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ABSTRACT

The speech envelope is known to be essential for speech understanding and can be
reconstructed from the electroencephalography (EEG) signal in response to running speech.
Today, the factors influencing this neural tracking of the speech envelope are still under debate. Is
envelope tracking mainly related to the encoding of acoustic speech information or is it influenced
by top-down processing of speech understanding and the availability of semantic context in the
stimulus?

We recorded the EEG in 19 normal-hearing participants while they listened to two types of
stimuli: concatenated Matrix sentences without contextual information and a coherent story. Each
stimulus was presented with varying levels of background noise to vary speech understanding.
The speech envelope was reconstructed from the EEG in both the delta (0.5-4 Hz) and the theta
(4-8 Hz) band with the use of a linear decoder and then correlated with the real speech envelope
in that band. We also conducted a spatiotemporal analysis using temporal response functions
(TRFs).

For both stimulus types and filter bands the correlation between the speech envelope and the
reconstructed envelope increased with increasing speech understanding. In addition, correlations
were higher for the story compared to the Matrix sentences, indicating that neural envelope
tracking may be enhanced by the availability of semantic context in the stimulus and speech
understanding.
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1 INTRODUCTION

Speech is characterized by temporal modulations. The modulations reflecting syllable, word and sentence
boundaries are also called the envelope of speech. This envelope is known to be an essential cue for speech
understanding (Shannon et al., 1995) and can be reconstructed from brain responses (Aiken and Picton,
2008; Luo and Poeppel, 2007; Ding and Simon, 2011). Previous studies showed that the brain tracks the
acoustic features of speech (Luo and Poeppel, 2007; Peelle et al., 2013) and that envelope tracking can be
enhanced by attention (Kerlin et al., 2010; Ding and Simon, 2012; Mesgarani and Chang, 2012), grammar
knowledge (Ding et al., 2015; Meyer et al., 2017) or prior knowledge of the stimulus (Di Liberto et al.,
2018). However, it is not entirely clear yet how speech understanding and semantic context relate to neural
envelope tracking.

A number of researchers have investigated the relationship between neural envelope tracking and speech
understanding. Molinaro and Lizarazu (2017) showed enhanced tracking in the delta band (< 4 Hz) using
speech versus non-speech stimuli, while Luo and Poeppel (2007) obtained similar results but in the theta
band (4-8 Hz) using speech-noise chimeras. Howard and Poeppel (2010), in contrast, reported no envelope
tracking difference (3-8 Hz) between intelligible and time-reversed sentences. Besides changing the speech
signal itself, adding background noise to the signal can also vary speech understanding. Ding and Simon
(2013) showed that envelope tracking in the theta band (4-8 Hz) gradually decreases with increasing
noise level, while the delta band (1-4 Hz) is more robust to noise. In contrast, Ding et al. (2014) found
increased envelope tracking in the delta band with increasing speech understanding. Vanthornhout et al.
(2018) report similar results for the delta band (0.5-4 Hz). In their study the same sentences were used
during a recall experiment and an electroencephalography (EEG) measurement, enabling the researchers
to directly compare speech understanding to envelope tracking. With this study we aim to investigate if
neural envelope tracking is related to speech understanding and which particular frequency band of the
brain response is most associated with this.

In addition to the debate on neural envelope tracking and speech understanding, we also want to address
the role of semantic context. Understanding speech relies on the active integration of two incoming
information streams (Hickok and Poeppel, 2007; Gross et al., 2013). The acoustic information stream
(bottom-up) processes the incoming acoustic features through the auditory pathway until the auditory cortex.
The top-down stream, on the other hand, originates in different brain regions containing prior knowledge
of the upcoming speech, for example, semantic context (Wild et al., 2012; Lewis and Bastiaansen, 2015).
When speech is degraded because of background noise, the quality of the acoustic information (bottom-up)
decreases. Access to semantic context (top-down) can compensate for this acoustic loss (Stickney and
Assmann, 2001; Boothroyd et al., 1988). A recent study of Broderick et al. (2018) demonstrated that the
brain encodes semantic dissimilarities of speech in a time-locked way (1-8 Hz). Di Liberto et al. (2018)
confirmed these results and nuanced the use of the filter band: envelope tracking was more enhanced due to
prior knowledge in the delta band, covering the slower modulations of meaningful phrases and sentences,
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compared to the theta band. Therefore we hypothesize that the availability of semantic context will lead to
enhanced envelope tracking, especially in the delta band.

In the current study we investigated neural envelope tracking using EEG. To study the effect of speech
understanding we varied the level of background noise, similar to previous studies (Vanthornhout et al.,
2018; Ding et al., 2014; Ding and Simon, 2013). To additionally analyze the influence of semantic context,
we used two speech materials with a varying degree of semantic context. We hypothesize that neural
envelope tracking will be enhanced with increasing speech understanding and semantic context, especially
in the delta band.

2 MATERIAL AND METHODS

2.1 Participants

Nineteen participants aged between 18 and 28 years (3 men and 16 women) took part in the experiment
after providing informed consent. Participants had Flemish as their mother tongue and were all normal-
hearing, confirmed with pure tone audiometry (thresholds ≤ 25 dB HL at all octave frequencies from
125 Hz to 8 kHz). The study was approved by the Medical Ethics Committee UZ Leuven / Research (KU
Leuven) with reference S57102. All participants were unpaid volunteers.

2.2 Auditory stimuli

During the experiment participants listened to three different speech materials: (1) Matrix sentences (no
semantic context), (2) a story (semantic context) and (3) a story used to train the linear decoder on.

2.2.1 Matrix sentences (no semantic context)

Flemish Matrix sentences always contain 5 words spoken by a female speaker and have a fixed syntactic
structure of ‘proper name-verb-numeral-adjective-object’, for example, ‘Sofie sees ten blue socks’ with a
speech rate of 4.1 syllables/second, 2.5 words/second and 0.5 sentences/second. Each category of words
has 10 options and each sentence consists of a random combination of these options, which reduces
semantic context to a bare minimum. These sentences are gathered into standardized lists of 20 sentences.
Speech was always fixed at 60 dBA and the noise level varied across trials. We used speech weighted noise
(SWN) which has the long-term-average spectrum of the stimulus and therefore results in optimal energetic
masking. We chose to use Matrix sentences because this is a validated speech material to measure speech
understanding which allows us to directly compare EEG results with speech understanding. In addition,
Matrix sentences are a random combination of words, but maintain the correct syntax. This enables us to
present syntactical correct speech only lacking semantic context.

2.2.2 Coherent story (semantic context)

The coherent story we used is ’De Wilde Zwanen’, written by Hans Christian Andersen and narrated in
Flemish by Katrien Devos (female speaker) with a speech rate of 3.5 syllables/second, 2.5 words/second
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and 0.2 sentences/second. Speech was always fixed at 60 dBA and the noise level of the SWN varied
across trials. Using a fairy tale with maximal semantic context allows us, when comparing with the Matrix
sentences, to study the influence of the availability of semantic context in the stimulus on neural envelope
tracking. To measure speech intelligibility of the story, we cannot ask the participant to recall every word.
Therefore we used a rating method, where the subjects were asked to rate their speech understanding.

2.2.3 Decoder story

A children’s story, ’Milan’, written and narrated in Flemish by Stijn Vranken (male speaker),
was presented to the participants with a speech rate of 3.7 syllables/second, 2.6 words/second and
0.3 sentences/second. This story is 14 minutes long and was presented at 60 dBA without noise. The
purpose of this story was to have a continuous stimulus without background noise to train a linear decoder
on (Vanthornhout et al., 2018) to reconstruct the speech envelope from the EEG. To maximize attention, a
content question was asked.

2.3 Behavioral experiment

Speech understanding was measured behaviorally in order to compare envelope tracking results in terms
of speech understanding. We need to measure speech understanding for both stimuli separately because
they differ in content and acoustic parameters (speaker, speech rate, intonation). Adding a similar level of
background noise will therefore not result in a similar level of speech understanding.

Before the EEG experiment we conducted a standardized Matrix test. This standardized test starts with 2
training lists followed by 3 testing lists of 20 sentences at different Signal-to-Noise Ratios (SNR): -9.5; -6.5
and -3.5 dB SNR. Subjects had to recall the sentence they heard. By counting the correctly recalled words,
a percentage correct per presented SNR was calculated. Next, a psychometric function could be plotted
through the data points to obtain estimated levels of speech understanding at different SNRs. To measure
speech understanding for the story, we cannot ask the participants to recall every word, instead we used a
rating method during the EEG experiment. Participants were asked to rate their speech understanding at
the presented SNRs: -12.5; -9.5; -6.5; -3.5; -0.5 and 2.5 dB SNR.

2.4 EEG experiment

Ten subjects started the EEG experiment by listening to Matrix sentences followed by the coherent story.
The remaining 9 subjects did this in the reversed order. The decoder story was presented in between. The
coherent story was cut in 7 equal parts of approximately 4 minutes, which we presented in chronological
order to optimize the use of semantic context. The first part was always presented in silence to optimize
comprehension of the storyline. The following 6 parts were presented at 6 different SNRs in random order:
-12.5; -9.5; -6.5; -3.5; -0.5 and 2.5 dB SNR. The Matrix sentences were concatenated into 7 lists of 40
sentences with a silent gap between the sentences randomly varying between 0.8 and 1.2 seconds. Each
2-minute trial, containing 40 sentences at a particular SNR, was presented twice to analyze test-retest
reliability. The SNRs were the same SNRs as used for the story, also in random order. To maximize
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attention and keep the subjects motivated, questions were asked about each SNR trial, for example, ‘What
happened after sunset?’ or ’Which colors of boats were mentioned?’ (answers were not used for further
analysis). After the question, the subjects were asked to rate their speech understanding with the following
question: ’Which percentage of the words did you understand?’.

2.5 Signal processing

In this study we measured neural envelope tracking and linked this to speech understanding and semantic
context. Neural envelope tracking was calculated in two ways. (1) We correlated the acoustic speech
envelope with the reconstructed speech envelope from the EEG response. The more accurate the envelope
is encoded in the brain, the more similar it will be to the acoustic envelope en thus the higher the
correlation. (2) In addition, we calculated TRFs for each electrode to analyze neural envelope tracking in a
spatiotemporal way.

2.5.1 Acoustic envelope

The acoustic speech envelope was extracted from the stimulus according to Biesmans et al. (2017), using
a gammatone filterbank followed by a power law. We used a filterbank containing 28 channels spaced by 1
equivalent rectangular bandwidth with center frequencies from 50 Hz until 5000 Hz. The absolute value
of each sample in each channel was raised to the power of 0.6. All 28 channel envelopes were averaged
which resulted in one single envelope. As a next step, the acoustic speech envelope was band-pass filtered,
similar to the EEG signal, in the delta (0.5-4 Hz) or theta (4-8 Hz) frequency band with a Chebyshev filter
with 80 dB attenuation at 10% outside the passband. Only these low frequencies were further processed,
because they contain the information of interest of the slow modulating speech envelope.

2.5.2 Envelope reconstruction

As a first step the EEG data was downsampled from 8192 Hz to 256 Hz to reduce processing time and
referenced to an average of the electrodes. Next, EEG artefact rejection was done using a multi-channel
Wiener filter (MWF) (Somers et al., 2018). the MWF was calculated on the long decoder story without
noise and applied on the shorter Matrix and coherent story SNR trials. After artefact rejection, the signal
was bandpass filtered, similar to the acoustic speech envelope and the sample rate was further decreased
from 256 Hz to 128 Hz. To enable reconstruction of the speech envelope from the neural data as a measure
of neural envelope tracking, a linear decoder was created using the mTRF toolbox (Lalor et al., 2006, 2009).
As speech elicits neural responses with some delay, the decoder not only attributes weights to each EEG
channel (spatial filter), but it also takes the shifted neural responses of each channel into account (temporal
filter), resulting in a matrix R containing the shifted neural responses of each channel. If g is the linear
decoder and R is the shifted neural data, the reconstruction of the speech envelope ŝ(t) was obtained by
ŝ(t) =

∑
n

∑
τ g(n, τ)R(t+ τ, n), with t the time ranging from 0 to T, n the recording electrodes ranging

from 1 to N and τ the post-stimulus samples used to reconstruct the envelope. The decoder was calculated
using ridge regression by solving g = (RRT )−1(RST ) with R as the time-lagged matrix of the neural data
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and S as the speech envelope. As we used an integration window from 0 until 250 ms post-stimulus, the
decoder matrix g was a 64 (EEG channels) x 33 (time delays) matrix. The decoder was created using the
Milan story (14 minutes) without any noise.

As a last step to reconstruct the envelope the decoder was applied to both test stimuli, the Matrix sentences
(no semantic context) and the coherent story (semantic context), at various noise levels after normalization.
Each SNR trial consisted of 2 presentations of 80 seconds of speech (silences excluded). To measure how
similar this reconstructed envelope is to the acoustic envelope as a measure for neural envelope tracking, we
calculated the bootstrapped Spearman correlation using Monte Carlo sampling after removing the silences
in the stimulus and the corresponding part in the EEG. Removing the silences is indispensable as the
Matrix sentences contain quasi-regular silent gaps between the sentences which would lead to suboptimal
decoding. A schematic overview is shown in Figure 1.

The significance level of the correlation is calculated by correlating random permutations of the real and
reconstructed envelope 1000 times and taking percentile 2.5 and 97.5 to obtain a 95% confidence interval.
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Figure 1. Overview of the experimental setup. We presented the Matrix sentences and a story. Participants
listened to the speech with different levels of background noise and (1) rated their speech understanding
while (2) their EEG was measured. To obtain a measure of envelope tracking we correlated the reconstructed
envelope with the acoustic envelope. We compared the envelope tracking results with the rated speech
understanding scores.

2.5.3 Temporal response function estimation

The analysis above integrates all neural activity over channels and time lags. To have a closer look
at the spatiotemporal profile of the neural responses, we calculated TRFs. A TRF is a linear filter that
describes how the acoustic speech envelope of the stimulus is transformed into neural responses. This is
the inverse approach of the previously mentioned envelope reconstruction where analysis is done from
EEG to stimulus.

We calculated a TRF for every electrode channel in every subject. The first signal processing steps are
identical to the envelope reconstruction model starting with downsampling to 1028 Hz, artefact rejection
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with MWF and filtering (0.5-8 Hz). Next, TRFs were calculated using the boosting algorithm (David et al.,
2007; Brodbeck et al., 2018) with an l2 error norm (using the Eelbrain source code (Brodbeck, 2017)) as
described in detail by David et al. (2007). After calculation, the TRFs were convolved with a rotationally
symmetric Gaussian kernel of 5 samples long (SD = 2). To analyze the TRFs in the time domain, we
investigate the latency and amplitude of the negative and positive peaks occurring directly after the stimulus
onset (Ding and Simon, 2011; Ding et al., 2014; Obleser and Kotz, 2011; Ding and Simon, 2012).

2.6 Experimental design

Recordings were made in a soundproof and electromagnetically shielded room. Speech was presented
bilaterally at 60 dBA and the setup was calibrated using a 2cm3 coupler of the artificial ear (Brüel & Kjær
4152, Denmark) per speech material. The stimuli were presented using APEX 3 (Francart et al., 2008),
an RME Multiface II sound card (Germany) and Etymotic ER-3A insert phones (Illinois, USA). First
the participants did a behavioral test to measure their speech understanding. Next, a 64-channel BioSemi
ActiveTwo (the Netherlands) EEG recording system was used for the EEG recordings at a sample rate
of 8192 Hz. Subjects sat in a comfortable chair and were asked to move as little as possible during the
recordings. We inserted a small break between the behavioral and the EEG part and between the Matrix
sentences and the story if necessary.

2.7 Statistical Analysis

Statistical analysis was performed using MATLAB (version R2016b) and R (version 3.3.2) software. The
significance level was set at α=0.05 unless otherwise stated.

For the behavioral tests and envelope reconstruction we compared dependent samples (e.g. test-retest)
using a nonparametric Wilcoxon signed-rank test. For every filter band and speech material we tested the
correlation between envelope reconstruction and speech understanding using Spearman’s rank correlation.
Next, we assessed the relationship between speech understanding, envelope reconstruction, filter band and
speech material by constructing a linear mixed effect (LME) model of envelope tracking in function of
speech understanding (continuous variable) with interaction and main effects of speech material (2 factors)
and filter band (2 factors) and a random intercept per participant with the following formula:

corr ∼ SI +material + band+ SI : band+ SI : material + SI : band : material

where corr is defined as the Spearman correlation between the reconstructed and the acoustic envelope,
with random effect of intercept of the participants and fixed and interaction effects of SI (speech
intelligibility), material (the stimuli with differing level of semantic context) and band (the delta or
theta filterband). To control for the effect of SNR, we constructed the exact same model, but in function of
SNR instead of SI.

To control if every chosen fixed and random effect benefited the model the Akaike Information Criterion
(AIC) was calculated. The model with the lowest AIC was selected and its residual plot was analyzed to
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assess the normality assumption of the LME residuals. Unstandardized regression coefficients (beta) with
95% confidence intervals and p-value are reported in the results section.

To investigate which part of the TRF was significantly different from zero, we conducted a cluster-based
permutation test. To explore significant differences between stimuli we conducted a positive and negative
cluster-based analysis with a post hoc Bonferroni adjustment to correct for the positive and negative test.
These tests are explained in detail by Maris and Oostenveld (2007). Spearman’s rank correlation was used
to investigate the possible change of amplitude and latency of the temporal-occipital peaks over time.

3 RESULTS

3.1 Speech understanding: Story versus Matrix sentences

During the experiment we measured speech understanding behaviorally at different SNRs for every
participant. Figure 2 shows that the story (context) was significantly more difficult than the Matrix sentences
(no context) (p< 0.001, CI(95%) = [15.99; 23.34], n=19, Wilcoxon signed-rank test). This indicates that
the same SNR does not result in the same level of speech understanding for the different speech materials.
To be able to compare the coherent story with the Matrix sentences in terms of semantic context and speech
understanding, we need to account for this.
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Figure 2. A comparison between the Matrix sentences and the story reveals that the story is more difficult
to understand when adding background noise.
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3.2 Envelope reconstruction

To measure neural envelope tracking, we calculated the Spearman correlation between the reconstructed
envelope and the acoustic envelope. Conducting a test-retest analysis showed no significant difference
between test and retest correlations (p=0.857, CI(95%) = [-0.005; 0.006], Wilcoxon signed-rank test),
therefore we averaged the correlation of the test and retest conditions resulting in one correlation per
participant per SNR per speech material. We also conducted a chance level analysis to investigate whether
there is a difference in chance level between both stimuli. A difference in chance level would imply that
the decoder would show a preference to one of the two stimuli. To obtain the chance level we reconstructed
the envelope of the story similar to the standard analysis. Next we correlated the reconstructed envelope of
each story trial with the acoustic envelope of all trials of both the story (except for the used trial) and the
Matrix sentences. No significant difference was found between the chance level of the speech materials
(p=0.534, CI(95%) = [-0.005; 0.003], Wilcoxon signed-rank test). In addition, the 95% confidence interval
of the difference between the chance level of the stimuli is similar to the test-retest variability (CI(95%) =
[-0.005; 0.006]), indicating that this non-significant difference is also a small difference.
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Figure 3. Neural envelope tracking increases with increasing speech intelligibility and by having semantic
context available. The shading represents two times the standard error of the fit and the dotted line is the
significance level of the correlation (±0.019).
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Table 1. Spearman rank correlation between neural envelope tracking and speech understanding

Speechmaterial Filter band Correlation p-value

Matrix sentences (no context) Delta (0.5-4 Hz) 0.62 p<0.001
Story (context) Delta (0.5-4 Hz) 0.59 p<0.001
Matrix sentences (no context) Theta (4-8 Hz) 0.46 p<0.001
Story (context) Theta (4-8 Hz) 0.41 p<0.001

We analyzed the decoding accuracy of the speech envelope in the delta (0.5-4 Hz) and the theta (4-8
Hz) band for two stimuli with a different level of semantic context and with various levels of speech
understanding. Figure 3 shows that when speech understanding increases, the correlation between the
acoustic and the reconstructed envelope, i.e. neural envelope tracking, also increases for every filter band
and every stimulus tested (table 1, Spearman rank correlation).

Table 2. Linear Mixed Effect Model of envelope reconstruction in function of SI

Linear mixed effect model (factor) beta value CI(95%) p-value

Fixed effect SI 1.08 x 10−3 ± 1.90 x 10−4 p<0.001
Fixed effect material 1.97 x 10−2 ± 1.49 x 10−2 p=0.010
Fixed effect band -3.87 x 10−2 ± 1.41 x 10−2 p<0.001
Interaction effect SI:material -1.74 x 10−4 ± 2.39 x 10−4 p=0.155
Interaction effect SI:band -4.43 x 10−4 ± 2.14 x 10−4 p<0.001
Interaction effect SI:band:material -1.28 x 10−5 ± 2.25 x 10−4 p=0.912

To additionally investigate the influence of semantic context, we created an LME model as a function
of speech understanding. The analysis shows that neural envelope tracking is enhanced by a stimulus
with more semantic context (fixed effect material, p=0.010, LME, table 2). This increase due to semantic
context does not significantly depend on the level of speech understanding or filter band (interaction
effect SI:material, p=0.155; interaction effect SI:band:material, p=0.912; LME, table 2). Further, envelope
tracking in the delta band (0.5-4 Hz) is higher than in the theta band (4-8 Hz) (fixed effect band, p<0.001,
LME, table 2) and the increase of envelope tracking with speech intelligibility is filter band dependent with
a steeper slope in the delta band (0.5-4 Hz) (interaction effect SI:band, p<0.001, LME, table 2).

Because the same SI results in a different SNR per speech material, and neural envelope tracking could
be influenced by SNR, we checked whether the obtained effect of semantic context was not just an effect
of SNR by conducting the same analysis in function of SNR. The same fixed and interaction effects were
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found to be significant as for the SI analysis (table 3), showing that even at the same SNR neural envelope
tracking for the story is enhanced compared to the Matrix sentences.

Table 3. Linear Mixed Effect Model of envelope reconstruction in function of SNR

Linear mixed effect model (factor) beta value CI(95%) p-value

Fixed effect SNR 7.75 x 10−3 ± 1.39 x 10−3 p<0.001
Fixed effect material -1.25 x 10−2 ± 1.06 x 10−2 p=0.022
Fixed effect band -8.10 x 10−2 ± 1.06 x 10−2 p<0.001
Interaction effect SNR:material -1.01 x 10−3 ± 1.83 x 10−3 p=0.284
Interaction effect SNR:band -3.20 x 10−3 ± 1.83 x 10−3 p<0.001
Interaction effect SNR:band:material -1.40 x 10−6 ± 2.13 x 10−3 p=0.999

3.3 Temporal response function

The analysis above integrates all different time lags and channels to obtain a reconstruction of the
envelope. In the following analysis we focus on how the neural responses follow the envelope in the time
and spatial domain by investigating TRFs. TRFs were calculated on an individual level. This resulted
in 868 TRFs per participant (64 channels x 2 speech materials x 7 SNRs). To visualize topoplots and
TRF time courses, we averaged the TRFs per speech material per SNR over participants. Figure 4 shows
the spatiotemporal activation profile of respectively the Matrix sentences (no semantic context) and
the story (semantic context). In the no-noise condition both speech materials show positive central and
negative parieto-occipital amplitudes over time. When only a little amount of noise is added and speech
understanding remains almost unchanged (SNR = 2.5 dB SNR; Matrix sentences: median SI = 99.9%, sd =
0.2; Story: median SI = 99.0%, sd = 4.7), the amplitudes decrease between 0 to 150 ms, while amplitudes
between 150 to 200 ms increase in both speech materials. Between 50 and 100 ms amplitudes even swap
polarities. When more noise is added and speech understanding decreases all amplitudes decrease with
decreasing speech understanding, except for the negative central activation between 50 and 100 ms that
reaches a maximum at SNR = -3.5 dB SNR.

To investigate the influence of semantic context we subtracted the TRFs of the story from the Matrix
sentences. We did this analysis both in function of speech understanding and SNR to control for both
factors. A positive and negative cluster analysis (Maris and Oostenveld, 2007) over all subjects revealed
significant differences (α = 0.025) between both stimuli in the no-noise condition with larger amplitudes
for the Matrix sentences, highlighted in red in Figure 4. In all conditions where noise was added to the
speech signal, no significant differences could be found.
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Matrix sentences

Story

Figure 4. Topoplots for the story and the Matrix sentences at different SNRs and different time lags
varying from 0 until 200 ms. Significant differences between the speech materials are highlighted in red.
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Figure 5. Significant TRF samples are highlighted in bold. The temporal-occipital channels show a
negative peak between 100 and 200 ms for both speech materials shifting in latency and amplitude as
speech understanding varies.14
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To investigate the time-course of the TRFs, we calculated TRFs for a temporal-occipital channel selection
(Figure 7). This selection is data driven, based on the TRF results shown in Figure 4. A cluster-based
permutation test (Maris and Oostenveld, 2007) shows the TRF samples significantly different from zero.
These samples are highlighted in bold in Figure 5. Figure 5 shows that when SI is very low (SNR < -12.5
dB SNR) both speech materials have very low responses over time. When speech is understood a negative
peak can be found for both speech materials. Figure 6 shows the latency and amplitude results of this peak
on a subject level over SI. It was determined individually by selecting the lowest amplitude of the TRF
between 50 and 300 ms. With decreasing SI the amplitude of the negative peak per subject decreases for
both speech materials (Matrix sentences: Spearman rank correlation = 0.49, p<0.001; Story: Spearman
rank correlation = 0.26, p = 0.005). Besides the amplitudes, the latency also changes over SI for the Matrix
sentences (Spearman rank correlation = 0.46, p<0.001), while for the story latency remains the same
(Spearman rank correlation = 0.02, p = 0.835)). Next to the prominent peak between 100 and 200 ms, a
positive significant peak arises around 300 ms for the Matrix sentences at -9.5 dB SNR (Figure 5).
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Figure 6. The negative peak in the temporal-occipital channels varies per subject and shows a general
decrease in amplitude with a decrease in speech understanding. Latency increases with decreasing speech
understanding for the Matrix sentences, but remains stable for the story.
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Figure 7. Electrode selection: 64 active electrodes placed according to the 10-20 electrode system. The
locations of the electrodes that were selected for the calculation of the occipital-temporal TRF are indicated
in red.

4 DISCUSSION

In order to gain more insight in the mechanisms underlying neural speech processing, we investigated
whether speech understanding and the availability of semantic context in the stimulus influence neural
envelope tracking. To that end, we tested 19 normal-hearing subjects. They listened to stimuli with
two degrees of semantic context at varying levels of background noise while their EEG was recorded.
Afterwards, we conducted an envelope reconstruction and TRF analysis and compared these results per
speech material to their speech understanding. We found an effect of speech understanding and speech
material which supports the hypothesis that neural envelope tracking is influenced by speech understanding
and the availability of semantic context in the stimulus.

4.1 The same SNR does not result in similar speech understanding for different stimuli

As a first step we measured speech understanding for both speech materials at different noise levels.
The results show that the same SNR does not result in similar speech understanding for different speech
materials. The story was found to be more difficult to understand than Matrix sentences. Although we
controlled for the sex of the speaker and chose speech materials with similar speech rates and spectrum,
the difference could still be due to different acoustic features such as prosody. The Matrix sentences belong
to a standardized speech material where every word is spoken at the same intensity. The story, on the other
hand, is narrated for children and has more variations. An additional reason to explain this difference is
lexical prediction. Even though the permutations of the words are different in each Matrix sentence, the
words themselves are becoming more familiar to the participants during the course of the experiment, in
contrast to the story where lexical prediction remains more fixed. Perhaps drawing from a larger pool
of words for the Matrix sentences might have led to more similar intelligibility ratings between speech
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materials. These diverging intelligibility results between speech materials also confirm the findings of
Decruy et al. (2018), who emphasized the importance of measuring speech understanding for all stimuli
used.

4.2 The interplay between neural envelope tracking and speech understanding

4.2.1 Envelope reconstruction

We found that the correlation between the reconstructed and the acoustic envelope increased with speech
understanding. This finding supports the results of Molinaro and Lizarazu (2017); Luo and Poeppel (2007);
Ding and Simon (2013); Ding et al. (2014); Vanthornhout et al. (2018) where an increase in speech
understanding was also found to accompany an increase in envelope tracking.

Secondly, the tracking results in the delta band were significantly higher than in the theta band, while the
significance levels remain the same. The slope of envelope tracking as a function of speech understanding
was steeper in the delta band. These filter band differences might mean that the delta band is more sensitive
to speech understanding, or it can just be a reflection of the specific modulation frequencies of the presented
speech (Aiken and Picton, 2008; Luo and Poeppel, 2007). The story and Matrix sentences have modulation
frequencies for sentence, word and syllable rate that can mainly be found within the delta band, possibly
explaining the imbalance in correlation magnitude between the frequency bands.

4.2.2 Temporal response function

In addition to envelope reconstruction, we conducted a TRF analysis to gain more insight in the
spatiotemporal profile of the neural responses. The topoplots in Figure 4 show a negative-positive interaction
between the TRFs from the temporal-occipital channels and central channels. This is a typical topography
of auditory evoked far-field potentials (Picton, 2011). The large negative peak within the 100 to 200 ms
time lag (Figure 5) could be the so-called N100, usually occurring at a latency between 70-150 ms (Picton,
2011).

Generally we found, similar to envelope reconstruction, high TRF amplitudes when speech understanding
was high (SI=100%) and reduced amplitudes when speech understanding decreased for both speech
materials. When a small amount of noise was added and speech understanding remained almost unchanged
(SNR = 2.5 dB SNR; Matrix sentences: SI = 99.9%; Story: SI = 99.0%), TRF amplitudes decreased
between 0 to 150 ms, while amplitudes between 150 to 200 ms increased, revealing noise induced changes
possibly related to enhanced attention and listening effort (Ding and Simon, 2012; Petersen et al., 2017;
Kong et al., 2014; Obleser and Kotz, 2011). Most remarkable are TRF amplitudes between 50 and 100 ms
which switch polarities in the presence of noise and show maximal activation at an SNR of ± -3.5 dB SNR.
When more noise was added and speech understanding does decrease, amplitudes between 150 to 200 ms
consistently decreased over subjects, perhaps indicating a time window sensitive to speech understanding.
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4.3 Semantic context influences neural envelope tracking

4.3.1 Envelope reconstruction

This study demonstrated that a stimulus with semantic context available enhanced neural envelope
tracking which is consistent with the dual stream model of speech processing (Hickok and Poeppel, 2007;
Gross et al., 2013). Following this model, processing of Matrix sentences would mainly rely on the
auditory acoustic information stream (bottom-up), while processing of the story also extensively uses
the top-down stream. A potential confound is that we used different SNRs for the two stimulus types (to
control for intelligibility). This means that the differences in envelope tracking could be related simply to
SNR rather than other stimulus properties. To investigate this, we ran the same analysis, but now with SNR
as predictor instead of intelligibility, and again found significantly increased envelope tracking for the story
stimulus. This shows that SNR by itself does not account for the full difference between the two stimulus
types. However, these results still have to be interpreted with care as some confounding factors cannot be
controlled for. First, although the acoustics of the stimuli were matched in terms of sex and speech rate of
the speaker and spectrum of the stimulus, acoustic differences like prosody are still present, as discussed in
paragraph 4.1. Second, despite the questions asked to motivate the participants, the reduced correlations
for the Matrix sentences could be linked to attention. Because listening to concatenated sentences can be
boring, attention loss could occur which reduces neural envelope tracking (Ding and Simon, 2012; Petersen
et al., 2017; Kong et al., 2014). For the coherent story, on the other hand, attention could be less of an issue
as attending this speech is entertaining resulting in higher correlations.

Furthermore, the enhancement in neural envelope tracking due to the availability of semantic context was
similar in both frequency bands. These results do not confirm our hypothesis of enhanced tracking primarily
in the delta band. A possible explanation for this result could be the fixed syntactical 5-word structure of
the Matrix sentences. Consequently this stimulus has a more rigid word and sentence rate compared to the
story, possibly resulting in stronger neural tracking at these word- and sentence frequencies, respectively
2.5 Hz and 0.5 Hz, occurring within the delta band (0.5-4 Hz). As a result, this purely acoustic phenomenon
might mask the interaction effect between semantic context processing and the filter bands.

4.3.2 Temporal response Function

In the no-noise condition significantly higher amplitudes were found for the Matrix sentences compared
to the story. These enhanced TRF amplitudes could be caused by the previously mentioned rigid word and
sentence rate of the Matrix sentences resulting in stronger neural tracking. However, when a small amount
of noise is added (SNR = 2.5 dB SNR; Matrix sentences: SI = 99.9%; Story: SI = 99.0%), this significant
difference disappears and the TRF amplitudes, including N100, increase for the story but decrease for the
Matrix sentences. These apparently opposite results could, similarly to envelope reconstruction results,
be explained by either the dual model of speech processing (Hickok and Poeppel, 2007; Gross et al.,
2013), attention research (Ding and Simon, 2012; Petersen et al., 2017; Kong et al., 2014) as discussed

18

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 19, 2018. ; https://doi.org/10.1101/421727doi: bioRxiv preprint 

https://doi.org/10.1101/421727


in paragraph 4.3.1 or the effort it takes to understand the stimulus (Kong et al., 2014; Obleser and Kotz,
2011).

Next, the latency of the N100 peak shows a difference depending on the stimulus. The latency decreases
with increasing SI for the Matrix sentences, while latency remains the same over SI for the story. A latency
decrease with increasing SNR, similar to the Matrix sentences, has been reported in literature by Petersen
et al. (2017) and is also supported by research of (Kong et al., 2014), but not by Ding and Simon (2012).
However, it is difficult to directly compare our results with these studies as 2 out of 3 only reported SNRs
and not speech understanding scores. The difference in latency pattern we find for both speech materials
could again be modulated by the dual model of speech processing, attention or listening effort.

A last result to point out is the positive peak around 300 ms for the Matrix sentences at -9.5 dB SNR
(SI=49%) (Figure 5). The increased TRF amplitudes for the Matrix sentences could be related to the P300
peak. P300, like N100, is a deflection in the human event related potential. It can occur when a participant
tries to detect a target stimulus (Picton, 1992, 2011). As the Matrix sentences do not contain semantic
context, which makes content questions not possible, counting questions were asked at every SNR trial,
for example, ’Which colors of boats were mentioned?’. We hypothesize that the question type, content
questions for the story versus counting questions for the Matrix sentences, account for this P300 difference.
As a consequence, the type of questions is also an important factor to take into account for event related
potential research.

4.4 Implications for applied research

We found an effect of speech understanding and the amount of semantic context in the stimulus, indicating
that neural envelope tracking might be more than the encoding of acoustic information. When developing
an objective measure of speech understanding, like for example Vanthornhout et al. (2018), it is important to
select the speech material based on the intended purpose. For example, to conduct research and investigate
neural speech processing in noise, a story could be an interesting choice as neural envelope tracking is
more pronounced. However, when comparing speech understanding outcomes in a clinical setting with for
example hearing aids, top-down processing effects are undesired and should be ruled out and the Matrix
sentences could be used instead.

5 CONCLUSION

We investigated whether speech understanding and/or the availability of semantic context in the stimulus
influence neural envelope tracking in order to gain more insight in the mechanisms underlying neural
speech processing. We found increasing neural envelope tracking with increasing speech understanding
and an additional enhancement with semantic context in the stimulus.
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