tA(t, x) ≡ 0,
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compared to the host dynamics). It reads

∂tSk(t) = ϕkΛ− θSk(t)− Sk(t)

∫
RN

βk(y)A(t, y)dy,

∂tIk(t, x) = βk(x)Sk(t)A(t, x)− (θ + dk(x)) Ik(t, x),

with

A(t, x) =
1

δ

nc∑
l=1

∫
RN

mε(x− y)pl(y)Il(t, y)dy.

(4.11)

Fixed parameters

ε Distance beyond which non-local mutations become ”negligible” 0.05
mε(x− y) Probability that a pathogen strain x mutates to y G(0, ε)

Λ Influx of new healthy host tissue 35
θ Death rate of host tissue 1
δ Rate at which spore becomes unviable 1

dS(a, x), dR(a, x) Disease induced mortality of S and R cultivars 0
µS The optimal phenotypic value on the S cultivar 0.3

1/σ2
S The selectivity of S cultivar (1/0.06)2

Studied parameters

ϕ Proportion of the R cultivar in the environment 0 to 1 by .01
σS,R Cultivars selectivity ratio (σS/σR) 0.1 to 1 by .02 step
αS,R The distance between µS and µR (|µS − µR|) {0.1, 0.25, 0.3, 0.5 }
µR The optimal phenotypic value on the R cultivar µS + αSR

1/σ2
R The selectivity of R cultivar (σS,R/σS)2

ρS,R Trade-off strength between S and R cultivars αS,R/
√

2(σ2
S + σ2

R)

TSR scenario
βS(x), βR(x) Infection efficiency of the pathogen strain x on S and R cultivars 3 · 10−3

pS(x) Sporulation rate of the pathogen strain x on S cultivar 20 ·G(µS , σS)(x)
pR(x) Sporulation rate of the pathogen strain x on R cultivar 20 ·G(µR, σR)(x)

TIE scenario
βS(x) Infection efficiency of the pathogen strain x on S cultivar 3 · 10−3 ·G(µS , σS)(x)
βR(x) Infection efficiency of the pathogen strain x on R cultivar 3 · 10−3 ·G(µR, σR)(x)

pS(x), pR(x) Sporulation rate of the pathogen strain x on S and R cultivars 20

Table 2: Parameters used for the simulations with two host classes (S and R
cultivars). Two scenarios were considered: the R cultivar can either alter the
Infection Efficiency (TIE) or the Sporulation Rate (TSR).

4.2 Evolutionary dynamics with R genes altering sporu-
lation rate (TSR)

Let us first consider a quantitative R gene altering the sporulation rate of a
fungal pathogen. Three cases corresponding to three shapes of the fitness func-
tion Ψ, differing by the number of modes and their steepness, are considered in
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turn (Figure 2). If at equilibrium the population always becomes monomorphic
around an endpoint characterized by Ψ, its shape impacts the duration of the
transient dynamics

Case 1: The fitness function Ψ is unimodal. For a weak trade-off ρS,R <
1, Ψ has a unique local maximum point at µ∗(µS < µ∗ < µR) which is the unique
evolutionary endpoint (Figure 2 A). It corresponds to a generalist pathogen.
Simulations show a fast transient dynamics concentrating rapidly the pathogen
population around µ∗ (Figure 2 B,C). It corresponds to a fast erosion of the
quantitative R as measured by Tinf (Figure 2 C).

Case 2: The fitness function Ψ is bimodal with a unique global max-
imum. For a strong trade-off ρS,R > 1, Ψ is maximized (globally) by a single
phenotypic value µR, but a local maximum also exists around µS (Figure 2 D).
The R0 maximization principle shows that µR is the evolutionary endpoint.
This phenotype is a specialist of the R cultivar. Here, the pathogen population
lives for a relatively long time at low densities around the initially dominant
phenotypic value µS and then shifts by mutation on µR (Figure 2 E,F). These
dynamics occur simultaneously on the S and R cultivars. The durability of the
R cultivar (as measured by Tinf) can be relatively long if the R cultivar remained
firstly dimly (and decreasingly) infected. Notice that the pathogen phenotypic
shift (as measured by Tshift) (Figure 2 F) just before Tinf. However, other pro-
portion of R cultivar ϕ can lead to much lower durability if they bring closer
the fitness peaks (in the sens Ψ(µS) / Ψ(µR)) as illustrated in Figure 2 G-I.
Notice also that Tshift occurs here much later.

Case 3: The fitness function Ψ is bimodal with two global max-
ima. The two global maxima µS and µR of Ψ are evolutionary attractors
(Figure S1 A). The R0 maximization principle does not permit to character-
ize the evolutionary endpoint. However, we can calculate the effect of muta-
tion on pathogen fitness Ψε (see (E.10)) and then, the sign of the difference
Ψε(µS)−Ψε(µR) allow to go a step further. The S and R cultivars differed by
their selectivities (1/σ2

S > 1/σ2
R, meaning that Ψ′′(µS) < Ψ′′(µR)). It comes

that Ψε(µR) > Ψε(µS) for ε sufficiently small: µR is thus the evolutionary
endpoint. Graphically, it corresponds to the less selective (i.e. flatter) fitness
peak. The pathogen phenotypes indeed concentrate around µR in the long-time
dynamics (Figure S1 B,D) but remained a much longer time than previously
(Figure S1 B,D versus Figure 2 D-I) around the initially dominant phenotype
µS . However this fitness configuration is not robust. The slightest perturbation
of host selectivities easily rules out the predicted transient dynamics.
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ϕ = 0.52, ρS,R = 0.83
Tinf = 1.2, Tshift = NA, R0(µS) = 1.73, R0(µR) = 1.82

ϕ = 0.62, ρS,R = 2.7
Tinf = 131, Tshift = 123, R0(µS) = 1.08, R0(µR) = 1.47

ϕ = 0.56, ρS,R = 2.7
Tinf = 1.5, Tshift = 576, R0(µS) = 1.25, R0(µR) = 1.33

Figure 2: Evolutionary epidemiology dynamics when the resistance impacts the
pathogen sporulation function pk for three configurations of the fitness function
Ψ. A-C The fitness function is unimodal: σS = σR = 0.06; µS = 0.3; µR =
0.4. At t = 0, the pathogen population, essentially concentrated around the
phenotypic value µS , is adapted on the S cultivar. The dynamics of the density
of infected tissue and the phenotypic composition of the pathogen population
in the S and R cultivars are display in B and C, respectively. Panels D-F and
G-I are organized similarly. D-F and G-I The fitness function is bimodal with
a unique global maximum µR (σS = 0.06, σR = 0.072; µS = 0.3; µR = 0.6) but
a local maximum also exists around µS . The value of ϕ in panels G-I (0.56)
implied that µS is more closer to µR compared to panels D-F where ϕ = 0.62.
In panels C,F,I the blue line represents Tinf and the dash-black line Tshit.
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4.3 Evolutionary dynamics with R genes altering infection
efficiency (TIE)

Let us now consider a quantitative R gene altering infection efficiency. Evo-
lutionary endpoints and transient dynamics remain overall unchanged for the
case 1. Substantial differences occurr in cases 2 and 3. In sharp contrast with
the TSR scenario, the pathogen population can be monomorphic or dimorphic
at equilibrium. A dimorphic equilibrium is for example observed in Figure 3
E,F and H,I and Figure S1 C,E. Formally, dimorphism occurs if and only if
there exists two constants aS , aR > 0 defined by system (F.13) (Appendix F).
From an epidemiological point a view, a dimorphism occurs if RR0 (µR) > 1 and
RS0 (µS) > 1 where Rk0(x) is the basic reproduction number of the pathogen
phenotype x in the environment k (defined by (3.4)).

Choosing a R gene targeting infection efficiency protects the R cultivar from
any infection during a long initial period measured by Tinf (Figure 3 F,I). In-
deed, each cultivar is infected by a specific strain. At equilibrium, the pathogen
population is composed by different proportions of the two evolutionary attrac-
tors µS and µR (Figure 3 E,F and H,I and Figure S1 C,E). This is not the case
for a R gene targeting sporulation rate as the R cultivar can then be infected
from the very start of its deployment (Figure 2 F,I and Figure S1 D). Indeed,
the S and R cultivars are simultaneously infected by the same pathogen strain
which phenotype can change with time (Figure 2 D-I). Depending on ϕ, dura-
bility Tinf can be close for the TSR and TIE scenarii (Figures 2 F versus 3 F)
or much higher with the TIE scenarii as soon as ϕ brings fitness peaks closer
(Figures 3 I versus 2 I).

4.4 Strategies for plant resistance management

A deployment strategy is characterized by (1) the choice of the R gene, which
depends on the targeted pathogenicity trait and on the trade-off ρS,R, and (2)
the proportion ϕ of the R cultivar cultivated in the environment. We have just
illustrated that the transient evolutionary dynamics depends on these factors.
Here we extend this analysis by plotting these factors in the plane (ϕ, ρS,R).
Resistance durability differ substantially between the TIE (R genes altering in-
fection efficiency) and TSR (R genes altering sporulation rate) scenarii. A large
plateau of high durability along the secondary diagonal exists with TIE scenario
(Figure 4 A). Its upper boundary (i.e. high ϕ and ρS,R values) is sharply de-
limited by the area where R0(µR) < 1 (Figure 4 C). Its lower boundary (i.e.
low ϕ and ρS,R values) delimits an area of very low durability corresponding
mostly to the fast invasion of a generalist pathogen (R0(µ∗) < 1) (Figure 4 C).
The picture is highly different for R genes altering sporulation rate (TSR sce-
nario) (Figure 4 B). A plateau of high durability exists only in the area where
R0(µS) < 1 and R0(µR) < 1 (Figure 4 D). In this zone, epidemics go extinct
following the deployment of the R cultivar in a large proportion of the envi-
ronment. Elsewhere resistance durability is mirroring the absolute difference
R0(µR)−R0(µS), especially when R0(µR) < 1. The epidemiological protection,
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ϕ = 0.52, ρS,R = 0.83
Tinf = 2.7, Tshift = NA, R0(µS) = 1.73, R0(µR) = 1.82

ϕ = 0.62, ρS,R = 2.7
Tinf = 111, Tshift = 69, R0(µS) = 1.08, R0(µR) = 1.47

ϕ = 0.56, ρS,R = 2.7
Tinf = 170, Tshift = 120, R0(µS) = 1.25, R0(µR) = 1.33

Figure 3: Evolutionary epidemiology dynamics when the resistance impacts the
pathogen infection efficiency βk for three configurations of the fitness function Ψ.
A-C The fitness function is unimodal: σS = σR = 0.06; µS = 0.3; µR = 0.4. At
t = 0, the pathogen population, essentially concentrated around the phenotypic
value µS , is adapted on the S cultivar. The dynamics of the density of infected
tissue and the phenotypic composition of the pathogen population in the S
and R cultivars are display in B and C, respectively. Panels D-F and G-I are
organized similarly. D-F and G-I The fitness function is bimodal with a unique
global maximum µR (σS = 0.06, σR = 0.072; µS = 0.3; µR = 0.6) but a local
maximum also exists around µS . The value of ϕ in panels G-I (0.56) implied
that µS is more closer to µR compared to panels D-F where ϕ = 0.62. In panels
C,F,I the blue line represents Tinf and the dash-black line Tshit.
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estimated by the relative HAD obtained when deploying a R cultivar, is also of
major interest as it is a proxy of crop yield. The relative HAD are quite close for
both scenarii (Figure 4 E,F), mirroring the absolute value of R0(µR)−R0(µS)
(Figure 4 D). However, interestingly, crop yields are always higher, in average
of 13%, with R gene targeting infection efficiency. Over the 7826 simulations
performed for each scenario, the ratio between relative HAD for the TIE and
TSR cases range from 1 to 1.24 (mean=1.13, sd=0.08). The general picture just
described for a phenotypic distance between optimal phenotypes (|µS − µR|) of
0.25, is conserved for a doubled phenotypic distance (Figure S2), corresponding
to a situation where more mutations are required for pathogen adaptation.

5 Discussion

This work follows an ongoing trend aiming to jointly model the epidemiological
and evolutionary dynamics of host-parasite interactions. Our theoretical frame-
work, motivated by fungal infections in plants, allows us to tackle the question
of the durability of plant quantitative resistance genes altering specific pathogen
life-history traits. Many problems and questions are reminiscent of the literature
on the epidemiological and evolutionary consequences of vaccination strategies.
For instance, quantitative resistance traits against pathogen infection rate, la-
tent period and sporulation rate are analogous to partially effective (imperfect)
vaccines with anti-infection, anti-growth or anti-transmission modes of action,
respectively (Gandon et al., 2001). Similarly, the proportion of fields where a R
cultivar is deployed is analogous to the vaccination coverage in the population
(Gandon & Day, 2007).

Evolutionary outcomes with multimodal fitness functions. In line with
early motivations for developing a theory in evolutionary epidemiology (Day
& Proulx, 2004), we investigated both the short- and long-term epidemiologi-
cal and evolutionary dynamics of the host-pathogen interaction. Although the
short-term dynamics is investigated numerically, the long-term analysis is ana-
lytically tractable and allows us to predict the evolutionary outcome of pathogen
evolution. In contrast with most studies in evolutionary epidemiology, the anal-
ysis proposed allows us to consider multimodal fitness functions, and to char-
acterize evolutionary endpoints thought of a detailed description of the shape
of fitness function (number of modes, steepness and any higher moments with
even order). Similarly, our results are neither restricted to Gaussian mutation
kernel m (see also Mirrahimi (2017)), provided that m is symmetric and posi-
tive (Appendix B), nor to rare mutations as in the classical adaptive dynamics
approach.
An important consequence of our model assumptions is that the model admits
an optimisation principle (Mylius & Diekmann, 1995; Metz et al., 2008; Lion &
Metz, 2018). In other words, the evolutionary attractors of our model coincide
with the maxima of a particular function, which can be viewed as a measure of
absolute fitness. Here, the function Ψ(x), or equivalently, the basic reproduction
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Figure 4: Effects of the proportion ϕ of R cultivar, the pathogenicity trait
targeted by R gene and the adaptation trade-off ρS,R on resistance durability,
basic reproduction numbers and epidemiological protection. The phenotypic
distance |µS−µR| is fixed to 0.25, a situation where a few mutations are required
for pathogen adaptation. A Resistance durability as measured by the time of the
beginning of the R gene erosion (Tinf, log scale) for a resistance altering infection
efficiency (TIE scenario). B Same as A for a resistance altering sporulation
rate (TSR scenario). C Basic reproduction numbers of the pathogen phenotype
values µR (specialist, ρS,R > 1) and µG (generalist, ρS,R < 1). D Difference
between the basic reproduction numbers of the pathogen phenotype values µR
and µS . E Epidemiological protection for the TIE scenario as measured by the
relative HAD. F Same as E for the TSR scenario.
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ratio R0(x) in a fully susceptible population, plays this role. Potential evolu-
tionary attractors are located at the peaks of the landscape represented by this
function. The interplay between mutation and selection then determines the
composition of the population at equilibrium, although a general conclusion of
our work is that the population will generically concentrate around the highest
peak. In our work, the TSR model admits an optimisation principle, whereas for
the TIE model the function Ψ(x) is only an approximate optimisation principle.
However, the existence of an optimisation principle in both models is guaranteed
by the specific form of environmental feedback: in the fitness proxy R(x, y), the
densities of susceptible hosts in each class, Sk(x), are all decreasing function of
a single environmental variable, the density of spores in the pool of propagules.
Hence, the environmental feedback loop is effectively one-dimensional and the
model admits an optimisation principle (Mylius & Diekmann, 1995; Metz et al.,
2008; Lion & Metz, 2018). An important consequence of the existence of an
optimisation principle is that evolutionary branching (i.e. a situation leading
to pathogen diversification and to long term coexistence of different pathogen
strategies) is impossible. As a result only neutral coexistence (as observed when
the function Ψ(x) has two global maxima) is possible.

R0 expression for fungal pathogens in heterogeneous environment.
Our model yields a fitness proxy for fungal pathogens, the function Ψ(x), which
is proportional to the basic reproduction ratio R0(x). Usually, the computation
of R0 is based on the spectral radius of the next generation operator (NGO),
(Diekmann et al., 1990; Diekmann & Heesterbeek, 2000). The method was ap-
plied by Van den Bosch et al. (2008) to calculate the R0 for lesion forming
foliar pathogens in a setting with only two cultivars and no effect of the age of
infection a on sporulation rate and disease-induced mortality. Here, we follow
the methodology based on the generation evolution operator (Inaba, 2012) to
derive an expression for the basic reproduction ratio R0 in heterogeneous host
populations composed of nc cultivars (see Appendix D for more details).
Equations (3.4), either with (3.6) or with (3.7), provides R0(x) expressions for
the two classical models of sporulation curve proposed by Segarra et al. (2001)
(Figure 1 A). They combine (i) the pathogenicity traits expressed at the scale of
the plant during the basic infection steps (infection efficiency β(x), latent period
τ(x), sporulation rate p(x) and infectious period l(x) with (ii) the cultivar pro-
portion in the environment (ϕk). As pathogenicity traits can be measured in the
laboratory, R0(x) bridges the gap between plant-scale and epidemiological stud-
ies and between experimental and theoretical approaches. R0-based approach
have been for example used to compare the fitness of a collection of isolates of
potato light blight (Montarry et al., 2010), to highlight the competition exclu-
sion principle for multi-strains within-host malaria infections (Djidjou-Demasse
& Ducrot, 2013) and to predict the community field structure of Lyme disease
pathogen from laboratory measures of the three transmission traits (Durand et
al., 2017). Lannou (2012) pointed out the need for R0(x) expressions allowing
to compare the fitness of competing pathogen strains with different latent peri-
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ods. We showed that our R0 expressions are exact fitness proxy for competing
strains differing for 3 pathogenicity traits (latent period, sporulation rate or
infectious period) but only an approximation for strains differing for their infec-
tion efficiencies. More generally, a clear distinction between pathogen invasion
fitness R(x, y) and epidemiological R0(x) is necessary to properly discuss the
adaptive evolution of pathogens (Lion & Metz, 2018).

Sustainable management of plant quantitative resistance. Only few
studies compared the effects on disease management of R cultivars targeting
different aggressiveness component of plant fungal pathogens while taking into
account evolutionary principles (Iacono et al., 2012; Bourget al., 2015; Rim-
baud et al., 2018). Depending on stakeholders objectives, two main criteria are
used in the literature (Van den Bosch & Gilligan , 2003; Papäıx et al., 2018):
(i) the epidemiological protection (relative HAD) and (ii) resistance durabil-
ity (Tinf ). Importantly, we illustrated how these criteria are related to the
corner-stone concept of basic reproduction ratio R0(x). Both epidemiological
protection and resistance durability are obviously favored by deployment strate-
gies lessening R0(µS) and R0(µS) below one. Originally, when R0(µS) > 1 or
R0(µS) > 1, our results highlight how to take advantage of neutral coexistence
(i.e. |R0(µR)−R0(µS)| ≈ 0) to increase the epidemiological protection provided
by quantitative resistance (e.g. Figure 4 D-F).
Iacono et al. (2012) and Rimbaud et al. (2018) already reported that quantita-
tive resistance reducing the infection efficiency provides a greater epidemiolog-
ical protection than quantitative resistance that reduces the sporulation rate.
Our results are consistent with these studies and go one step further by analyzing
the underlying transient evolutionary dynamics. In the plane (ϕ, ρS,R), posi-
tioning two main parameters of deployment strategies, high resistance durability
is far less frequent for R genes targeting the sporulation rate. This difference
is blurred by R0(x) expressions where both traits appear as a product βk × pk
(see equation (3.5)). As advised by Pilet-Nayel et al. (2017), these comparisons
can guide plant breeders to adequately choose resistance QTLs in breeding pro-
grams. Compared to Papäıx et al. (2018); Rimbaud et al. (2018), the results
exemplified with a different modeling approach (stochastic demo-genetic models
v.s. deterministic integro-differential model) that resistance durability criteria
and epidemiological protection criteria are not necessarily correlated (Figure 4
A,B versus E,F), and thus, can be associated to incompatible management ob-
jectives (Papäıx et al., 2018). Moreover, it is worth noting that, although we
did not explore this possibility, our analytical and simulation framework could
be used to deal with correlations between traits. In the model, trade-offs be-
tween the pathogen life-history traits emerge from the covariance matrix of the
(multidimensional) mutation kernel m (Gandon , 2004). This is an important
feature that deserve further studies as such correlations are observed for plant
fungi (Pariaud et al. (2009); Lannou (2012)). Finally, the model is well-suited
to derive the equations of evolution of the pathogen life history traits on the
same time-scale than epidemiological processes (Day & Gandon, 2006; Day &

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/423467doi: bioRxiv preprint 

https://doi.org/10.1101/423467
http://creativecommons.org/licenses/by-nc-nd/4.0/


Proulx, 2004). It could for example help designing evolution experiments by
providing testable hypotheses given that genetic variance-covariance matrix of
pathogenicity traits can be estimated.

Notes on some model assumptions. The model assumes an infinite size for
the pathogen population. With finite population size, stochastic dynamics can
greatly impact evolutionary dynamics (e.g.. lower probabilities of emergence
and fixation of beneficial mutations, reduction of standing genetic variation
(Kimura, 1962). In particular, genetic drift is more likely to impact the main-
tenance of a neutral polymorphism, as observed here with neutral coexistence,
rather than of a protected polymorphism where selection favors coexistence of
different genotypes against invasions by mutant strategies (Geritz et al., 1998).
However, the effect of genetic drift depends on the stability properties of the
model considered. As our model has a unique globally stable equilibrium, ge-
netic drift is likely to play a much lesser role than with models characterized
by unstable equilibrium. In practice, the magnitude of genetic drift depends
on the effective population size (Ne) of the pathogen population considered
(Charlesworth, 2009). Large Ne have been reported at field scale for wind-
dispersed, spore-producing plant fungal pathogens (e.g. 998 for Magnaporthe
oryzae (Ali et al., 2016), 3800 to 4400 for Zymoseptoria tritici (Zhan et al.,
2001) and 1261 to 25258 for Botrytis cinerea (Walker et al., 2017)). Ignoring
drift seems thus reasonable for those pathogens, at least when considering the
fate of new strains with selection coefficient > 10−3 as evolution is mostly de-
terministic when the product of Ne and of the intensity of selection selection is
> 1 (Charlesworth (2009)).

As addressed previously, the one-dimensional environmental feedback loop
of the model is ensured by assuming an unique pool of propagules. Space is thus
implicit, meaning that the probability for a spore of migrating from one point of
the environment to another does not depend on their distances. In practice, this
assumption is more likely when the extent of the field or landscape considered is
not too large with respect to the dispersal function of airborne propagules. Air-
borne fungal spores often disperse over substantial distances with mean dispersal
distance in the order of one kilometer (e.g. 0.2-14 km for Mycosphaerella fijiensis
(Rieux et al., 2014)), 0.86 km for Podosphaera plantaginis (Soubeyrand et al.,
2009), 1.4-2.6 km for Hymenoscyphus fraxineus Grosdidier et al. (2018)) and,
in most case, fat-tail dispersal kernels associated to substantial long-distance
dispersal events. For other pathosystems however, limited dispersal may be
an important epidemiological process, and it would be interesting to extend
our approach to a spatially explicit environment drawing upon, for example,
the recent model of Mirrahimi (2017) describing a phenotypically structured
population subject to mutation, selection and migration between two habitats.
Indeed, when dispersal decreases with distance, large homogeneous habitats pro-
mote diversification while smaller habitats, favoring migration between distinct
patches, hamper diversification Débarre & Gandon (2010); Haller et al. (2013);
Papäıx et al. (2013). Pathogen diversification, which results from evolutionary
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branching, is of practical importance for management purposes, as evidenced in
the wheat rust fungal disease, where disease prevalence varies with the frequen-
cies of specialist genotypes in the rust population (Papäıx et al., 2011). More
generally, managing population polymorphisms, either for conservation purpose
in order to preserve the adpative potential of endangered species or for disease
control purpose in order to hamper pest and pathogen adaptation is becoming
a growing concern (Vale, 2013).
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A Supplementary Figures

ϕ = 0.55, ρS,R = 2.71
R0(µS) = R0(µR) = 1.29

Figure S1: Evolutionary epidemiology dynamics when the resistance impacts
the pathogen sporulation rate pk (TSR scenario) and the infection efficiency βk
(TIE scenario) when the fitness function Ψ is bimodal with two global maxima.
A The fitness function is bimodal with two maxima: σS = 0.06, σR = 0.072;
µS = 0.3; µR = 0.6. At t = 0, the pathogen population, essentially concentrated
around the phenotypic value µS , is adapted on the S cultivar. The dynamics of
the density of infected tissue and the phenotypic composition of the pathogen
population in the S and R cultivars are display in B,D (TSR scenario) and C,E
(TIE scenario). 27
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Figure S2: Effects of the proportion ϕ of R cultivar, the pathogenicity trait tar-
geted by R gene and the adaptation trade-off ρS,R on resistance durability, basic
reproduction numbers and epidemiological protection. The phenotypic distance
|µS −µR| is fixed to 0.5, a situation where numerous mutations are required for
pathogen adaptation. A Resistance durability as measured by the time of the
beginning of the R gene erosion (Tinf, log scale) for a resistance altering infec-
tion efficiency (TIE scenario). B Same as A for a resistance altering sporulation
rate (TSR scenario). C Basic reproduction numbers of the pathogen phenotype
values µR (specialist, ρS,R > 1) and µG (generalist, ρS,R < 1). D Difference
between the basic reproduction numbers of the pathogen phenotype values µR
and µS . E Epidemiological protection for the TIE scenario as measured by the
relative HAD. F Same as E for the TSR scenario.
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B Properties of the mutation kernel mε

The kernel function mε arising in (2.1) should satisfy the following properties:

(H1) It should be non-negative everywhere: mε = mε(x) ≥ 0, ∀x ∈ RN .
Moreover, mε should be normalised,∫

RN

mε(x)dx = 1.

This last condition expresses that all interactions generated on the phe-
notypic space of pathogens necessarily end up somewhere on that space.

(H2) Its variation should only depend on the distance separating the points
between which the interactions are evaluated (i.e. mε(x) = mε(−x), for
all x ∈ RN ).

(H3) It is highly concentrated such that, for ε → 0, mε(x) = δ0(x) = 1 if
x = 0; and 0 otherwise.

C Some special cases of the general model (2.1)

We consider a slightly simplified version of system (2.1) by omitting the age
structure. In that context we re-write model (2.1) as follows

∂tSk(t) = ϕkΛ− θSk(t)− Sk(t)

∫
RN

βk(y)Ak(t, y)dy,

∂tIk(t, x) = βk(x)Sk(t)A(t, x)−
(
θ + dk(x) +

1

lk(x)

)
Ik(t, x),

∂tA(t, x) = −δA(t, x) +

nc∑
k=1

∫
RN

mε(x− y)pk(y)Ik(t, y)dy,

(C.1)

wherein we take into account the (host and strain-specific) duration of the sporu-
lation period, denoted by lk(x).

Furthermore, if we assume that there are no ”interactions” in the phenotypic
space of pathogens, i.e. without mutations: ε → 0, then the simplified model
(C.1) rewrites

∂tSk(t) = ϕkΛ− θSk(t)− Sk(t)

∫
RN

βk(y)Ak(t, y)dy,

∂tIk(t, x) = βk(x)Sk(t)A(t, x)−
(
θ + dk(x) +

1

lk(x)

)
Ik(t, x),

∂tA(t, x) =

nc∑
k=1

pk(x)Ik(t, x)− δA(t, x).

(C.2)
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D Computation of the fitness function

In this appendix we explain how to compute the fitness function. To that aim,
by formally taking the limit ε→ 0 into (2.1), this system becomes

∂tSk(t) = ϕkΛ− θSk(t)− Sk(t)

∫
RN

βk(y)A(t, y)dy,

(∂t + ∂a) ik(t, a, x) = − (θ + dk(a, x)) ik(t, a, x),

ik(t, 0, x) = βk(x)Sk(t)A(t, x),

∂tA(t, x) =

nc∑
l=1

∫ ∞
0

rl(a, x)il(t, a, x)da− δA(t, x).

(D.3)

Now, let us assume that system (D.3) reaches a monomorphic epidemio-
logical equilibrium Ez = (Szk , i

z
k(·)δz, Azδz)k=1,···nc

, for some trait z, before a
new mutation with trait value, say, y occurs. Note that Ez is the environ-
mental feedback of the resident z. We introduce a small perturbation in (D.3)
in the phenotype trait y, so that the evolution of the system reads as follows:
Sk(t) = Szk + uk(t) and

ik(t, a, x) = izk(a)δz(x) + jk(t, a)δy(x) and A(t, x) = Azδz(x) +B(t)δy(x),

and the small perturbations for the infection, jk and B, are governed by the
linearized system of equations around Ez. This reads as

(∂t + ∂a) jk(t, a) = − (θ + dk(a, y)) jk(t, a),

jk(t, 0) = βk(y)SzkB(t),

B′(t) =

nc∑
l=1

∫ ∞
0

rl(a, y)jl(t, a)da− δB(t).

(D.4)

In order to study the evolution of this perturbation we will derive a renewal
equation on bz(t, y), the density of newly produced spores at time t with pheno-
type y in the resident population with phenotype x. This term is more precisely
defined by

bz(t, y) =

nc∑
l=1

∫ ∞
0

rl(a, y)jl(t, a)da.

It then follows from the jk-equation of the linear system (D.4), that

jk(t, a) =

{
jk(0, a− t)e−θt−

∫ a
a−t

dk(σ,y)dσ, a ≥ t
βk(y)SzkB(t− a)e−θa−

∫ a
0
dk(σ,y)dσ, a < t,

while

B(t) =

∫ t

0

bz(s, y)e−δ(t−s)ds+B(0)e−δt.
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As a consequence, bz(t, y) satisfies the following renewal equation:

bz(t, y) =

nc∑
l=1

Szl

∫ t

0

rl(a, y)βl(y)

∫ t−a

0

bz(s, y)e−δ(t−a−s)e−θa−
∫ a
0
dk(σ,y)dσdsda+ F(t, y, z),

(D.5)

wherein we have set

F(t, y, z) =

nc∑
l=1

∫ ∞
t

rl(a, y)jl(0, a− t)e−θt−
∫ a
a−t

dk(σ,y)dσda

+B(0)

nc∑
l=1

Szl

∫ t

0

rl(a, y)βl(y)e−δ(t−a)e−θa−
∫ a
0
dk(σ,y)dσda.

Then (D.5) can be rewritten as

bz(t, y) =

∫ t

0

Bz(a, y)bz(t− a, y)da+ F(t, y, z),

where Bz(a, y) is the expected number of new infections produced per unit
time, in a resident host population with phenotype z, by an individual which
was infected a units of time ago with the phenotype y, given by

Bz(a, y) = e−δa
nc∑
l=1

Szl βl(y)

∫ a

0

rl(s, y)e−θs−
∫ s
0
dk(σ,y)dσds.

Due to the above formulation, it follows from classical adaptive dynamics
(Diekmann et al., 2005; Geritz et al., 1997; Metz et al., 1996) that the spore
numbers, R(y,Ez), of a rare mutant strategy, y, in the resident z-population is
given by

R(y,Ez) =

∫ ∞
0

Bz(a, y)da =
Λ

θ
fz(y),

where fz(y) denotes the growth rate of a mutant strategy, y, in the resident
z-population defined by

fz(y) =

nc∑
l=1

θSzl
Λ

Ψl(y)

wherein Ψl(y) = 1
δβl(y)

∫∞
0
rl(a, y) exp

(
−θa−

∫ a
0
dl(σ, y)dσ

)
da.

Note that when the environmental feedback Ez is reduced to the disease-
free environment, then Szl re-writes as Szl = Λϕl

θ . And the epidemiological basic
reproduction number of the pathogen with the phenotype y is calculated as

R0(y) =
Λ

θ
Ψ(y), with Ψ(y) =

nc∑
l=1

ϕlΨl(y).
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Once the pathogen has spread and reached the monomorphic equilibrium,
then the endemic feedback environment Ez becomes

Szk =
Λϕk

θ + βk(z)Az
, izk(a) = βk(z)AzSzk exp

(
−θa−

∫ a

0

dk(σ, z)dσ

)
, (D.6)

where Az > 0 is the unique solution of the following equation (only defined
when R0(z) > 1):

nc∑
k=1

Λϕl
θ + βk(z)Az

Ψk(z) = 1. (D.7)

E Pathogen fitness with mutations in the phe-
notypic space

In the context of this work, the fitness function Ψ can be used as a measure of
absolute fitness. Indeed, when infection efficiencies do not differ between host
classes (i.e. βk(x) = β(x) ∀ k), the fitness proxy R(x, y) simply writes

R(x, y) =
Λ

θ + β(x)Ax
Ψ(y) =

Ψ(y)

Ψ(x)
,

where the last equality R(x, y) = Ψ(y)/Ψ(x) is obtained from the equation
(D.7). It follows that a rare mutant will invade the population if Ψ(y) > Ψ(x)
(or R0(y) > R0(x)), which means that we can use R0 (or Ψ) as a measure of
absolute fitness in this case.

Now, assume that the infection efficiency differ between host classes. To
simplify the presentation, we consider the case of two host classes. Then

R(x, y) =
Λϕ1Ψ1(y)

θ + β1(x)Ax
+

Λϕ2Ψ2(y)

θ + β2(x)Ax
,

wherein Ax is defined by (D.7). A straightforward computation leads to

R(x, y)
Ψ(x)

Ψ(y)
=

[
Λϕ1Ψ1(y)

θ + β1(x)Ax
+

Λϕ2Ψ2(y)

θ + β2(x)Ax

]
× ϕ1Ψ1(x) + ϕ2Ψ2(x)

ϕ1Ψ1(y) + ϕ2Ψ2(y)
,

=

[
ϕ2

1Ψ1(y)Ψ1(x)

θ + β1(x)Ax
+
ϕ1ϕ2Ψ1(y)Ψ2(x)

θ + β1(x)Ax
+
ϕ1ϕ2Ψ2(y)Ψ1(x)

θ + β2(x)Ax
+
ϕ2

2Ψ2(y)Ψ2(x)

θ + β2(x)Ax

]
× Λ

ϕ1Ψ1(y) + ϕ2Ψ2(y)
.

(E.8)

Because of a strong trade-off between host classes, the product Ψ1Ψ2 � 1
and (E.8) becomes

R(x, y)
Ψ(x)

Ψ(y)
≈
[
ϕ2

1Ψ1(y)Ψ1(x)

θ + β1(x)Ax
+
ϕ2

2Ψ2(y)Ψ2(x)

θ + β2(x)Ax

]
× Λ

ϕ1Ψ1(y) + ϕ2Ψ2(y)
,

=

[
ϕ1Ψ1(y)

(
1− Λϕ2Ψ2(x)

θ + β1(x)Ax

)
+ ϕ2Ψ2(y)

(
1− Λϕ1Ψ1(x)

θ + β2(x)Ax

)]
1

ϕ1Ψ1(y) + ϕ2Ψ2(y)
,
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where the last equality comes from (D.7). Again, by neglecting the term Ψ1Ψ2

we find R(x, y)Ψ(x)
Ψ(y) ≈ 1, meaning that the invasion fitness R(x, y) can be ap-

proximated by the ratio Ψ(y)/Ψ(x).
Next, we further take into account small mutations in the space of pathogen

phenotypic values (characterized by a sufficiently small parameter ε > 0). Our
aim is to calculate the effect of mutation on pathogen fitness.

More precisely, consider a specific pathogen strain with phenotypic value x∗

such that the Hessian matrix −H[Ψ](x∗) of the fitness function Ψ at point x∗

is positive definite, meaning that Ψ(x∗) is a global fitness peak. Then, from
results in Djidjou-Demasse et al. (2017), the fitness of the pathogen strain x∗ is
expanded as

Ψε(x∗) = Ψ(x∗)

(
1− ε tr [−K∗]

1
2

2
√

Ψ(x∗)

)
+ o(ε), (E.9)

wherein tr(·) is set for the trace of a matrix (the sum of the elements on the main

diagonal). K∗ = (ki,j)i,j is aN×N matrix such that ki,j = (δi,l)
T
1≤i≤N Σ[m]−1 (δl,j)1≤i≤N

∂2Ψ(x∗)
∂xi

∂xj
,

where Σ[m] = (Σi,j)i,j is the covariance matrix of the mutation kernel m defined

by Σi,j =
∫
RN yiyjm(y)dy, and δi,j = 1 if i = j; 0 otherwise. Furthermore, when

the phenotypic value x is a scalar parameter (i.e. x ∈ R) (E.9) takes the form

Ψε(x∗) = Ψ(x∗)

(
1− ε

√
−Ψ′′(x∗)

2
√

Ψ(x∗)

)
+ o(ε). (E.10)

F Dimorphic or monomorphic equilibrium

To simplify the presentation, we consider system (2.1) with nc = 2 corresponding
to S and R cultivars. Denote by (S0, i0(·), A0) the endemic equilibrium of system
(2.1) as ε → 0 and when only S is cultivated (i.e. when the proportion ϕ of R
is zero). From results in (Djidjou-Demasse et al., 2017) we have

S0 =
1

ΨS(µS)
. (F.11)

Now, let (SS , SR, iS(·), iR(·), A) be an equilibrium of system (2.1) when a
proportion ϕ > 0 of R is cultivated. Next recall that, for k ∈ {S,R},

Sk =
ϕkΛ

θ +
∫
RN βk(z)A(z)dz

and ik(x, a) = βk(x)A(x)Sk exp

(
−θa−

∫ a

0

dk(σ, x)dσ

)
,

so that A(·) becomes a solution of the nonlinear equation:∫
RN

mε(x− y)
∑

k∈{S,R}

ϕkΨk(y)

θ +
∫
RN βk(z)A(z)dz

A(y)dy =
1

Λ
A(x). (F.12)

Using this equation we heuristically explore conditions yielding to dimorphic or
monomorphic equilibrium.
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Resistant gene altering infection efficiencies βS and βR (TIE scenario).
We formally assume that the population of spores writes A(x) = aSδµS

(x) +
aRδµR

(x), and we plug this ansatz into equation (F.12) above. This yields, for
any x,

aR

[
ϕΨR(µR)

θ + aRβR(µR) + aSβR(µS)
+

(1− ϕ)ΨS(µR)

θ + aRβS(µR) + aSβS(µS)

]
mε(x− µR)

+ aS

[
ϕΨR(µS)

θ + aRβR(µR) + aSβR(µS)
+

(1− ϕ)ΨS(µS)

θ + aRβS(µR) + aSβS(µS)

]
mε(x− µS)

=
1

Λ
[aRδµR

(x) + aSδµS
(x)] .

Letting ε→ 0 and recalling that mε(x) ≈ δ0(x), one obtains

aR

[
ϕΨR(µR)

θ + aRβR(µR) + aSβR(µS)
+

(1− ϕ)ΨS(µR)

θ + aRβS(µR) + aSβS(µS)

]
δµR

(x)

+ aS

[
ϕΨR(µS)

θ + aRβR(µR) + aSβR(µS)
+

(1− ϕ)ΨS(µS)

θ + aRβS(µR) + aSβS(µS)

]
δµS

(x)

=
1

Λ
[aRδµR

(x) + aSδµS
(x)] ,

that is
aRϕΨR(µR)

θ + aRβR(µR) + aSβR(µS)
+

aR(1− ϕ)ΨS(µR)

θ + aRβS(µR) + aSβS(µS)
=
aR
Λ
,

aSϕΨR(µS)

θ + aRβR(µR) + aSβR(µS)
+

aS(1− ϕ)ΨS(µS)

θ + aRβS(µR) + aSβS(µS)
=
aS
Λ
.

As a consequence, for the equilibrium to be dimorphic, namely aR > 0 and
aS > 0, it is necessary that there exist aR > 0 and aS > 0 satisfying the
following system of equations:

ϕΨR(µR)

θ + aRβR(µR) + aSβR(µS)
+

(1− ϕ)ΨS(µR)

θ + aRβS(µR) + aSβS(µS)
=

1

Λ
,

ϕΨR(µS)

θ + aRβR(µR) + aSβR(µS)
+

(1− ϕ)ΨS(µS)

θ + aRβS(µR) + aSβS(µS)
=

1

Λ
.

We suspect that this heuristic condition is a necessary and sufficient for system
(2.1) ( here with nc = 2) to admit an endemic dimorphic equilibrium. This
issue will be rigorously investigated in a forthcoming work.

In order to go slightly further in this analysis, we assume a strong trade-off
on infection efficiency, namely

Ψl(µk) <1 and βl(µk) << 1 for l, k = R,S and l 6= k.

In that the above system of equation roughly simplifies into
ϕΨR(µR)

θ + aRβR(µR)
≈ 1

Λ
,

(1− ϕ)ΨS(µS)

θ + aSβS(µS)
≈ 1

Λ
.
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Hence the proportions of each phenotype, µS and µR, can be calculated as

aR ≈
ϕΛΨR(µR)− θ

βR(µR)
and aS ≈

(1− ϕ)ΛΨS(µS)− θ
βS(µS)

, (F.13)

provided the following threshold conditions in this strong trade-off framework

ϕ
Λ

θ
ΨR(µR) > 1 and (1− ϕ)

Λ

θ
ΨS(µS) > 1.

As a consequence, the density of healthy hosts at equilibrium, when a pro-
portion ϕ > 0 of R is cultivated, writes

SS ≈
1

ΨS(µS)
and SR ≈

1

ΨR(µR)
. (F.14)

Therefore, (F.11)-(F.14) lead to SS + SR = (1/ΨS(µS) + 1/ΨR(µR)) > S0 =
1/ΨS(µS) meaning that with a strong-trade off on infection efficiency, the time
during which a proportion ϕ > 0 of R gene deployed remains beneficial (in terms
of Healthy Area Duration gain) can be considered larger as possible.

Resistant gene altering sporulation rates pS and pR (TSR scenario).
In this case, using the same argument as in (Djidjou-Demasse et al., 2017)
we can prove that the spore population is monomorphic at equilibrium such
that A(x) = a∗δµ∗(x); with a∗ > 0, providing that we are not in a strict
symmetric configuration of the fitness function. Moreover, with a strong trade-
off on sporulation rate, it’s well known that µ∗ ∈ {µS , µR}. Then, applying the
same arguments as in the previous section lead to

a∗

θ + a∗β(µ∗)
mε(x− µ∗)Ψ(µ∗) =

a∗

Λ
δµ∗(x).

Again with ε→ 0, it comes

a∗ =
ΛΨ(µ∗)− θ
β(µ∗)

=
θ

β(µ∗)
[R0(µ∗)− 1] ,

with R0(µ∗) > 1.
Therefore, the density of healthy hosts at equilibrium, when a proportion

ϕ > 0 of R is cultivated, writes

SS =
1− ϕ
Ψ(µ∗)

and SR =
ϕ

Ψ(µ∗)
. (F.15)

Therefore, (F.11)-(F.15) lead to SS + SR > S0 if and only if Ψ(µ∗) < ΨS(µS)
meaning that with a strong-trade off on infection efficiency: (i) if Ψ(µ∗) <
ΨS(µS) the time during which a proportion ϕ > 0 of R gene deployed remains
beneficial (in terms of Healthy Area Duration gain) can be consider larger as
possible; (ii) else, this time is quantified by the unique time T such that SS(t)+
SR(t) ≥ S0(t) for all 0 < t ≤ T .
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