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Abstract 

Mechanistic modeling of signaling pathways mediating patient-specific response to therapy 

can help to unveil resistance mechanisms and improve therapeutic strategies. Yet, creating 

such models for patients, in particular for solid malignancies, is challenging. A major hurdle 

to build these models is the limited material available, that precludes the generation of large-

scale perturbation data. Here, we present an approach that couples ex vivo high-throughput 

screenings of cancer biopsies using microfluidics with logic-based modeling to generate 

patient-specific dynamic models of extrinsic and intrinsic apoptosis signaling pathways. We 

used the resulting models to investigate heterogeneity in pancreatic cancer patients, 

showing dissimilarities especially in the PI3K-Akt pathway. Variation in model parameters 

reflected well the different tumor stages. Finally, we used our dynamic models to 

efficaciously predict new personalized combinatorial treatments. Our results suggest our 

combination of microfluidic experiments and mathematical model can be a novel tool toward 

cancer precision medicine.  
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Introduction 

Charting the dynamic wiring of signaling networks is of paramount importance to understand how cells 

respond to their environment. Identifying the differences in this wiring between normal and cancerous 

cells can shed light on the pathophysiology of tumors and pave the way for novel therapies (Saez-

Rodriguez et al, 2015; Werner et al, 2014; Zañudo et al, 2018). A powerful tool to gain insight into 

these processes is to monitor the response of cells to multiple perturbations. When combined with 

mathematical modeling, such data can be used to determine cell type-specific wiring phenomena, 
predict efficacy of drug treatments, and understand resistance mechanisms (Eduati et al, 2017; Hill et 

al, 2017; Saez-Rodriguez et al, 2011; Merkle et al, 2016; Klinger et al, 2013). 

Application of this strategy has been limited so far to in vitro contexts, as the experimental 

technologies to generate perturbation data require large amounts of material, which are unavailable 

from most primary tissues such as solid tumors. Recently developed organoid technologies allow to 

generate large amounts of material ex vivo, enabling such screens in principle. However, they would 

be associated with large costs and, while recapitulating some of the features of the tumor physiology, 

the cells unavoidably diverge from the primary tumor as they are grown ex vivo (Letai, 2017). We 
have recently developed a novel strategy based on microfluidics that enables testing apoptosis 

induction upon a good number of conditions (56 with the current settings, with at least 20 replicates 

each) starting from as little as one million viable cells. Cells are encapsulated in 0.5 μl plugs together 

with an apoptosis assay and single or combined drugs. Using valves to control individual fluid inlets 

allows the automatic generation of plugs with different composition. These Plug-Based Screenings 

(PBS) are suitable to collect such drug response datasets even with the very limited number of cells 

available from tumor resection biopsies (Eduati et al, 2018).   

In this study, we set out to construct cell type- and patient-specific models from the drug response 

data obtained using the PBS technology (overview of the pipeline in Figure 1A). We took advantage 

of our tool CellNOptR (Terfve et al, 2012), to train a general network of the underlying intrinsic and 

extrinsic apoptosis pathways from data obtained for two cell lines and biopsies from four pancreatic 

tumor patients at different stages. We found the models to be a useful tool to understand specific 

pathway deregulations and to predict new patient-specific therapies.  

 

Results 

Data and modeling of apoptosis pathways 
Experimental data were generated using a novel plug-based microfluidics screening (PBS) platform, 

which allowed performing combinatorial drug screening of biopsies from human tumors (Eduati et al, 

2018)  (see Methods). Data represents caspase-3 (Cas3 in Figure 1B, marked in blue) activation 

after perturbation with 10 different compounds including seven kinase inhibitors (targeting IKKs, MEK, 
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JAK, PI3K, EGFR, AKT, PDPK1 - inhibited nodes are depicted in red in Figure 1B), one cytokine 

(TNF, stimulated node, in green) and two chemotherapeutic drugs (Gemcitabine and Oxaliplatin). All 

10 compounds were tested alone and in all 45 possible pairwise combinations (Figure 1C) on two 

pancreatic cancer cell lines (AsCP1 and BxPC3) and biopsies from four patients with pancreatic 
tumors at different stages (one intraepithelial neoplasia, two primary tumors and one liver metastasis). 

 

To investigate the signaling mechanisms behind the differential drug responses of our cell lines and 

patients, we derived a general logic model of apoptosis pathways involved in the regulation of Cas3 

(our measurement), which is considered as effector node and indicator of apoptosis. Models were 

then trained using the patient-specific experimental data to obtain personalized models. The general 

model (Figure 1B) was built integrating information derived from literature and from public 

repositories (details in Methods section). The model describes both intrinsic (mediated by the 
mitochondria, named Mito in the model) and extrinsic (mediated by Tumor Necrosis Factor Receptors 

TNFRs) apoptotic signals, including nodes encoding for both anti- and pro- apoptotic effects. We 

incorporated in the model all nodes perturbed by specific compounds in our screening such as 

targeted drugs (kinase specific inhibitors) and the cytokine TNF. The effect of chemotherapeutic DNA 

damaging drugs was not included in the model since they inhibit DNA replication rather than acting 

directly on specific signaling nodes. Since our screening included two AKT inhibitors (i.e. MK-2206 

and PHT-427) with different mechanisms of action (allosteric and PH domain inhibitors, respectively), 

they were modeled as acting on two different nodes (AktM and AktP respectively), both needed for 
the activation of AKT. 

 

The logic model includes AND gates (dots in Figure 1B) when all upstream regulators are needed to 

activate a node, while cases with multiple independent regulators are considered as OR gates. The 

logic model is interpreted using the logic based ordinary differential equation formalism (logic ODEs) 

(Wittmann et al, 2009) as implemented in CellNOptR (Terfve et al, 2012). This formalism allows to 

maintain the simple causal structure of logic models, while considering also the dynamic nature of the 
interactions and the continuous scale for the activation of the nodes, by using ODEs. As previously 

described (Eduati et al, 2017), we consider one parameter for each edge j → i in the network, which 

characterize the strength of the regulation of species i dependent on species j and one parameter for 

each node i, which represents the responsiveness of the node (see Methods). 

 

Calibration of the apoptosis model for cell lines 

The parameters of the generic model were fitted separately to the data of each cell line, resulting in 

specific models tailored to the experimental data for each cell line (more details in Methods section). 

Parameter fitting was repeated 10 times and performances were assessed using different metrics to 

compare model simulations with the experimental data, showing good and quite robust performances 

(average metrics for AsPC1 and BxPC3 respectively: Pearson correlation 0.72, 0.74; mean squared 
error 0.03, 0.02; coefficient of determination 0.5, 0.5; Appendix Figure S1A). Model simulations for 
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the best specific models were compared with the corresponding measured experimental data, 

showing a very good agreement (Pearson correlation equal to 0.89 and 0.83 for AsPC1 and BxPC3, 

respectively; Appendix Figure S1B-C). 

 
The calibrated models for these two cell lines were then used to uncover potential differentially 

regulated mechanisms which are behind the different drug responses of the cell lines. Due to the 

limited number of data and the complex nature of the signaling pathways involved in activation of 

apoptosis, not all model parameters can be estimated with the same confidence. In order to estimate 

the variability of the optimised parameter values, we derived a bootstrapped distribution for each 

parameter for each cell line, by repeating the optimisation 500 times while randomly resampling the 

data with replacement. These distributions were then used to compare the two cell lines using 

statistical tests to highlight significant differences (Wilcoxon sum rank test, adjusted p-value < 0.01, 
effect size > 0.2, see Methods) as represented in Figure 2A. The comparison revealed some 

regulatory mechanisms which are upregulated in either AsPC1 or BxPC3. Additionally, the dynamic of 

Cas3 activation appears to be faster in AsPC1 (node border in green). Main differences involve the 

PI3K-Akt pathway. The main linear pathway is more active in BxPC3, whereby the negative feedback 

loop, from p53 to PIP3 mediated by PTEN, is stronger in AsPC1. These differences in the model 

parameters cause changes in the dynamic behaviour of the system (Figure 2B) and are behind the 

differential activation of Cas3 in response to drugs.  

 
We then investigated if these differences in dynamic behaviour could be derived from their genetic 

makeup (Garcia-Alonso et al, 2018). From the proteins in our model, only KRAS is functionally 

mutated in AsPC1 and TP53 in BxPC3.  Furthermore, no known direct regulators of the nodes in our 

model - from those in Omnipath (Türei et al, 2016), a compendium of pathway resources - was 

mutated. Interestingly, KRAS and TP53 are indeed involved in the pathways that we found to be 

differentially activated between the two cell lines, but on their own they cannot explain the differences 

in pathway structure in terms of strength of regulations. Therefore, information on mutations alone 
would not be sufficient to describe the dynamics of the pathways that mediate apoptosis upon drug 

treatment. The same holds when looking at basal transcriptomics (Iorio et al, 2016) (Appendix Figure 
S2), supporting the observation that static data are not sufficient to investigate the dynamics of a 

complex system. 

 

Model predictions and validation 

We decided to test the predictive power of our cell line-specific mathematical models in two ways: 1) 

using cross-validation on the existing dataset, and 2) predicting the effect of new drug combinations 

that can be experimentally tested. 

 
First, optimisation was repeated randomly selecting eight conditions as validation set and using the 

remaining 36 for training (bootstrapping 100 times). This procedure was repeated for 20 randomised 
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test sets and results show a good correlation between the predictions and the measurements in the 

validation set (average Pearson Corr = 0.7). Even when the cross-validation was repeated removing 

all the experiments involving a specific drug each time (instead of random ones, Figure 2C), 

predictions are still very good (Pearson Corr range 0.66-0.97) for all drugs except PHT-427 (Akt and 
PDPK1 inhibitor, Pearson Corr = -0.29). This implies that experiments with PHT-427 are essential to 

define the models.  

 

Mathematical models were then used to simulate the effect of different drug combinations acting on 

the pathways that were not previously tested using PBS. For each cell line we simulated the effect of 

186 new perturbations (12 single drugs and 162 drug combinations), by inhibiting the corresponding 

node in the model. Varying confidence of model parameter estimation from the available data is 

expected to affect the ability to predict certain conditions. By using the family of models optimised 
using bootstrap, we obtained a distribution of the predicted activation of Cas3 in response to the 

different simulated conditions, therefore retaining information on the confidence we have for each 

prediction. In particular we focused on the predictions which were significantly different between the 

two cell lines (Wilcoxon sum rank test, adjusted p-value <0.01, effect size > 0.3, see Methods). To 

select drug perturbations highly specific for each cell line, we considered only those with median 

predicted value for Cas3 > 0.45 and ranked them based on the effect size. This results in 4 conditions 

specific for BxPC3 and 49 for AsPC1 (Figure 2D, Appendix Figure S3).  

 
We then tested experimentally one of the top combinatorial therapies predicted to be highly specific 

for AsPC1 based on our mathematical models, consisting in the combination of a PI3K inhibitor 

(Taselisib) with a drug targeting the BclX node (Navitoclax, a Bcl-2/Bcl-xL/Bcl-W antagonist). Agents 

targeting the PI3K pathway in combination with a Bcl-2 family inhibitor have been previously 

suggested to be relevant in the context of pancreatic cancer (Tan et al, 2013). Hence, being able to 

predict the efficacy of this combination for specific patients (or cell lines in this case) would be highly 

desirable. Our validation experiments proved that the combination of Taselisib and Navitoclax is more 
efficacious and synergistic (based on Bliss independence model) in AsPC1 than in BxPC3 cells 

(Figure 2E, Appendix Figure S4), confirming our model-based predictions. 

 

Personalized apoptosis models for patients' tumors 

The same fitting pipeline previously described for the cell lines was applied to the data from the four 

pancreatic tumor biopsies (intraepithelial neoplasia, two primary tumors and one liver metastasis) to 

obtain personalized models. Patient-specific parameter distributions were used to investigate patient 

heterogeneity at the level of mechanisms involved in apoptosis signaling pathways. Results are 

summarized in Figure 3A, showing the 16 (out of 93) parameters which are different in at least one 

patient (Kruskal-Wallis rank sum test, adjusted p-value < 0.01, effect size > 0.2, see Methods). For 
these parameters, we also performed post-hoc pairwise statistical tests to directly compare all 

patients (Wilcoxon sum rank test, adjusted p-value < 0.01, effect size > 0.2, see Methods). For 
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instance, for the parameter representing the EGFR → JAK regulation the null hypothesis of equal 

distribution is not rejected when comparing the two primary tumors (lower two boxes in gold) between 

themself and with respect to intraepithelial neoplasia (top-left box, half gold next to the corresponding 

interaction in Figure 3A), however it is rejected when comparing each of them with liver metastasis 
(top-right box, in cyan). Also the comparison of intraepithelial neoplasia and liver metastasis suggests 

that the two samples do not come from different distributions (top boxes, both cyan). 

 
Overall, the most different sample is the liver metastasis (different from all the others in 7 of the 16 

heterogeneous parameters (44%)), especially in the extrinsic apoptosis pathway mediated by 

complex I, cIAPs and Cas8. This larger dissimilarity could be justified by the difference both in stage 

and in tissue, since all other samples were resected from the pancreas. Also, the intraepithelial 

neoplasia shows a quite high level of dissimilarity (37.5%), localized in particular in the IKKs-NFkB 

pathway, which could reflect the more advanced stage of the disease. Interestingly, the two primary 

tumors are the most similar with each other (similar in 11 out of the 16 parameters, corresponding to 

69%). However, significant differences were found especially in the PI3K-AKT pathway, similarly to 
what we observed for the two pancreatic cancer cell lines. Importantly, these similarities, which reflect 

the different tumor stages, were not evident directly from the data, where primary tumor #1 clusters 

closer to the liver metastasis and primary tumor #2 closer to the intraepithelial neoplasia (Appendix 
Figure S5). 

 

Model-based prioritisation of new personalized treatments 
The personalized models can be used not only to investigate the patient-specific deregulated 

mechanisms, but also to predict novel experimental conditions as previously shown for the cell lines. 

For example, we can simulate the effect of a new kinase inhibitor by inhibiting the corresponding node 

in the model and predict its effect on Cas3 and thus on apoptosis. By implementing in silico testing, 
we can increase the throughput of our screening method for each patient, allowing to predict the effect 

of new potential therapies which cannot be experimentally tested due to limited biopsy material.  

 

For each patient, we simulated the effect of 12 new single and 162 combinatorial therapies (186 in 

silico perturbations in total) targeting nodes in our model. Having applied bootstrap when deriving our 

personalized optimized models, as previously described, we obtained a distribution of the predictions 

for each simulated perturbation. This allowed us to perform statistical tests to compare the effect of 

the same treatment across patients and focus on patient-specific effects, removing 129 out of the 186 
treatments that were not statistically different between patients (Kruskal-Wallis rank sum test, 

adjusted p-value < 0.01, effect size > 0.3, see Methods). With this step, we removed treatments that 

could not be predicted with sufficient confidence for any patient (broad distributions), and the 

treatments showing high predicted efficacy for all patients, that could be likely due to general toxicity. 

For the remaining 57 conditions, we performed also post-hoc comparison between all patient pairs 
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(Wilcoxon sum rank test, adjusted p-value < 0.01, effect size > 0.3, see Methods). Similar to what we 

noticed comparing model parameters, using these predictions we observed that primary tumors 

behave most similar as they show no statistical difference in 79% of the cases. This is much higher 

than the similarity observed in comparison with intraepithelial neoplasia (60% and 43% for primary 
tumor #1 and #2, respectively), or the liver metastasis (12% and 11% respectively for primary tumor 

#1 and #2). 

 
Finally, in order to prioritize new patient-specific promising treatments, we ranked the simulated 

perturbations for each patient by patient specificity (i.e. higher effect size in the pairwise comparison); 

Figure 3B shows the top ten for each patient. Interestingly, there are three treatments showing strong 

potential (among the top ten) for both primary tumors. Two of these consist in targeting Mdm2 in 

combination with JAK and IKKs, respectively. Mdm2-p53 binding is known to be an important target in 

pancreatic cancer, where TP53 mutations occur in 50-70% of the patients (Morton et al, 2010). 

Finding treatments to combine with drugs disrupting this binding, like Nutlin-3 (Khoo et al, 2014), is 

currently of great interest (Bykov et al, 2018) especially in pancreatic cancer (Izetti et al, 2014). In 
particular, activation of the JAK-STAT pathway has been shown to be common in pancreatic cancer 

(Matsuoka & Yashiro, 2016) and is often associated with TP53 mutation (Wörmann et al, 2016), 

suggesting that targeting Mdm2-p53 and JAK could be indeed a promising combination therapy for 

some patients. Based on our predictions, combinatorial targeting of Mdm2 and JAK is also efficacious 

in the intraepithelial neoplasia, while targeting Mdm2 in combination with IKKs is more efficacious in 

the liver metastasis. 

 

Discussion 

Given the intrinsic complexity of cancer, experimental data obtained recording the cellular response to 

perturbations are essential to study cancer cells as a dynamic system. This functional data provides 

complementary information to that obtained by genomic profiling in steady state, and is particularly 

relevant for investigating therapeutic efficacy of anticancer drugs (Letai, 2017; Yaffe, 2013).  Further 

knowledge can be extracted by analysis of this experimental perturbation data via mathematical 
modeling, providing a rationale for mechanism-based interpretation of drug response.   

 

We here present an approach to effectively build mechanistic models from integration of large-scale 

perturbation datasets and prior knowledge of the underlying pathways. Because of the low material 

needed by our recently developed PBS platform (Eduati et al, 2018), our approach can be applied not 

only to in vitro but also to ex vivo settings, as demonstrated in this study. Our tool allows us to dissect 

functional differences in the signaling pathways by comparing the model parameters. These 

parameters recapitulate similarity between different tumor stages better than the drug screening data, 
suggesting that they can shed light on the molecular basis of tumors at the individual patient level. In 

addition, the tool can be used to rationally select efficacious combination therapies, as illustrated on 
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the study in cell lines. We chose a simple logic formalism so that we could efficiently model large 

networks despite measuring a single readout. In silico and in vitro analyses demonstrate that our 

approach is robust. In summary, our combination of mathematical modeling and ex vivo perturbation 

data helps to investigate possibly deregulated mechanisms (or pathways) and to explain specific 
responses to drugs directly on patients’ biopsies. 

 

The PBS platform can be extended in the future to provide richer data, and thereby improve the 

mathematical models. We have so far generated PBS data with a large number of perturbations but a 

single readout (apoptotic marker). While informative, in particular to study the effect of anti-cancer 

drugs, it is limited to capturing a subset of signaling networks. PBS can in principle be applied to other 

markers, as well as connected to richer output technologies, such as high-content imaging, or single-

cell RNA sequencing. We expect that the breadth and depth of our models will increase when 
expanding readouts. In addition, our modeling approach is not limited to PBS, but can be used with 

different types of data describing molecular or phenotypic changes upon perturbation. Besides the 

readouts, extension to multi-time-point measurements will provide additional insight into the dynamics 

and feedback regulation of the system. Finally, a higher granularity in drug concentrations tested will 

provide information on intermediate effects. We expect that further developments of technologies for 

functional screening of cancer patient biopsies will follow in the near feature (Letai, 2017), and this will 

reflect in further improvement of patient-specific mathematical models that can be obtained using our 

pipeline. 
 

Considering a family of models allows us to account for cell signaling heterogeneity for both estimated 

parameters values and model predictions (Kim et al, 2018). This is currently taken into account when 

comparing models and when making predictions of efficacious therapy. By using statistical tests, we 

consider as promising only combinations that are robustly more efficacious for each individual 

patient/cell line. Having few cells per plug (~100) and many replicates (at least 20 per condition), we 

have collected information on the heterogeneity of cellular response to drugs within a patient sample, 
which could be taken into account when building the model. Statistical models could be used in the 

future also to distinguish between the variability due to technical noise (same for all plugs) and the 

variability due to heterogeneity of cellular response to drugs (specific for each condition). Alternatively, 

different cell types can be sorted out prior to the PBS experiments, to obtain cell type-specific 

information. 

 

Generation of perturbation data followed by mathematical modeling has proven to be a powerful tool 

to study cancer biology and therapies in vitro. The insights from in vitro models can be extrapolated to 
patient data using a patient’s static profiling, such as gene expression (Fey et al, 2015). When no 

other data is available, this is certainly a very valid strategy to generate personalized models. Our 

work shows however, that this basal information cannot recapitulate the insights obtained by data 

upon perturbation. If one can generate such data directly from patient samples, we should be able to 

generate more precise models that provide more accurate insights and predictions. We believe the 
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strategy presented in this work can contribute to the development of functional precision cancer 

medicine.  
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Methods 

Microfluidics setup, screened compounds and samples 
Data were generated using our plug-based screening (PBS) platform as presented in (Eduati et al, 

2018). A cell suspension is generated from cell lines in culture or from patient biopsies (Figure 1A). A 

microfluidics chip is then used to automatically generale plugs with different chemical composition, 

using valves that can be opened and closed using a Braille display. In each plug, cells (about 100) are 

encapsulated together with one or two compounds and a rhodamine 110 (green-fluorescent dye) 

based substrate of caspase-3 ((Z-DEVD)2-R110), which is a marker of apoptosis. The activation of 

caspase-3 causes the cleavage of the substrate and the subsequent release of the green 

fluorescence in the plug. Alexa fluor 594 (orange-fluorescent dye) is added to the cell suspension to 
verify the proper mixing of the different components in each plug. 

 

Samples are produced in a sequential way in multiple replicates (12 for perturbations, 20 for untreated 

control), and each sample is followed by a corresponding barcoding sequence produced using two 

different concentrations of Cascade Blue dye (blue-fluorescent dye) to encode the sample number in 

binary digits. The full sequence of conditions is repeated at least twice (resulting in a total of at least 

24 replicates per perturbation). Aqueous plugs are separated by mineral oil plugs to avoid cross-
contamination. All plugs are collected in a tube and incubated overnight for 16 hours at 37°C and 5% 

carbon dioxide. Fluorescence in three channels (green, orange, blue) is measured for each plug by 

exciting it with lasers (375, 488 and 561 nm) and detecting the emissions with corresponding three 

photomultiplier tube (PMT) detectors (450, 521 and >580 nm).  

 

The 10 screened compounds (alone and in all pairwise combinations) include two cytotoxic drugs 

(Gemcitabine, Oxaliplatin), standard-of-care for pancreatic cancer, 7 kinase inhibitors (ACHP: IKKi, 

AZD6244: MEKi, Cyt387: JAKi, GDC0941: PI3KI, Gefitinib: EGFRi, MK-2206: AKTi. PHT-427: AKTi & 
PDPK1i) and one cytokine (TNF). 

 

In accordance with the Declaration of Helsinki of 1975, human pancreas biopsies (primary tissue 

samples) were obtained during routine clinical practice at University Hospital Aachen, Aachen, 

Germany, and were provided by the RWTH Aachen University Centralized Biomaterial Bank (cBMB) 

according to its regulations, following RWTH Aachen University, Medical Faculty Ethics Committee 

approval (decision EK 206/09). Sample processing at the EMBL in Heidelberg, Germany, was 

approved by the EMBL Bioethics Internal Advisory Committee.  

 

Building the apoptosis pathway model 

The logic model shown in Figure 1B was derived by manual literature curation starting from the 

model described by Mai and Liu (Mai & Liu, 2009) and integrating additional information in order to 

include all nodes perturbed in our experiments and to well describe pathway cross-talks. Logic rules 
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were also adopted from the Boolean model of apoptosis by (Schlatter et al, 2009).  We modeled both 

the intrinsic (mediated by the mitochondria) and the extrinsic (mediated by death receptors, TNFRs) 

apoptosis signal including nodes encoding both anti- and pro- apoptotic effects. Binding of TNF to 

TNFRs activates the extrinsic pathway mediated by Caspase-8 (Cas8 in Figure 1B) activation of 
Caspase-3 (Cas3). The two distinct Caspase-8 activation pathways (Wang et al, 2008) are 

represented by the cascade involving complex I (composed of RIPK1, TRADD, TRAF2), which 

induces the formation of two different Caspase-8 activation complexes: complex IIA (TRADD, RIPK1, 

FADD, Pro-caspase 8) and complex IIB (RIPK1, TRADD, FADD, Pro-Caspase 8, cFLIP) that can be 

inhibited by cFLIP and cIAPs respectively. For simplicity, Caspase-8 is modeled as a separate node 

(Cas8) regulated by the two complexes. TNF can also regulate the intrinsic pathway through the 

activation of NFkB (anti-apoptotic node) by removal of its inhibitor IkB. The activation of the intrinsic 

pathway is executed by the mitochondria through the release of SMACs (second mitochondria-
derived activator of caspases) and Cytochrome c. The former deactivates IAPs, which are anti-

apoptotic proteins, the latter binds to Apaf1 (Apoptotic protease activating factor-1) and pro-caspase9 

which is converted to its active form of Caspase-9 (Cas9) and in turn activates Caspase-3 (Cas3).  

Both Akt and ERK have an anti-apoptotic effect by phosphorylating BAD (Balmanno & Cook, 2009) 

and thus unbinding it from BclX and this can be modelled as an OR gate (She et al, 2005). We also 

included the pro-apoptotic effect of ERK as regulator of p53 (Cagnol & Chambard, 2010). Additional 

cross-talks from RAS to MEKK1 and PI3K pathways were included as described by Grieco and 

colleagues (Grieco et al, 2013). Additional interactions between nodes in the network were found 
using Omnipath (Türei et al, 2016) and through manually curating the literature supporting the 

interactions in the databases. For example, in this way we found support for potential context 

dependent cross-talks from PDPK1 to MEK (Aksamitiene et al, 2012; King et al, 2000; Borisov et al, 

2009) and to IKK/NFkB signaling (Tanaka et al, 2005) which were therefore added to our prior 

knowledge network. 

 

Data normalisation and formal definition of logic ODEs 

Data from the PBS screening were pre-processed using the pipeline for data analysis and quality 

assessment described in (Eduati et al, 2018) and implemented in R 

(https://github.com/saezlab/BraDiPluS). In short, we used the signal in the orange channel (see 

description of the Microfluidics setup) to discard corrupted data corresponding to improperly formed 

plugs. For each screened condition in each run (i.e. full sequence of all tested conditions - see 

description of the microfluidics setup), we computed the median across replicates (12 plugs produced 
per condition) and the corresponding z-score. Additionally we compute the FDR-corrected p-value 

with respect to the untreated control (one-sided Wilcoxon rank-sum test). Median z-score and 

combined p-values (using Fisher's method) were then computed across different runs (at least two 

per sample). In order to be used in the logic formalisms, data were scaled between 0 (untreated 

control) and 1 (maximum activation). Conditions which were defined as not significantly different with 

respect to the untreated control (combined p-value < 0.05) were also set to 0. 
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For implementing and optimising the mathematical models, we used the CellNOptR tool (Terfve et al, 

2012) and a modified version of the CNORode add-on to model logic-based ordinary differential 

equations (ODEs), as presented in (Eduati et al, 2017) and available at 
https://github.com/saezlab/CNORode2017. Using the CellNoptR package, the logic model was 

compressed as described in (Saez-Rodriguez et al, 2009) to reduce model complexity. In the logic 

ODE formalism (Wittmann et al, 2009), each node (i.e. species ) is modeled by an ODE with a 

continuous update function  representing the regulation by the  upstream nodes.  

 

 
 

The tunable parameter  represent the life-time of species . We define each regulation using a 
sigmoidal transfer function: 

 

 
 

Where parameters  and  are fixed to 3 and 0.5 respectively, and the tunable parameter  
represent the strength of the regulation of species  on species  (edge ). 

 

Parameters were estimated by fitting the model simulation to the experimental data using the 

optimization toolbox MEIGO (Egea et al, 2014). Bootstrapped distributions for all parameters were 

obtained by repeating the optimization resampling data with replacement. 

 

Statistical tests 

Non-parametric tests were used because they are highly robust against non-normality. Pairwise 

comparisons (both on parameters and on predictions) for cell lines were performed using Wilcoxon 

rank sum test. Kruskal–Wallis rank sum test (one-way ANOVA on ranks) was used when comparing 
multiple groups (i.e. for patients, both on parameters and on predictions) and followed by post-hoc 

pairwise comparison with Wilcoxon sum rank test on the parameters which are not equally distributed 

among all groups. Effect size w was computed for Wilcoxon rank sum test as , where Z is the 

statistics from the test and N is the number of observations, and for the Kruskal–Wallis rank sum test 

it was computed as  where 𝜒2 is the statistics from the test and N is the number of 

observations. P-values were always Bonferroni adjusted to correct for multiple hypothesis testing. 

Significance thresholds (reported also in the main text) were set to to 0.01 for all adjusted p-values. 

For the effect size, the threshold was set to 0.2 when comparing model parameters and 0.3 when 

comparing predictions (to further limit the number of significant testable predictions). 
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Validation experiments 

AsPC1 and BxPC3 cells were used at passage 2-4 after thawing and seeded at 12,800 or 8,000 cells 

per well, respectively, in a 96-well plate with RPMI media (supplemented with 10% FBS, 1% 

penicillin/streptomycin, 4.5 mg/mL glucose and 1 mM sodium pyruvate) on day 0. Drugs were added 

on day 1 and viability was measured after 72 hours using CellTiter-GloⓇ (Promega). Navitoclax has 

been used at fixed concentrations of 2.5 uM and 10 uM. Taselisib was used up to a concentration of 
10 uM in an 8-points 1:3 dilution series, spanning a 2000-fold range. We performed three biological 

replicates. For each biological replicate each data point was measured in at least three wells per plate 

(i.e. technical replicates). Raw data were preprocessed by subtracting the average background 

(blank) and removing outliers only if one out of three technical replicate was off by >30% compared to 

the other two. This resulted in a maximum removal of two data points per plate. Viability data were 

normalised to the negative control condition (i.e. DMSO treated cells). We fitted a four-parameter log-

logistic model using the 'drm' R package (Ritz et al, 2015) and computed the synergy score with Bliss 

independence model as implemented in the 'synergyfinder' R package (He et al, 2018).  
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Figures 

 
Figure 1. Apoptosis pathways and experimental data.  
A. Overview of the pipeline: Patient-specific mathematical models are built for each patient from the combinatorial 

microfluidics plug based screening (PBS) data measured on live cells from cancer patient biopsies. B. Logic 

model of intrinsic and extrinsic apoptosis pathways regulating Cas3 (our readout, blue node), including all nodes 

which are perturbed (stimulated in green, inhibited in red) in the experiments. C. Experimental data consisting of 

37 different experimental conditions (columns) for 6 samples (rows; 2 cell lines and 4 biopsies). 
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Figure 2. Models, predictions and validation for AsPC1 and BxPC3 cell lines.   
A. Differentially regulated mechanisms in AsPC1 or BxPC3, highlighted in green or purple depending on whether 

the corresponding estimated parameters are higher in AsPC1 or BxPC3, respectively. B. Time course simulation 

of PI3K-AKT pathway and related inhibitors in AsPC1 and BxPC3. Lines represent median values and error bars 

represent standard deviation from the bootstrapped simulations. C. Assessment of model predictions by cross-

validation, removing for each repetition all experiments involving one of the 8 drugs (the corresponding drug 

targets are reported in the legend) from the training set and using it as test set. Bad predictions (Pearson 

Correlation < 0.6 - which corresponds to removal of drug targeting PDPK1) are marked with empty dots. D. New 

drug combinations predicted to be highly specific for each cell line (only top 10). E. Experimental validation of the 

combination of PI3K (Taselisib) and BclX (Navitoclax) inhibitors predicted to be specific for AsPC1. Data shown 

are for three biological replicates, with 3 technical replicates each, for Navitoclax at 2.5 uM and different 

concentrations of Taselisib (8 points 1:3 dilution series), complete data are shown in Appendix. Boxplot (right 

panel) shows the corresponding synergy scores (Bliss model). 
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Figure 3. Patient-specific models of signaling pathway.  
A. Mechanisms which are differentially regulated among the patients are highlighted with thick black lines. 

Colored squares represent the same distribution (same color) or differential distribution (different colors) across 

the four patient samples. B. Patient-specific predictions of new drug combinations. Predictions are ranked for 

each patient and color coded to compare the efficacy with the other patients. 
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