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Abstract 

Parkinson’s disease (PD) is a neurodegenerative condition in which aberrant oscillatory 

synchronization of neuronal activity at beta frequencies (15-35 Hz) across the cortico-basal 

ganglia-thalamocortical circuit is associated with debilitating motor symptoms, such as 

bradykinesia and rigidity. Mounting evidence suggests that the magnitude of beta synchrony 

in the parkinsonian state fluctuates over time, but the mechanisms by which thalamocortical 

circuitry regulates the dynamic properties of cortical beta in PD are poorly understood. Using 

the recently developed generic dynamic causal modelling framework, we recursively 

optimised a set of plausible models of the thalamocortical circuit (n=144) to infer the neural 

mechanisms that best explain the transitions between low and high beta power states 

observed in recordings of field potentials made in the motor cortex of anesthetized 

Parkinsonian rats. Bayesian model comparison suggests that upregulation of cortical rhythmic 

activity in the beta-frequency band results from changes in the coupling strength both 

between and within the thalamus and motor cortex. Specifically, our model indicates that 

high levels of cortical beta synchrony are mainly achieved by a delayed (extrinsic) input from 

thalamic relay cells to deep pyramidal cells and a fast (intrinsic) input from middle pyramidal 

cells to superficial pyramidal cells. We therefore hypothesize that beta synchronisation at the 

cortical level could selectively be modulated via interventions that are capable 

of finely regulating cortical excitability in a spatial (delivered to either the superficial or 

deep cortical laminae) and time specific manner.  

 

Keywords: Parkinson’s disease; DCM; Beta oscillations; Thalamocortical interactions 
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Introduction 

Neuronal oscillations are considered to be key elements of information flow (Buzsaki & 

Draguhn, 2004; Salinas & Sejnowski, 2001). For neural populations to communicate in a 

behaviour-specific and adaptive fashion, they may adapt their degree of rhythmic 

synchronization accordingly (Fries, 2005). In its normative physiological state, the Cortico-

Basal Ganglia-Thalamo-Cortical circuit (CBGTC) exhibits transient (de-)synchronization in the 

beta band (13-30Hz) activity during motor control (Cassidy et al., 2002; Foffani et al., 2005; 

Pfurtscheller & Lopes Da Silva, 1999; Tsang et al., 2012; Zaepffel et al., 2013).  

In Parkinson’s disease (PD), the loss of midbrain dopaminergic neurons in the substantia nigra 

pars compacta is thought to often promote excessive oscillatory synchronization of neuronal 

activity in the beta band across different nodes of the CBGTC circuit, which is thought to  

underpin some debilitating motor deficits such as bradykinesia and rigidity (Eusebio et al., 

2009). When Parkinsonian motor deficits are attenuated with pharmacological (Levodopa) or 

neuromodulatory interventions (deep brain stimulation or optogenetics), a reduction in 

synchronization is observed in the beta-frequency band across different species, including 

humans (Brown, 2001; Eusebio et al., 2011; Kuhn et al., 2008; Levy et al., 2002; Priori et al., 

2004; Silberstein et al., 2005), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated non-

human primate models of PD (Heimer et al., 2006; Nambu & Tachibana, 2014) and a 6-

hydroxydopamine (6-OHDA)-lesioned rat model of PD (Gradinaru et al., 2009; Sharott et al., 

2005). 

Although excessive synchrony in the beta band (i.e. beta power) is traditionally described as 

a sustained event when averaged over seconds (Brittain & Brown, 2014; Brown, 2007; Lopez-

Azcarate et al., 2010), it primarily manifests as intermittent events of high beta power or “beta 

bursts” (Feingold et al., 2015; Sherman et al., 2016; Tinkhauser et al., 2017; Little et al., 2012; 

Leventhal et al., 2012). Beta bursts have been defined operationally as epochs of beta 

oscillations that surpass a certain threshold – and their presence has been quantified in 

physiological (Sherman et al., 2016; Feingold et al., 2015) and pathological neural activity 

(Tinkhauser et al., 2017; Little et al., 2012). In Parkinson’s disease, the probability of long beta 

bursts has been positively correlated with PD motor symptom severity (Tinkhauser et al., 

2017; Little et al., 2012).  
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Adaptive Deep Brain Stimulation (aDBS) is an intervention that has been developed to account 

for the transient nature of pathological neural synchrony in the beta band. In contrast  to 

conventional DBS (cDBS), which continuously delivers high-frequency stimulation, aDBS 

adapts stimulation delivery according to the level of beta power (Little et al., 2013, 2016; Rosa 

et al., 2015), showing greater clinical efficiency (higher motor symptom relief and fewer 

secondary effects) than cDBS and random stimulation (Little et al., 2013).  

From a neuronal network perspective, several studies have proposed that altered basal-

ganglia output leads to excessive beta synchrony and motor impairments in PD (Bevan et al., 

2002; Holgado et al., 2010; McCarthy et al., 2011; Terman et al., 2002). Employing Dynamic 

Causal Modelling (DCM) (Friston, 2003), a framework for specifying, fitting and comparing 

mathematical models of neural circuitry, Moran et al., 2011 and Marreiros et al., 2013 

indicated modulation of the hyperdirect pathway and the projection from the subthalamic 

nucleus and globus pallidus externus as potential mechanisms for beta power enhancement 

in dopamine-depleted states. 

Some experimental studies, on the other hand, support the role of cerebral cortex in the 

generation and modulation of beta oscillations (Jensen et al., 2005; Yamawaki et al.,2008). 

This perspective has motivated the consideration of cortical interlaminar interactions in the 

regulation of beta power. In the healthy state, the generation and modulation of beta 

oscillations has been investigated using DCM (Bhat et al.,2016), revealing a link between a set 

of laminar specific interactions within the primary motor cortex and the 

enhancement/suppression of beta power evoked by movement. Using a theoretical model, 

Sherman et al., 2016 suggested that high beta power events in the physiological state emerge 

through cortical laminar interactions conditioned by temporal characteristics of the distal and 

proximal synaptic drives in the neocortex.  

Motivated by these studies, we hypothesized that – in the Parkinsonian state – an alteration 

of interlaminar and laminar-specific connectivity in the Thalamocortical (TC) loop contributes 

to the mechanisms generating the parkinsonian spectral profile. We focused on the TC loop 

due to the anatomical and functional characteristics of this network: 1) the cortex is an 

optimal target for non-invasive therapeutic techniques such as TMS and TACS (Barker et al., 

1985; Cantello et al., 2002; Kobayashi & Pascual-Leone, 2003; Herrmann et al., 2013); 2) the 
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thalamus is the only CBGTC node projecting directly to cortex, allowing for the integration of 

information from subcortical structures to the motor cortex (Wise & Donoghue, 1986; 

Brazhnik et al., 2016) and 3) cortex and thalamus establish a reciprocal relationship (Hooks et 

al., 2013), which is thought to play a key role in physiological and pathological sensory and 

motor computations (Sherman & Guillery, 2009). In PD, where motor impairments are the 

cardinal symptoms, understanding the synaptic dynamics and organization of the 

thalamocortical (TC) circuit could potentially shed light on pathophysiological mechanisms. 

Accordingly, we used cross spectral density (CSD) - DCM (Moran et al., 2009, 2011) with a 

neural mass model of the TC loop (Van Wijk et al., 2018) to characterize its contribution to 

spontaneous beta power fluctuations observed in the motor cortex of 6-OHDA-lesioned 

Parkinsonian rats. 
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2. METHODS 

2.1. Electrophysiological recordings in Parkinsonian rats 

The spectral data used in this study was based on motor cortex field potentials 

(electrocorticograms) recorded in 36 urethane-anesthetized rats rendered Parkinsonian by 

unilateral 6-OHDA lesions of midbrain dopaminergic neurons. To record electrocorticogram 

(ECoG) data, a steel screw electrode was implanted over the right somatosensory-motor 

cortex ipsilateral to the 6-OHDA lesion, and referenced to a steel screw electrode implanted 

over the ipsilateral cerebellar hemisphere. Electrophysiological recordings were carried out 

21-42 days after surgery for the induction of 6-OHDA lesions, thus allowing for changes in the 

CBGTC circuit to stabilize. For detailed descriptions of electrode implantation, anaesthesia, 

surgical induction of 6-OHDA lesions and related procedures, please refer to (Mallet et al. 

2008a, 2008b; Sharott et al., 2017). Only ECoG recordings made during periods of 

spontaneous ‘cortical activation’ were considered in this study (Mallet et al., 2008a, 2008b; 

Sharott et al., 2017). All experimental procedures were carried out on adult male Sprague-

Dawley rats (Charles River, Margate, UK) and were conducted in accordance with the Animals 

(Scientific Procedures) Act, 1986 (UK). 

2.2. Data processing 

All operations described in this section were performed in Matlab. Recordings were down-

sampled to 1000 Hz from 16000 Hz. To characterize the spontaneous beta power fluctuations 

typically observed in PD, we defined two conditions based on instantaneous beta power – 

condition one being Low Beta (LB) power and condition two being High Beta (HB) power. 

These conditions were based on fluctuations in beta power that enabled us to select data-

features (i.e., timeseries) for subsequent dynamic causal modelling that were representative 

of the two conditions. 

To extract the beta power envelope, we applied a second order band-pass Butterworth filter 

with cut-off frequencies at 15-35Hz to the ECoG recording and subsequently employed the 

Hilbert transform to compute the envelope of the ECoG in the beta frequency band. Each 

envelope was then divided into non-overlapping epochs of 500 msec. The two conditions 
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were subsequently derived from the area under the envelope across the 500msec epochs: (1) 

LB epochs consisted of segments whose envelope area fell below the 5th percentile of the 

envelope area observed across all epochs, and (2) HB epochs consisted of segments whose 

envelope area was above the 95th percentile of the envelope area observed across all epochs 

(Fig.1). From each recording, we randomly selected 5 epochs per condition (n=5). This number 

corresponds to the minimum number of epochs found in either of the two conditions across 

all recordings. 

 

Figure. 1 – Extraction of low beta and high beta power features isolated from ECoG data. 

Panel A. shows the segmentation of the envelope into 500 msec epochs (5 seconds as an 

example). Panel B. depicts the area under the beta band envelope for each epoch. If an epoch 

was below the 5th percentile of the area observed across all epochs (blue line), it was 

classified as low beta (*1); if an epoch was above the 95th percentile of the area observed 

across all epochs (red line), it was classified as high beta (*2). Epochs in between the two 

percentiles were not considered. Panel C. shows the corresponding low beta (dark blue) and 

high beta (red) epochs in the ECoG signal filtered at 15-35 Hz. 

2.3. Dynamic Causal Modelling (DCM) 

DCM for cross spectral density is used to infer the hidden (neuronal) states (!) and synaptic 

parameters (") that generate spectral features of observed data (#) (Moran et al., 2009, 2011). 

Hidden states and unknown parameters cannot be observed directly but can be estimated 

under a generative or forward model. This model comprises a biophysical neural mass model 

and the spectral composition of neural and channel noise (Moran et al., 2008). The neural mass 

model is expressed in terms of a differential equation with the following form:  

!̇ = &(!, #, ")            (Eq.1)   
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The neural mass model (&) – together with a likelihood model mapping hidden states to 

observed measurements – constitutes a generative model; namely, a probabilistic mapping 

between neural fluctuations and the spectral content of observed activity. Using a Bayesian 

framework, DCM estimates the (posterior) probability density over the synaptic parameters, 

which are the most likely value of the hidden parameters, given the observed data (Moran et 

al., 2011). The generative (neural mass) model calls on its biophysical parameters to describe 

the evolution of voltages (*) and currents (+) in each subpopulation of neurons (Jansen & Rit, 

1995). In addition to estimating the posterior density over model parameters (e.g., synaptic 

connection strengths and the amplitude of neuronal fluctuations), DCM also provides an 

estimate of the evidence for a particular model or network architecture implicit in the 

generative model. This allows one to compare different models or hypotheses using Bayesian 

model comparison. A complete description of the mathematical framework that underwrites 

DCM can be found in (Moran et al., 2013). 

2.3.1. Neural mass model of the Thalamocortical circuit 

A neural mass model of the Thalamocortical circuit was created comprising two formally 

distinct neural mass models of the motor cortex and the thalamus using the new generic 

framework for Dynamic Causal Modelling (van Wijk et al 2018) (Fig.2). Here, we adopted the 

motor cortex microcircuit (MMC) model developed by Bhat and colleagues (2016) and 

coupled it to a model of the thalamus, based on thalamic anatomical literature (Shepard & 

Grilner,2010; Douglas & Martin,2001). As with previous models of the sensory cortex – and 

incorporating the work of Yamawaki et al.,2014 - Bhat and colleagues (2016) used 3 excitatory 

subpopulations (neuronal ensembles consisting of “superficial”, “middle” and “deep” 

pyramidal cells located in the supragranular, granular and infragranular cortical layers, 

respectively) and one common inhibitory subpopulation (inhibitory interneurons) to model 

the primary motor cortex. In the MMC model, the coupling between these subpopulations 

(GABAergic or glutamatergic synapses) is tailored according to synaptic characteristics of the 

primary motor cortex: a reciprocal connection between superficial and middle pyramidal cells 

(Yamawaki et al., 2014), a reciprocal connection between superficial and deep pyramidal cells 

(Hooks et al., 2013; Yamawaki & Shepherd, 2015; Anderson et al., 2010, Weiler et al., 2008), 

a reciprocal connection between each of the three pyramidal subpopulations and the 
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inhibitory subpopulation (Fino et al., 2013), and a cell type specific self-inhibitory connection 

(Bastos, 2012; Yoshimura & Callaway, 2005). In this study, the thalamus was modelled using 

an excitatory subpopulation (neuronal group of thalamic relay cells) and an inhibitory 

subpopulation (neuronal group of thalamic reticular cells) (Shepherd & Grillner, 2010) that 

were connected as follows: a reciprocal connection between relay and reticular cells (Harris, 

1987; Cox et al., 1997) and a self-inhibitory connection of reticular cells (Shu & McCormick, 

2002). Although we acknowledge that there are distinct thalamic nuclei (i.e. neuronal 

ensembles receiving afferents from different brain regions (Sherman & Guillery, 2001) the 

thalamus was modeled here as a single neuronal mass model. An important extension of the 

current work would be to subdivide the motor thalamus (ventral anterior, ventral lateral and 

ventral medial nuclei in rodents) into input zones that receive GABAergic drive from the Basal-

Ganglia and glutamatergic drive from the cerebellum (Kuramoto et al., 2011; Nakamura et al., 

2014).  

To model the extrinsic synaptic interactions between the motor cortex and thalamus we used 

two corticothalamic projections from deep pyramidal cells to thalamic relay cells and thalamic 

reticular cells (Bourassa et al., 1995; Jones, 2001). Although the thalamus is thought to project 

to all layers of the cortex (Hooks et al., 2013) and the ventromedial nucleus (VM) of the motor 

thalamus has been shown via immunochemistry studies to project mainly to layers I and II of 

the motor and anterior cingulate cortices (Arbuthnott et al., 1990; Clascá et al., 2012; 

Kuramoto et al., 2015), it is not clear which thalamocortical projections are important in 

modulating beta power. To resolve this, we considered different models to test the impact of 

including different connections on model evidence (section 2.3.4.).                    
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Figure.2 – Sources, subpopulations and synaptic projections of a thalamocortical loop neural mass model. The 

top part of the diagram describes the first source - motor cortex and its subpopulations: superficial pyramidal 

cells (SP) in the supragranular layer, middle pyramidal cells (MP) in the granular layer, deep pyramidal cells (DP) 

in the infragranular layer and, inhibitory interneurons (II) as a common inhibitory subpopulation to the 3 cortical 

laminae. Intrinsic synaptic connections among the above subpopulations comprise a reciprocal connection 

between superficial and middle pyramidal cells, a reciprocal connection between superficial and deep pyramidal 

cells, a reciprocal connection between each of the three pyramidal subpopulations and the inhibitory 

subpopulation and finally, a self-inhibitory connection to each cortical node. The bottom part of the diagram 

depicts the thalamus and its subpopulations: reticular thalamic cells (RET) as the inhibitory subpopulation of the 

thalamus and relay cells (REL) as the excitatory subpopulation of the motor thalamus. Intrinsic synaptic 

connectivity of the thalamus comprises a reciprocal connection between relay and reticular cells and self-

inhibitory connection of reticular cells.  As corticothalamic extrinsic connections, deep pyramidal cells were 

considered to send afferents to both relay and reticular subpopulations, while the model space for 

thalamocortical projections is described in section 2.3.4 and illustrated in Fig.3 (top panel). 

2.3.2. Neural dynamics 

In DCM, neural dynamics (i.e., fluctuations in voltages and currents) at the subpopulation level 

is described by two key operations (Eq.2): a convolution operator and an output operator 

(Moran et al., 2007). The convolution operator transforms presynaptic inputs (firing rate) into 

postsynaptic membrane potentials based on a synaptic impulse response function, which 

considers the nature of the synapse (i.e. excitatory or inhibitory). 
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The output operator consists of a non-linear function that converts the postsynaptic 

membrane potentials into a firing rate to be relayed to another subpopulation. This is 

conveyed through a sigmoid function ,	which captures the membrane sensitivity and firing 

threshold of each subpopulation. Furthermore, the shape of the sigmoid function (slope) 

measures the efficacy of a presynaptic ensemble to generate output. This output is 

additionally scaled by the synaptic coupling strength as illustrated by the following generic 

second order differential equation:   

*̈/
0 = 123

0,(*3
0) + 567 ,(*67 ) + 8 − 2*̇/

0 −
;<
=

><
=? @/

0A                                  (Eq.2) 

Here, the averaged membrane potential * of the subpopulation B in the source C is influenced 

by subpopulations of the same source with synaptic strength 2 and subpopulations from 

different sources with synaptic strength 5. Intrinsic synapses 2 show a positive synaptic 

strength if glutamatergic and negative synaptic strength if GABAergic. , denotes the sigmoid 

function above and @ the subpopulation-specific membrane time constant. Endogenous 

fluctuations or input, 8 is modelled as a mixture of white and pink noise and drives middle 

pyramidal cells and thalamic relay cells.  

In this study, we used DCM for cross spectral density (Moran et al., 2009, 2011) where the 

data generated by a model of neural hidden states are expressed as cross spectra in channel 

space (ECoG screw electrodes). The mapping between the hidden neural states and measured 

signals is based on an observation function, where a gain matrix D scales different 

contributions (here [0.6 0.2 0.2]) from superficial, middle and deep pyramidal cells 

respectively to generate the observed ECoG signal. A summary of these parameters and their 

prior values are shown in Table.1. Prior values were based on previous DCM studies (Bhat et 

al. 2016) and optimized for our study.   

2.3.3. Model inversion 

In DCM, model inversion iteratively tunes the model’s parameters to optimize the fit of the 

predicted electrophysiological data to the observed data. Using a standard (variational) 

Bayesian scheme, model inversion uses priors to constrain the search of parameter space to 

explain the observed spectral features of electrophysiological data. When fitting the data (i.e., 
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inverting the model), the optimization of model parameters uses a variational Laplace scheme 

to minimize a (free energy) bound on (negative) log model evidence. This free energy 

approximation to model evidence is subsequently used for model comparison (Friston et al., 

2007; Friston & Stephan, 2007).  

In brief, model evidence is the (marginal) likelihood of observing data given a model, E(F|H). 

It reflects a balance between accuracy (goodness of fit between predicted and observed 

spectral densities) and complexity (divergence between prior and posterior parameter 

estimates) (Stephan et al., 2010). This balance depends upon the expected precision of the 

observed data. Given the high signal to noise ratio in the data obtained using the 

electrocorticographic recording method, the expected precision of observed data was 

assumed to be high (with a log precision of 12).  

At this stage, low beta power was set as our baseline condition (with prior expectations 

optimized to best explain its spectral features). Condition-specific effects (B parameters) on 

both extrinsic (between-regions) and intrinsic (within-regions) coupling strengths (Moran et 

al., 2007) were used to explain periods of high beta power. In other words, we estimated the 

changes in synaptic efficacy required to move from a low beta power condition to a high beta 

power condition. 
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Parameters Description 
Prior means  

(µ) 

Log-scaling 

parameters (I, JK) 

LM…MO
mmc  

Synaptic coupling strengths motor cortex 

[Hz] 

[800 800 800 800 800 400 800 

800 400 200 400 800 800 400] 
0, 1/16 

RM…O
mmc  

Time constant [msec] of cell populations 

motor cortex: [MP, SP, II, DP] 
[8 8 8 8] 0, 1/16 

LM…S
tcr  

Synaptic coupling strengths motor 

thalamus [Hz] 
[800 800 800] 0, 1/64 

RM…K
tcr  

Time constants [msec] cell populations 

basal ganglia: [RET; REL] 
[8 8] 0, 1/64 

V	M…O	 
Extrinsic connections strengths: [CT and TC] 

[Hz] 

[800 800 800 800] 0, 1/16 

WM…X 
Condition-specific effects (on coupling 

strengths): 
[0] 0, 1/8 

YZZ[ Slope sigmoidal function: 2/3 0, 1/32 

Y\[] Slope sigmoidal function: 2/3 0, 1/16 

^M…K 
Intrinsic delays [msec]: [within MMC; 

within THAL] 
[1] 0,0 

_M…K 
Extrinsic delays [msec]: [from MMC to 

THAL; from THAL to MMC] 
[8] 0,0 

`[, a[ Channel unspecific observation noise [0 0] 0, 1/128 

`b,ab Channel specific observation noise [0 0] 0, 1/128 

c Observation gain [1] 0, 64 

de Log-precision of observed data 12 0, 1/32 

Tabel.1. - Prior expectations set for the parameters of the baseline condition (Low beta). CT- corticothalamic 

projections; TC-thalamocortical projections; MMC – motor microcircuit; THAL- thalamus. 
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2.3.4. Bayesian Model Comparison and parameters analysis 

A set of models were implemented which varied according to 2 factors: i) the laminar-

specificity of thalamocortical projections that generate beta oscillations, and ii) the changes 

in synaptic connectivity within the TC loop (intrinsic and/or extrinsic) required to induce a 

transition from a low beta power condition to a high beta power condition.  

The first factor comprised 9 families (types) of models. These models had identical intrinsic 

and corticothalamic connections as described in section 2.3.1 and illustrated in (Fig.2) but 

differed in the laminar targets of thalamocortical afferents: 1) superficial pyramidal cells; 2) 

middle pyramidal cells; 3) deep pyramidal cells; 4) superficial plus middle pyramidal cells; 5) 

middle plus deep pyramidal cells; 6) superficial plus deep pyramidal cells; 7) superficial 

pyramidal cells plus inhibitory interneurons; 8) middle pyramidal cells plus inhibitory 

interneurons and 9) deep pyramidal cells plus inhibitory interneurons (Fig.3, top panel). 

The second factor comprised 16 families of models that varied in the set of connections that 

could show condition specific effects (i.e. B matrix). For each one of the 9 architectures in the 

first factor, we explored condition specific effects by including or not the following features: 

intracortical modulatory synapses; intrathalamic modulatory synapses and extrinsic (between 

cortex and thalamus) modulatory synapses (Fig.3, bottom panel). There were therefore 9 x 

16=144 candidate models in total. 
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Figure.3 –Competing models of the Thalamocortical circuit as described by factors 1 and 2 (9 architectures times 

16 modulatory configurations). The diagram on the top (factor 1: architecture) describes the 9 families of models 

constructed to elucidate which thalamocortical projections are the most plausible explanation for the generation 

of beta oscillations (1.- 3.) accounts for a singular projection from thalamus to motor cortex via superficial 

pyramidal cells, middle pyramidal cells and deep pyramidal cells; (4.- 6.) accounts for two afferents to two 

excitatory subpopulations of the motor cortex via superficial and middle pyramidal cells, middle and deep 

pyramidal cells and superficial plus deep pyramidal cells, and (7.- 9.) accounts for projections to the superficial 

pyramidal subpopulation and inhibitory interneurons, the middle pyramidal subpopulation and inhibitory 

interneurons and deep pyramidal cells and inhibitory interneurons. To disclose the synaptic modulation (intrinsic 

and/or extrinsic) responsible for an enhancement of beta power, the models on the bottom (factor 2: 

modulatory configuration) feature 16 different modulatory configurations, under each of the 9 architectures 

described above. The first eight set of connections (1.-8.) entail extrinsic and intrinsic synaptic modulation 

(except for model 8, with no intrinsic modulation) and the second eight set of connections (9.-16.) considers 

intrinsic modulation only. The intrinsic modulatory connections in family 2 were: (1. and 9.) cortical modulation 

via reciprocal connection between superficial and deep pyramidal subpopulations; (2. and 10.) cortical 

modulation via reciprocal connection between superficial and middle pyramidal subpopulations; (3. and 11.) 

cortical modulation via self-inhibitory connection of the inhibitory interneurons subpopulation; (4. and 12.) 

thalamic modulation via reciprocal connection between reticular cells and relay cells; (5. and 13.) cortical and 

thalamic modulation via reciprocal connection between superficial and deep pyramidal subpopulations plus 

reciprocal connection between reticular cells and relay cells; (6. and 14.) cortical modulation via reciprocal 

connection between superficial and middle pyramidal subpopulations plus reciprocal connection between 
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reticular cells and relay cells; (7. and 8.) self-inhibitory connection of the inhibitory interneuron subpopulation 

plus reciprocal connection between reticular cells and relay cells and lastly, (8. and 16.) the null hypothesis that 

neither extrinsic nor intrinsic connections change to explain condition specific changes in cortical beta power 

(i.e. enhancement of beta). 

Bayesian Model Comparison (BMC) was used to determine the model with the highest log-

model evidence among the models described above (Stephan et al., 2010). We then 

characterised the parameters of the winning model at the group level using Parametric 

Empirical Bayes (PEB) (Friston et al.,2015). Here, only a subset of parameters was taken to the 

group level and assumed to exhibit random effects: synaptic coupling strength of intrinsic and 

extrinsic connections (G and A parameters in the DCM respectively); condition-specific effects 

on coupling strength (B parameters) and the time constants of subpopulations (T). 
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3. RESULTS 

3.1. Model Selection 

The model with the highest evidence for the transition from low beta epochs to high beta 

epochs (Fig.4) was that with i) an architecture featuring thalamocortical projections from the 

thalamic relay subpopulation to both deep pyramidal and inhibitory interneuron 

subpopulations in cortex and ii) modulatory changes in: intrinsic connections at the cortical 

level between superficial and middle pyramidal cells; intrinsic connections at the thalamic 

level, between relay and reticular cells;  corticothalamic extrinsic connections from deep 

pyramidal cells to relay and reticular cells and thalamocortical connections from relay cells to 

deep pyramidal and inhibitory interneurons. The winning model shows a free energy 

difference (i.e., log Bayes factor) of approximately 6 from the next closest model (Fig.S.2). This 

corresponds to very high evidence for the winning model, in relation to alternative 

explanations. 

Using fixed-effects Bayesian Model Comparison (FFX-BMC) to make inferences at the family 

level, the architecture with thalamic projections to DP and II showed the highest evidence 

across subjects (Fig.5.A). Similarly, the condition specific effects in the reciprocal connection 

between SP -MP, REL-RET and DP-REL plus connections from DP-RET and REL-II had the highest 

posterior probability (Fig.5.B). These results confirm our hypothesis that both the laminar-

specificity of extrinsic connectivity and intrinsic connections are key elements underlying the 

modulation of oscillatory activity in the beta band. 

 

Figure. 4– Observed and expected power spectral densities (PSD). (A) Spectral features to be explained by a DCM: 

Red lines depict the mean high beta spectral densities and blue lines the mean low beta spectral densities from 

each of the 36 rats. (B) Group mean of HB spectral densities in red and LB spectral densities in blue. Respective 

variabilities (75th and 25th percentiles of the mean spectra) denoted in light red and light blue. (C) Goodness of 
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the fits between mean data spectral densities and spectral densities generated by the winning model. The full red 

line shows the mean of high beta data and the dark red dashed line the high beta spectra estimated by the winning 

model (correlation coefficient, r=0.9997). The full dark blue line refers to the mean of low beta data and the dark 

blue dashed line to the low beta spectra produced by the winning model (correlation coefficient, r=0.9957).  

 

 

 

Figure .5 – Schematic and posterior probability of the winning model selected via FFX-BMC. Diagram and bar plot 

(A) refer to architecture of the winning model. These results suggest that thalamocortical projection to the deep 

pyramidal cells and cortical inhibitory subpopulation (in thick lines) were crucial for the generation of beta 

oscillations and that this effect was consistently observed across subjects (posterior probability of 1). Diagram 

and bar plot (B) indicate the modulatory connections of our winning model (BMC factor two). The diagram shows 

the set of connections as thick lines to have a higher likelihood (compared to the homologous 15) of inducing the 

power spectral changes observed (beta enhancement). These being: a reciprocal connection between superficial 

and middle pyramidal subpopulations, reciprocal connection between thalamic relay and reticular subpopulation 

and a reciprocal extrinsic connection between deep pyramidal cells and thalamic relay cells, an extrinsic 

connection from deep pyramidal cells to thalamic reciprocal cells and from thalamic relay cells to cortical 

inhibitory interneurons. The bar plot shows a posterior probability greater than 0.99 for the modulatory 

configuration described above and a negligible posterior probability of approximately 0.004 for a modulatory 

configuration which assumed the same modulatory characteristics as the winning model except for the intrinsic 

synaptic mechanisms of the motor cortex; i.e., presenting an intracortical modulation via reciprocal connections 

between superficial and deep pyramidal cells instead of reciprocal connections between superficial and middle 

pyramidal cells. (Ex.- extrinsic connections, r. - reciprocal connections, sp. - superficial pyramidal cells, mp.-middle 

pyramidal cells, dp. - deep pyramidal cells, ii.- inhibitory interneurons, rel. – relay cells and ret. – reticular cells). 
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3.2. Parameter analysis 

The results from our second level analysis (PEB modelling of A,G,B and T parameters at the 

group level) suggest that the transition from low beta state to high beta state is induced by i) 

an increase in synaptic strength in connections from relay cells to inhibitory interneurons, relay 

cells to deep pyramidal cells, middle pyramidal cells to superficial pyramidal cells and relay to 

reticular cells; plus ii) a reduction of synaptic strength in connections from superficial to middle 

pyramidal cells, deep pyramidal to both relay and reticular cells and from reticular to relay cells 

(Fig.6). Additionally, from the posterior distribution of our B parameters we assessed the effect 

size of each modulatory connection on the enhancement of beta – illustrated in the bar plot 

below (Fig.6).  

 

 

Figure. 6 – Average modulatory effect of B parameters (condition-specific parameters) obtained via Parametric 

empirical Bayes analysis (Friston et al.,2015). The two bar plots on the left-hand side illustrate the absolute 

connection strength of each modulatory connection in the low and high beta conditions. The bar plot in the centre 

shows how connectivity strength of B parameter changed at the group level in order to induce an increase of beta 

power. Negative values of change indicate a reduction in connectivity strength and positive values an increase. 

The anatomy of these connections is illustrated in the diagram on the right-hand side.  

 

Considering the connections that showed the greatest change to explain beta enhancement: 

REL-DP, MP-SP and REL-RET; we further analyzed, via forward modelling, the impact of 
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simultaneous alteration of the above connection strengths on the magnitude of beta power. 

As such, we aimed to characterize the contribution of these three parameters to the gradual 

transition between the two states – low and high beta power. This post hoc simulation allows 

us to characterize the selective effect of specific connections on the expression of cortical beta 

power level. Fig.7.A, suggests that when the intrinsic thalamic connection from relay to 

reticular cells have low levels of coupling strength, high beta power appears abruptly as the 

coupling strength from middle to superficial pyramidal cells is increased. This emergence of 

beta is modulated by the gradual change in coupling strength from thalamic relay cells to deep 

pyramidal cells, where reduced coupling leads to higher levels of beta. 

On the other hand, Fig.7.B, suggests that when the connectivity from relay to reticular cells is 

high, a concurrent increase in the coupling from both relay to deep pyramidal cells and middle 

to superficial pyramidal cells is required to achieve beta power enhancement. In short, the 

level of cortical beta depends on the increase in both superficial and deep pyramidal excitation.  

Figure.7- Exploration of parameters space of connections with the greatest effect on beta enhancement. Plot A. 

shows the impact of changing the coupling strength of MP-SP and REL-DP on the beta spectral output, when the 

coupling between REL-RET is weak. Here, although an increase in synaptic strength from MP-SP is enough to 

generate relatively high levels of beta spectral output, the connection from REL-DP seems to have a modulatory 

effect, i.e., the weaker the extrinsic coupling between relay and deep pyramidal cells the higher the beta spectral 

output. Plot B. considers a (constantly) strong coupling between REL-RET with the same changes in coupling 

strength between MP-SP and REL-DP. This time, we observe that an increase in beta is achieved with a concurrent 

strengthening of both MP-SP and REL-DP connections. In both plots, axis x and y denote a reduced connectivity 
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strength when values are between -1 and 0 and an increased connectivity strength when values are between 0 

and 1 for connections from middle pyramidal cells to superficial pyramidal cells and from relay cells to deep 

pyramidal cells respectively. Axis Z and colormap depict the magnitude of beta power.  

 

We additionally explored the spectral output of each subpopulation of our TC neural mass 

model (Fig. 8) and observed that all nodes generated spectral curves within the beta band 

during both conditions and increased their power from condition one (LB) to two (HB) as 

expected. In particular, the populations yielding the largest beta enhancement in the motor 

cortex and thalamus were the deep pyramidal cells and relay cells respectively. 

 

 

 

Figure.8 – Spectral output of subpopulations at Low Beta (LB) and High Beta (HB). All neural groups (in cortex and 

thalamus) have generated spectral responses within the beta band in both conditions as expected. Together with 

an increase in power a small increase in frequency peak of approximately 1-2 Hz is also apparent – when 

comparing the output generated in condition 1 (LB) with condition 2 (HB). Note that deep pyramidal population 

of the cortex and relay population of the thalamus are the populations generating a relatively large beta 

enhancement.  

LB condition HB condition

Deep pyramidal cells

0 10 20 30 40 50
Frequency (Hz)

0

0.2

0.4

0.6

Po
w

er
 (u

V2 )

Reticular cells

0 10 20 30 40 50
Frequency (Hz)

0

0.2

0.4

0.6

Po
w

er
 (u

V
2 )

Middle pyramidal cells

0 10 20 30 40 50
Frequency (Hz)

0

0.2

0.4

0.6

Po
w

er
 (u

V2 )

Relay cells

0 10 20 30 40 50
Frequency (Hz)

0

0.2

0.4

0.6

Po
w

er
 (u

V2 )

Inhibitory interneurons

0 10 20 30 40 50
Frequency (Hz)

0

0.2

0.4

0.6

Po
w

er
 (u

V
2 )

Superficial pyramidal cells

0 10 20 30 40 50
Frequency (Hz)

0

0.2

0.4

0.6

Po
w

er
(u

V
2 )

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2018. ; https://doi.org/10.1101/422238doi: bioRxiv preprint 

https://doi.org/10.1101/422238
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

4. Discussion 

In this study, we aimed to identify the network mechanisms that contribute to the dynamic 

regulation of beta synchrony in the parkinsonian motor cortex. In-vivo studies of the basal 

ganglia thalamocortical (BGTC) circuit suggest that alterations in the firing rate across the 

direct and indirect pathways are responsible for the motor impairments observed in PD 

(Nambu, 2004; Smith al., 1998). Similarly, in-silico simulations of the BGTC circuit propose that 

an altered coupling from the subthalamic nucleus to globus pallidus externus, and 

strengthening of the hyperdirect pathway play an important role in the enhancement of beta 

synchrony following chronic dopamine depletion (Marreiros et al., 2013; Moran et al., 2011).  

Our study complements the literature on PD, while exploring two novel concepts: i) laminar-

specific dynamics within the motor circuit as a putative mechanism for the spontaneous 

modulation of beta power and ii) short-term synaptic processes, i.e. transient alterations in 

effective connectivity to be responsible for the spontaneous and intermittent nature of beta 

power observed in Parkinsonian time-series.  

Focusing on the Thalamocortical loop of the BGTC circuit, we have employed DCM to identify 

a model of TC interactions that offers plausible substrates for the transient enhancement of 

cortical beta. Our study suggests two core features of the thalamocortical circuit that may 

underwrite the genesis of beta oscillations in the parkinsonian state: 1) laminar specific 

thalamocortical projections; and 2) modulation of synaptic strength across all network levels 

(i.e. within and between structures).  

To model different levels of beta synchrony, we extracted low beta epochs and high beta 

power epochs from motor cortex ECoG recordings acquired from anesthetized rodents 

rendered Parkinsonian by 6-OHDA lesions. This rodent model is useful in capturing the chronic 

dopamine depletion that is common to ‘late stage’ PD, and has been widely used for studies 

of the mechanisms by which excessive beta synchrony arises and propagates within the BGTC 

circuit in Parkinsonism. Moreover, the abnormal beta oscillations present in the BGTC circuit 

in anesthetized and behaving 6-OHDA lesioned are similar in many respects to those present 

in unmedicated people with PD (Sharott et al, 2005; Mallet et al. 2008a, 2008b; Avila et al. 

2010;  Degos et al. 2009; Nevado-Holgado et al. 2014; Brazhnik et al. 2016; Sharott et al. 2017). 
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We used DCM in this study since it quantifies effective connectivity changes underlying 

transient modulations in cortical beta power. Previously, Bhat et al., 2016 used DCM to link 

interlaminar dynamics within the motor cortex to the modulation of beta activity, evoked by 

movement. Fitting MEG data from healthy subjects to a neural mass model of the motor 

cortex, Bhat and colleagues reported that the increase in beta power observed due to the 

transition from grip to rest was induced by an increase in the extrinsic input applied to deep 

and superficial layers of the cortex. Our study suggests that beta power enhancement in 

Parkinsonism can be attributed to an increase in excitatory inputs to SP and DP; specifically 

from MP and thalamic relay cells, respectively – and a concomitant reduction of excitatory 

input to MP. In addition, our results highlight the importance of intrinsic interactions in the 

thalamus for beta power modulation as the excitatory projection from the thalamic relay cells 

to reticular cells also contributes to cortical beta enhancement (Fig.6).   

Similarly, focusing on cortical intrinsic dynamics, Sherman et al., 2016 used a computational 

model to generate transient high beta power events (i.e. beta bursts), which were temporally 

identical to those observed in the somatosensory and frontal cortices in the physiological state. 

Two circuit features have been proposed as crucial for the generation of beta bursts: 1) a drive 

from the lemniscal thalamus to the proximal dendrites of the pyramidal neurons and inhibitory 

interneurons in L2/3 and L5 (via the granular layer) and 2) a strong drive from the nonlemniscal 

thalamus to the distal dendrites of the pyramidal neurons and inhibitory interneurons found 

in supragranular and infragranular layers. 

It should be noted that due to the nature of the neural mass models employed in this study, 

we were not able to model detailed dendritic dynamics that contribute to the generation and 

modulation of neural activity in the beta band. Instead, here we assumed fixed conduction 

delays for all within-region connections (1 ms) and between-regions projections (8 ms), and 

did not account for variable propagation delays for inputs arriving to distal and proximal 

dendrites. This creates a distinction between the excitatory input received by the superficial 

pyramidal cells versus that received by the deep pyramidal cells; since the latter is attributed 

to an extrinsic projection from thalamus and hence is inherently modelled with longer 

conduction delays. Nonetheless, our results relate to the observations made in Sherman et al., 

2016, given that comparable circuitry mechanisms yielded similar oscillatory effects. In other 
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words, both studies propose that laminar specific excitation of the motor cortex must occur 

with two temporally separate inputs in order to achieve high beta power oscillatory activity. 

Furthermore, it is worth noting that alternative models of the TC circuit (Fig.3) showed lower 

model evidence. Specifically, models, allowing for projections from the thalamic relay cells to 

both the superficial and deep layers of the motor cortex, had lower model evidences than the 

winning model. Possibly, this was because simultaneous projection from the thalamic relay 

cells to the superficial and deep layers would not have allowed for a differentiation in input 

delays contrary to the winning model. Detailed analysis of the parameter space on gradual 

beta increase, opposed to a transition from extremely low to extremely high beta power, 

further corroborated that the intrinsic (shorter delay) input from middle to superficial cells 

should have high levels of synaptic strength – together with the extrinsic (longer delay) input 

from the thalamic relay to deep pyramidal cells – to explain up-regulation of beta synchrony 

when the coupling from thalamic relay to reticular is strong. (Fig.7B). Nevertheless, taking both 

scenarios into account – strong vs weak connectivity from relay cells to reticular cells - 

excitability of superficial pyramidal cells via middle pyramidal cells must assume a moderate 

coupling strength to avoid a ramping up of beta synchrony at the cortical level; highlighting a 

potential substrate that could be targeted in order to control and modulate cortical beta. 

An important difference between Sherman et al., 2016 and our study stems from the 

assumptions made on thalamic activity patterns. Sherman et al., 2016 posit that thalamic 

activity should be in the alpha band to drive beta bursts in the somatosensory and frontal 

cortices. However, in our study, thalamic neurons exhibited activity in the beta band during 

both low and high beta power conditions (Fig.8). Our results are supported by recent 

experimental work showing a substantial and coherent enhancement of beta activity (30-36Hz) 

in the motor thalamus and motor cortex of behaving 6-OHDA-lesioned rats (Brazhnik et al., 

2016). There is also evidence of aberrant beta synchrony in the thalamus of unmedicated PD 

patients (Kempf et al. 2009) Taken together, these results emphasise that thalamic neural 

activity in the beta band is likely to be a contributing circuit feature for the generation of 

aberrant beta synchronization in PD, and highlight a functional coupling between the thalamus 

and deep layers of the motor cortex. 
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Our results also support the observation that deep pyramidal cells play a prominent role in the 

emergence of beta synchrony; since the deep pyramidal subpopulation exhibited a relatively 

large increase in beta spectral output between low and high beta power conditions (Fig.8). This 

observation is in line with a high-resolution MEG study by Bonaiuto et al.,2017, where a 

mapping between neural activity and cortical laminae was proposed. In this study, the 

modulation of beta activity during a motor task has shown a stronger signal component in the 

deep layers of the contralateral sensorimotor cortex than the superficial ones (Bonaiuto et al., 

2017). 

From a clinical perspective, our study provides insights into potential therapeutic strategies 

that could be utilized to modulate the network mechanisms responsible for the enhancement 

of cortical beta in PD. Specifically, we speculate that cortical stimulation aimed to reduce the 

excitability levels of either the superficial or deep pyramidal cells could be a potential non-

invasive therapeutic strategy for PD. 

 

5. CONCLUSION  

A broadly accepted postulate concerning healthy and Parkinsonian states of the CBGTC circuit 

is that they exhibit differential patterns of synchronization at beta frequencies. (Brittain et al., 

2014; Gatev et al., 2006; Hammond et al., 2007). While exaggerated beta synchronization has 

been associated with more frequent high power beta bursts in PD (Tinkhauser et al., 2017; 

Little et al., 2013), healthy states seem to manifest as an adequate balance between high and 

low beta bursts and therefore a flexible motor behaviour (Feingold et al., 2015; Sherman et 

al., 2016). Following this reasoning, a recognition of the mechanisms adopted by the CBGTC 

network to regulate beta spectral undulations is vital to better understand healthy and 

diseased states; and consequently, inform novel therapeutic strategies. Here, using DCM, we 

highlight a set of synaptic alterations in the thalamocortical loop that elucidate how the 

transitions of beta synchrony from low to high levels might occur in Parkinson’s disease. We 

provide a new perspective for the effective coupling of the Parkinsonian thalamocortical 

network, where a fine regulation of temporally different inputs to specific laminae of the 

motor cortex may underlie the spontaneous and transient variability in oscillatory neural 
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activity in the beta band across the circuit.  

 

Supplementary 

Throughout this study, we were interested in synaptic modulation in the TC loop during beta 

enhancement in spectral data from 6-OHDA-lesioned rats. This was motivated by recent PD 

literature defining beta oscillations as intermittent events where power waxes and wanes 

within a time window of a second. To study the dynamic properties of this parkinsonian 

biomarker, many of the studies in the field focus on a binary characterization of the beta signal 

in the PD clinical context while using the envelope of the beta filtered signal and an arbitrary 

threshold of its mean to divide beta into physiological epochs and hypothetically pathological 

epochs (Feingold et al., 2015; Sherman et al., 2016; Tinkhauser et al., 2017; Little et al., 2013). 

Some studies have gone further and suggest that the duration of such high beta events is 

positively correlated with PD motor impairments.  

In CSD-DCM, conditions are effectively spectral densities derived from segments of the data 

one is interested in studying and as such three considerations must be taken into account: 1) 

the oscillatory activity undergoing a PSD analysis must have a duration of at least two cycles 

of its frequency (approximately more than 130 msec for beta frequencies); 2) conditions must 

consistently show different power levels across subjects and 3) PSD analysis does not account 

for the time evolution of beta power (does not distinguish segments with short vs. long 

bursts).  

Extracting 500 msec segments (>130msec) with extremely high/low sustained levels of beta 

power (area below the envelope) allowed us to obtain non-overlapping conditions across 

subjects with a satisfactory frequency resolution and different functional features: low beta 

hypothetically accounting for a physiological coupling state and high beta possibly accounting 

for a state with a higher probability of pathological coupling state.   

Ad hoc beta burst analysis within conditions 
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Although we were unable to model beta bursts using CSD-DCM, we analyzed the burst density 

in both low and high beta conditions a posteriori. Making use of the 75% percentile of the 

mean envelope as a threshold, the mean number of bursts in the LB condition (across trials 

and subjects) was 0.9 ± 0.3 and those bursts had the mean duration of 195  ± 106 msec. 

The mean number of bursts in the HB condition was 3.9 ± 0.7 and had the mean duration of 

772  ± 188 msec. As expected, not only HB conditions show a higher density of beta bursts 

than LB conditions (approximately 4:1) but also its bursts show a longer duration. In both 

conditions, some trials showed incomplete bursts that were still included in the computation 

of average number of bursts and averaged duration of bursts per condition. 

 

 

 

 

Fig.S.1. –  Beta conditions and beta bursts. Example of Beta bursts analysis in the Low and High beta conditions. 

In this example we can observe how low beta (in blue) and high beta (in red) have different levels of power and 

present different number of beta bursts. LB with no beta burst and HB with 3 beta bursts.  

 

 

 

Fig.S.2. –  FFX-BMC analysis of the 144 models and winning model. From the 144 models (9 architectures x 16 

modulatory configurations), model number 134 (orange) was the one with the higher log-evidence value 
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(3.6649x104) showing a difference of approximately 6 from model 133 (beige) whose log-evidence was the second 

highest (3.6643x104). Second most plausible model being the model with changes in effective connectivity among 

the following subpopulations: superficial and deep pyramidal cells reciprocally, relay and reticular cells 

reciprocally, relay cells to deep pyramidal cells and inhibitory interneurons and deep. 

From the averaged posterior estimations on parameters derived from PEB (Fig.6), we 

computed the net activity of each subpopulation (if net-excited or net-inhibited) during both 

LB and HB conditions. The same procedure has been applied to the remaining models and can 

be found in the Supplementary section in (Fig.S.4). This analysis was performed by weighting 

the combined coupling strength from different efferent subpopulations to an afferent 

subpopulation; i.e., by using the fixed parameter values of intrinsic and extrinsic connections 

and the posterior estimations of A/G parameters in the baseline condition and A/G plus B 

parameters in the HB condition. As observed in the bar plot below (Fig.S.3), the net-activity of 

our neural mass model presents similar results in both conditions: SP, DP, II and REL receiving 

a stronger excitatory input than inhibitory (net-excited) and MP and RET receiving a stronger 

inhibitory input than excitatory (net-inhibited). It is worth noting that to induce a transient beta 

increase all subpopulations increased their baseline level of activation, i.e., subpopulations that 

were net-excited in the low condition became more excited in the high condition and 

subpopulations that were net-inhibited in the low condition suffered further inhibition the high 

condition. This effect is most predominantly observed in SP, followed by MP and DP.  

 

 

 

 

 

 

 

Figure.S.3 – Net-activity state of subpopulations. Overall activation state of neural mass model subpopulations in 

the different conditions. Bar plot of net-activity of subpopulations in the LB condition (blue) and high beta 
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condition (red). Of interest is the comparison of net-activation levels of each subpopulation in the different 

conditions and consequently noting that SP is the subpopulation that shows a higher alteration in net-activity 

(followed by MP and DP).  

 

 

 

 

 

 

 

Fig.S.4. – Net-activty state of subpopulations at low and high beta.Comparing the net-excitability pattern across 

the winning generative model and the average of all models (n=144), we can observe a similar directionality of 

effects across populations except for the middle pyramidal subpopulation. Also, the mechanism of the created 

state space (independently of the modulatory pathways) to achieve the spectral transition in our data is consistent 

between the two plot - an intensification of the baseline level of activation. 
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