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Dynamical quorum sensing is one of the simplest group behaviours in cell populations, where
collective oscillations emerge via mutual signaling beyond a critical cell density. Although many
examples are documented, no unifying principle has yet been proposed. Here, by considering the
response of cells to the extracellular signal and vice versa, we develop a quantitative theory for the
phenomenon, and present a necessary condition for collective oscillations in a communicating popu-
lation. We further show that a sufficient condition for oscillations is fulfilled by adaptive cells which
reset their signal secretion rate upon prolonged stimulation. These general results were elucidated
from non-equilibrium thermodynamic principles, where stimulated energy release from active cells
drives oscillations in the medium. The unexpected link between adaptation and oscillation is shown
to underlie several known examples of dynamical quorum sensing, and as such may also be a source
of inadvertent group behaviour in large populations of living organisms.

The use of a pacemaker to direct temporal progres-
sion of developmental processes is widespread in biol-
ogy. During mound formation of starved social amoe-
bae, cyclic AMP waves guide migrating cells towards
the high density region1–4. Elongation of the vertebrate
body axis proceeds with a segmentation clock5,6. Mul-
ticellular pulsation has also been observed in nerve tis-
sues7, yeast cell suspensions8–11, during dorsal closure
in late stage drosophila embryogenesis12, and more13–15.
In these examples, communication through chemical or
mechanical signals is essential to excite otherwise non-
oscillatory cells. Dubbed “dynamical quorum sensing”,
this class of behaviour lies outside the well-known Ku-
ramoto paradigm of oscillator synchronization16,17.

Traditionally, rate-equation models of molecular reac-
tions and their regulation are adopted to explain auto-
induced oscillations in specific systems18,19. Develop-
ment of these models typically follow an iterative path
driven by accumulation of experimental data. While
this approach has been effective in dealing with well-
characterized biochemical pathways, progress has been
slow in resolving the dynamics of more complex intracel-
lular networks due to the proliferation of unknown model
parameters and interactions. Recent advances in high-
resolution imaging and microfluidics offer new opportu-
nities to quantify single cell behavior under controlled
conditions20,21. This prompted us to examine collective
oscillations in terms of whole-cell response to external
perturbations, with the aim to uncover higher level orga-
nizational principles.

Here, we report a generic condition for collective
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oscillations to emerge, and show that it is satisfied
when cells are able to adapt to an external signal,
i.e., they reset their response upon prolonged external
stimulation. In particular, we prove the existence of
an “active” frequency regime, where an adaptive cell
outputs energy upon external stimulation. We show that
one frequency out of this active regime is selected and
amplified spontaneously when a cell population, beyond
a critical size, interacts through the shared signal. This
leads to sustained collective oscillations. The nonequi-
librium mechanism is shown to underlie several known
examples of dynamical quorum sensing, and might even
be implicated in the long-standing puzzle of glycolytic
oscillations, which awaits testing. We discuss the impli-
cations of this general mechanism at the end of the paper.

Necessary conditions for collective oscillations
Fig.1a presents a schematic description of a communicat-
ing cell population. The extracellular signal s is taken to
be the concentration of molecules sensed and released by
participating cells. The “sender activity” of a given cell
is described by a variable a immediately upstream of sig-
nal release. Its dynamics is controlled by an intracellular
regulatory network that responds to s through receptor
proteins. To see how the sender activities might disrupt
quiescence in an equilibrium state of s, we consider the
following dynamical equation:

γsṡ = −Kss+
N∑
j=1

α2aj . (1)

Here −Kss describes restoration of quiescence through
signal degradation or dilution, and the sum represents
disturbance created by activities of N cells in a unit vol-
ume, with a prefactor α2 > 0. The meaning of constants
γs, Ks and α2 will become clear later. At the same time,
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FIG. 1. Spontaneous oscillations in a population of
adaptive senders. a, Cells communicate via a shared signal
s. The sender activity a of a cell is regulated by a hidden
intracellular network that responds to s. b, Adaptation of
sender activity to a stepwise signal: after a transient response,
a returns to its pre-stimulus state (within a small error ε).
Two examples are shown (solid and dashed line). c, Response
of a to an oscillatory signal. The phase shift φa switches sign,
allowing energy outflow from an adaptive sender at selected
frequencies.

under a small perturbation of the extracellular signal, the
average response of an individual cell’s activity satisfies

〈at〉 =

∫ ∞
−∞

Ra(t− τ)sτdτ, (2)

with 〈·〉 denoting the noise average. Without loss of gen-
erality, we set the stationary activity to zero. The re-
sponse function Ra encodes the property of the complex
intracellular signaling network.

The shared signal s offers a means to synchronize
the sender activities. We derive here a matching con-
dition for s and a’s to enter a collectively oscillating
state. In the Fourier space, Eq. (2) becomes 〈ã(ω)〉 =

R̃a(ω)s̃(ω). For simplicity, we assume a homogeneous
population with the same response. Then, Eq. (1) gives

s̃(ω) = Nα2R̃s(ω)ã(ω), where R̃s = (Ks − iγsω)−1,
with i the imaginary unit. Combining these two equa-
tions, we obtain 〈ã(ω)〉 = Nα2R̃a(ω)R̃s(ω)〈ã(ω)〉. This
equation applies to the quiescent or weakly oscillatory
regime, but not the fully-developed oscillations (other-
wise nonlinear effects have to be considered). At the
onset of collective oscillations, 〈ã(ωo)〉 6= 0, and we

have Noα2R̃a(ωo)R̃s(ωo) = 1. To gain more insight,

we decompose the response spectrum R̃a into the am-
plitude |R̃a| and the relative phase shift φa, i.e. R̃a ≡
|R̃a| exp(−iφa), and also R̃s ≡ |R̃s| exp(−iφs). Then,
the cell density No and frequency ωo at the onset of col-
lective oscillations are determined by,

φa(ωo) = −φs(ωo), (3a)

|R̃a(ωo)R̃s(ωo)| = (α2No)
−1. (3b)

For a dissipative signal dynamics such as Eq. (1), −π <
φs < 0. Hence, Eq. (3a) demands sender activities to
lead the signal.

The phase-leading requirement can be well understood
in the context of non-equilibrium energetics22. For this
we imagine that Eq. (1) describes an overdamped particle
in a passive medium, where γs is the friction coefficient,
−Kss the restoring force, and

∑
j α2aj the collective

external force exerted on the particle. In this analogy,
φs ∈ (−π, 0) actually corresponds to the dissipative
nature of this particle. This can be proved generically
for passive systems using the Fluctuation-Dissipation
Theorem (FDT)23 that demands the imaginary part of

R̃s(ω) to be positive. On the other hand, a leading phase
enables energy outflow under periodic stimulation. We
have calculated the work done by one of the cells to the
signal when the signal oscillates at a frequency ω. The
output power Ẇ ≡ 〈ṡ · α2a〉 is found to be proportional

to α2ω|R̃a(ω)| sinφa(ω). This energy flux is positive
when a has a phase lead over s, re-affirming Eq. (3a)
on thermodynamic grounds. Additional details of this
perspective can be found in Supplementary Part II.

Adaptation route to collective oscillations
Previously, a phase-leading response to a low frequency
signal has been reported in the activity of E. coli
chemoreceptors20 and in the displacement of hair bun-
dles to mechanical stimulation24. In both cases, the sys-
tem’s response to a stepwise signal ramp is adaptive, i.e.,
the activity in question returns to its pre-stimulus level
up to an “adaptation error” ε, as illustrated in Fig. 1b.
Adaptation implies vanishing response to slow perturba-
tions, i.e., limω→0 R̃

′
a(ω) ∼ ε. We show that this prop-

erty is sufficient to achieve phase-leading response in a
range of frequencies. For this we recall that, as a result
of causality, the real (R̃′a) and imaginary (R̃′′a) part of

R̃a(ω) satisfy the Kramers-Krönig relation25:

R̃′a(ω) =
2

π

∫ ∞
0

R̃′′a(ω1)
ω1

ω2
1 − ω2

dω1. (4)

Combined with the requirement of adaptation, we obtain

R̃′a(0) =

∫ ∞
0

R̃′′a(ω1)ω−1
1 dω1 ∼ ε. (5)

Hence, for sufficiently accurate adaptation, R̃′′a(ω) must
change sign across the frequency domain. In other words,
both phase-leading (R̃′′a < 0) and lagged (R̃′′a > 0) be-
haviour are present across the frequency domain, as il-
lustrated in Fig. 1c. The existence of a phase-leading re-
sponse for adaptive systems, on general grounds, yields a
sufficient condition for Eq. (3a) to be satisfied and thus
for oscillations to occur beyond a critical cell density.

There are a variety of intracellular regulatory schemes
by which adaptation can be achieved26,27. As a concrete
example, we considered a noisy two-component negative
feedback model where the signal couples directly to the
sender activity a with a strength α1 > 0 (Fig. 2a and
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FIG. 2. Spectral properties of an adaptive variable.
a, A noisy two-component model with negative feedback. b,
Phase shift of a with respect to s from the response spectrum
R̃a(ω) = |R̃a(ω)| exp(−iφa(ω)). The phase shift φa switches
from negative (phase-lag) to positive (phase-lead) as the fre-

quency decreases. c, Real (R̃′a) and imaginary (R̃′′a) compo-

nents of the response spectrum. R̃′a is of order ε in the zero
frequency limit, while R̃′′a changes sign as frequency increases.
Also shown is the correlation spectrum C̃a(ω) multiplied by
ω/(2T ), where T is the noise strength. The fluctuation-

dissipation theorem R̃′′a = ωC̃a(ω)/(2T ) for thermal equilib-
rium systems is satisfied on the high frequency side, but vio-
lated at low frequencies, a signature of non-equilibrium effect.
Parameters: τa = τy = α1 = c3 = 1, ε = 0.1.

Methods). In Fig. 2b, we show the numerically exact
phase shift of a. As predicted, φa(ω) undergoes a sign
change. Correspondingly, the imaginary component of
the response R̃′′a becomes negative in the phase-leading
regime, violating the FDT (Fig. 2c) as a result of the
out-of-equilibrium dynamics28–32.

We performed numerical experiments by adopting this
circuit for each cell and coupling them via Eq. (1). Fig. 3a
shows time traces of the signal s (red) together with
sender activity a (blue) and memory variable y (cyan)
from one of the cells. As the effective coupling constant
N̄ ≡ Nα1α2 increases, the coupled system goes from qui-
escence with weak background fluctuations to oscillating
and then back to quiescence. In the oscillatory regime,
the sender activity a leads s to enable energy outflow
from the cell.

What is the nature of the transition to collective be-
havior for this system? Our numerical results show that
growth of the oscillation amplitude A of sender activity
against N̄ is well-described by a square-root law, suggest-
ing a transition of the Hopf bifurcation type (Fig. 3b, red
dots). To understand this behaviour analytically, we ex-
tended the matching condition Eq. (3) to the nonlinear
regime in terms of renormalized response spectra. The
analysis successfully predicts the onset coupling N̄o ' 1.7
and frequency ωo ' 0.7, and also yields the observed
frequency shift and the square-root law, in quantitative
agreement with simulation data (Fig. 3b, blue curves).
Fig. 3c shows graphically the renormalized phase shift
φ+
a at three selected oscillation amplitudes. The phase φs

of the signal response function is independent of A due to
the linearity of Eq. (1). Intercept of the two phase shift
curves yields the oscillation frequency at a given A and
furthermore a value for N̄ from a renormalized form of

FIG. 3. Collective oscillations of coupled adaptive cir-
cuits. a, Time traces of the signal (red) and of sender activ-
ity (blue) and memory (cyan) from one of the participating
cells at various values of the coupling strength N̄ = α1α2N .
b, The oscillation frequency ω and amplitude A against N̄ .
Onset of oscillations is of the Hopf bifurcation type. c, Deter-
mination of oscillation frequency from a renormalized phase
matching condition at finite oscillation amplitudes A. Pa-
rameters: τa = τy = γs = Ks = c3 = 1, α1 = α2 = 0.5, and
ε = 0.1. The strength of noise terms is set at T = 0.01.

Eq. (3b). A more complete discussion of this procedure
is given in Supplementary Part III.

In experiments, cells typically have a low level of
activity before entering collective oscillations3,6. This
behaviour is reproduced by a noisy version of the
FitzHugh-Nagumo (FHN) model33,34. Can we under-
stand the highly nonlinear dynamics from an adaptation
viewpoint? Actually, the resting state of the FHN model
does adapt to stimulus as we show in Supplementary
Fig. S3. For weak coupling (i.e., α1α2 � 1), our theory
based on the averaged response of individual cells well
predicts the threshold coupling strength N̄o and the
onset frequency ωo (Supplementary Fig. S5). However,
depending on the precise nature of the nonlinearities
present in the system, the continuous transition to the
oscillating state can be pre-empted by a limit cycle
solution. We leave a detailed discussion of this point to
future work.

Experimental systems utilizing adaptation
In several known examples of emergent oscillations,
we found strong evidence for adaptive sender activity.
The first one is otoacoustic emission, where sound is
generated in the inner ear by an array of oscillating hair
cells14,15. Here, acoustic wave in the extracellular fluid
acts as a mechanical signal to couple hair cells. Each
hair cell possesses hair bundles that respond adaptively
to the stimulus with the help of molecular motors. Re-
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markable experiments have confirmed that hair bundles
are active systems with an anticipatory response (i.e.,
phase-leading)24. The second one is extracellular cAMP
waves during aggregation of starved social amoebae.
An earlier experimental work attributed pulsation at
the origin of the wave to cells’ excitable response3. A
more recent experiment4 provided direct evidence of
adaptation in the cytosolic cAMP concentration against
fold change of the extracellular cAMP concentration.
The third example is found in collective oscillations in
synthetic quorum sensing populations35 (see Supplemen-
tary Fig. S7 for details). Lastly, we mention the very
recent work on segmentation clock in the presomitic
mesoderm (PSM), where dynamical quorum sensing
by the PSM cells is reported6. The authors invoked
a phenomenological excitable dynamics to interpret
oscillatory behaviour seen in their experiments which,
as in the case of the FHN model, fits the adaptation
scenario. Measurements of mechanosensing and cy-
toskeleton remodeling under controlled mechanical cues
would establish the connection directly.

Glycolytic oscillations: adaptation or synchro-
nization?
Finally, we turn to the long-standing problem of gly-
colytic oscillations in yeast cell suspensions8. Pulsation
in the intracellular nicotinamide adenine dinucleotide
(NADH) concentration is triggered by shutting down the
respiratory pathway. The freely diffusing molecule ac-
etaldehyde (ACE) mediates cell-to-cell communication.
Despite decades of intense exploration, interpretation of
various experimental findings remains controversial9–11.
Here, we focus on a model of yeast glycolysis36, whose
predictions on phase relationships of metabolites agree
well with experiments (Supplementary Fig. S8). The
model contains around 20 metabolic reactions (Fig. 4a).
Using extracellular glucose and ACE concentrations as
control parameters, we computed the response of all
metabolites along the glycolytic pathway to an ACE
signal. Different types of behaviour were found as il-
lustrated in Figs. 4b-d. The white region in Fig. 4b
marks spontaneous oscillations reported previously21. It
is bordered by the newly identified regions (blue and or-
ange) where a subset of metabolites, notably ATP, ex-
hibit adaptive behaviour. However, the concentration of
pyruvate (PYR), the substrate for the reaction to pro-
duce ACE, is adaptive and phase-leading over the signal
only in the blue region (Fig. 4d).

Closer examination of the response curves to a
sinusoidal signal revealed phase-synchronization of
metabolites connected by fast reactions. Focusing on the
response of the network on the low frequency side, we
constructed a reduced model of four intracellular vari-
ables connected by three reactions as shown in Fig. 4e,
taking into account stoichiometry and known regulatory
interactions10. Increase of GAPDH reaction rate by an
upshift of ACE concentration (part of the front redox
loop) is offset by the negative feedback loop to maintain

FIG. 4. Yeast glycolytic oscillations. a, The reaction net-
work of glycolysis in an yeast cell. b, Single-cell response di-
agram spanned by the extracellular glucose and acetaldehyde
(ACE) concentrations that control respectively the glycolytic
flux and redox state inside the cell. Each colored region cor-
responds to a particular type of response of metabolite con-
centrations to a stepwise ramp of the extracellular ACE con-
centration (c). d, Frequency-resolved phase shifts of selected
metabolites to weak sinusoidal perturbations. Adaptation oc-
curs in both the orange and blue region, while phase lead of
PYR over ACE is restricted to the blue region. e, A re-
duced model for glycolytic oscillations where the intracellular
NAD/NADH ratio and pyruvate (PYR) act as the receiver
and sender of the signal (ACE), respectively. Adaptive re-
sponse of PYR to ACE is coupled to the homeostasis of ATP
through the reaction PYK.

ATP homeostasis. Consequently, the concentration of
PYR, the “sender” of the redox signal, also adapts. The
reduced model exhibits very similar response to ACE
signal as in the full model (Supplementary Fig. S13),
demonstrating insensitivity of the feedback mechanism
to model details. On the other hand, we also found
that elimination of the glyoxylate shunt (GLYO) flux in
the reduced model enlarges the adaptive region (Sup-
plementary Fig. S14 and S15). Numerical simulations
show that coupled cells are able to oscillate collectively
outside the white region in Fig. 4a, where the Kuramoto
mechanism does not apply (Supplementary Figs. S16-18).

Discussion
Cells sense their physical environment and employ in-
ternal mechanisms to offset external perturbations. Our
findings that this type of adaptation, when coupled to sig-
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nal secretion to enable cell-to-cell communication, gener-
ically leads to collective oscillations is intriguing from an
evolutionary point of view: on the one hand, such oscilla-
tions can be introduced through only minor innovations
to molecular pathways; on the other hand, perfection of
certain adaptive response could trigger undesired group
behavior, as in the case of otoacoustic emission by the
human ear37. This connection sheds new light on the
origin of social behaviour in cell populations.

The modelling framework adopted in this study places
no restriction on the intracellular dynamics in the cell-to-
cell communication, and hence can accommodate differ-
ent types of cellular behaviour. For example, glycolytic
oscillations in yeast cell suspensions involve a large num-
ber of enzymatic reactions and metabolites. Depend-
ing on how the system is prepared, isolated yeast cells
may oscillate spontaneously as assumed in the Kuramoto
model, or do not oscillate but respond adaptively to en-
vironmental perturbations. Collective oscillations can
emerge in both cases when the cell density reaches a
critical value. In this case, there is no clear distinction
between the two scenarios, especially when the dynam-
ics of individual cells is noisy and heterogeneous. The
degree of cell-to-cell variation has been characterized in
microfluidic single-cell measurements21.

Finally, we emphasize that dynamical quorum sensing
is only the simplest type of social behaviour in cell
populations. We believe the response function formalism
developed here can be extended to more complex
situations such as the collective motion of microbial

swimmers38. By measuring the response functions of
a single cell and the medium directly in experiments
and model simulations, a quantitative understanding of
the group behaviour can be obtained, without resorting
to the detailed intramolecular construct. On the other
hand, synthetic biology has become an important
tool in generating spatiotemporal patterns and struc-
tures35,39–41. The necessary and sufficient conditions
identified in this work may well find their way in the
design of synthetic circuits for novel collective behaviour
and self-organization.

Methods
An adaptive model with negative feedback. The
data presented in Figs. 2 and 3 were obtained from
numerical integration of the coupled equations: τaȧ =
−a − c3a3 + y + α1s + ηa, and τy ẏ = −a − εy + ηy

28,30.
Here y is a memory node that implements negative feed-
back control on a, ε sets the adaptation error, and τa and
τy are the intrinsic timescales for the dynamics of a and
y, respectively. ηa and ηy are gaussian white noise with
zero mean and correlators: 〈ηa(t)ηa(τ)〉 = 2Tτaδ(t − τ)
and 〈ηy(t)ηy(τ)〉 = 2Tτyδ(t− τ), where δ(t) is the Dirac
delta function. The cubic nonlinearity (c3a

3) is needed
to limit cellular activity to a finite strength. For sim-
plicity, we choose α1 = 1 so that the response func-
tion defined by R̃a(ω) = 〈ã(ω)〉/s̃(ω) can be compared
with its equilibrium counterpart that satisfies the FDT
R̃′′a = ωC̃a(ω)/(2T ), with R̃′′a denoting the imaginary

component of R̃a.

[1] Schaap, P. Evolutionary crossroads in developmental
biology: Dictyostelium discoideum. Development 138,
387–396 (2011).

[2] Gregor, T., Fujimoto, K., Masaki, N. & Sawai, S. The
onset of collective behavior in social amoebae. Science
328, 1021–1025 (2010).

[3] Sgro, A. E. et al. From intracellular signaling to popula-
tion oscillations: bridging size-and time-scales in collec-
tive behavior. Mol. Syst. Biol. 11, 779 (2015).

[4] Kamino, K. et al. Fold-change detection and scale invari-
ance of cell–cell signaling in social amoeba. Proc. Natl.
Acad. Sci. U.S.A. 201702181 (2017).
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I. INTRODUCTION

This supplementary contains derivations of various theoretical results stated in the Main Text, as well as exploration
of a number of model systems. In view of the recent experimental studies on dynamical quorum sensing, we shall
mainly focus on auto-induced collective oscillations of cells mediated by a chemical signal. However, to the extent that
the underlying microscopic processes afford a thermodynamic description, our approach also applies in other physical
contexts, e.g. mechanical or electrical signaling. We are particularly interested in exploring the nonequilibrium aspects
of “activity” dynamics in a living cell. Concepts and tools from the recently developed stochastic thermodynamics1

are used to map out the pattern of energy flow, complementing the descriptive modeling based on rate equations.

The material is organized as follows. Section II contains various mathematical results announced in the Main Text
regarding the nonequilibrium response of an adaptive circuit and the associated energy flow. In Section III, we present
a self-consistency scheme to predict the onset of auto-induced collective oscillations and its subsequent growth. The
response functions that appear in the discussion can in principle be measured directly in experiments. In Section IV, we
re-analyze collective oscillations in three representative model systems: the coupled FitzHugh-Nagumo (FHN) model
with excitable units, a synthetic quorum sensing circuit, and glycolytic oscillations in yeast cell suspensions. An
adaptive unit is identified in each of these systems, confirming the ubiquity of the proposed mechanism for collective
oscillations. Furthermore, using the yeast glycolytic oscillations as an example, we demonstrate a computational
procedure to reduce a complex and highly nonlinear network of biochemical reactions and regulation into a low
dimensional one that still reproduces the main dynamical features of the original system.
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II. NONEQUILIBRIUM THERMODYNAMICS OF ADAPTIVE RESPONSE

A. Phase-leading response of an adaptive variable

Consider the temporal variation at of an intracellular observable a induced by a sinusoidal signal st from the
environment at frequency ω. The amplitude of st is assumed to be small, so that it can be treated as a perturbation.
The observable a is either directly or indirectly coupled to the signal s. On the scale of a single cell, both at and
st may contain stochastic components. In the following, we shall examine the noise averaged response of a to the
deterministic part of s, i.e., the signal. As usual, we use 〈·〉 to denote the noise average. The following convention on
forward and inverse Fourier transforms is adopted,

f̃(ω) =

∫ ∞
−∞

f(t) exp(iωt)dt, f(t) =

∫ ∞
−∞

f̃(ω) exp(−iωt)dω
2π
. (S1)

In a steady-state, the ratio of the Fourier amplitudes 〈ã(ω)〉 and 〈s̃(ω)〉 defines the response function R̃a(ω) ≡
〈ã(ω)〉/〈s̃(ω)〉, which can be separated into its real R̃′a and imaginary R̃′′a parts. (For a cellular variable a that follows
stochastic dynamics, the ensemble averaged response is considered.) The well-known Kramers-Krönig relation from
causality requirement on the response function states2:

R̃′a(ω) =
2

π

∫ ∞
0

R̃′′a(ω1)
ω1

ω2
1 − ω2

dω1. (S2)

In the case of a perfectly adapting a, the response vanishes under a sufficiently slow stimulus, i.e., limω→0 R̃a(ω) = 0.
Equation (S2) then requires, ∫ ∞

0

R̃′′a(ω1)ω−1
1 dω1 = 0. (S3)

Consequently, R̃′′a(ω) must change sign at least once along the frequency axis. Let φa = − arg(R̃a) be the phase of

−R̃a(ω), with the minus sign introduced by convention. Positive and negative values of R̃′′a thus translate to phase-lag
(−π < φa < 0) and phase-lead (0 < φa < π) of at over st, respectively. By virtue of continuity, the sign change of

R̃′′a(ω) is also expected in the partially adaptive case, provided the adaptation error ε ' R̃′a(0) is sufficiently small.

B. Energy outflow from an adaptive channel

Auto-induced collective oscillations in a dissipative medium require an energy source. Below, we show that an
active cell is able to output energy to a fluctuating s in the presence of an adaptive channel. The power of the output
depends on the strength of the coupling as well as the amplitude and frequency of the fluctuating signal.

Consider a slightly more general form of Eq. (1) in the Main Text where the contribution from cell j to the total
thermodynamic force on s is given by O(aj), which in general is nonlinear in aj . The work done on s by the cell in a
time interval (0, L) can then be written as

Wj =

∫ L

0

Otṡtdt, (S4)

where Ot ≡ O(aj(t)) and st are both fluctuating quantities in general. We now consider a sinusoidal signal st =
s0 + ∆s cos(ωt) with a small amplitude ∆s. To the first order in ∆s, we have

Ot ' O(0)
t + ∆s|R̃O(ω)| cos

(
ωt+ φO(ω)

)
. (S5)

Here O
(0)
t denotes the stochastic trajectory of O in the absence of the sinusoidal signal. As usual, the linear response

function RO in the steady-state (ss) to a weak time-varying signal st is introduced through

〈Ot〉 ' 〈O〉ss +

∫ t

−∞
RO(t− τ)sτdτ, (S6)
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where 〈·〉 denotes average over noise. The phase angle φO(ω) ≡ − arg R̃O(ω). Substituting expression (S5) into Eq.
(S4) and taking the limit L → ∞, we obtain the time-averaged output power from the cell through this channel
(omitting the subscript j),

Ẇ = Otṡt + o
(
(∆s)2

)
=

1

2
ω|R̃O(ω)| sinφO(ω)(∆s)2 + o

(
(∆s)2

)
. (S7)

Here the overline bar indicates averaging over time, and o
(
(∆s)2

)
denotes terms higher than second order in ∆s.

Given the relation Ot = O(at), adaptation of the cellular variable a to a slow-varying s also implies the adaption of

O to the signal. The causality condition (S2) applied to Ot then requires R̃′′O(ω) ≡ −|R̃O(ω)| sinφO(ω) < 0 in a certain
frequency range. Consequently, Eq. (S7) predicts energy outflow from the channel under a periodic stimulation at
these frequencies.

The discussion leading to Eq. (S7) in the previous section can be easily extended to the energy outflow under an

arbitrary signal variation st with a power spectrum C̃s(ω),

Ẇ = −
∫
dωωR̃′′O(ω)C̃s(ω) + o(∆s2), (S8)

where ∆s sets the overall amplitude of signal variation. If the cell were in thermal equilibrium, a would respond
passively to a time-varying signal with a phase-lag and dissipate the energy inflow generated by the stimulation. An
adaptive cell, on the other hand, is able to output energy in the form of work when stimulated in the right frequency
range. This form of energy outflow is different from the heat dissipation arising from keeping the system out of
equilibrium as studied in Refs.3–5.

C. The Fluctuation-Dissipation Theorem

The fluctuation-dissipation theorem (FDT) is generally presented as an identity between the response function of a
chosen variable to an external perturbation and the correlation function of the variable in question with the one that is
conjugate to the perturbation6. For Markov systems which are of interest here, FDT holds when the detailed balance
condition on the state-space transition rates is fulfilled. We refer the reader to Refs.7,8 for a detailed discussion,
including more rigorous definitions of various quantities of interest.

Assuming that the signal s affects the cell through coupling to a conjugate variable O which is proportional to the
variable a of interest, i.e., O = c0a with c0 a proportionality constant. In this case, FDT states that

R̃′′O(ω) =
ωC̃O(ω)

2T
> 0. (S9)

Here, C̃O(ω) = c20〈|ã(ω)|2〉 is the power spectrum of Ot which is always positive. Equation (S9) contradicts (S3),
re-affirming that receptor adaptation cannot be realized without the presence of active processes inside the cell.

In Ref.9, adaptation through a 3-node incoherent feed-forward motif was considered. It was later shown that the
topology even supports adaptation in an equilibrium setting10. The main difference between these models and the
receptor dynamics Eq. (3) in the Main Text is that, in the former, s not only couples to a directly, but also to other
intracellular variables. The conjugate variable O is then a combination of a and other intracellular variables. We
leave a detailed investigation of this issue to future work.

III. A SELF-CONSISTENCY SCHEME FOR FREQUENCY SELECTION AND OSCILLATION
AMPLITUDE DETERMINATION

The thermodynamic analysis in the preceding section suggests the possibility of a positive feedback loop formed by
a periodic signal and adaptive cells under generic conditions. Collective oscillations emerge when signal amplification
by active cells overtakes signal dissipation in the passive medium. In this section, we examine this process in further
detail and derive equations that can be used to determine the frequency and amplitude of auto-induced oscillations
when the instability takes place. For simplicity, we shall consider a situation where diffusion of the signaling molecules
in the medium is very fast so that spatial variations of s is suppressed. Consequently, the notion of a well-defined
transition to the oscillating state can be introduced.
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A. The phase matching condition and threshold cell density

Given that individual cells couple to each other only through the signal field s, a self-consistency procedure similar
to the solution of mean-field models in statistical physics can be employed. In this case, the linear equations governing
an eigenmode with eigenvalue λ can be divided into subgroups associated with individual cells. The internal variables
of a given cell appear in one and only one of the subgroups. Solution of the subset of equations for cell j yields the cell
activity 〈ãj〉 = R̃a,j(iλ)〈s̃〉. The function R̃a,j(iλ) is the same function introduced in the preceding section to describe

the linear response of aj to a sinusoidal perturbation at frequency ω = iλ. Likewise, a response function R̃s(ω) from
the linearized relaxational dynamics of s can be obtained, treating contributions from cells as source terms, as in Eq.
(1) of the Main Text. Combining the two steps, we arrive at the following eigenvalue equation for λ,

R̃s(iλ)
N∑
j=1

α2R̃a,j(iλ) = 1. (S1)

When a particular eigenvalue crosses the imaginary axis, its real part vanishes, while its imaginary part ωo (the onset
frequency) satisfies,

α2NoR̃s(ωo)R̃ā(ωo) = 1. (S2)

Here R̃ā(ω) ≡ N−1
∑N
j=1 R̃a,j(ω) is the averaged single-cell response function.

Equation (S2) can be written separately for the phase shift φ = − arg R̃ and amplitude |R̃| of the response functions.
For α2 > 0, we have,

φā(ωo) = −φs(ωo), (S3a)

No =
1

|α2R̃s(ωo)||R̃ā(ωo)|
. (S3b)

Eq. (S3a) determines the frequency ωo at the onset of collective oscillations, while Eq. (S3b) gives the threshold cell
density No. As we mentioned in the Main Text, when the signal is passive, phase lead by the cell is required for Eq.
(S3a) to be fulfilled. The explicit relation presented here complements the energy argument based on Eq. (S7), with
the activity-generated thermodynamic force Ot being proportional to α2aj .

As it stands, the cell density N does not appear explicitly in the phase-matching condition (S3a). Therefore the
frequency of collective oscillations can be estimated from separate measurements of the single-cell response and the
medium response. In reality, it is conceivable that properties of the medium are affected by the presence of cells, e.g.,
the concentration of the signaling molecules secreted. Consequently, both R̃s(ω) and R̃ā(ω) may have certain weak
dependence on N .

B. The amplitude equations and frequency shift

Beyond the initial instability, nonlinear effects need to be treated explicitly to determine the amplitude and frequency
of oscillations. Assuming a periodic state, the signal strength s(t) can be expressed as a Fourier series that includes
the first harmonic as well as higher order harmonics produced by nonlinearities in the system dynamics. Likewise, the
noise-averaged cellular activity 〈aj(t)〉 can also be expressed as a Fourier series in t with the same basic frequency.
For weak noise, the trajectory of the system falls on a well-defined limit cycle whose mean radius r sets the overall
amplitude of oscillations, while the amplitude of the nth order harmonic scales as rn. This structure allows for a
systematic determination of the amplitudes using perturbation theory. Below, we illustrate the procedure in the case
of cubic nonlinearities in both the dynamics for s and the dynamics for a, and comment on similarities and differences
in more general situations. When the cell’s activity is noisy, more sophisticated schemes based on the probability
distribution function of the cellular state need to be introduced (see, e.g. Ref.11).

Let us consider a noiseless version of the adaptive dynamics defined by Eqs. (3) in the Main Text, together with a
modified version of Eq. (1) that includes a cubic nonlinearity,

τaȧj = −(aj − yj)− c3a3
j + α1s (S4a)

τy ẏj = −(aj + εyj) (S4b)

τsṡ = −s− d3s
3 + α2

N∑
j=1

aj . (S4c)
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Here τs = γs/Ks gives the relaxation timescale for the signal. We also set α2 → Ksα2 for notational simplicity. The
two coefficients c3 and d3 set the strengths of nonlinearities in the cellular and signal dynamics, respectively. The
model has the inversion symmetry s→ −s and (aj , yj)→ (−aj ,−yj), all j. Furthermore, if we redefine the sign of s
and at the same time change the sign of α1 and α2, the equations remain the same.

We now seek a periodic solution to Eqs. (S4) in Fourier form,

s(t) = B cos(ωt) +
∞∑
n=2

B(n) cos(nωt+ φ(n)
s ), (S5a)

aj(t) = Aj cos(ωt+ φa,j) +
∞∑
n=2

A
(n)
j cos(nωt+ φ

(n)
a,j ), j = 1, . . . , N, (S5b)

yj(t) = Cj cos(ωt+ φy,j) +
∞∑
n=2

C
(n)
j cos(nωt+ φ

(n)
y,j ), j = 1, . . . , N. (S5c)

The amplitudes and phase shifts, all assumed to be real, satisfy a set of equations which can be derived by substituting
Eqs. (S5) into Eqs. (S4), and grouping terms according to the order of the harmonic.

Starting from the first harmonic in the expressions (S5), the cubic terms in Eqs. (S4a) and (S4c) generate the first
and third order harmonics according to the identity (cosφ)3 = (3 cosφ+ cos 3φ)/4. Hence terms such as A3

j and B3

are present in the equations for the first harmonic. On the other hand, the cubic nonlinearities do not generate even
order harmonics if they are not included in the series initially. Hence, up to the third order in the amplitudes, the
equations for the coefficients of the first harmonic take the form,

−iωτaãj ' −(1 +
3

4
c3|ãj |2)ãj + ỹj + α1s̃, (S6a)

−iωτy ỹj = −ãj − εỹj , (S6b)

−iωτss̃ ' −(1 +
3

4
d3|s̃|2)s̃+ α2

∑
j

ãj . (S6c)

Here we have introduced the short-hand notations s̃ = B, ãj = Aj exp(−iφa,j), and ỹj = Cj exp(−iφy,j).
To gain an intuitive understanding of the oscillatory solution as the cell density increases beyond the threshold No,

we first eliminate the intracellular variable ỹj in Eqs. (S6a) and (S6b) to obtain,

ãj = R̃+
a,j(ω)s̃, (S7)

where

R̃+
a,j(ω) ≡ ãj(ω)

s̃(ω)
' α1

1 + 3c3|ãj |2/4− iωτa − 1/(iωτy − ε)
(S8)

is a “nonlinear response function” which expresses the ratio of the complex amplitudes of the first harmonic on the
limit cycle. Similarly, Eq. (S6c) can be rewritten as

s̃ = R̃+
s (ω)

N∑
j=1

α2ãj , (S9)

where

R̃+
s (ω) ' 1

1 + 3d3|s̃|2/4− iωτs
(S10)

is a “nonlinear response function” of s on the limit cycle. It is easy to see that R̃+
a (ω) and R̃+

s (ω) reduce to their

respective linear counterparts R̃a,j(ω) and R̃s(ω) when the oscillation amplitudes vanish.
We now combine Eqs. (S7) and (S9) to obtain the self-consistency condition,

α2NR̃
+
s (ω)R̃+

ā (ω) = 1, (S11)

which is reminiscent of Eq. (S2). Here R̃+
ā (ω) ≡ N−1

∑N
j=1 R̃

+
a,j(ω) is the averaged single-cell nonlinear response

function. When all cells are identical, R̃+
ā (ω) = R̃+

a (ω). As before, Eq. (S11) can be rewritten in terms of the phase
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and amplitude of the nonlinear response functions,

φ+
ā (ω) = −φ+

s (ω), (S12a)

α2N =
1

|R̃+
s (ω)||R̃+

ā (ω)|
. (S12b)

Formally, Eq. (S12a) can be used to determine the frequency shift at a finite amplitude of oscillation, while Eq. (S12b)
relates the oscillation amplitude to the cell density N . Since the amplitudes enter quadratically into the nonlinear
response functions, they are expected to increase as (N − No)1/2 just above the threshold cell density No, e.g., the
transition is of the Hopf bifurcation type.

In the Main Text, we have considered the case c3 = 1 and d3 = 0. Numerically, the oscillation frequency is found to
decrease as the coupling strength N̄ ≡ α1α2N increases (see also Fig. S1a). This is consistent with Eq. (S12a) whose
solution at selected oscillation amplitudes is shown in Fig. 3d in the Main Text. As the amplitude of the oscillations
increase, φ+

a (ω) decreases on the low frequency side. Consequently, the intersection point with φ+
s (ω) = φs(ω) shifts

to lower frequencies.
Interestingly, the limit cycle associated with the collective oscillation state in this model shrinks to a fixed point

when N̄ exceeds an upper threshold value N̄b. The dependence of N̄b on the adaptation error ε, which is assumed
to be small, can be estimated as follows. At a fixed point of Eqs. (S4) at d3 = 0, we have s ' α2Na (from ṡ = 0),
y ' α1s (from ȧ = 0), and a ' εy (from ẏ = 0). Consequently, the upper threshold for oscillations has the scaling

N̄b ∼
1

ε
. (S13)

Figure S1b shows the numerical values for N̄o and N̄b against the adaptation error ε obtained in our simulations,
which confirms (S13). The oscillating state expands over a larger range of cell densities when individual cells are more
adaptive.

FIG. S1. Collective oscillations in the model Eq. (S4) with nonlinear adaptation (c3 = 1) and linear signal
relaxation (d3 = 0). (a) Oscillation frequency against the effective cell density N̄ = α1α2N . (b) The phase diagram in the
plane spanned by N̄ and the adaptation error ε. Other parameters are the same as in Fig. 3 of the Main Text.

Next, consider the case of nonlinear signal relaxation (d3 = 1) and linear adaptation (c3 = 0). The onset of collective
oscillations is similar to the previous case (Fig. S2a), except that oscillations speed up as the cell density increases
further. From Eq. (S10), we obtain

φ+
s (ω) = − arg R̃+

s (ω) = − arctan
[ ω

ωs(1 + 3d3|s̃|2/4)

]
, (S14)

which decreases as the oscillation amplitude increases. As shown in Fig. S2c, the intersection point shifts to the right.
The predicted signal oscillation amplitude B = |s̃| and frequency shift agree quantitatively with our numerical results
(Fig. S2c).

In the more general case when both c3 and d3 are nonzero, we need to first express s̃ and ãj in terms of a common
variable that specifies oscillation amplitude before applying the phase-matching condition Eq. (S12a). As we see
from the discussions above, depending on which of the two cubic nonlinearities is stronger, the oscillation frequency
may shift either to lower or higher values. In general, nonlinearities may also be present in the dynamics of other
intracellular variables which need to be dealt with case by case.

When quadratic nonlinearities are present in the system dynamics, the second harmonic is generated and need to be
considered in the perturbative analysis. Consider for example the equation for aj with an extra term c2a

2
j . Following
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FIG. S2. Collective oscillations in the model Eq. (S4) with linear adaptation (c3 = 0) and nonlinear signal
relaxation (d3 = 1). (a) Temporal trajectories at various values of N̄ . (b) The phase lead φa and lag −φ+

s against ω at
selected oscillation amplitudes. (c) The predicted oscillation frequency and amplitude as compared with those obtained from
numerical simulations. Other parameters are the same as in Fig. 3 of the Main Text.

the same procedure that led to Eqs. (S6), we find an additional term c2ã
∗
j ã

(2)
j on the right-hand side of Eq. (S6a),

where ã
(2)
j is the amplitude of the second harmonic in aj(t) (including phase). The amplitude equation for the second

harmonic relates ã
(2)
j to c2ã

2
j and α1s̃

(2). Together with the equation for s̃(2), amplitudes of the second harmonic can

be expressed as a linear combination of terms c2ã
2
j from different cells. The upshot of this exercise is that coefficient of

the cubic term |ãj |2ãj in Eq. (S6a) should contain additional contributions proportional to c22. The nonlinear response
functions (S8) and (S10) on the limit cycle can still be defined in the same way, and Eq. (S11) still holds formally.

Through s̃(2), terms |ãk|2 from other cells enter the expression for R̃+
a,j(ω). Two conclusions can be drawn from this

fact: i) as in the case of cubic nonlinearities, the transition is still of the Hopf bifurcation type; ii) R̃+
a,j(ω) can no

longer be determined by simply measuring the response of a given cell to a sinusoidal stimulus at finite strength, as
it is affected by the oscillation pattern of other cells in the system due to the quadratic nonlinearity.

IV. ADAPTATION ROUTE TO COLLECTIVE OSCILLATIONS IN SELECTED SYSTEMS

A. The coupled excitable FitzHugh-Nagumo model

We present here results on a coupled excitable FitzHugh-Nagumo (FHN) model often employed in the study of
oscillatory phenomena in cell cultures12 and developmental processes13,14. A single FHN circuit takes the form,

τaȧj = aj − a3
j/3− yj + α1s+ ηaj , (S1a)

τy ẏj = aj − εyj + a0 + ηyj . (S1b)

The positive sign of the first term in the equation for aj gives rise to excitability and a richer set of dynamical behavior
than the simple adaptation of Eq. (S6), including the appearance of limit cycles and bistability when the parameters are
tuned. The terms ηaj (t) and ηyj (t) represent gaussian white noise with 〈ηai(t)ηaj (t′)〉 = 〈ηyi(t)ηyj (t′)〉 = 2Tδ(t−t′)δij .
Below, we limit ourselves to the parameter regime where individual circuits are excitable but not oscillating. In the
absence of the stimulus s, each cell assumes the “resting state” with a mean activity 〈aj(t)〉 = ars.
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For small values of ε, the resting state activity ars ' −a0 is nearly constant under a slow-varying s(t). A sudden
change of s or a sufficiently strong noise fluctuation, on the other hand, can send the circuit through a large excursion
in the phase space (known as a “firing event”) when the dynamics of y is slow (i.e., τy � τa). Figure S1a shows
the noise-averaged response of the FHN circuit to a step signal of unit strength at ε = 0.1. After a strong transient
response, the value of 〈aj(t)〉 returns to its pre-stimulus level within an interval of size ε. Therefore, despite the
spontaneous firing of individual cells due to fluctuations, the noise-averaged response of an excitable cell is similar
to the non-excitable case discussed in the preceding section. We have also calculated numerically the linear response
function R̃a(ω). The response amplitude |R̃a| peaks at an intermediate frequency, while phase-leading behavior is
seen on the low frequency side (Fig. S1b and c).

FIG. S1. Noise-averaged response of the FHN circuit in the resting state. (a) The average response to a step signal.
(b) and (c) The response amplitude and phase shift of the circuit at various signal frequencies. Parameters: ε = 0.1, T = 0.1,
τa = 1, τy = 5, a0 = 1.5, α1 = 1.

We now consider a system of N FHN circuits coupled together through a signal field whose dynamics is described
by,

τsṡ = −s− s3 + α2

N∑
j

(aj − ars). (S1c)

As before we assume linear coupling between the signal and cellular activities which is expected to be a good approx-
imation close to the onset of collective oscillations. A cubic term is introduced in Eq. (S1c) to suppress appearance
of a limit cycle solution in the coupled system that pre-empts the continuous transition. Note that, without the
cubic term, the substitution s → s/α1 yields an effective coupling constant N̄ = α1α2N when cells have identical
noise-averaged behavior. This is no longer the case when the cubic term is present.

Fig. S2 shows our simulation results at selected values of N̄ . Here a1(t) and a2(t) are the activities of two out of a
total of N = 1000 cells. The values of other parameters are given in the caption. At N̄ = 0.1, individual FHN circuits
fire from time to time due to excitation by noise. However, the firing events are not synchronized and the signal level
remains constant due to averaging. At N̄ = 0.9, collective behavior as seen in the oscillations of s starts to emerge,
although individual circuits continue to fire sporadically. Upon further increase of N̄ , synchronized firing becomes
more evident.

We now take a look at the oscillation amplitude and frequency near the onset of collective behavior. To compare with
the theory presented in Sec. III, we computed the nonlinear response spectrum R̃+

a (ω) of a single cell by simulating
Eqs. (S1a) and (S1b) under a sinusoidal signal of finite amplitude B. The phase of the nonlinear response function at
selected oscillation amplitudes is shown in Fig. S3a. For the parameters chosen, the onset frequency of oscillations is
determined to be ωo ≈ 0.27. Figs. S3b and c give the predicted amplitude and frequency from Eqs. (S12) against Ñ
together with results from direct simulation of coupled FHN circuits. It is seen that very good agreement is reached
for the onset coupling strength N̄O and frequency ωO, and for the dependence of the oscillation amplitude of s on Ñ .
However, opposite trend is seen in the predicted and actual frequency shift as the cell density or coupling strength
increases.

Fig. S4 shows the power spectrum of s(t) from simulations of the coupled system at two selected values of N̄ , one
just above the onset of oscillations and the other in the developed region. In the latter case, the amplitude of the
second harmonic becomes significant, invalidating the self-consistency approach developed in Sec. III that considers
only the nonlinear response function of the circuit under a sinusoidal stimulus of finite amplitude. Furthermore, the
FHN circuit (S1) does not have the inversion symmetry that prevents generation of even harmonics from odd ones.
It is nevertheless interesting to see that the prediction of the oscillation amplitude near the onset still holds. In
principle, a more elaborate self-consistency scheme involving nonlinear response to periodic stimuli containing higher
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FIG. S2. Trajectories of the coupled FHN model at various values of the effective coupling strength N̄ . Except
for the signal s, the activities of two out of a total of 1000 cells are plotted. Parameters: α1 = 1, N = 1000, ε = 0.1, T = 0.1,
τa = 1, τy = 5, a0 = 1.5, and τs = 1.

FIG. S3. Oscillation frequency and amplitude of the coupled FHN model. (a) Phase shifts of the nonlinear circuit
(computed from numerical perturbation) and the signal (from analytical approximation) response against signal strength B.
The intersection of φ+

a and φ+
s at a given B yields the predicted oscillation frequency. (b) and (c) Frequencies and amplitudes

(blue dashed lines) predicted by the nonlinear response theory vs the actual ones (red stars, obtained from direct numerical
simulation of the coupled model. Parameters are the same as in Fig. S2.

order harmonics can be developed, but in practice this will be much less useful due to the amount of data that need
to be collected.

The model studied here shares many features with the one introduced earlier by Sgro et al. to describe dynamical
quorum sensing in aggregates of social amoebae Dictyostelium discoideum13, although the latter contains additional
nonlinear effects. One such nonlinearity comes from the fact that a dicty cell detects extracellular cyclic AMP (cAMP)
level s through a chemical binding mechanism. Therefore its activity responds to the signal through a change of the
chemical potential of cAMP which is logarithmic in s, i.e., the linear term in s in Eq. (S1a) is replaced by log s,
dubbed “logarithmic sensing”. Adaptation of cellular activity to the signal translates to a phenomenon known as
“fold-change detection” which has been verified experimentally15. Another nonlinear effect comes from the massive
release of cAMP to the extracellular environment in each firing event. As the cell density increases, the frequency
of such events increases, and so is the cAMP level in the surrounding medium. When the adaptation is less than
perfect, the increase in ambient cAMP concentration may also send individual cells into a recurrent firing state that
synchronizes through the Kuramoto mechanism. Thus one may think of two possible routes to collective oscillations
in excitatory quorum-sensing populations: i) adaptation-led signal amplification with a fast diffusing chemical that
averages out noise effects in sporadic firing; ii) increase in the ambient signal level that sends individual cells into
the limit cycle state when they are less adaptive. They can be distinguished by performing single-cell experiments
illustrated in Fig. S1.
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FIG. S4. Power spectra of the signal from simulations of the coupled FHN model. (a) At N̄ = 1 which is just above
the onset of collective oscillations, the spectrum is dominated by the first harmonic. (b) At N̄ = 2, spectral weight around the
second harmonic becomes significant. Other parameters are the same as in Fig. S2.

B. Collective oscillations in a synthetic circuit

Danino et al. reported the first experiment where a synthetic gene circuit was used to achieve collective oscillations in
bacterial cell populations16. Their design employed plasmids that carry genes for the synthesis (luxI) and degradation
(aiiA) of the quorum sensing molecule acyl-homoserine lactone (AHL). Feedback is achieved by regulating the promoter
activity of these genes in an AHL-dependent manner. The interaction scheme is illustrated in Fig. S5a, where the
concentrations of the enzymes as well as the intracellular and extracellular AHL molecules are indicated. As the
AHL molecule freely diffuses across the cell membrane, different cells are coupled via the extracellular AHL whose
concentration is controlled externally in a microfluidic setup by adjusting the flow rate.

Danino et al. proposed the following model to interpret their experimental results16:

dA

dt
= CA[1− (d/d0)4]P (α, τ)− γAA

1 + f0 × [A+ I]
, (S2a)

dI

dt
= CI [1− (d/d0)4]P (α, τ)− γII

1 + f0 × [A+ I]
, (S2b)

dHi

dt
=

bI

1 + kI
− γHAHi

1 + gA
+D[He −Hi], (S2c)

∂He

∂t
= − d

1− d
D[He −Hi]− µHe +D1

∂2He

∂x2
. (S2d)

where P (α, τ) describes a delayed promoter response to the intracellular AHL concentration Hi. Denoting Hi(t− τ)
by Hτ , we have

P (α, τ) =
δ + αH2

τ

1 + k1H2
τ

.

d is the rescaled cell density (ranging from 0 to 1); D is the permeability coefficient of AHL across the cell membrane;
D1 is the diffusion coefficient in the intercellular medium; µ is the AHL degradation rate (controlled by the flow rate
around the chamber where cells accumulate).

Fig. S5b shows the response of Hi to a sudden ramp in He, during which the AHL flow across the cell membrane
reverses its direction. A further increase in He will not significantly push up Hi. On the other hand, due to the
delayed promoter activity and the fast LuxI response (CI > CA), a transient and strong response of Hi is possible, as
the data in Fig. S5b shows. Therefore, Hi can be considered as an intracellular observable that responds adaptively
to the intercellular signal He.

Fig. S5c shows the trajectories of He and Hi at different values of the cell density d, obtained from numerical
integration of Eqs. (S2). Collective oscillations are observed at intermediate cell densities or coupling strength
N̄ = D2d/(1− d). The oscillation frequency first decreases with the cell density, but increases again before quenching
takes place (Fig. S5d). One interesting phenomenon observed experimentally is that the oscillation frequency decreases
with increasing flow rate µ, while the decay rate ωs = µ + Dd/(1 − d) of He increases. This seems to contradict
with the phase matching scheme we introduced to determine ωo. However, we note that an increase in µ decreases
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FIG. S5. Collective oscillations of coupled synthetic quorum sensing circuits. (a) The design and coupling of the
synthetic circuits. Here, He is the concentration of the extracellular AHL, which is our signal; and Hi is the intracellular
AHL concentration, which is our adaptive observable. (b) The response of the internal AHL concentration when we enforce a
step change of the extracellular AHL concentration. Partial adaptation is observed at various cell density d’s. (c) The system
dynamics at various cell density d. (d) The oscillation frequency at various cell densities. The frequency first decreases, and
then increases. Other parameters: CA = 1, CI = 4, δ = 10−3, α = 2500, τ = 10, k = 1, k1 = 0.1, b = 0.06, γA = 15, γI = 24,
γH = 0.01, f0 = 0.3, g = 0.01, d0 = 0.88, D = 2.5, D1 = 0, µ = 0.2. Parameters are the same as used in16.

He which in turn decreases the average Hi. This can slow down the intracellular response considerably, leading to a
longer oscillation period.

C. Glycolytic oscillations in yeast cells

Glycolytic oscillations in dense yeast cell suspensions have been known for a long time17. The phenomenon at cellular
level is complex not only because of a large number of enzymes and metabolites involved, but also a multitude of
regulatory interactions whose activation pattern and strength are not well understood. Furthermore, flux diversion into
side branches other than the main fermentative pathway can significantly attenuate or even diminish the oscillations.
Yet the oscillations are easy to produce following the standard experimental protocols, suggesting that certain type
of low dimensional mechanism inside a cell such as energy or redox balance is at work.

In the following we explore the possibility of an adaptation route to yeast glycolytic oscillations. It is known that
yeast cells communicate through the intercellular acetaldehyde (ACE) which acts as a redox signal. The intracellular
redox ratio NAD/NADH affects the rate of the key reaction GAPDH separating ATP consuming and ATP harvesting
parts of the glycolytic pathway. Adaptation of the glycolytic flux to a rising (or receding) ACE level may result
from the combined action of regulatory interactions to maintain ATP homeostasis. We verify the above scenario in a
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FIG. S6. The network of reactions in a detailed model of glycolysis18. Letters in blue denote metabolites, while
those in red are the reactions. Directional (bidirectional) arrows indicate irreversible (reversible) reactions. Abbreviations:
Glco, glucose; ACE, acetaldehyde, ADH, alcohol dehydrogenase; AK, adenylate kinase; ALD, fructose-1,6-bisphosphate al-
dolase; BPG, 1,3-bis-phosphoglycerate; ENO, phosphopyruvate hydratase; F16P, fructose-1,6-bisphosphate; F6P, fructose 6-
phosphate; GAPDH, D-glyceraldehyde-3-phosphate dehydrogenase (phosphorylating); G3P, glycerol 3-phosphate; G3PDH,
glycerol 3-phos- phate dehydrogenase; G6P, glucose 6-phosphate; GLYCO, glycogen branch; GLK, glucokinase (a hexokinase);
P2G, 2-phosphoglycerate; P3G, 3-phosphoglycerate; PEP, phosphoenolpyruvate; PDC, pyruvate decarboxylase; PGI, glucose-
6-phosphate isomerase; PFK, 6-phosphofructokinase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; PYK,
pyruvate kinase; PYR, pyruvate; Treha, trehalose branch; SUC, succinate branch; Glyo, glyoxylate shunt.

detailed model proposed by du Preez et al.18 (referred to as the full model), and then develop a minimal model that
captures the main features of the response phase diagram of the full model. Owing to its conceptual simplicity, the
minimal model can be employed for semi-quantitative interpretation of experimental findings and for the design of
future experiments.

FIG. S7. Spontaneous oscillations in the full model. (a) Trajectories of all metabolites at glucose concentration Glco=10.
(b) and (c) Time-averaged metabolite concentrations and reaction fluxes in descending order.
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1. Single-cell perturbation study

The full intracellular reaction network of the kinetic model by du Preez et al.18 is shown in Fig. S6. It contains
around 20 reactions and 15 metabolite concentrations as dynamical variables. The reaction fluxes are highly nonlinear
functions of these variables. Predictions of the model were shown to agree semi-quantitatively with experimental data
on yeast glycolytic oscillations19. Below we use the same parameter values as adopted in the original model termed
dupree2 in18, unless otherwise stated.

FIG. S8. Response of metabolites to a redox signal at low ACE concentrations. Here, ACE(t) = ACE0[1+0.02H(t)],
with H(t) being a Hill function with a large Hill coefficient. The notation δx of a variable x represents its relative change from
a pre-stimulus level x̄, i.e., δx ≡ [x(t)− x̄]/x̄. Quantities such as PYR and NAD which have too small values are amplified to
make them visible on the plot. (a) The response of metabolites around G6P in the upper section of the glycolytic pathway;
(b) The response of metabolites around BPG in the middle section of the glycolytic pathway; (c) The response of metabolites
from BPG to PYR in the lower section of the glycolytic pathway; and (d) The response of metabolites in the downstream
fermentation pathway. Parameters: ACE0 = 0.05 and Glco = 10.

Fig. S7 shows an oscillatory solution of the model at the glucose concentration Glco =10 mM. The oscillation
frequency is ω0 ≈ 21 min−1, corresponding to a period of τ0 ' 0.3 min. The mean concentration of ACE is 0.17 mM
(Fig. S7b). Reaction fluxes are concentrated along the linear pathway from Glco to ETOH, while the side reactions
carry very little flux (Fig. S7c, blue box). Below, we present response properties of the model using ACE concentration
as the second control variable, in addition to the extracellular glucose concentration. Time is measured in minutes
and concentrations in mM.

To move out of the oscillatory regime, we lower the mean acetaldehyde concentration to ACE0 = 0.05. Experimen-
tally, this can be achieved by adding cyanide (KCN) which reacts with ACE in the solution20. Fig. S8 shows the time
course of metabolites under a step-wise increase in the ACE concentration. The four panels are organized following
the order of metabolites along the glycolytic pathway, with the addition of ATP, ADP and NAD. Most metabolites
adapt at least partially, except F16P and TRIO upstream of the reaction GAPDH that uses NAD and NADH as
cofactors. The redox pair NAD and NADH, being tightly connected to ACE, do not adapt either.

We now consider oscillations of the same set of metabolites stimulated by a periodic redox signal at the frequency
ω0 of spontaneous oscillations mentioned above. In Fig. S9a, ATP, G6P and F6P are approximately in phase with
each other, but they are out of phase with Glci at the entry point of the pathway. The non-adaptive F16P has a
behavior of its own. The phase relations for these metabolites have been measured experimentally, and the results
agree well with our numerics21. In Figs. S9b-c, metabolites from BPG down to PEP share nearly the same phase
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FIG. S9. Concentration variations along the glycolytic pathway stimulated by a periodic redox signal. Here,
ACE(t) = ACE0[1 + 0.02 sin(ωt)]. Organization of metabolites in panels (a)-(d) is the same as in Fig. S8. Parameters:
ACE0 = 0.05, Glco = 10, and ω = 21.

with each other and with ATP. The non-adaptive TRIO lags slightly behind F16P. In Fig. S9d, PYR at the end of
the glycolytic pathway has an approximately 90◦ phase lead over ATP, and furthermore a smaller phase lead over
ACE and NAD.

Fig. S10 shows the phase shifts of metabolites against a sinusoidal signal ACE obtained from our numerical simu-
lations over a broad frequency range. Apart from PYR, the phase relationships among metabolites at ω0 hold also at
lower frequencies. In Fig. S10b, it is seen that NAD has essentially the same phase as ACE in the frequency interval,
while NADH is completely out of phase. Therefore, on the timescale τ0, the phase information of ACE is passed
without delay onto the redox ratio NAD/NADH, and fed into the network through the reaction GAPDH. Around
ω0, the phase lead of NADH over ACE is slightly below 180◦, as observed in experiments on glycolytic oscillations22.
Fig. S10c shows the downstream metabolites from BPG to PEP oscillate in phase with each other for ω ≤ ω0, meaning
the internal time scales for this part of the pathway are shorter than τ0. In contrast, PYR develops a phase lead in
the intermediate frequency regime, as indicated by the two black arrows in Fig. S10c. (Note that in Fig. 4d of the
Main Text, the phase lead extends to zero frequency indicating that the width of the regime depends on the glycolytic
flux.) The adaptive variable ATP also has a phase lead in the entire low frequency region.

Fig. S10d shows the following phase relations between ATP and several other metabolites as summarized by the
equations below,

φATP = π + φADP = π + φAMP ≈ φBPG ≈ φPEP ≈ π + φGLCi. (S3)

The first two relations among the nucleotides ATP, ADP and AMP simply reflect the conservation of their total
number, and that the fraction of AMP is much lower than the other two. In-phase relations apply to substrates
BPG and PEP of the ATP harvesting reactions PGK and PYK, respectively, while the out-of-phase relation is
observed for GLCi in the ATP consuming reaction GLK. The fact that these relations hold almost strictly in the
entire frequency region suggests that quasi-steady-state conditions apply to these and neighboring reactions. It also
suggests a prominent role of ATP in synchronizing the phase of metabolites distributed along the glycolytic pathway.

In summary, our numerical results suggest the following mechanism of adaptation. Under a stepwise increase
of ACE concentration, the information is passed with negligible delay to the redox ratio NAD/NADH, and then
through the delayed reaction GAPDH to BPG and PEP, and transiently boosting ATP production. The transient
increase of ATP concentration then reduces the upstream glycolytic flux by inhibiting the reaction PFK, which in
turn decreases the downstream TRIO concentration, eventually returning the GAPDH flux to its pre-stimulus level.
Although many metabolites adapt, the negative feedback loop of ATP production appears to be the core. Fig. 4b in
the Main Text shows a more complete phase diagram of the response properties at other values of ACE0 and Glco
concentrations, including the regime of spontaneous oscillations.
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FIG. S10. Phase shifts of metabolites against the frequency of a sinusoidal ACE signal. (a) Metabolites in the
“preparatory phase” of the glycolytic pathway, where ATP is consumed to activate the 6-carbon ring molecule. (b) Substrate,
product and cofactors of the reaction GAPDH that act as the receptor of the redox signal, together with ATP. (c) Metabolites
in the “payoff phase” of the glycolytic pathway, where ATP is harvested. For the particular values of the extracellular glucose
and acetaldehyde chosen, phase lead of PYR over ACE occurs in the range of frequencies delimited by black arrows. The blue
arrow indicates the intrinsic frequency studied in Fig. S9. (d) Metabolites that appear in Eq. (S3). The phase shift of a number
of metabolites shows a dip at the low frequency end, indicating a small but finite adaptation error. Parameters: ACE0 = 0.05,
Glco = 10.

2. A minimal model for glycolytic oscillations

We constructed a minimal model to test various quantitative aspects of the adaptation mechanism described above.
Reduction in the number of dynamic variables is achieved by lumping consecutive metabolites along the linear pathway
that are phase synchronized into a single variable denoting their total concentration. This is a reasonable approxima-
tion when interconversion among these metabolites is much faster than the time of interest, e.g. the oscillation period.
Fig. S11a illustrates the selected variables and their interactions. Here, y represents intermediate metabolites that
do not adapt (F16P and TRIO), thereby playing the role of a memory node. The variable z represents metabolites
from BPG to PEP along the glycolytic pathway. The ATP concentration is denoted by a, while the concentration of
PYR, substrate for the ACE producing reaction PDC, is denoted by o. Since NAD (NADH) is always in phase (out
of phase) with ACE, we adopt the redox ratio NAD/NADH as the signal s instead. Motivated by a phenomenological
two-component model for glycolytic oscillations in23, we introduce a minimal model of glycolysis with redox control
as follows:

τ ẏ =
2a

1 + a2h
− (α1s+ c0)y − εy, (S4a)

τ ż = (α1s+ c0)y − 2z

1 + a2
, (S4b)

τ ȧ = − 2a

1 + a2h
+ 2

2z

1 + a2
− 2a2

1 + a2
. (S4c)

Here, 2a/(1 + a2h) gives the reaction flux of PFK that consumes ATP and is also inhibited by ATP at high concen-
trations, with the inhibition strength set by the exponent h(> 1/2). The term (α1s + c0)y gives the reaction flux of
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FIG. S11. A minimal model of glycolysis with redox control. (a) The network of metabolites (symbols) and reactions
(boxes). (b) Response of metabolites upon a stepwise perturbation s(t) = 0.04(1 + 0.01H(t)). (c) Response of corresponding
metabolites in the full model computed using parameter values given in FIG. S8. (d) Response properties of the minimal model
as the intracellular redox state changes from reductive to oxidative (left to right). Parameters: h = 3, α1 = α2 = 1, τ = 0.01,
c0 = 0.02, and ε = 0.01.

GAPDH, where c0 sets the “basal” enzyme velocity at s = 0. Leakage of TRIO into the side branch is given by εy.
The term 2z/(1 + a2) gives the reaction flux of PYK (and also PGK), which produces ATP but is also inhibited by
ATP. In Eq. (S4c), the stoichiometric factors 1 and 2 in the first two terms on the right-hand-side correspond to the
ATP consumption and production upstream and downstream of TRIO, respectively. ATP consumption by the cell
outside of glycolysis is modeled by the term 2a2/(1+a2), which grows with the ATP concentration until saturation at
a maximal value 2. The output variable o (PYR) is produced by the same flux that produces a (ATP) and degraded
at a constant rate α2,

τ ȯ =
2z

1 + a2
− α2o. (S4d)

For simplicity, we have chosen the time constants on the left-hand-side of the equations to be the same. As we show
below, this choice is adequate for recovering the main low frequency properties of the full model.

Fig. S11b shows the response of the dynamical variables to a sinusoidal redox variation centered around s0 = 0.04.
Except the buffer variable y, all other variables show adaptive behavior, with o gaining a phase lead of 90◦ over a.
For comparison, we show in Fig. S11c the response properties of corresponding metabolites in the full model in the
adaptive regime, which are indeed quite similar. We have examined the response properties of the minimal model at
other values of s0 and identified four qualitatively different regimes as shown in Fig. S11d. As in the case of the full
model (Main Text, Fig. 4b), spontaneous oscillations (i.e., limit cycle solution) occur at intermediate values of s0,
flanked by adaptive but non-oscillatory regimes.

We note in passing that the two-component model of Chandra et al.23 also exhibits spontaneous oscillations when
the rate constant k of the pyruvate kinase reaction (PYK in Fig. S11a) takes on intermediate values. As k affects the
delay time of the negative feedback control in ATP production, in this sense it plays a similar role as s0. However, our
model contains an additional buffer node TRIO which is necessary for the adaptive behavior seen in Fig. S11. We have

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/421586doi: bioRxiv preprint 

https://doi.org/10.1101/421586


23

also made the ATP consumption rate dependent on the ATP concentration to eliminate certain pathological features
of the Chandra et al. model at low values of a. Furthermore, our numerical analysis suggests that a sufficiently small
but finite adaptation error ε associated with low flux diversion is needed to reproduce the response diagram Fig. S11d.
On the high (oxidative) end of s0, the reaction GAPDH drives down y (TRIO) and hence the flux of the side reaction,
making the system adaptive even at moderate values of ε.

Comparing the response diagrams of the minimal model (Fig. S11d) and of the full model (Main Text, Fig. 4b), we
see that the adaptive regime on the oxidative side is restricted to a much narrower region in the latter case. Upon a
detailed investigation of the full model we found that, at higher values of ACE0, the side reaction Glyo is activated. As
this reaction uses both NAD and ATP as cofactors, its inclusion introduces additional feedback loops to the minimal
model of Fig. S11a. In such a situation, variation of the extracellular ACE concentration does not translate directly
to a shift of the NAD/NADH ratio through the reaction ADH. After removing the side branch Glyo in the full model,
we obtained a response diagram similar to that of the minimal model (Fig. S12).

FIG. S12. Phase diagram of the modified glycolysis model with blocked Glyo reaction. Adaptation of PYR and
ATP coexist for large ACE0, which is consistent with our minimal model.

Fig. S13 shows representative time courses of the PYK reaction flux to a stepwise ACE signal, computed using
the original and modified glycolysis model, as well as the minimal model. The original and modified models exhibit
nearly identical adaptive response on the low ACE (reductive) side, but differ on the high ACE (oxidative) side. The
concentration of PYR is found to be proportional to the PYK reaction flux in all three models, i.e., the degradation
rate of PYR is a constant. Further numerical investigations of the full model with blocked glyoxylate shunt (Glyo)
show that it shares the following features of the minimal model as the oxidation level increases: 1) the frequency inside
the oscillatory regime increases; 2) (mean) a (ATP) and z (BPG, P3G, P2G, and PEP concentrations) increase by
a moderate amount; 3) y (TRIO and F16P concentrations) decreases; 4) o (PYR concentration) first increases, then
decreases. Experimental time-course measurement with blocked glyoxylate shunt will serve to validate or improve the
model assumptions.

To study collective oscillations in a population of cells whose internal dynamics follows Eqs. (S4), we adopt the
following signal dynamics as in Ref.24:

τsṡin = α2o− kinsin −D(sin − sex), (S5a)

τsṡex = φD(sin − sex)− kexsex. (S5b)

Here sin and sex are the intracellular and extracellular signal concentration, respectively; D is the membrane per-
meability of the signaling molecule; kin and kex are the intracellular and extracellular signal degradation rate; and φ
is the volume fraction of yeast cells, which increases with the cell density, and saturates at 1. The extracellular signal
strength (i.e., acetaldehyde concentration) in the coupled system is a function of φ.

Let us first consider the situation of fast equilibrium between sin and sout. Previously, Silvia De Monte et al.
proposed a diffusion timescale τ ≈ 0.003 s by assuming a quasi-stationary concentration profile and that ACE
molecules need to diffuse across a spherical shell with an inner radius r1 = 3 µm and an outer radius r2 = 6.5 µm25.
This diffusion timescale is much smaller than the oscillation period of 37 s. Assuming the time for an ACE molecule to
cross the cell membrane is of the order of 1 s or less, we obtain the following approximate equation for s = (sin+sex)/2,

τsṡ =
φ

1 + φ
α2o−

(φkin + kex
φ+ 1

)
s. (S6)
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FIG. S13. The response of PYK flux to a step perturbation of ACE at t = 10. (a) The response of the original
full model at ACE=0.05 and 0.77, respectively. (b) The response of the modified full model with blocked Glyo reaction at
ACE=0.05 and 0.77, respectively. (c) The response of the minimal model. Parameters: Glco=10 for (a) and (b); the parameters
for the minimal model are the same as in Fig. S11.

Up to corrections of order ε, the stationary state of the dynamical system defined by Eqs. (S6) and (S4) is given
approximately by,

a ≈ 1, z ≈ 1, y ≈ 1

α1s+ c0
, o ≈ 1

α2
, s ≈ φ

φkin + kex
. (S7)

The signal strength increases with the volume fraction and saturates at 1/(kin+kex). At small but finite ε, corrections
to the above expressions become significant at large y or small s, i.e., diversion of the glycolytic flux through the
reaction G3PDH in Fig. S6. In the numerical studies presented below, we set the two ACE degradation rates kin and
kex to be small so that the signal strength s varies over a broad range as the cell volume fraction φ increases.

Fig. S14 shows numerical solutions of the coupled minimal model at four selected φ values. Except the case at
φ = 0.01, oscillations of s and the intracellular variables are seen. In Fig. S15, we plot the oscillation amplitudes
and time-averaged values of s and O against the cell volume fraction φ. From the lower panel of Fig. S15a we see
that, for the signal dynamics chosen, the lower adaptive regime in Fig. S11d is mapped to a narrow interval of cell
volume fraction 0.003 < φ < 0.013. From Fig. S14, we see that onset of collective oscillations in the coupled system
takes place between φ = 0.01 and 0.013. More detailed studies indicate that the transition is not the expected Hopf
bifurcation type, but instead emergence of a limit cycle at finite amplitude. Similar behavior was seen in the study of
the full kinetic model (see Fig. 10 in19). On the other hand, experimental work seem to support the Hopf bifurcation
scenario25,26. We leave this issue to future investigations.

Beyond the onset point, oscillation amplitudes vary continuously with the cell density. For φ > 0.34, the time-
averaged value of s falls in the upper adaptive regime in Fig. S11e. Since the cell density here already exceeds the
threshold value required for collective behavior of adaptive units, oscillations continue.

Finally, we present some numerical results demonstrating the effect of a slower cross-membrane transport of ac-
etaldehyde on the collective dynamics. The system dynamics is defined by Eqs. (S4)] for individual cells (with s = sin)
together with Eqs. (S5) for the intracellular and extracellular signal concentrations. Fig. S16 shows the oscillation
amplitude of sin together with the time-averaged values of sin and sout at selected values of D. At D = 100 and 10,
sin and sout are nearly identical and the system behavior is essentially the same as described above under the fast
equilibrium assumption. At D = 1, the time-averaged value of sext is noticeably smaller than that of sin, indicating
a significant gradient of acetaldehyde concentration across the cell membrane. Nevertheless, collective oscillations are
not much affected. Collective oscillations disappear at D = 0.1. Here, sin remains high due to the slow intracellular
degradation rate kin, which places the single-cell dynamics in the upper adaptive regime even when the cell density
vanishes. However, the phase delay across the cell membrane changes the response properties of the cell to external
signal variations. In this case, sin should be considered as the sender of the external signal but as one can see from
Eq. (S5a), the adaptation of O to sin does not translate to adaptation of sin to sex. The latter is required for the
adaptation route to collective oscillations.
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FIG. S14. Collective dynamics of the minimal model coupled via Eq. (S6). (a)-(d) Temporal trajectories at selected
values of the volume fraction φ. The same color scheme of variables is used. Inset in b shows the signal trajectory on an
enlarged scale. Parameters: h = 3, α1 = α2 = 1, ε = 0.01, kin = 0.5, kex = 0.3, τ = 1, c0 = 0.02, and τs = 0.1.

FIG. S15. Collective oscillations against the yeast cell density. (a) Upper panel: oscillation amplitude of the signal s
as a function of the cell volume fraction φ. Lower panel: time-averaged signal concentration against φ. The black dashed line
indicates the upper threshold value sc = 0.72 where individual cells exits from the oscillatory regime under a constant external
environment. (b) Upper panel: oscillation amplitude of the sender node o against φ. Lower panel: time-averaged value of o
against φ. Parameters are the same as in Fig. S14.

In summary, under fast equilibration between intracellular and extracellular acetaldehyde concentrations, the cou-
pled system exhibits collective oscillations over a broad range of cell densities, encompassing the adaptive and oscilla-
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FIG. S16. Effect of delay in cross-membrane transport of the signaling molecule on collective dynamics. Results
of numerical integration of Eqs. (S4)] coupled to the two-component signal dynamics Eq. (S5)] at selected values of D =
100, 10, 1, 0.1. The black dashed line indicates the signal level s = 0.72 marking the upper boundary between oscillatory and
adaptive regimes of a single cell. Other parameters are the same as in Fig. S14.

tory regimes of a single cell. Onset of collective oscillations at low cell densities exhibit complex behavior due to the
assumed sensitivity of the reaction GAPDH to the NAD/NADH ratio. Delay in the cross-membrane transport of ac-
etaldehyde weakens adaptation of intracellular metabolite concentrations to change in the extracellular acetaldehyde
concentration, and may eliminate collective oscillations altogether when the delay is too long. At moderate delays,
rise in the intracellular acetaldehyde concentration brings individual cells to the oscillatory even when in isolation.
The enhanced oscillation amplitude at D = 1 and low cell densities seen in Fig. S16, however, is obtained under the
assumption that all cells in the population behave identically. This behavior is susceptible to cell-to-cell variations as
well as temporal noise in intracellular dynamics. Our model study exposes this and other subtleties that can affect
emergence of collective oscillations. The specific effects we identified in this work could serve to guide the design
of future experiments where various model parameters can be controlled quantitatively, e.g., kex for extracellular
degradation rate of acetaldehyde by adjusting the flow rate in microfluidic setups20.

[1] Sekimoto, K. Stochastic energetics, vol. 799 (Berlin Springer Verlag, 2010).
[2] Sethna, J. Statistical mechanics: entropy, order parameters, and complexity, vol. 14 (Oxford University Press, 2006).
[3] Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy-speed-accuracy trade-off in sensory adaptation. Nat.

Phys. 8, 422–428 (2012).
[4] Sartori, P. & Tu, Y. Free energy cost of reducing noise while maintaining a high sensitivity. Phys. Rev. Lett. 115, 118102

(2015).
[5] Wang, S.-W., Lan, Y. & Tang, L.-H. Energy dissipation in an adaptive molecular circuit. J. Stat. Mech. 2015, P07025

(2015).
[6] Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966).
[7] Diezemann, G. Fluctuation-dissipation relations for markov processes. Phys. Rev. E 72, 011104 (2005).
[8] Wang, S.-W., Kawaguchi, K., Sasa, S.-i. & Tang, L.-H. Entropy production of nanosystems with time scale separation.

Phys. Rev. Lett. 117, 070601 (2016).
[9] Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical

adaptation. Cell 138, 760–773 (2009).
[10] De Palo, G. & Endres, R. G. Unraveling adaptation in eukaryotic pathways: Lessons from protocells. PLoS Comput. Biol.

9, e1003300 (2013).
[11] Diezemann, G. Nonlinear response theory for markov processes: Simple models for glassy relaxation. Phys. Rev. E 85,

051502 (2012).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/421586doi: bioRxiv preprint 

https://doi.org/10.1101/421586


27

[12] Izhikevich, E. M. Dynamical systems in neuroscience (MIT press, 2007).
[13] Sgro, A. E. et al. From intracellular signaling to population oscillations: bridging size-and time-scales in collective behavior.

Mol. Syst. Biol. 11, 779 (2015).
[14] Hubaud, A., Regev, I., Mahadevan, L. & Pourquie, O. Excitable dynamics and yap-dependent mechanical cues drive the

segmentation clock. Cell 171, 668–682 (2017).
[15] Kamino, K. et al. Fold-change detection and scale invariance of cell–cell signaling in social amoeba. Proc. Natl. Acad. Sci.

U.S.A. 201702181 (2017).
[16] Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463,

326–330 (2010).
[17] Richard, P. The rhythm of yeast. FEMS Microbiol. Rev. 27, 547–557 (2003).
[18] du Preez, F. B., van Niekerk, D. D., Kooi, B., Rohwer, J. M. & Snoep, J. L. From steady-state to synchronized yeast

glycolytic oscillations i: model construction. FEBS J. 279, 2810–2822 (2012).
[19] du Preez, F. B., van Niekerk, D. D. & Snoep, J. L. From steady-state to synchronized yeast glycolytic oscillations ii: model

validation. FEBS J. 279, 2823–2836 (2012).
[20] Gustavsson, A.-K., Adiels, C. B., Mehlig, B. & Goksör, M. Entrainment of heterogeneous glycolytic oscillations in single

cells. Sci. Rep. 5 (2015).
[21] Richard, P., Teusink, B., Hemker, M. B., Van Dam, K. & Westerhoff, H. V. Sustained oscillations in free-energy state and

hexose phosphates in yeast. Yeast 12, 731–740 (1996).
[22] Richard, P., Bakker, B. M., Teusink, B., Dam, K. & Westerhoff, H. V. Acetaldehyde mediates the synchronization of

sustained glycolytic oscillations in populations of yeast cells. Eur. J. Biochem. 235, 238–241 (1996).
[23] Chandra, F. A., Buzi, G. & Doyle, J. C. Glycolytic oscillations and limits on robust efficiency. Science 333, 187–192

(2011).
[24] Wolf, J. et al. Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys. J. 78,

1145–1153 (2000).
[25] De Monte, S., d’Ovidio, F., Danø, S. & Sørensen, P. G. Dynamical quorum sensing: Population density encoded in cellular

dynamics. Proc. Natl. Acad. Sci. U.S.A. 104, 18377–18381 (2007).
[26] Danø, S., Sørensen, P. G. & Hynne, F. Sustained oscillations in living cells. Nature 402, 320–322 (1999).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/421586doi: bioRxiv preprint 

https://doi.org/10.1101/421586

