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ABSTRACT8

Understanding the patterns underlying phenotypic diversification across the tree of life has9

long been a fundamental aim in evolutionary and comparative biology. Classic and recent work10

has demonstrated both the wide variability in evolutionary rate throughout time and across11

lineages and the importance of characterizing these patterns in explaining the evolutionary12

proceses that generate biological diversity. A less extensive literature has shown that this13

variability extends to different aspects of phenotype, with separate suites, or modules, of traits14

within organisms showing different, "mosaic" patterns in rate and disparity across species. A15

merging of these two perspectives would identify modules of traits that display similar mosaic16

patterns in evolutionary tempo and mode. However, tools to do so have been limited. In this17

study, I introduce a new method for the identification of suites, or modules, of continuous traits18

that display shared patterns in evolutionary disparity across lineages. The approach defines a19

separate model of evolutionary disparification for each module defined by a phylogeny with20

branch lengths proportional to disparity. Module memberships and the number of modules are21

inferred using a greedy hill climbing approach that combines several different strategies to the22

unsupervised learning of classification and mixture models.23
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Introduction: Characterizing the ways in which phenotypic disparity and evolutionary rates24

differ across lineages and throughout time has long been a central goal in evolutionary biology.25

Shifts in the rate of phenotypic change often coincide with the emergence of charismatic taxa,26

driving ecological differentiation between lineages. Early studies examined rates of change in a27

small number of traits, and identified a broad range of patterns of phenotypic change as lineages28

diverge (Simpson 1944; Stanley 1979).29

A more recent body of work has focused on the development of statistical methods that30

identify patterns of phenotypic change using phylogenies (Harvey and Pagel 1991; Hansen 1997;31

Butler and King 2004; O’Meara et al. 2006; Beaulieu et al. 2012). These approaches have helped32

to reveal large-scale evolutionary trends across major lineages. These studies have frequently33

focused on increasing the phylogenetic and temporal scale compared to previous studies by34

focusing on only one or a small number of phenotypic characters either in isolation, or taken as a35

proxy for phenotype. For instance, although several studies have examined evolutionary rates36

using more comprehensive morphometric datasets (Rabosky and Adams 2012), adult body size is37

more commonly used in studies of animal taxa as a proxy for more detailed morphological38

measurements to characterize general patterns over deep timescales (Harmon et al. 2003, 2010;39

Burbrink and Pyron 2010; Rabosky et al. 2013; Bokma et al. 2015; Landis and Schraiber 2017).40

In plants, researchers often examine associations between a small number of key traits (Ree and41

Donoghue 1999; Beaulieu et al. 2007; Zanne et al. 2014).42

The work described above has contributed greatly to both the empirical and conceptual43

understandings of patterns in the tempo and mode of phenotypic evolution across large and small44

timescales. Nevertheless, the typical focus on only a small number of characters has left open45

major questions surrounding the variation in pattern across body plans. Mosaic evolution is46
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expected to underlie most phenotypic change given the understanding that different traits are47

often exposed to selective pressures at different times. Researchers have argued for the ability of48

mosaic patterns to explain the emergence of structural variation in the brain across mammals49

(Barton and Harvey 2000), phenotypic and genomic diversity across angiosperms (Stebbins50

1984), and the unique suite of morphological characters displayed by humans (McHenry 1975;51

Gould 1977; Holloway and Post 1982). However, despite their prevalence, mosaic evolutionary52

patterns have remained underexplored.53

Biological modularity is a related concept that describes the tendency for suites of traits to54

contribute to a shared pattern or function, and has been explored at several phenotypic levels,55

including morphology (Cheverud 1982; Goswami 2006; Goswami et al. 2009), development56

(Wagner and Altenberg 1996), and gene expression (Brawand et al. 2011). Modularity can57

describe several different aspects of genotype and phenotype. Borrowing terminology from58

Wagner et al. (2007), the multivariate comparative approaches described above and other studies59

in morphology (Goswami 2006) are often focused on identifying ‘variational’ modules, or suites60

of traits that covary. Molecular studies often focus on ‘functional’ modules, or suites of features61

that contribute to some shared biological function. Developmental modules have also been62

explored, both on their own (Laurin 2014), and in association with variational morphological63

modules (Goswami et al. 2009).64

Several researchers have contributed statistical approaches for geometric variables describing65

morphological shape, which are generally measured in multiple covarying dimensions (Adams66

2014a). These approaches can be used to statistically evaluate known differences in evolutionary67

rate in predefined suites of continuous traits in a likelihood framework (Revell and Harmon 2008;68

Adams 2014b). This work has been a major benefit to researchers seeking to examine patterns in69
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variation of morphological shape. However, these methods can be impractical in several different70

situations. For instance, the boundaries dividing suites traits are often unknown, and so searching71

for suites of traits with shared signal in evolutionary rate or disparity may present unique insights.72

The focus of these methods on explicitly estimating rate also imposes the neeed to scale branch73

lengths to absolute time, which can create error and bias upon downstream analyses (Title and74

Rabosky 2016). A framework that characterizes the evolutionary structure and modularity75

underlying large phenotypic datasets using shared disparification patterns may be a useful76

complement to existing approaches by providing a point of reference that is not subject to the77

challenges involved in dating analyses or full multivariate estimation.78

In this paper, I present a new method that identifies modules of continuous traits displaying79

shared patterns in disparity to reconstruct and characterize the mosaic trends that have shaped80

their evolution by forming suites of characters that are best explained by shared phylogenetic81

branch lengths along a fixed topology. After introducing the method, I evaluate its performance82

using simulated data. I also present an analysis of an empirical dataset of developmental traits83

complied by Rose (2003). This dataset has been analyzed previously for both modularity (Laurin84

2014), and rate heterogeneity (Germain and Laurin 2009), and so is well suited to a85

re-examination using the method introduced here.86

The approach is a novel contribution to the existing landscape of phenotypic modularity87

studies in both its utility and interpretation. Unlike previous approaches, which typically focus on88

variational modules, my method identifies ‘evolutionary’ modules defined by suites of characters89

displaying shared patterns in disparity across lineages. Importantly, the functionality of my90

approach differs from most previous work on modularity by offering a framework for91

machine-guided identification and delmitation of modules. Previous work has generally focused92
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on the statistical validation of modules specified by researchers a priori, with very little focus on93

ways of quantitatively delmiting modules among traits. Laurin’s (2014) approach also delmits94

modules in phenotypic data, but my method is, to my knowledge, the only existing approach that95

identifies modules using a likelihood-based, phylogenetic framework.96

Methods and Materials97

Implementation98

The approach described below is implemented in a program called greedo. It is available99

freely on Github at (links are available from the journal office). All analyses on simulated and100

empirical data were performed using this program.101

Partitioning traits into modules102

The method described here combines several unsupervised learning strategies to partition103

traits into separate modules, with each possessing its own set of phylogenetic branch lengths104

expressed in units of disparity. These strategies are applied in sequence (Fig. 1), with the goal of105

identifying the configuration that yields the lowest AIC score.106

107

Figure 1. Search procedure to identify evolutionary modules.108

Each component that defines the classification model contributes to the likelihood109

independently. The log-likelihoods of each of the traits belonging to component j are calculated110

under the component branch lengths, and added to yield the component log-likelihood. The111
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log-likelihood of the trait matrix, LLclassification, is calculated by summing the log-likelihoods of all112

k components113

LLclassification =
k∑

j=1

LLj (1)

The details of the underlying phylogenetic Brownian model and the likelihood calculation114

follow Felsenstein (1981) and Parins-Fukuchi (2018) and are summarized in the supplement.115

Since the number of components is allowed to vary during the search, likelihoods are compared116

using the Akaike Information Criterion (AIC) to accommodate the difference in parameter count.117

Search procedure118

All traits start in a single shared partition. From here, traits that exhibit an improved119

likelihood in their own component compared to the single partition are broken into new120

components. To prioritize the separation of traits with especially strong divergent signal, a121

penalty is imposed that is proportional to the difference in size between the existing components.122

As a result, only traits with a strong preference for the new component over the existing123

component are selected. This step is repeated either until the number of occupied categories124

reaches a user-specified maximum threshold, or there are no more traits left to separate.125

From here, the problem is temporarily recast as a finite mixture model, with the number of126

components corresponding to the user-specified value. First, membership weights are calculated127

for each trait-component pair as the probability of the trait (xi) belonging to each j of K128

components. This value is calculated for each component as the proportion of the likelihood of xi129

(Lij) under the corresponding set of branch lengths relative to the summed likelihoods of xi under130

all K components.131

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 21, 2018. ; https://doi.org/10.1101/423228doi: bioRxiv preprint 

https://doi.org/10.1101/423228
http://creativecommons.org/licenses/by-nc-nd/4.0/


P (xi|Kj) =
Lij

K∑
k=1

Lik

(2)

Expectation-maximization (EM) (Dempster et al. 1977) is performed to update the mixture132

weights and the branch length parameters. The branch lengths of each component are updated as133

part of the mixture model, with each site in the matrix contributing to the branch lengths in each134

component according to the weights defined above. During this step, the model could be thought135

of as a variation of a typical multivariate Gaussian mixture model, where the covariance matrix is136

constrained to reflect the structure of a phylogenetic tree, since the phylogenetic Brownian model137

yields a multivariate Gaussian likelihood function.138

Once the mixture model has been updated for several iterations, the components are broken139

into hard clusters, with the assignment for each site chosen to be the component with the140

maximum mixture weight. This arrangement is then reduced in an agglomerative manner. At141

each step of this procedure, the pair of components that results in the greatest improvement in142

AIC, calculated using the classification likelihood defined above, is merged. This merging143

continues until either the AIC score cannot be further improved, or only a single component is144

left. The entire procedure is then repeated from this reduced configuration for a user-specified145

number of iterations. None of the steps impose a minimum constraint on the size of each cluster,146

and so clusters could range in size from including all of the traits to only one trait (although the147

latter case was not encountered in148

Simulated data149

To examine the strengths and shortcomings of the method, I performed tests using simulated150

datasets. A single topology of 20 taxa was simulated under a pure-birth model. For each partition151
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of continuous traits, a new set of branch lengths was generated by drawing randomly from either a152

gamma or exponential distribution, then simulated under Brownian motion. The rate parameter of153

the Brownian process was set to 1 across the entire tree so that the matrices reflected the scale and154

heterogeneity of rates resulting from the altered branch lengths. Each matrix contained a single155

partition simulated under the original ultrametric branch lengths. The randomly drawn branch156

lengths were intended to mimic the differing rates of evolution that can be experienced by157

different lineages during evolutionary divergence, with the ultrametric branch lengths reflecting158

clock-like evolution (Fig. S1). All trees and traits were simulated using the phytools package in R159

(Revell 2012).160

Using this procedure, matrices comprised of 2, 3, and 4 partitions of 50 continuous traits each161

were generated. All traits were rescaled to a variance of 1. I ran greedo on these datasets to162

attempt to reconstruct these partitions. The maximum number of clusters for these runs was set to163

half the number of traits in each matrix.164

I used the adjusted Rand index (ARI) to evaluate the accuracy of the inferred partitionings165

(Hubert and Arabie 1985) against the true partitionings. ARI is a version of the Rand index (RI)166

(Rand 1971) that has been corrected for chance. The RI measures congruence by counting the167

pairs of elements that either occupy the same or different clusters in both of the two clusterings,168

and calculating the proportion of this value relative to all of the possible permutations of169

elements. As a result, the RI can range from 0, indicating total disagreement, and 1, indicating170

total agreement. The ARI corrects for the propensity for elements to occupy the same cluster due171

to chance, with a value of 0 indicating a result indistinguishable from a random assignment of172

elements, and 1 indicating complete congruence, and also takes negative values when a clustering173

is worse than random.174
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Empirical analysis175

To examine the performance of the method on empirical data, I analyzed a dataset comprised176

of the ossification sequences of 21 cranial bones obtained from Laurin (2014), initially assembled177

by Rose (2003). Laurin identified developmental modules using an ‘evolutionary’ Principal178

Components analysis (PCA) and also performed a distance-based hierarchical clustering of the179

data, making these data well-suited to a test of the method introduced here. Using my new180

approach, identified modules might be thought of as ’evolutionary developmental’ modules, since181

the dataset is comprised of developmental sequences.182

In his original analysis, Laurin (2014) fixed the developmental traits between the interval 0-1.183

However, this transformation yields data that display different empirical variance across taxa.184

This reflects the results of Germain and Laurin (2009), who demonstrated drastic variability185

( 100x) in absolute rate across these characters. To prepare the data for the calculation of186

phylogenetic branch lengths, which assume traits of equal variance, I standardized the variance187

between the traits to 1. As a result, the analyses of disparity reflect relative, rather than absolute,188

ossification times. Importantly, differences in branch lengths across modules should thus be189

interpreted as reflecting variation in relative, rather than absolute disparity. The tree used for190

comparative analyses in the original study was used to calculate branch lengths (supplementary191

data).192

Results and Discussion193

Simulated data194

The method is generally able to recover the structure of the simulated datasets. The number of195

inferred modules is typically close to the true number, and ARI values are typically well above196

random. The two-partition analyses are very accurate, with high ARI values, and nearly always197
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correctly identifying the correct number of clusters. The three- and four-partition analyses were198

less accurate, but still yield results much higher than random, and typically recovering the correct199

number of modules. ARI indices achieved for the three- and four- partition analyses appear200

comparable to results from simulated data using more general clustering approaches, such as201

Gibbs sampling under a Dirichlet process (Dahl 2006).202
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Figure 2. A) Adjusted Rand indices across reconstructions of simulated datasets. B) Number of204

clusters resulting from analyses of simulated data. Barplots are stacked to represent the frequency205

of each reconstructed k. All violin and barplots are separated by the number of modules in the206

simulated datasets.207

Despite the generally encouraging results from the simulated data, the trend toward208

decreasing accuracy when components are added suggests either a limitation of the method in209

adequately exhausting the search space of component assignments or a limitation in the power of210

the simulated datasets in displaying sufficient signal across taxa. Since the primary steps of the211

search alternate between greedy EM and hierarchical approaches, each iteration identifies a local212
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peak in the likelihood surface. As categories are added, it is possible that the added heterogeneity213

causes the surface becomes more peaky by adding permutations of locally optimal configurations.214

Because of this tendency, it might be useful to average across a set of best-supported215

configurations rather than rely on a single point estimate. It may also be helpful to initialize the216

analysis using results obtained from a less intensive approach, such as the evolutionary PCA217

developed by Laurin (2014). This may improve performance by requiring the search to traverse218

less of the likelihood surface, decreasing the chances of becoming stuck at a peak distant from the219

globally optimal configuration.220

Empirical analysis221

Four separate runs each yielded different partitionings into two modules. All arrangements222

overlap in their assignments, and the AIC scores are all close to one another. To visualize the223

overall support for the categorization of each trait across partitionings, I calculated the AIC224

weight of each model (Burnham and Anderson 2002). The AIC weight of model i, wi can be225

interpreted as its probability of being the best model among a set of K candidates.226

wi =
Lrel
i

K∑
k=1

Lrel
k

(3)

where Li
rel is the relative likelihood of model i:227

Lrel
i = exp(−0.5(AICi − AICmin)) (4)

These weights were used to visualize the the strengths of the connections between traits across228

all the four best partitionings in a graph (Fig. 2b). An edge was drawn between traits i and j if they229

occurred in the same component in any of the four results, with a weight given by the summed230
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AIC weights of all of the configurations where i and j occur in the same module. The maximum231

weight possible is 1.0, when traits i and j share a module in all of the configurations. The resulting232

graph suggests that traits 0, 1, 2, 17, and 20 all form a module, with the rest of the traits sharing a233

separate module. This result is very close to the pattern in modularity reconstructed by Laurin234

(2014) using an ‘evolutionary PCA’ approach, differing only in the assignment of the stapes235

(Table S1). The similarity of the empirical results to those of the original study demonstrate the236

capability of the new approach to identify meaningful modules in biological data.237
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238

Figure 3. A-D) Four best configurations with AIC scores. E) Weighted graph calculated by239

summing the AIC weights associated with the each model to form edges and edge weights. All240
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graphs were drawn using the "lgl" format implemented in igraph.241

In his original study, Laurin (2014) also performed an exploratory hierarchical clustering of242

the developmental sequences and found substantial differences in structure as compared to that243

revealed by his evolutionary PCA approach. The discordance between results achieved from each244

method occurs because the the PCA considers covariance, while the hierarchical clustering only245

reflects shared similarity in absolute value. Like the original study, the results here differ246

substantially from the pattern resulting from the exploratory hierarchical clustering performed by247

Laurin, instead aligning very closely to the PCA approach. This is reassuring for the performance248

of my method, as Laurin considered the evolutionary PCA to yield the correct answer, and the249

hierarchical clustering to demonstrate the inadequacy of similarity in delimiting meaningful250

modules (Laurin, pers. comm.). Although they differ in the specific criteria used to identify251

modules, the similarity in results between my and Laurin’s method are not surprising. Laurin’s252

PCA method identifies structure from patterns in covariance that have been corrected for253

phylogenetic non-independence, whereas my method identifies a minimally complex set of254

models, defined by phylogenies with non-negative branch lengths. The trees describing each255

module in my method may be thought of as representing disparity between taxa as patristic256

distances. And so, although they differ in formulation and statistical paradigm, both approaches257

are similar in their treatment of phenotypic variation. The method described here may be useful258

as a complement to existing approaches of modularity by achieving similar results to other259

evolutionary focused approaches, but benefiting from its placement in a likelihood and260

information-theoretic framework, such as the ability to compare and average models.261

The graph-based model averaging approach was shown in the empirical analysis to be262

particularly useful in distilling the information across multiple well-supported module263
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configurations to smooth over imperfections in optimization. The importance of this step on such264

a small dataset, with only two clear modules suggests its potential to improve upon single point265

estimates using larger datasets with more clusters. Further tests will be needed to determine266

whether the approach can improve estimation in and alleviate the challenges encountered in the267

more heterogeneous simulated datasets. This step may also be important in characterizing the268

complex signal often encountered in large empirical datasets. Although both my method and269

previous approaches using PCA both yield a single ‘hard’ classification of traits into modules,270

biological data can often display a complicated network of interactions that can undermine such271

point estimates. In addition to smoothing over challenges in traversing peaky likelihood surfaces,272

the model averaging approach used above may also help to accommodate the complex variation273

in empirical data by weighting and combining evidence from a set of well-supported candidate274

models.275
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Figure 4. Branch lengths reconstructed from traits contained within: A) module 0 (Table S1); B)277

module 1 (Table S1).278

The method that I introduce here identifies modules of continuous traits displaying similar279

patterns in evolutionary divergence. This may be useful in several different scenarios. As is stated280
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in the introduction, existing comparative studies tend to focus on only one or a small number of281

traits. Although this may in part be a result of the challenges in assembling large phenotypic282

datasets, another possible contributing factor may be the difficulty in performing tests and283

interpreting results across large numbers of traits. In these cases, the approach here might be284

useful as a preliminary, exploratory step by reducing large phenotypic datasets into a more285

tractable set of evolutionary modules. Traditional statistical comparative analyses could then be286

performed on the resulting modules rather than on single or arbitrarily joined groupings of traits.287

This approach may have the added benefit of increasing the amount of information from which to288

infer comparative models. As an alternative to the use of existing comparative methods, disparity289

branch lengths associated with each module may themselves yield sufficient information for290

evolutionary interpretation on their own. Reconstructed modules show very distinct patterns in291

lineage-wide disparity from one another (Fig. 4), and so may be useful in presenting a fine-scaled292

picture of the mosaic heterogeneity in pattern displayed across suites of characters.293

The utility of my approach is distinct from most existing approaches to modularity. Most294

previous work exploring modularity has focused upon the statistical testing and validation of295

hypotheses of modularity specified a priori by the researcher by defining explicitly the296

constituent members of each module (Goswami 2006; Goswami et al. 2009). In contrast, the297

method that I introduce here detects and delimits modules automatically through a298

machine-driven search. This is more similar in purpose to the method developed by Laurin299

(2014), which also identifies modules, but differs in its explicit formulation in a model-based300

phylogenetic framework rather than the frequentist framework used in his approach, and the use301

of shared patterns in disparification as the basis of module delimitation rather than covariance.302

In addition to morphological and developmental phenotypes, the method described here may303
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be useful in identifying evolutionary modules among molecular phenotypic traits, such as304

normalized gene expression levels. Expression data have been increasingly examined in a305

comparative, phylogenetic context, but previous studies have not had a meaningful way in which306

to partition sets of genes. As a result, researchers typically fall back on methods such as binning307

all genes expressed in the transcriptome together into a single analysis (Chaix et al. 2008),308

defining modules based upon functional pathways (Schraiber et al. 2013), and using309

non-phylogenetic clustering approaches (Brawand et al. 2011). The method described here may310

benefit such studies by identifying the major axes of variation in evolutionary pattern across311

transcriptomic datasets.312

Evolutionary interpretation of modules313

By identifying suites of characters that display similar patterns in disparity across lineages,314

my approach seeks to integrate existing work that takes a broad view of the tempo and mode of315

phenotypic evolution with under-examined patterns in mosaic evolution. Although the tendency316

for different traits to evolve according to different patterns is expected and well documented317

(Stanley 1979; Stebbins 1984), there has not yet been an approach that explicitly incorporates318

phylogeny to reveal the complex mosaic of patterns in divergence underlying the evolution of319

phenotypes. The analyses of simulated and empirical data showed the capability of my new320

method to identify biologically meaningful modules of continuous traits that reflect differences in321

their patterns in disparity across taxa (Fig. 4). The method will be a valuable tool moving forward322

to aid in the identification of such modules by providing a reasonable basis upon which to323

perform more detailed comparative tests.324

Previous studies have shown that morphological (Lynch 1990) and gene expression325

phenotypes (Yang et al. 2017) often display patterns in rate that are not easily distinguishable326
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from conservative evolutionary forces such as genetic drift and stabilizing selection.327

Nevertheless, comparative analysis of key traits used in classic studies (Simpson 1944; Gingerich328

1983, 1993) have shown that certain features can show substantial variation in rate across lineages329

that can provide crucial evolutionary insights. By segmenting the ‘phenome’ into subsets of traits330

displaying similar patterns in disparity, approaches to the identification of evolutionary331

modularity such as that introduced here have the potential to improve resolution into patterns of332

phenotypic diversification by separating conservatively evolving traits from those experiencing333

fluctuations in rate in certain lineages. This can benefit downstream comparative analyses, for334

example, by preventing conservatively evolving traits from swamping the signal expressed by335

those more erratic in their evolutionary pattern.336

Characterization of patterns in disparity and evolutionary rate across lineages and their337

diversity across different aspects of phenotype have long been two fundamental, overarching338

goals in comparative biology. Although a substantive literature has developed a strong framework339

through which to understand general patterns in the tempo and mode of phenotypic evolution,340

researchers have been somewhat limited in the ability to reconstruct the diversity of pattern341

encountered across large datasets. This can probably be attributed to challenges in both the342

acquisition and analysis of such datasets. However, recent advances are improving the343

accessibility of large phenotypic datasets ranging from the morphological to the molecular scales.344

For instance, new developments in increasingly high-throughput methods that quantify345

morphology (Chang and Alfaro 2015; Boyer et al. 2015) and the increasing efforts of natural346

history museums in digitizing specimens as 3D images will yield increasingly large datasets. The347

approach introduced here represents an early step toward tackling the analysis of such datasets, by348

compressing the information contained within into a more analytically tractable set of modules349
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that display similar patterns in disparity.350

Scale and rate351

The approach described here seeks to identify suites of traits sharing similar patterns in352

evolutionary divergence across lineages. Continuous traits displaying greater empirical variances353

will display higher absolute rates of evolution when modeled under Brownian motion, resulting in354

differences in the reconstructed tree height across traits. This numerical reality may lead the355

method to cluster together traits with similar scales of variability, when it is often more desirable356

to identify traits with similar relative divergence patterns. As a result, it may often be beneficial to357

transform matrices to standardize the variances across all the traits. Since the units of358

measurement of continuous traits are typically arbitrary, this transformation is not likely to359

introduce biases.360

Nevertheless, alteration of the scale of continuous traits may often change the interpretation of361

results, and so should be performed thoughtfully. In cases where phenotypes are quantified using362

a single, shared set of units, standardization of the variances across traits erases information363

characterizing absolute evolutionary rate. In such carefully constructed datasets, including the364

matrix of developmental sequences used in the empirical example above, researchers may wish to365

quantify differences in absolute evolutionary rate across characters. For instance, using the same366

dataset, Germain and Laurin (2009) demonstrated substantial variability in absolute rate across367

traits. Study of absolute and relative rates can each yield unique insights into evolutionary368

processes, and so the scaling of traits should be considered carefully. Although not explored here,369

my approach has the flexibility to examine both absolute and relative disparity depending on370

whether or not variances have been standardized between traits. Identification of shared signal in371

relative disparity is a more challenging clustering problem, since the erasure of variation in372
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empirical variance creates a flatter likelihood surface, and so the analysis of appropriately373

measured and scaled traits for differences in absolute disparity is possible using my approach, and374

likely an easier problem than the examples presented here.375

Phylogenetic signal and evolutionary patterns and processes376

Previous approaches to characterizing modularity often emphasize the need to identify377

phylogenetic signal in the data to justify the use of phylogenetic comparative approaches (Laurin378

2014). Although the approach introduced here uses phylogenies, data need not explicitly display379

phylogenetic signal for the approach to be useful. This is because the method uses a species tree380

assumed to reflect true divergences as a scaffolding to fit observed patterns of evolutionary381

divergence. Since the branch lengths used in this approach reflect disparity, and so can382

accommodate patterns ranging from very weak phylogenetic covariance (star-like topology), to383

the strong covariance expected under neutral, clock-like phenotypic change by altering the branch384

lengths.385

Although Brownian motion is often interpreted in comparative analyses as a neutral process of386

phenotypic change reflecting genetic drift (e.g., Butler and King 2004) occurring under a single387

rate, the parameterization used in my approach is more ambiguous. As in previous approaches388

(Felsenstein 1981), rate and time are confounded with one another. As a result, a long branch389

representing high disparity to adjacent lineages could reflect either a fast rate, or a long time of390

divergence. As a result, a tree with heterogeneity in branch lengths could express variation in391

evolutionary rates across lineages, or tips that were sampled at different points in time. Since392

phenotypic disparity can be generated by a broad range of processes at the population level, the393

phylogenetic Brownian model used here does not assume that the traits are selectively neutral.394

Moving forward395
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Although the results of the empirical and simulated analyses are generally encouraging, they396

also reveal substantial hurdles in the use of the method moving forward. Accuracy decreases with397

the number of categories, indicating the need to develop and evaluate more refined approaches to398

both the search procedure and in model averaging. Nevertheless, the ability of the graph-based399

averaging procedure shown in the empirical analysis to improve the quality of the final result and400

sort out overlapping, but conflicting information across a set of well supported configurations401

increases the prospects for the method to handle increasingly large phenotypic datasets. Finally,402

although possessing caveats, the approach that I introduce here represents a step forward in the403

analysis of phenotypic data toward a more thorough integration of studies characterizing tempo404

and mode and those identifying modules and mosaic patterns in evolution, and toward the405

analytical tractability of large phenotypic datasets.406
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Supplemental Information410

Index Bone Laurin 2014 module greedo module

0 coronoid 1 1

1 vomer 1 1

2 palatine 1 1

3 dentary 0 0

4 premaxilary 0 0

5 prearticular 0 0

6 squamosal 0 0

7 parasphenoid 0 0

8 frontal 0 0

9 parietal 0 0

10 pterygoid 0 0

11 exoccipital 0 0

12 maxilla 0 0

13 quadrate 0 0

14 opisthotic 0 0

15 prefrontal 0 0

16 prootic 0 0

17 stapes 0 1

18 orbitosphenoid 0 0

19 nasal 0 0
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Index Bone Laurin 2014 module greedo module

20 septomaxilla 1 1

Table S1. Module assignments from original study (Laurin 2014) and the weighted graph in411

Fig. 3e. Modules are given arbitrary labels that are consistent for both studies. The two412

arrangements differ only in the assignment of the stapes developmental sequence.413

Tree model414

Each component of the classification model describing the trait matrix is defined by a415

phylogeny where the topology is fixed, but its branch lengths are free to vary and calculated from416

the constituent traits. Branch lengths are expressed in units of disparity and are calculated using a417

Brownian model of evolution. The distribution underlying the traits belonging to each partition418

are assumed to be multivariate Gaussian, with variances between taxa defined by the product of419

their evolutionary distance measured in absolute time and the instantaneous rate parameter (σ).420

The phylogenetic comparative methods literature often estimates σ alone by assuming a fixed421

timescale given by branch lengths that have been scaled to absolute time using a clock model.422

However, here the absolute times are assumed to be unknown, and the rate and time parameters423

are allowed to covary. As a result, branch lengths are expressed in units of Brownian variance (or424

σ2t). This describes the amount of divergence between taxa, and so can be interpreted as425

estimates of phenotypic disparity, averaged across all traits.426

The likelihood is calculated in a recursion from the tips to the root after Felsenstein (1973).427

Full derivations of the likelihood and algorithm are also given by Felsenstein (1981) and428

Freckleton (2012), and summarized briefly here. The tree likelihood is computed from the429
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phylogenetic independent contrasts (PICs) using a ‘pruning’ algorithm. Each internal node is430

visited in a postorder traversal, and the log-likelihood, Lnode is calculated as univariate Gaussian,431

with a mean equal to the contrast between the character states, x1 and x2 at each subtending edge432

and variance calculated as the sum of each child edge, v1 and v2:433

Lnode =
1

2
∗ log (2π) + log (v1 + v2) + (x1 − x2)2

v1 + v2
(5)

The PIC, xinternal, is calculated at each internal node and used as the character representing the434

internal node during the likelihood computation at the parent node. The edge length of the435

internal node, vinternal is also extended by averaging the lengths of the child nodes.436

xinternal =
(x1 ∗ v2) + (x2 ∗ v1)

v1 + v2
(6)

vinternal = vinternal +
(v1 ∗ v2)
(v1 + v2)

(7)

The total log-likelihood of the tree, Ltree is calculated by summing the log-likelihoods437

calculated at each of the n internal nodes.438

Ltree =
n∑

node=1

Lnode (8)

The branch lengths associated with each component are estimated using an439

Expectation-Maximization procedure that leverages the analytical solution to the maximum440

likelihood (ML) branch lengths for a 3-taxon star topology. In this procedure, the tree is treated as441

unrooted. Picking a single internal node, PICs are calculated to each of the three connected442

branches. These are treated as ‘traits’ at the tips of a three-taxon tree. The edge lengths of the443
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pruned tree (vi) is then computed analytically using the MLE solutions for a three taxon tree444

(Felsenstein 1981). This procedure is performed on all of the internal nodes. This process is445

iterated until the branch lengths and the likelihoods converge, yielding a local optimum of the446

likelihood function. The algorithm and derivation of the 3-taxon ML solutions are given a447

detailed explanation by Felsenstein (1981) and summarized by me in a previous article448

(Parins-Fukuchi 2018).449

Information criteria and overfitting450

In the analyses performed here, I exclusively used the AIC, in lieu of the corrected version,451

AICc, and the Bayesian Information Criterion (BIC). Previous authors have suggested that the452

AICc should be generally preferred to the uncorrected version (Burnham and Anderson 2002).453

My preference for the AIC was driven by several factors. The number of clusters is generally454

completely unknown prior to the analysis, and perhaps more importantly, there is generally no455

single ’true’ clustering underlying the mosaic evolutionary patterns sought by the method. As a456

result, it might generally be preferable in the context of addressing comparative questions to457

identify a small number of spurious components in the final configuration than to ignore458

important biological variation that could be missed due to the steeper penalty imposed by the459

AICc. The analyses here support this justification. The simulated analyses show that, when AIC460

is used, overestimating the number of components is not a major problem (Fig. 2). In addition,461

the results of the empirical analysis suggest that more coherent patterns emerge when several462

well-supported configurations are averaged. If spurious partitions are encountered in some463

arrangements, averaging over the results should generally reveal reasonably strong connections464

between points occupying overfit components.465

Although BIC has been used successfully to select the number of components in mixture466
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models (Fraley and Raftery 1998, 1999), I preferred the behavior and basis of AIC for these467

analyses. BIC assumes that the true model is within the set of candidate models, and so can be468

sensitive to model-misspecification (Wagenmakers and Farrell 2004). This assumption is469

incompatible with the goals of my method, which does not seek to identify a single ’true’470

configuration, but instead characterize the major axes of heterogeneity in disparity across471

lineages. This goal is more consistent with AIC, which simply seeks to identify the model that472

yields the lowest amount of information loss relative to the dataset. Despite my preference for473

AIC in the analyses presented here, AICc or BIC may be more appropriate in other situations. As474

such, researchers should be thoughtful in their choice of information criterion when performing475

the approach introduced here.476
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