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Abstract 23	

 Although cancer mechanisms differ from occurrence and development, some of them have 24	

similar oncogenesis, which leads to similar clinical phenotypes. Most existing genotyping studies look 25	

at "omics" data, but intentionally or unintentionally avoided that cancer is a time-dependent 26	

evolutionary process, biologically represented by the time evolution of tumor clones. We used the 27	

Bayesian mutation landscape approach to reconstruct the evolutionary process of cancer by acquiring 28	

somatic mutation data consisting of 21 cancer types. Four representative evolution patterns of pan-29	

cancer have been discovered: trees, chaos, biconvex, and Cambrian, and a strong correlation between 30	

these four evolutionary patterns and clinical aggressivity. We further explained the characteristics of 31	

the corresponding biological systems in the evolution of pan cancer by analyzing the function of 32	

differentially expressed protein-protein interaction networks. Our results explained the difference in 33	

clinical aggressivity between cancer evolution patterns from the evolution of tumor clones and 34	

exposed the functional mechanism behind. 35	
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Introduction 50	

Cancer is a multistage process that abnormal cells invade or spread to other parts of the 51	

body(Plummer et al. 2016), causing about 15.7% of human deaths(Wang et al. 2016). Different 52	

cancers vary a lot in prognosis and exacerbation. For example, patients with breast tumor have a 72% 53	

5-year survival rate in stage III, but only 3% pancreatic patients can survive after 5 years(Howlader N, 54	

Noone AM, Krapcho M, Miller D, Bishop K, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, 55	

Lewis DR, Chen HS, Feuer EJ 1975). Usually, similar oncogenesis will lead to similar clinical 56	

outcomes. For instance, different type of cancers sometimes positively respond to the same chemical 57	

analogous and vaccine(Howell-Jones et al. 2010), and share similar mutation frequency of genes in 58	

background for the related opening area and frequency of the double helix DNA strands(Perry Evans, 59	

Stefan Avey, Yong Kong 2013). This is the starting point of pan-cancer researches.	Scientists have 60	

tried diverse methods to identify pan-cancer pattern using omics data, e.g., somatic nucleotide 61	

variants (SNV)(Leiserson et al. 2015), copy number variation (CNV)(Zack et al. 2013), 62	

proteomics(Zhang et al. 2014) and DNA methylation(Yang et al. 2017). But the results are not as 63	

expected, because the occurrence and development of cancers is a time-dependent evolutionary 64	

process. Recent studies indicated that the tumor aggressivity always links to its heterogeneity(Jögi et 65	

al. 2012), and reflects in clinical outcomes. Analysis of cancer evolutionary process combined with 66	

time-dependent survivals could help us to figure out the clinical aggressivity of tumors. 67	

Cancers can be viewed as an evolutionary process based on the clonal selection and dynamic 68	

process of immune responses(Gong et al. 2009). The accumulation of somatic mutations during clonal 69	

expansion, combined with microenvironment variations(Nowell and Nowell PC. 1976), drives the 70	

evolutionary changes of tumor cells. The stochastic process is the theoretical foundation of cancer 71	

evolution. For instance, the linear theory came out in 2003(Nowak et al. 2003) compared the cancer 72	

evolution process with the Moran process(Nowak et al. 2003). Following nonlinear and branching 73	

theory(Anderson et al. 2011) reminded us to pay more attention to subclones and explore possible 74	

paths for cancer progression. In 2015, the big bang theory raised the idea that tumor expanded 75	

predominantly from an early clone mixed with numerous subclones(Sottoriva et al. 2015). Besides, 76	

recent studies also put forward a neutral evolutionary theory(Williams et al. 2016), similar to 77	
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Kimura’s(Kimura 1977). Our previous study on clear cell renal carcinoma reconstructed a 78	

phylogenetic tree model in a fashion of stage-by-stage expansion(Pang et al. 2018). Since these 79	

theories were based on the studies of different cancers, we need to use a uniform algorithm to figure 80	

out the evolution patterns of pan-cancer. 81	

In the current study, we reconstructed the evolution processes for pan-cancers with somatic 82	

mutations across pathological stages, based on which four representative evolutionary patterns (tree, 83	

chaos, biconvex and Cambrian) were proposed. Then we analyzed the similarities and differences of 84	

clinical aggressivity for these evolutionary patterns. We further explained the functional 85	

characteristics of the pan-cancer evolution pattern by a protein-protein interaction network based on 86	

the differentially expressed genes.  87	

 88	

Results 89	

Mutation and survival landscape of pan-cancer 90	

We collected clinical and genomic data sets of 21 types of cancers from the Cancer Genome 91	

Atlas (TCGA) cohort (The full names of cancers were listed in Table S1). Since not all of them were 92	

well-paired, we finally chose 5,134 samples with somatic SNVs for constructing evolution processes 93	

and 9,249 samples for survival analysis. The annotation information on related biological system, 94	

early detection of cancer, tumor type and M/C class were showed in Table S1. 95	

The gene mutation landscape indicated that mutation frequency differed among different 96	

types of cancers. For instance, SKCM and UCEC had high discreteness, while KIRC and THCA were 97	

centralized (Fig. 1a). Additionally, gene mutation frequency did not increase with the progress of 98	

pathological stages in most cancers (Fig. 1b, Table S2). Although mutation frequency always 99	

correlated with tumor deterioration for specific cancers, general survival outcome didn’t exhibit a 100	

consistence among pan-cancer (Fig. 1c). For example, even with a relatively low mutation frequency, 101	

OV showed a poor 5-year survival rate. Then we carried out a hierarchical cluster analysis with a 102	

combination of mutation frequency and 5-year survival rate (Fig. 1d). In the yellow box cluster, both 103	

OV and LUSC showed poor survival outcomes, but LUSC possessed a high mutation frequency. As 104	
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survival rate is a time corresponding symptom of cancers, we reconstructed evolution processes for 105	

cancers across pathological stages to figure out the similarities and differences of oncogenesis in pan-106	

cancer. 107	

Figure 1:	Mutation and clinical landscape of 21 types of cancers. (A). Mutation frequency of 21 108	

types of cancers. (B). Mutation frequency of 21 types of cancers in each pathological stages. (C). 109	

Survival curve of 21 types of cancers (Kaplan-Meier estimator). (D). Correlation heatmap of mutation 110	

(median mutation frequency) and survival (5-year survival rate) features in 21 types of cancers. 111	

 112	
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 115	

 116	

Reconstruction of pan-cancer evolution process and NMF cluster-based pattern  117	

Since genetic studies always focused on high-frequency mutations, the evolutionary path and 118	

essential variations with moderate frequency were missing generally. We employed the Bayesian 119	

Mutation Landscape (BML) methods to reconstruct evolutionary processes based on somatic 120	

mutations, and generated directed acyclic graphs (DAGs) of each cancer using four pathological 121	

stages representing four-time points during the tumor progression (Fig. S1). The bootstrap method 122	

was used to extract information with a highly statistical confidence (for detailed information, please 123	

see Methods). A total of 12 features were extracted, including DAG nodes, edges and key genes in 124	

each pathological stage. Here, we defined key genes as those appearing in more than one pathological 125	

stage. Interestingly, the four vectors extracted for nonnegative matrix factorization (NMF) clusters 126	

coincide with pathological stages: vector 3 and vector 4 were mainly contributed by stage I and II, 127	

respectively; vector 2 and vector 1 were mainly contributed by stage III and IV. In addition, stage III 128	

also had a slight contribution to vector 1 (Fig. S2).  Finally, we generated four evolution patterns for 129	

cancers based on the NMF clusters (Fig. 2a, 2b and 2c).   130	

Figure 2:	Evolution pattern of 21 types of cancers. (A). Consensus map of pan-cancer NMF cluster. 131	

Basis represented four vectors in Figure3b and consensus represented four clusters. (B). Coefficient 132	

map of pan-cancer NMF cluster. (C). Pan-cancer evolution process across stages according to NMF 133	

cluster result. (D). Schematic diagram of four cancer evolution patterns from normal to tumor. Tree: 134	

High order evolution process with dominant driver genes. Chaos: No dominant driver genes and 135	

multiple kinds of evolutionary paths. Biconvex: Joint of early-chaos and late-tree, and had dominant 136	

driver genes in late stage. Cambrian: Peaceful early stage combined with explosion of gene mutation 137	

and evolutionary paths in late stage. 138	

 139	
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 140	

 141	

The first cluster had no significantly dominated vector, and only vector 1 showed a slight 142	

advantage. KIRC and READ had three vectors with remarkable mixture coefficient (H matrix) while 143	

HNSC and COAD had two. Tumors in this pattern showed major evolutionary paths in DAGs, and 144	

progressed smoothly. Driver genes with high-frequency mutations (e.g., VHL gene in KIRC and APC 145	
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gene in COAD) appeared in early pathological stages, and were close to normal node in DAGs of all 146	

pathological stages. This process is similar to the growth of trees, so-named “tree” pattern. From the 147	

perspective of competitive evolution of tumor cloning, the “tree” model indicates that certain tumor 148	

clones dominate tumorigenesis and development, and tumor clones presents a competitive equilibrium 149	

with each other, and tumor heterogeneity is low in this case. The second cluster was dominated by 150	

vector 3, while mixture coefficient of other vectors in this cluster were in average. No driver genes 151	

were found in DAGs of this cluster. Instead of major evolutionary paths, tumors in this cluster like 152	

CESC exhibited multiple kinds of evolutionary paths, resulting in highly heterogeneity. Thus, we 153	

named it as “chaos” pattern. Unlike the "tree" model, the evolutionary behavior of tumor clones 154	

corresponding to the "chaos" pattern presents a competitive evolution caused by the dissemination of 155	

a large number of non-dominant clones, and a random equilibrium state that they reach each other, 156	

and tumor heterogeneity is high in this case. The third cluster is remarkably dominated by vector 4. 157	

Different from the other clusters, vector 3 in this cluster showed a comparatively low mixture 158	

coefficient. Limited evolutionary paths were observed in stage I, but more appeared in stage II. 159	

Although multiple evolutionary paths appeared in this stage, no one exhibited dominance. In late-160	

stage (III and IV), the mutation frequency of driver genes (e.g., PIK3CA gene in BLCA) increased, 161	

and major evolutionary paths were formed. The late-stage performance of this pattern is more smooth 162	

due to the appearance of major evolutionary paths. Just like a biconvex to make dispersed light 163	

converged, we named this cluster as a “biconvex” pattern. The "biconvex" pattern reflects the 164	

different evolutionary patterns of tumor cloning. At the beginning, there are only a small number of 165	

tumor clones, and the competitive evolution is in an equilibrium state with no dominant clones. Then, 166	

the tumor clone containing the driving gene appears, and through competitive evolution suppresses 167	

the survival of other tumor clones and evolves into a dominant tumor clone, and tumor heterogeneity 168	

at the final stage is low in this "biconvex" pattern. The fourth cluster is dominated by vector 2 while 169	

vector 1 also showed a remarkable mixture coefficient. Tumors in this cluster had moderate number 170	

of evolutionary paths and few genes with high-frequency mutations in early-stage. Enormous 171	

evolutionary paths spring up since stage III in cancers like BRCA, looking like the Cambrian. So, we 172	

called it “Cambrian” pattern. Tumors in this cluster usually had no SNV driver genes, and was not 173	
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SNV dominated (Table S1). The "Cambrian" pattern seems to be exactly the opposite of "biconvex". 174	

At the beginning, only a moderate number of tumor clones occurred, and then in the middle and late 175	

stages of tumorigenesis and development, the number of tumor clones suddenly exploded. At this 176	

time, the unique pattern of tumor cloning evolution of "chaos" pattern appeared, and a large number 177	

of non-dominant tumor clones reached the final competitive evolutionary balance. At the final stage, 178	

the tumor exhibits a high degree of heterogeneity. 179	

 180	

Survival outcomes of pan-cancer evolution patterns 181	

After identifying the cancer evolution patterns, we explored survival outcomes for each 182	

evolution pattern.  Among all the evolution patterns (Fig. 3a and Table S3), Cambrian pattern 183	

showed a significant distinction in survival outcome between early and late stages. Because increased 184	

evolutionary paths in late stages hastened tumor progression, leading to high tumor heterogeneity and 185	

causing bad survival outcome. In biconvex pattern, a better survival outcome was found in stage III 186	

rather than stage II (Wald test, p-value=0.038, HR: 3.189(2.691~3.793)). Because scattered 187	

evolutionary paths in stage II became disciplinary to form major evolutionary paths in stage III, 188	

resulting in decrement of tumor heterogeneity. Chaos and tree patterns had similar survival pattern 189	

across different pathological stages. Their survival curves were regular, and the differences between 190	

adjacent pathological stages were uniform. As more evolutionary paths lead to high heterogeneity and 191	

result in aggressive clinical outcome, tree pattern showed a better survival outcome than chaos pattern. 192	

The stage by stage progression is accordant with tree pattern but unexpected for chaos pattern. One 193	

possible explanation is that the multiple kinds of evolutionary paths observed in stage I in chaos 194	

pattern expanded to tree pattern subclones. The diversity of chaos pattern evolutionary paths and lack 195	

of major evolutionary path contributed to its high heterogeneity.  196	

Figure 3: Survival analysis of pan-cancer evolution pattern. (A). Survival outcome of each 197	

pathological stages in different evolution pattern. (B). Survival outcome of each cancer evolution 198	

pattern in different pathological stages. 199	

 200	
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Additionally, we also compared the survival outcomes among all the evolution patterns in 203	

each pathological stage (Fig. 3b and Table S3). Cambrian pattern showed a comparatively good 204	

survival outcome in early stages. However, its survival outcome turned to be the worst among all the 205	

evolution patterns in the last stages. Due to its orderliness, tree pattern exhibited moderate survival 206	

outcomes in all pathological stages compared to other evolution patterns. Biconvex pattern had a 207	

comparatively lousy survival outcome in stage II due to the similar environment with chaos pattern. 208	

After major evolutionary paths formed, the survival curve of biconvex pattern showed high similarity 209	

with tree pattern in stage IV (Wald test, p-value=0.97, HR: 0.996(0.777~1.276)). As expected, chaos 210	

pattern employed the worst survival outcomes in almost all pathological stages due to the high tumor 211	

heterogeneity. 212	

 213	

Biological function analysis for pan-cancer evolution patterns 214	

We also performed functional analysis for the evolution patterns based on the differentially 215	

expressed genes in cancers. We used a threshold of p-value<0.01 and fold-change >3 to detect 216	

differentially expressed genes (DEGs) in genomic data of cancers. For each evolution pattern, we 217	

merged all tumors and DEGs into a single network based on their belonging relationship (Fig. 4a). 218	

We also added links between genes according to Human Protein Reference Database (HPRD) protein-219	

protein interactions (PPI). Chaos pattern has the highest network heterogeneity and tree pattern has 220	

the most centralized network structure (Table S4, Fig. S3). Statistical information for cancer 221	

connection degree and PPI degree of each DEGs was represented in Table S5. Some DEGs were 222	

highly connected to cancers, but their PPI degrees were comparatively low (e.g., FOXM1 and PDK4). 223	

They were likely to be a consequence rather than an inducement. However, DEGs with high degrees 224	

in both PPI and cancer-connection should be valued. Among these high degree genes, MMP9, MMP2, 225	

DES, DCN, COL1A1, SPP1 and CAV1 enriched together in multi-pathways. They functioned 226	

together in four cancer evolution pattern.  227	

Figure 4: Function analysis of pan-cancer evolution patterns. (A). PPI network of high degree(>5) 228	

DEG nodes. (B). KEGG pathway enrichment of high degree nodes (>5) in each cancer evolution 229	

pattern PPI network. Enrichment FDR p-value (left), regulation area (middle), paths (right).  230	
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  231	

 232	

Based on the PPI network for differentially expressed genes for each evolution pattern, we 233	

picked out high degree DEGs (>=5) for further functional enrichment analysis. Diverse cancer 234	
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evolution progression needs identical variations of pathways and genes, which always influence the 235	

basic functions of cancers. Functional analysis indicated that the evolution patterns shared five 236	

biological pathways, i.e., ECM-receptor interaction, focal adhesion, p53 signaling pathway, PI3K-Akt 237	

signaling pathway and proteoglycans in cancer (Fig. 4b). Although most pattern-shared pathways 238	

were confirmed cancer hallmarks, four evolution patterns had their particular pathways, for example, 239	

Hepatitis B pathway in Cambrian pattern and MAPK signaling pathway in chaos pattern. Besides, 240	

there were seven pathways shared by three evolution patterns, e.g., AGE-RAGE signaling pathway 241	

and protein digestion and absorption. They were not often discussed in cancer studies before. But they 242	

were closed to inflammation which is a preprocess of cancer(Riehl et al. 2009).  AGE-RAGE 243	

signaling pathway was absent only in chaos pattern, and functions to increase oxidative stress 244	

generation and evoke inflammatory, fibrotic, proliferative, etc. Tree pattern had the least unique 245	

pathways, while the unique pathways for chaos and biconvex patterns were more variable, due to their 246	

heterogeneity in the early pathological stages. Cambrian pattern didn’t show a lot of exclusive 247	

pathways due to its diversity in late pathological stages.  248	

We also evaluated these enriched pathways by DEG locations and directed paths in the same 249	

KEGG pathways. Five common pathways showed high similarity in DEG locations. Tree pattern had 250	

the least directed paths and highest centralization regulation area, indicating throughout major 251	

evolution paths. Despite various evolution paths appeared in Cambrian pattern in the late stages, their 252	

functional variation focused on minimum pathways. Most of the pathways were in downstream 253	

regulations and directed paths inside pathway were also limited. The explosion seemed to be an effect 254	

of system disorders accumulation. Chaos and biconvex patterns showed high similarity in Fig. 4b, 255	

and had more enriched pathways than the others. Biconvex pattern is consisting of early-chaos and 256	

late-tree, which coincident with its survival outcome. Compared to chaos pattern, it had more directed 257	

paths and downstream genes. The downstream early-chaos relieved system deterioration and resulted 258	

in better survival outcome.  259	

 260	

Discussion 261	
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Many investigations have used genome information (e.g., SNV, CNV, and DNA methylation) 262	

and proteomic data to perform pan-cancer studies. However, cancer is a time-dependent evolution 263	

process and survival outcome is also a time-corresponding symptom. The reconstruction of 264	

evolutionary paths is able to provide a novel insight to understand tumor progression. In the current 265	

study, the hypothesis is that evolutionary paths impact on tumor heterogeneity. Multiple evolutionary 266	

paths would lead to high tumor heterogeneity. Additionally, dominated timing of the major 267	

evolutionary path also made effect on cancer progression. To verify this point, we reconstructed pan-268	

cancer evolution process by BML using mutation data, and identified four pan-cancer evolution 269	

patterns based on NMF clustering for 21 type of cancers: tree pattern with moderate progression, 270	

chaos pattern with high disorder, biconvex pattern with significant distinctions between early and late 271	

stages, and Cambrian pattern with an explosion in late stages. The classification based on the 272	

evolution patterns is in good accord with both clinical performance and biological evidences (e.g., 273	

gene expression and protein-protein interactions). We generated features of four evolution patterns in 274	

Table 1. 275	

Table 1: Differences of four evolution patterns. Evolution features of diseases in four evolution 276	

patterns according to our research.  277	

 278	

 279	

	

	
	

Pattern	 Disease	
Evolution	

path	

Driver	
dominant	
stage	

Survival	rate	
across	stages	

Survival	
outcome	among	

patterns	

Unique	high	
degree	DEGs	

(TOP	5)	
Regulation	

area	
Paths	inside	

enriched	pathway	Heterogeneity	
Clinical	

aggressivity	

Tree	

COAD,	
HNSC,	KIRC,	

READ	

Few,	gently	
increased	
with	time	 Whole	stage	

Regular	survival	
curve,	uniform	
differences	

between	adjacent	
stages	

Moderate	in	all	
stages	

FLNA,	IGFBP3,	
S100A1,	
GPRASP1,	
L1CAM	

High	
centralization	 Fewest	 Low	

Moderate	in	
all	stages	

Chaos	

UCEC,	LUSC,	
LUAD,	LIHC,	
CESC,	KIRP	

Many	in	all	
stages	 No	

Regular	survival	
curve,	uniform	
differences	

between	adjacent	
stages	

Worst	almost	in	
all	stages	

VIM,	AR,	DSP,	
CCNB1,	FGF2	

Upstream	in	
unique	

pathways	

Few	paths	in	
common	

pathways;	many	
paths	in	unique	

pathways	 High	
Aggressive	in	
all	stages	

Biconvex	

THCA,	
SKCM,	
PAAD,	

BLCA,	KICH	

Many	in	early	
stages.	few	in	
stage	III	and	
increased	in	
stage	IV	 Late	

Better	survival	
outcome	in	stage	
III	than	stage	II	

Bad	in	early	
stages,	good	in	
late	stages	

EGFR,	ACTB,	
ITGB1,	MYOC,	

CTSG	

Downstream	
in	unique	
pathways	 Many	

High	in	early	
stages,	low	in	
late	stages	

Aggressive	in	
early	stages,	
moderate	in	
late	stages	

Cambrian	

UCS,	STAD,	
OV,	ESCA,	
ACC,	BRCA	

Few	in	early	
stages,	
rapidly	

increased	in	
late	stages	 No	

Significant	
distinction	

between	early	and	
late	stages	

Good	in	early	
stages,	bad	in	
late	stages	

LRP1,	ZBTB16,	
EVPL,	AURKB,	

PTN	 Downstream	 Few	

Low	in	early	
stages,	high	in	
late	stages	

Moderate	in	
early	stages,	
aggressive	in	
late	stages	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 20, 2018. ; https://doi.org/10.1101/422667doi: bioRxiv preprint 

https://doi.org/10.1101/422667


	 15	

Tree pattern and chaos pattern are the typical evolution patterns. The former employs a major 280	

evolutionary path, leading to a comparatively low tumor heterogeneity according to our hypothesis. 281	

Cancers in this evolution pattern, e.g., COAD and READ, also have remarkable driver 282	

genes(Sottoriva et al. 2015; Pang et al. 2018; Alexander Davis, Ruli Gao 2017). Due to the low 283	

heterogeneity and smoothly progression, tree pattern showed an optimistically clinical aggressivity. 284	

Chemical and immune Therapies targeting these driver genes in tree pattern can receive a miraculous 285	

curative effect. The latter is completely out of order, and none of the evolutionary paths showed 286	

majority. The rough-and-tumble evolutionary paths and unclear evolution progression in chaos pattern 287	

lead to high tumor heterogeneity, resulting in aggressive survival outcomes. Lung cancer is a typical 288	

example for chaos pattern, which shows a remarkable tumor heterogeneity in clinical cases(Liu et al. 289	

2016). Biconvex pattern is a mixture of tree pattern and chaos pattern. Similar with chaos pattern, 290	

biconvex pattern exhibits a disordered feature in evolutionary paths in early stages. As no major 291	

evolutionary path or remarkable driver genes are detected, tumors in this evolutionary path have a 292	

comparatively high heterogeneity, resulting in a poor survival performance. However, after forming a 293	

dominant evolutionary paths in stage III, biconvex pattern shows a similar behavior to tree pattern, 294	

and have a better survival outcome compared to stage II. For the cancers in biconvex pattern, clinical 295	

treatment targeting stage III will receive a better efficacy(Krishnan et al. 2017). Cambrian pattern is a 296	

special one, because of having an explosion of evolutionary paths. Before explosion, this evolution 297	

pattern has a smooth tumor progression and shows a good survival performance, which suddenly 298	

drops off after explosion. This means that patients in this evolution pattern always suffer an 299	

emergency circumstance(Poveda et al. 2014). In conclusion, tree pattern showed a high order 300	

evolution process and resulted in optimistically clinical aggressivity. The high tumor heterogeneity in 301	

Chaos pattern and early-biconvex pattern drove poor survival performance. While late-biconvex 302	

pattern was better organized and reduced its clinical aggressivity. Cambrian pattern showed a good 303	

survival performance until the explosion happened, which sharply increased the clinical aggressivity 304	

of tumor. 305	

Genes with high PPI and cancer-connection degrees, e.g., DES(Ellis et al. 2012; Seshagiri et 306	

al. 2012) and DCN(Network et al. 2011; Muzny et al. 2012), played essential roles in cancers, and 307	
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their expression had significant impacts on tumor environments. MMP9, MMP2, DCN, COL1A1, 308	

SPP1 and CAV1 were experimentally confirmed key genes for cancers(Huang et al. 2016; Chai et al. 309	

2016). The matrix metalloproteinase (MMP) family (MMP9 and MMP2) always functioned with 310	

growth factors, and were associated with inflammatory processes, indicating their critical roles in 311	

VEGF and other related hallmark pathways for cancers.  312	

Despite various evolution paths appeared in Cambrian pattern in the late stages, their 313	

functional variation focused on minimum pathways. Most of the pathways were in downstream 314	

regulations and paths inside pathway were also limited. The explosion seemed to be an effect of 315	

system disorders accumulation. Tree pattern had the fewest paths and highest centralization regulation 316	

area, indicating throughout major evolution paths. And the biconvex pattern is consisting of early-317	

chaos and late-tree, which coincident with its survival outcome. Compared to chaos pattern, it had 318	

more paths and downstream genes. The downstream early-chaos relieved system deterioration and 319	

resulted in better survival outcome. Additionally, in the cell adhesion molecules pathway DEGs in 320	

chaos pattern were exempted from immune system compared to biconvex pattern. The disturbance of 321	

immune system could bring out a severe evolution progression. 322	

Our research reconstructed pan-cancer evolution process based on somatic mutations across 323	

four pathological stages. We proposed four cancer evolution patterns which is in consistent with their 324	

survival outcome. Except study based on genomic data, we also used gene expression data for 325	

functional enrichment analysis and explored their similarities and differences. On the other hand, we 326	

found some DEGs with high PPI degree and cancer-connection which should be valued. Our study 327	

therefore furthers the understanding of tumor progression and figured out how they drive clinical 328	

aggression.  329	

The unbalance sample size and heterogeneity among different patients would be limiting 330	

factors for cancer evolution study. We used the bootstrap method to construct the evolution process 331	

and only picked out highly convincible genes (see Methods). The clinical aggressivity and function 332	

analysis accordant with this evolution model and advanced the understanding of tumor progression 333	

progress. On account of the different evolution patterns of different cancers, the optimum treatment 334	

time would be helpful to remit clinical aggressivity. Additionally, variations in downstream and 335	
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upstream of biological pathways have distinct effects. In general, drugs targeted on upstream genes 336	

always have a better therapeutic outcome, while consideration of evolution pattern would make 337	

biomarker selection more meaningful. 338	

 339	

Materials and Methods  340	

Data Processing 341	

All pan-cancer samples derived from TCGA Data Portal Bulk Download (http://tcga-342	

data.nci.nih.gov/tcga)(Chang et al. 2013), with a declaration that all TCGA data are now available 343	

without restrictions on their use in publications or presentations. We used 21 kinds of cancer in total. 344	

Somatic nucleotide variants (SNV) used for the following study were subsequently annotated by 345	

Oncotator(Ramos et al. 2015)  in UCSC Xena (http://xena.ucsc.edu), only those curated SNVs were 346	

picked out. SNV data summary and cancer descriptions are generated in Table S1. Cancer detection 347	

time and the biological system were obtained from (http://www.cancer.org). And M/C class 348	

annotation was derived from Ciriello’s article(Ciriello et al. 2013). Patients have extinct pathological 349	

stage clinical information were kept while others were filtered. After removing hypermutated samples 350	

and genes with low mutation frequency (<3), we transformed them into a 0/1 matrix (patient x 351	

mutation gene). The correlation heatmap (Fig. 1d) was performed by hierarchical cluster using the 352	

median and mean of gene mutation frequency and 5-year survival rate. The 5-year survival rate for 353	

each cancer was calculated using TCGA dataset, and we also evaluated cancer prognosis by existing 354	

research (http://www.cancersurvivalrates.net).  355	

 356	

Reconstruction of pan-cancer evolution process 357	

Cancer evolution process was reconstructed using the approach we published before(Pang et 358	

al. 2018). Combining with probability network reconstructed by Bayesian mutation landscape 359	

(BML)(Misra et al. 2014), we generated evolutionary paths including genes with both high and 360	

moderate mutation frequency. After built DAG map using raw data (Fig. S1), we generated 361	

convincible evolution paths using bootstrap score threshold. We randomly selected 30 samples (with 362	
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replacement) at each stage for 100 times in case sample bias. Nodes appeared more than 60 times, and 363	

nodes appeared more than 10 times in each pathological stage of particular cancer were kept. Genes 364	

appeared more than once in combined and separate pathological stages DAGs in the raw map were 365	

recognized as DAG key genes. These three vectors of four pathological stage were used for NMF 366	

cluster. An R script implemented this clustering process by R package “NMF”(Gaujoux and Seoighe 367	

2010). Four evolution pattern figures (Fig. 2c) were manually sketched. Evolutionary paths with 368	

direct connection to normal node and had more than one key genes was considered as major 369	

evolutionary path. 370	

 371	

Survival analysis of cancers in the same pattern 372	

Survival time used in this paper was the time to death or censor event. Survival curve in Fig. 373	

3 was generated by Kaplan-Meier estimator and plotted by R package “survminer”. Survival analysis 374	

in Table S3 was performed using R package “survival”(Harrington and Fleming 1982).  375	

 376	

Protein-protein interaction network of differentially expressed gene and functional enrichment 377	

analysis 378	

Tumor gene expression data were obtained from TCGA, too. Since we only wanted to find 379	

different expression genes rather than precise quantify, gene expression data were not matched with 380	

SNV data. We used GEPIA database(Tang et al. 2017) as supplements for cancers without gene 381	

expression data in TCGA. After construct disease-gene network, we added protein-protein interaction 382	

from Human Protein Reference Database (HPRD, http://www.hprd.org) (Keshava Prasad et al. 2009). 383	

Network construction and analysis were generated by Cytoscape(Shannon et al. 2003). High disease-384	

connected DEGs and high PPI degree DEGs were collected in Table  S5.  We picked out hub DEGs 385	

(degree>5) for functional enrichment using WEB-based GEne SeT Analysis Toolkit(Wang et al. 2013) 386	

for with parameters set as Bonferroni, p<0.05.  387	

After that, we separated enriched KEGG pathways to two parts, and defined genes with more 388	

downstream regulations than upstream as upper genes. Under genes referred to the opposite. 389	

Regulation area was related to the amount of upper and under genes. 390	
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𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑎𝑟𝑒𝑎	(𝑅𝐴) =
𝑈𝑝𝑝𝑒𝑟	𝑔𝑒𝑛𝑒
𝑈𝑛𝑑𝑒𝑟	𝑔𝑒𝑛𝑒

 391	

We also counted paths in individual KEGG pathways, and genes with direct or indirect connection 392	

(irreversible direction) were supposed to be in the same path. RA normalization was performed global 393	

and path normalization was performed among patterns. 394	
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