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Abstract: Mature bacterial biofilms have elaborate three-dimensional 24	

architectures that endow these structures with their durability and resistance to 25	

environmental perturbations. We used agent-based modeling to explore whether 26	

local cellular interactions were sufficient to give rise to global structural features 27	

of biofilms. Specifically, we asked whether chemorepulsion from a self-produced 28	

quorum-sensing molecule, autoinducer-2 (AI-2), was sufficient to recapitulate 29	

biofilm growth and cellular organization observed for biofilms of the human 30	

pathogen Helicobacter pylori. To carry out this modeling, we modified an existing 31	

platform, Individual-based Dynamics of Microbial Communities Simulator 32	

(iDynoMiCS), to incorporate three-dimensional chemotaxis, planktonic cells that 33	

could join or leave the biofilm structure, and cellular production of AI-2. We 34	

simulated biofilm growth of previously characterized H. pylori strains with varying 35	

AI-2 production and sensing capacities. Using biologically plausible parameters, 36	

we were able to recapitulate both the variation in biofilm mass and cellular 37	

distributions observed with these strains. Specifically, the strains that were 38	

competent to chemotax away from AI-2 produced smaller and more 39	

heterogeneously spaced biofilms, whereas the AI-2 chemotaxis defective strains 40	

produced larger and more homogeneously spaced biofilms. The model also 41	

provided new insights into the cellular demographics contributing to the biofilm 42	

patterning of each strain. Our analysis supports the idea that cellular interactions 43	

at small spatial and temporal scales are sufficient to give rise to larger scale 44	

emergent properties of biofilms.  45	
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Importance: Most bacteria exist in aggregated, three-dimensional structures 46	

called biofilms. Biofilms are resistant to antimicrobials and can pose societal 47	

problems, for example when they grow in plumbing systems or on medical 48	

implants. Understanding the processes that promote the growth and disassembly 49	

of biofilms could lead to better strategies to manage these structures. We had 50	

previously shown that Helicobacter pylori bacteria are repulsed by high 51	

concentrations of a self-produced molecule, autoinducer-2 (AI-2) and that H. 52	

pylori mutants deficient in AI-2 sensing form larger and more homogeneously 53	

spaced biofilms. Here we used computer simulations of biofilm formation to show 54	

that local H. pylori behavior of repulsion from high AI-2 could explain the overall 55	

architecture of H. pylori biofilms. Our findings demonstrate that it is possible to 56	

change global biofilm organization by manipulating local cell behaviors, which 57	

suggests that simple strategies targeting cells at local scales could be useful for 58	

controlling biofilms in industrial and medical settings.  59	

 60	

Keywords (4-6) 61	

Biofilms, agent-based modeling, Helicobacter pylori, autoinducer-2, chemotaxis 62	

 63	

Introduction       64	

Bacteria often exist in aggregated, adherent communities called biofilms in 65	

which the cells are encased in a self-produced matrix and adopt distinctive three-66	

dimensional architectures with heterogeneous cell spacing that gives rise to 67	

networks of channels. These biofilm structures confer increased resistance to 68	
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environmental stressors such as antibiotics, changes in pH, and host immune 69	

defenses (1, 2). The architecture of mature biofilms contributes to their durability 70	

and resilience to perturbations by allowing for the flow of nutrients and waste 71	

products into and out of the cell aggregates (2–5). Biofilms create many 72	

commercial and biomedical problems for society, from biofouling of municipal 73	

waterworks to life-threatening infections by pathogens harbored on medical 74	

implants or the lungs of cystic fibrosis patients (1, 6, 7). Being able to understand 75	

and ultimately manipulate biofilm assembly and disassembly would help address 76	

several major industrial and biomedical challenges.  77	

Biofilm assembly has been described alternatively as a developmental 78	

program controlled by stage-specific gene expression, similar to the development 79	

of a multicellular organism, or as the outcome of local adaptations of individual 80	

cells (8, 9). Distinguishing these two alternative possibilities is challenging 81	

because it can be difficult to discern whether biofilm phenotypes are achieved by 82	

optimizing group or individual fitness. For example, genes identified through 83	

forward genetic screens as being required for normal biofilm structures could be 84	

interpreted alternatively as being part of a biofilm genetic program or as 85	

controlling certain cellular behaviors that contribute to the self-assembly of biofilm 86	

structures. As a complement to experimental studies, computational modeling 87	

has played an important role in the study of biofilm assembly because it provides 88	

researchers with the opportunity to test and refine their understanding of the 89	

minimal set of parameters that can give rise to biofilm structures observed in 90	

nature (10–12).    91	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/421610doi: bioRxiv preprint 

https://doi.org/10.1101/421610
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

A distinguishing feature of the biofilm lifestyle is that cells in close 92	

proximity can produce and respond to secreted molecular signals on small 93	

spatial and temporal scales. One such example of a secreted signal is the class 94	

of quorum-sensing molecules that serve as density-dependent forms of 95	

communication to influence group behaviors. These can include species-specific 96	

molecules, such as acylated homoserine lactones produced by many Gram-97	

negative bacteria and perceived by species-specific receptors. Another example 98	

of a quorum-sensing molecule is the tetrahydroxy furan molecule autoinducer 2 99	

(AI-2), which is produced by many bacteria through a common metabolic 100	

pathway but elicits different responses through species-specific receptors. 101	

Quorum-sensing molecules often regulate gene expression, including genes 102	

involved in biofilm growth and dissolution, by acting through canonical signal 103	

transduction pathways (13, 14). In this context, quorum-sensing molecules can 104	

be viewed as master regulators of biofilm developmental programs. AI-2 105	

specifically has been shown to influence the overall structure of bacterial biofilms 106	

in diverse organisms such as Bacillus, Streptococcus, Aggregatibacter, 107	

Pseudomonas, Escherichia, Vibrio, and Helicobacter (15–22). In addition to 108	

regulating gene expression, AI-2 can elicit more immediate behaviors in bacteria 109	

through chemotaxis signal transduction that directs bacterial movement relative 110	

to a chemical gradient (16, 23–27). In the case of Helicobacter pylori, we showed 111	

that AI-2 is perceived as a chemorepellent (28), whereas Escherichia coli 112	

perceives AI-2 as a chemoattractant (25).  113	
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Previous experimental work from our group showed that both H. pylori 114	

biofilm mass and structural patterning are influenced by AI-2 chemotaxis. To 115	

determine the role of AI-2 in H. pylori biofilm formation, we constructed strains 116	

that were defective for AI-2 production (luxS-), AI-2 chemoreception (cheA-, tlpB-, 117	

aibA-, aibB-), or overproduced AI-2 (luxSOP). We measured the biomass of the 118	

resulting biofilms using a crystal violet assay. We also measured the structural 119	

heterogeneity of the resulting biofilms by imaging them with fluorescence 120	

microscopy and quantifying a lacunarity metric that captures morphological 121	

features such as roughness of biofilm edges and patchiness of surface coverage. 122	

We observed that both AI-2 sensing and production mutants formed larger 123	

biofilms with more homogenous organization, whereas the strain that 124	

overproduced AI-2 formed smaller, more heterogeneously structured biofilms 125	

(16).  126	

Our experimental observations are consistent with a role for AI-2 127	

chemorepulsion in shaping biofilm structure. For example, bacterial cells that 128	

chemotax away from AI-2 would be motivated to leave and deterred from joining 129	

a biofilm that is a concentrated source of AI-2. Our experimental results, 130	

however, could not rule out the possibility that additional functions of AI-2 131	

signaling, such as regulation of global gene expression programs, contribute to 132	

the overall architecture of H. pylori biofilms. Here we used agent-based modeling 133	

to ask whether individual cellular behaviors of AI-2 production and chemotaxis 134	

are sufficient to produce global features of biofilm structures observed 135	

experimentally. 136	
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To explore the extent to which AI-2 chemotactic responses could explain 137	

our experimental observations, we used a well-established biofilm modeling 138	

platform, Individual-based Dynamics of Microbial Communities Simulator 139	

(iDynoMiCS) (29), which simulates behaviors of individual bacterial cells to 140	

understand larger, community behaviors. We implemented several critical 141	

modifications to iDynoMiCS in order to explore whether AI-2 chemotactic 142	

responses could recapitulate our experimentally observed biofilms. First, we 143	

expanded the models to include three spatial dimensions. Next, we included a 144	

population of planktonic (free swimming) cells that were continually introduced 145	

into the bulk medium and could join the biofilm. Additionally, cells from the biofilm 146	

could leave and become part of the planktonic population. Finally, we introduced 147	

AI-2 as a compound that was produced by individual cells as a function of their 148	

metabolic capacity and that diffused through the three dimensional space.   149	

With the addition of AI-2 production and chemoreception to our modeling 150	

platform, we recapitulated our previous experimental data showing that biofilms 151	

of strains lacking the ability to produce or sense AI-2 were larger than wild type 152	

biofilms. In addition, the architecture of the biofilms, including spacing of cell 153	

groups within the biofilms, matched well between the experimental and modeled 154	

biofilms. Finally, our modeling of biofilms contributed new insight into the 155	

demographics dictating biofilm size, suggesting that cell dispersal is a major 156	

contributor to the reduced biofilm mass of AI-2-responsive versus non-responsive 157	

cells. These results indicate the utility of our modified iDynoMiCS platform for 158	

studying chemotaxis in biofilm dynamics and provide support for the view that 159	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/421610doi: bioRxiv preprint 

https://doi.org/10.1101/421610
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 8	

local cellular behaviors of AI-2 chemotaxis can explain global features of biofilm 160	

formation and patterning.     161	

 162	

Materials and Methods 163	

Computational modeling of biofilms 164	

The simulation of the growth of biofilms was accomplished using the 165	

agent-based modeling package iDynoMiCs. Individual cells are represented as 166	

discrete spherical agents with programmable behaviors that are subject to 167	

influence from other agents and their surrounding environments. The model 168	

consists of an evenly spaced grid of three dimensions with two compartments – 169	

the bulk and the bacterial. The bulk compartment at the top represents well-170	

mixed bulk solutes that interface with the bacterial compartment at the bottom 171	

through a diffusion liquid boundary layer. Solutes are represented by 172	

concentration fields changing due to diffusion and from uptake by the cells in the 173	

bacterial compartment that provides a surface for initial seed cells to attach. As 174	

the cells uptake solutes, they can grow and divide or die above or below certain 175	

set size thresholds. These processes of growth and division lead to mechanical 176	

stress between the cells, which is relieved through a shoving algorithm. This 177	

shoving and the simulation of other physical forces on the biofilm dictate the 178	

formation of the biofilm’s structure. 179	

To represent a bacterial population with both biofilm-attached cells and 180	

planktonic cells and to simulate the dynamics of cells joining and leaving a 181	

biofilm, we extended iDynoMiCs to include new agents with attributes and 182	
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behaviors specific to planktonic cells. This version is available at 183	

https://github.com/alexwweston/iDynoMiCS. Cells can be either biofilm-184	

associated or planktonic cells capable of movement in two or three dimensions.  185	

A set number of planktonic cells are introduced into the simulation from the bulk 186	

compartment at a chosen interval and removed from the simulation if they leave 187	

the boundaries of the bacterial compartment.  An individual planktonic cell will 188	

move at a random distance between 0 and its maximum distance at a random 189	

angle.  If it ends its movement within a certain distance from a biofilm-associated 190	

cell, it will then switch from planktonic to biofilm-associated behaviors. The 191	

maximum distance to move and the threshold distance for joining a biofilm are 192	

simulation parameters. 193	

Planktonic cells are also given behaviors to simulate chemotaxis 194	

response. A chemotaxing planktonic cell has attributes from the solute it 195	

identifies as a chemoeffector, whether or not it exhibits an attractive or repellent 196	

response to this chemoeffector, and the threshold for recognizing this 197	

chemoeffector. Before moving, a planktonic cell will detect the concentration of 198	

its chemoeffector at its current location. If it is above its chemoeffector threshold, 199	

it will detect the gradient of the chemoeffector and move at an angle towards or 200	

away from this gradient depending on its response. 201	

The attributes and behaviors of biofilm-associated cells are additionally 202	

extended to simulate biofilm-associated cells leaving the biofilm and becoming 203	

planktonic. A biofilm-associated cell has attributes for its chemoeffector, a 204	

threshold for recognizing this chemoeffector, and a probability for leaving the 205	
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biofilm if this threshold is surpassed. At the end of each interval in the simulation, 206	

cells on the periphery of the biofilm will check the local concentrations of their 207	

chemoeffector. If the concentration is above its chemoeffector threshold, that cell 208	

has a chance of leaving the biofilm at a frequency equal to its leaving probability. 209	

Upon leaving the biofilm, that cell becomes a planktonic cell and moves from the 210	

biofilm at a random angle away from the chemoeffector gradient. The chosen 211	

chemotaxis threshold corresponds to the concentration of AI-2 at which 212	

planktonic cells contribute to the population of the biofilm at the midpoint between 213	

cells never joining the biofilm and cells always joining the biofilm (Supplemental 214	

Figure 1). 215	

To model the production of AI-2 by the cells, we examined multiple AI-2 216	

production regimes, each creating different concentrations and localization 217	

patterns of AI-2 in the model biofilms. These three regimes included: constitutive 218	

production of AI-2, production of AI-2 tied to the growth reaction, and production 219	

of AI-2 tied to the growth reaction with additional update of AI-2 by the cells.  220	

Although the distribution of the AI-2 molecule within a biofilm is unknown, we 221	

measured the total concentration of AI-2 at different time points in H. pylori 222	

biofilms and compared these results with the total concentrations of AI-2 223	

generated in our simulations under the different regimes (data not shown). From 224	

these results, we chose to model AI-2 production where it was tied to the growth 225	

reaction with uptake by the cells. 226	

 227	

 228	
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Setting up and running simulations 229	

We simulated the movement of bacteria through a 280x280x280 µm 230	

space for a period of 24 h. The space was modeled as a 33x33x33 grid.  Fluid 231	

movement was simulated using a major time step size of 1.0 h, and bacterial 232	

behaviors (movement, joining, leaving) were updated at minor time steps of 0.05 233	

h. Each simulation was seeded with 100 bacteria cells randomly placed on the 234	

bottom layer of the simulated grid. Outputs for visualization were recorded at the 235	

end of every major time step. Other parameters for concentration and diffusivity 236	

of solutes and the cell attributes of agents were taken from measurements of E. 237	

coli biofilms used in other simulations under iDynoMiCs. Erosion and sloughing 238	

processes that can be modeled in iDynoMiCs were turned off for these 239	

simulations. A full list of these parameters that were static in our simulations is 240	

available in Supplementary Table 1. 241	

Parameters that were introduced in this new model were tested across a 242	

wide variety of ranges and values were chosen where moderate behavior was 243	

observed.  Microbial growth kinetics were modeled using the Monod growth 244	

equation with an additional term representing the production of AI-2. The values 245	

for these parameters and equations for the wild type strain used in the 246	

simulations are found on Supplementary Table 2. Mutant strains used in the 247	

simulations use minor modifications of these values, which are highlighted on 248	

Supplementary Table 3. The mutant chemotaxis strain is given an infinite value 249	

for its chemotaxis threshold causing it to never detect its chemoeffector, the 250	

mutant overproducer strain is given a larger AI-2 yield coefficient, and the mutant 251	
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strain defective in AI-2 production creates an arbitrary alternative product other 252	

than AI-2 from its growth reaction. 253	

 254	

Visualizing the biofilms  255	

The visualization of the agent-based simulation of gut microbes was 256	

created using custom-built codes developed in C++, using OpenGL for the 257	

graphics and Qt for the user interface. The simulations are run within iDynoMiCS, 258	

which exports the entirety of the simulation in XML. Each microbe is displayed as 259	

a sphere that has a radius dictated by the simulation and a color based on the 260	

microbe type, and in some scenarios, modified based on family, genealogy, 261	

generation, or birthday. Each founding cell is labeled in a different shade of pink 262	

and the daughter cells remain the same color as the original founding cell to 263	

allow for recognition of clones. The code is open source and can be downloaded 264	

at https://bitbucket.org/kpotter/vizr. 265	

The visualization of the AI-2 gradients via contours was done using the R 266	

library filled.contours. To create these images, the data is loaded into R, a single 267	

slice of the data volume is extracted at a specified timepoint, and this data is 268	

used as input to the contours function. The R code is provided in Supplemental 269	

Materials and Methods.  270	

 271	

Calculating lacunarity   272	

The simulated biofilms all become 100% confluent by 24 h. To compare 273	

more directly to the experimental biofilms, which were often not confluent by 24 274	
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h, a bottom portion of each simulated biofilm was removed. To decide how much 275	

to trim off, the percent cell coverage across all experimental wild type images 276	

was determined to be approximately 43% percent coverage using ImageJ. 277	

Removing the bottom 98 µm from the simulated biofilms resulted in 43% 278	

coverage for a representative set of wild type biofilms, viewed from the top down 279	

(Figure 4A). Therefore, 98 µm was removed from all simulated biofilms and 280	

lacunarity was determined. To determine the lacunarity score, we opened the 281	

experimental or trimmed simulated biofilm images in ImageJ, converted them to 282	

black and white, adjusted the threshold to a set cutoff, and analyzed the resultant 283	

images using the FracLac plugin.  284	

 285	

Results  286	

 287	

Addition of chemotaxis and AI-2 production to agent-based modeling of 288	

biofilm formation 289	

Agent-based models are useful tools for exploring how simple interactions 290	

between cells contribute to the overall properties of bacterial communities, such 291	

as biofilms. iDynoMiCS simulates biofilm formation by taking into account 292	

biologically relevant parameters such as nutrient concentrations, nutrient 293	

diffusion rates, and cell division and spacing [see Supplementary table 1 for 294	

parameters used in the simulation (29)]. To investigate the role of AI-2 mediated 295	

chemotaxis in biofilm architecture, we extended the iDynoMiCS model by 296	

introducing several properties, including: three-dimensional chemotaxis, 297	
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planktonic (free swimming) cells, cells joining and leaving the biofilm, and AI-2 298	

production. These new iDynoMiCS additions were critical for exploring how 299	

chemoreception of AI-2 shapes H. pylori biofilms. In addition, these 300	

developments necessitated a new visualization tool that aided in data 301	

interpretation (see Materials and Methods). 302	

Our extended model starts with 100 bacterial cells randomly placed on the 303	

two-dimensional surface at the bottom of a container that is continually supplied 304	

with fresh, nutrient-containing medium. These cells expand and proliferate 305	

according to the iDynoMICS growth and spacing algorithms. We allowed new 306	

planktonic cells to enter the container throughout each 24 h simulation (Figure 1A 307	

and Supplementary movies). The planktonic cells moved through the space 308	

according to a chemotaxis algorithm (see Materials and Methods). Planktonic 309	

cells would join the simulated biofilm if they swam close enough to the biofilm 310	

surface and if the concentration of a chemorepellant was below a set threshold. 311	

In addition, cells at the biofilm edge could leave and enter into the planktonic 312	

pool. In our simulations, we chose the AI-2 chemotaxis threshold to be that at 313	

which planktonic cells contributed to the population of the biofilm to the extent 314	

that was defined as halfway between cells never joining the biofilm and cells 315	

always joining the biofilm (Supplemental Figure 1).  316	

After testing several models of AI-2 production (see Materials and 317	

Methods), we chose a model that tied AI-2 production directly to the growth and 318	

metabolism of each cell or agent. This model is reasonable because AI-2 is 319	

produced as a by-product of the activated methyl cycle (30). We also 320	
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incorporated into the model a constant cellular uptake of AI-2, which is common 321	

in bacteria (31). We do not yet know whether H. pylori has an active AI-2 uptake 322	

mechanism, but incorporating a constant uptake parameter best recapitulated 323	

our experimental measurements of AI-2 [(16, 23) and data not shown]. In the 324	

iDynomics simulations, cells near the surface of the modeled biofilms have more 325	

access to fresh nutrients and therefore divide and produce AI-2 at a higher rate 326	

than cells in the middle or bottom of the biofilm (Figure 1B). The constant cellular 327	

uptake of AI-2 in the model resulted in a lower concentration of AI-2 in the 328	

volume just below the surface of the biofilm (Figure 1B).  329	

 330	

Modeling recapitulates biofilm mass as a function of AI-2 chemorepulsion 331	

Using the model, we tested whether we could recapitulate the outcomes of 332	

our previous experiments demonstrating an important role for AI-2 production 333	

and chemorepulsion in H. pylori biofilm mass and patterning (16). To simulate 334	

these experiments, we modeled the strains and conditions used in this 335	

experimental work. The strains included wild type cells, cells unable to chemotax, 336	

cells unable to produce AI-2, and cells that overproduce AI-2. For each of these 337	

genotypes we ran 30 individual iterations and compared the number of cells in 338	

our simulated H. pylori biofilms to those of experimental work (Figure 2). Wild 339	

type cells produced moderately sized biofilms in both the model and the 340	

experimental set-up, while cells that could not produce AI-2 or chemotax away 341	

from AI-2 produced larger biofilms. Finally, both experimental and modeling 342	

results revealed that the AI-2 overproducer made smaller biofilms. This data 343	
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served as confirmation that our modeling platform could recapitulate 344	

experimental results. 345	

 346	

Modeling predicts subcellular populations that contribute to biofilm mass 347	

The model afforded us the opportunity to examine the cellular 348	

demographics contributing to biofilm mass, which would be difficult to do 349	

experimentally. We modeled biofilm formation for 24 h in 30 parallel simulations 350	

and tallied the individual leaving events and joining events. Wild type biofilms 351	

showed equivalent numbers of joining and leaving cells (Figure 3). As expected, 352	

biofilms of non-chemotactic and AI-2 non-producing cells had no leaving events, 353	

since AI-2 chemorepulsion was the only leaving mechanism in the model. The 354	

AI-2 over-producer strain had a dramatic increase of leaving events, which was 355	

expected given the higher concentration of AI-2 near the surface of the biofilm 356	

(Figure 2B) that would drive cells to chemotax away from the biofilm. 357	

Interestingly, both the non-chemotactic and AI-2 non-producers had a reduction 358	

in the number of joining events as compared to the wild type population, despite 359	

not experiencing chemorepulsion from the biofilm. Also counter-intuitively there 360	

were more overall joining events in the AI-2 over-producer strain biofilm than in 361	

the wild type population. As discussed below, the number of joiners could be 362	

explained by the differences in architectures and specifically surface areas and 363	

joining opportunities afforded by the growing biofilms of the different strains. 364	

Overall, our modeling supports the idea that AI-2 chemorepulsion promotes a 365	

balance of leaving and joining events that influences the global biofilm size. 366	
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 367	

Modeling recapitulates the impact of AI-2 chemorepulsion on biofilm 368	

spatial organization 369	

Finally, we used modeling to confirm that AI-2 shapes H. pylori biofilm 370	

architecture. We had shown previously that we could quantify the heterogeneity 371	

of biofilms using a lacunarity metric, which measures spacing between patterns 372	

and boundary smoothness. Experimental biofilms were grown on glass slides, 373	

fixed and stained with DAPI and visualized with epifluorescence. The cellular 374	

component of the biofilm was defined using an intensity threshold and the 375	

resulting images were analyzed using an ImageJ plugin, FracLac, to quantify 376	

lacunarity [Figure 4, (32–34)]. We took 10 simulated biofilms for each genotype 377	

and performed a similar analysis of a top view of the structure (Figure 4A). 378	

Visually, the simulated biofilm structures (Figure 4B) resembled the experimental 379	

data (Figure 4C). The wild type and AI-2 overexpressing strains produced 380	

biofilms with marked spacing between cell patches, whereas the non-381	

chemotactic and AI-2 non-producing strains formed much more homogeneous 382	

structures. Plotting the resulting lacunarity scores revealed a striking similarity 383	

between experimental and modeling data (Figure 4D and E).  384	

 385	

Discussion 386	

In this study, we used agent-based modeling to explore whether local cell 387	

chemotaxic responses to a self-produced molecule could explain biofilm growth 388	

and patterning properties. By extending the iDynoMiCS modeling platform to 389	
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include three-dimensional chemotaxis, cell joining and leaving events, and AI-2 390	

production, we were able to recapitulate our experimental observations of H. 391	

pylori biofilm formation with a collection of strains with different AI-2 production 392	

and perception properties (16). We showed that cells unable to make or 393	

chemotax away from AI-2 produced larger biofilms than wild type cells. These 394	

biofilms also differed in their organization with more homogenous cell spacing 395	

and smaller gaps between cell clusters. Over-production of AI-2 resulted in 396	

smaller and more heterogeneously spaced biofilms. Mature biofilms are complex 397	

structures with towers and channels that facilitate fluid flow for efficient oxygen 398	

and nutrient permeation, waste excretion, and cell turnover (2–5). We found that 399	

by modeling local chemotactic responses to a self-produced molecule, we could 400	

simulate the assembly of biofilms with the global property of high lacunarity, 401	

characteristic of biofilms with extensive channels (Figure 4). The agreement 402	

between our simulations and experimental results supports the idea that local 403	

cellular behaviors, such as production and chemoavoidance of AI-2, can explain 404	

global architectural features of bacterial biofilms.  405	

Our modeling approach allowed us to dissect the demographics of biofilm 406	

assembly in a way that would be difficult to do experimentally without 407	

sophisticated genetic tools for marking cell lineages. As expected, in our model 408	

cells left the biofilm when they were programmed to chemotax away from AI-2, 409	

and they left in greater numbers when the biofilm cells produced more AI-2. We 410	

did not initially expect the wild type and AI-2 overproducer populations to have 411	

more cells join the biofilms than the populations without chemotaxis or AI-2 412	
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production. However, inspection of the biofilm structures assembled in these 413	

different models showed that the wild type and overproducer biofilms had many 414	

more gaps and edges, creating more extensive surface area that planktonic cells 415	

would stochastically encounter and then join at a certain probability. This 416	

difference in surface area and joining opportunities could explain the higher 417	

numbers of joiners in the populations of cells engaging in AI-2 chemorepulsion. 418	

In addition, the heterogeneous architectures of these biofilms would create local 419	

minima in AI-2 concentrations and opportunities for joining even in the context of 420	

AI-2 chemorepulsion. Differences in the local AI-2 concentration landscapes 421	

could explain the higher number of joiners seen with the AI-2 overproducer 422	

versus wild type cell populations.  423	

Although our model recapitulated several features of AI-2 dependent 424	

biofilm assembly observed experimentally, it is based on certain assumptions 425	

about AI-2 fluxes that are likely to be oversimplifications. In our current model, AI-426	

2 production is linked to metabolic activity and uptake is constant. When 427	

examined experimentally, parameters of AI-2 production, uptake and sensing are 428	

known to vary greatly between bacterial species and depending on cells’ 429	

metabolic states (35–38). Using deterministic simulations of AI-2 production from 430	

a system of ordinary differential equations, Quan and colleagues showed that 431	

variability in AI-2 uptake within a modeled biofilm can lead to desynchronization 432	

of autoinduction across the community (39), highlighting the importance of 433	

considering heterogeneities in AI-2 fluxes. In addition, AI-2 could be produced 434	

from sources other than the bacterial constituents of a biofilm. For example, 435	
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mammalian host tissues were recently shown to synthesize an AI-2 mimic that is 436	

sensed by bacterial AI-2 receptors (40). Future iterations of the model could 437	

incorporate more detailed parameters of AI-2 fluxes, but these would need to be 438	

tailored to the specific bacterial species and environments being modeled.  439	

Most bacteria exist not in mono-cultures but rather in multi-species 440	

consortia (41). AI-2 is known to contribute to the organization of such consortia, 441	

for example in biofilms that assemble on the enamel surfaces of teeth (42, 43). 442	

Recently, Laganenka and Sourjik showed that in a simple two-member biofilm 443	

community of Enterococcus faecalis and Escherichia coli cells, AI-2 chemotaxis 444	

plays an important role in biofilm growth and patterning. In this model community, 445	

both species produce AI-2 but only E. coli chemotaxes toward it (27). It would be 446	

interesting to apply our modeling approach to this experimental system to test 447	

whether it would recapitulate observed architectural features, such as the spatial 448	

segregation of E. faecalis and E. coli cells. More generally, by applying our 449	

modeling approach to complex multi-species communities and assigning simple 450	

AI-2 production, chemoattraction, and chemorepulsion behaviors to different 451	

members, one could explore the extent to which local AI-2 chemotactic 452	

responses could explain global spatial patterning observed in multi-species 453	

communities.  454	

 455	

Acknowledgements  456	

Research reported in this publication was supported by the National Institute of 457	

Diabetes and Digestive and Kidney Diseases and the National Institute of 458	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/421610doi: bioRxiv preprint 

https://doi.org/10.1101/421610
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 21	

General Medical Sciences of the National Institutes of Health under award 459	

numbers R01DK101314 and P50GM098911 (to K.G.) and the Medical Research 460	

Foundation Oregon Scientist Development Award (to E.G.S). The content is 461	

solely the responsibility of the authors and does not necessarily represent the 462	

official views of the National Institutes of Health.  463	

 464	

Figure Legends 465	

Figure 1. Time steps and AI-2 gradients of example wild type iDynoMiCS 466	

modeled H. pylori biofilm. A) Wild type biofilm after 2, 16 and 24 h of growth. 467	

Each sphere represents a modeled bacterial cell with colors corresponding to 468	

different cell behaviors (see legend). Note there is a mix of cells leaving, dividing 469	

from the original founding population and cells joining the biofilm. Each grouping 470	

of pink cells represents a clonal population. B) Shown are corresponding AI-2 471	

concentration graphics below each time point shown in A. The AI-2 concentration 472	

is a representative vertical slice through the center of the 3D modeled biofilm, 473	

with darker color representing higher concentrations of AI-2. 474	

 475	

Figure 2. Modeling confirms AI-2 chemotaxis and production alter overall 476	

biofilm size. A) Representative images of 24 h biofilms for each of the four 477	

strains in grayscale to show contours. To simplify, only the founding population, 478	

their progeny and joiners are shown. Planktonic cells have been removed for 479	

simplicity. B) The associated AI-2 gradients for panels in A. C) Total number of 480	

cells attached to the modeled biofilms at timepoint 24 h. n = 30 D) The size of the 481	
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experimental biofilms from Anderson et al. are graphed according to percentage 482	

of cells in the biofilm (compared to planktonic). Stars indicate a significant 483	

difference from wild type. Statistics for C and D were determined using a one-484	

way analysis of variance (p < 0.05). 2D data from Anderson et al. 2015 (16). 485	

 486	

Figure 3. Modeling confirms AI-2 chemotaxis and production influence the 487	

behavior of the cells in the biofilm. Each leaving and joining event from 0-24 h 488	

of the modeled biofilms was graphed by genotype. Stars indicate a significant 489	

difference, results determined using a one-way analysis of variance (p < 0.05). n 490	

= 30 biofilms 491	

 492	

Figure 4. Modeling confirms AI-2 chemotaxis and production influence 493	

biofilm organization. A) Lacunarity analysis pipeline for the modeled biofilm 494	

images. Bottom 98 µm removed from each 24 h biofilm across all genotypes (see 495	

Materials and Methods). The top-down view is used to be able to compare to the 496	

experimental images (4C). Using ImageJ, each image was thresholded and then 497	

run through FracLac to determine the lacunarity score. More details can be found 498	

in the Materials and Methods section. B) Example images of all four modeled 499	

genotypes from the top-down. C) Example images of experimental H. pylori 500	

biofilms grown on glass slides, from Anderson et al. 2015. D) Lacunarity scores 501	

graphed for modeled biofilms (n = 8-10). E) Lacunarity scores graphed for each 502	

experimental biofilm for each genotype from Anderson et al. Stars in D and E 503	
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indicate a significant difference from wild type, results determined using a one-504	

way analysis of variance (p < 0.05). 4E data from Anderson et al. 2015 (16).  505	
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Figure 1. Time steps and AI-2 gradients of example wild type iDynoMiCS modeled H. pylori 
biofilm. A) Wild type biofilm after 2, 16 and 24 h of growth. Each sphere represents a modeled 
bacterial cell with colors corresponding to different cell behaviors (see legend). Note there is a mix 
of cells leaving, dividing from the original founding population and cells joining the biofilm. Each 
grouping of pink cells represents a clonal population. B) Shown are corresponding AI-2 concentra-
tion graphics below each time point shown in A. The AI-2 concentration is a representative vertical 
slice through the center of the 3D modeled biofilm, with darker color representing higher concen-
trations of AI-2.
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Figure 2. Modeling confirms AI-2 chemotaxis and production alter overall biofilm size. A) 
Representative images of 24 h biofilms for each of the four strains in grayscale to show contours. 
To simplify, only the founding population, their progeny and joiners are shown. Planktonic cells 
have been removed for simplicity. B) The associated AI-2 gradients for panels in A. C) Total 
number of cells attached to the modeled biofilms at timepoint 24 h. n = 30 D) The size of the 
experimental biofilms from Anderson et al. are graphed according to percentage of cells in the 
biofilm (compared to planktonic). Stars indicate a significant difference from wild type. Statistics 
for C and D were determined using a one-way analysis of variance (p < 0.05). 2D data from 
Anderson et al. 2015 (16).
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Figure 3. Modeling confirms AI-2 chemotaxis and production influence the behavior of the 
cells in the biofilm. Each leaving and joining event from 0-24 h of the modeled biofilms was 
graphed by genotype. Stars indicate a significant difference, results determined using a one-way 
analysis of variance (p < 0.05). n = 30 biofilms
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Figure 4. Modeling confirms AI-2 chemotaxis and production 
influence biofilm organization. A) Lacunarity analysis pipeline 
for the modeled biofilm images. Bottom 98 mm removed from 
each 24 h biofilm across all genotypes (see Materials and Meth-
ods). The top-down view is used to be able to compare to the 
experimental images (4C). Using ImageJ, each image was 
thresholded and then run through FracLac to determine the 
lacunarity score. More details can be found in the Materials and 
Methods section. B) Example images of all four modeled geno-
types from the top-down. C) Example images of experimental H. 
pylori biofilms grown on glass slides, from Anderson et al. 2015. 
D) Lacunarity scores graphed for modeled biofilms (n = 8-10). E) 
Lacunarity scores graphed for each experimental biofilm for each 
genotype from Anderson et al. Stars in D and E indicate a signifi-
cant difference from wild type, results determined using a 
one-way analysis of variance (p < 0.05). 4E data from Anderson 
et al. 2015 (16).
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