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Abstract: 

Chronic Kidney Disease (CKD) is a growing health burden currently affecting 10-15% of adults 

worldwide.  Estimated glomerular filtration rate (eGFR) as a marker of kidney function is 

commonly used to diagnose CKD.  Previous genome-wide association study (GWAS) meta-

analyses of CKD and eGFR or related phenotypes have identified a number of variants associated 

with kidney function, but these only explain a fraction of the variability in kidney phenotypes 

attributed to genetic components.  To extend these studies, we analyzed data from the Nord-

Trøndelag Health Study (HUNT), which is more densely imputed than previous studies, and 

performed a GWAS meta-analysis of eGFR with publicly available summary statistics, more than 

doubling the sample size of previous meta-analyses. We identified 147 loci (53 novel loci) 

associated with eGFR, including genes involved in transcriptional regulation, kidney 

development, cellular signaling, metabolism, and solute transport.  Moreover, genes at these loci 

show enriched expression in urogenital tissues and highlight gene sets known to play a role in 

kidney function.  In addition, sex-stratified analysis identified three regions (prioritized genes: 

PPM1J, MCL1, and SLC47A1) with more significant effects in women than men.  Using genetic risk 

scores constructed from these eGFR meta-analysis results, we show that associated variants are 

generally predictive of CKD but improve detection only modestly compared with other known 

clinical risk factors.  Collectively, these results yield additional insight into the genetic factors 

underlying kidney function and progression to CKD.  
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Introduction: 

Chronic kidney disease (CKD) is a common condition affecting ~11% of adults in Norway 

and ~15% in the United States1,2. Due to specific comorbidities (namely diabetes) and an aging 

population, CKD is expected to continue to rise in global prevalence3.  However, the prevalence 

varies with ethnicity and sex, with CKD being more common among females and African 

Americans1.  Estimated glomerular filtration rate (eGFR) provides an assessment of kidney 

function and it is estimated based on serum creatinine levels with adjustment for age, race, and 

sex.  eGFR levels below 60 mL/min/1.73m2 characterize chronic kidney disease4, with varying 

severity classified by albuminuria and eGFR levels.  A subset of individuals with CKD have 

accelerated renal function decline and progress to end stage renal disease (ESRD).  

Several other diseases interact with kidney function.  Chronic health conditions such as 

diabetes and hypertension directly influence the development of CKD, with environmental 

factors such as smoking accelerating disease progression5.  Altered lipid levels, especially 

triglycerides, are also associated with CKD and contribute to the progression of cardiovascular 

disease6.  Advanced stages of CKD/ESRD necessitate dialysis or transplantation and are 

associated with a greatly increased risk of cardiovascular disease and death7.     

It has been estimated that about one third of the variation in eGFR levels can be 

attributed to genetic factors8, with the remaining variability due to environmental effects.  

Previous GWAS studies and meta-analyses have identified a number of loci associated with 

serum creatinine, eGFR, or CKD9-18.  However, the introduction of denser imputation panels, 

including the Haplotype Reference Consortium19 (HRC), and the recent rise in large-scale 

biobanks has enabled larger sample sizes and a greater number of variants than previously 

studied.  Analysis of these new and more densely imputed datasets are expected to identify 

genetic regions influencing these traits not previously found.  We analyzed samples from the 

Nord-Trøndelag Health Study (HUNT), imputed using a combined HRC and ancestry specific 

panel, for association with eGFR, creatinine, urea, and CKD, and performed meta-analysis of 

eGFR associations with three additional cohorts to uncover additional genetic variants 

contributing to kidney function. 

Results: 

Meta-analysis of eGFR 

 Meta-analysis of up to 350,504 individuals from the HUNT Study, CKDGen Consortium, 

BioBank Japan, and the Michigan Genomics Initiative identified 147 loci associated with eGFR, 

of which 53 were novel (Table 1, Supplementary Table 1, Supplementary Figure 1).  We 

prioritized genes belonging to several biological classes related to kidney function based on the 

consensus between the gene nearest to the index variant, identified significant missense 

variants that were either the lead variant or in moderate LD (r2 > 0.3) with it, significantly 

colocalized eQTLs, and DEPICT gene prioritization results (Supplementary Tables 2-4).  

Prioritized genes at novel loci included genes involved in transcription (CASZ1, NFE2L2, 
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PPARGC1A, ZNF641, MED4, ZFHX3, ZGPAT, MAFF, MAMSTR), cellular signaling and 

differentiation (ACVR2B, DCDC2, GRB10, NRG1, THADA, TRIB1, PTPN3, FAM53B), metabolism 

(L2HGDH, XYLB), solute carrier genes (SLC25A43, TPCN2, KCNMA1, MFSD6), and a gene related 

to AB antigen blood types (ABO).  As no similarly-sized cohort with eGFR measurements was 

available for direct replication, we instead tested for association of the index variants in kidney 

related traits in the UK Biobank (CKD, hypertensive CKD, renal failure, acute renal failure, renal 

failure NOS, renal dialysis, or other disorders of kidney and ureters).  Thirteen of the 48 novel 

variants and 36 of the 85 lead variants in known loci that were available in the UK Biobank were 

at least nominally associated with one or more UK Biobank kidney-related phenotypes 

(Supplementary Table 5).  In addition, we compared the results from the current meta-analysis 

with previously reported eGFR index variants9-12,14,15,17.  Of the 127 previously reported index 

variants for eGFR, 125 were at least nominally significant in the present meta-analysis 

(Supplementary Table 6) and 63% reached genome-wide significance (p-value < 5x10-8).  

Excluding the previously published datasets, 56 of the 118 available variants were at least 

nominally significant in meta-analysis of HUNT and MGI alone (Supplementary Table 6). 

Kidney-Specific eQTL Associations 

 To identify variants that may be acting through regulation of gene expression in a 

kidney-specific manner, we selected eGFR index variants which were significant eQTLs (p-value 

< 6.7x10-6, Bonferroni correction for 51 tissue types and 147 index variants) for a given gene in 

kidney cortex20, glomerulus21, or tubulointerstitium, but not in other tissues in GTEx22.  This 

analysis identified five genes whose expression was associated with the eGFR index variants 

only in kidney tissues: APOD, CDKL5, DPEP1, FGF5, and TFDP2 (Supplementary Table 7).  Of 

these, FGF5 and CDKL5 kidney-eQTLS showed significant colocalization with the eGFR 

association.   

 DEPICT Analysis  

 DEPICT analysis was performed to identify tissues and gene sets enriched for genes in 

the loci identified from eGFR meta-analysis.  Consistent with the role of the identified genes in 

kidney function, the only significant tissues (p-value < 2.39x10-4) identified by DEPICT were the 

urinary tract (p-value = 2.1x10-6) and kidney urogenital system (p-value = 2.8x10-6) 

(Supplementary Table 8).  Significant gene sets identified by DEPICT primarily included those 

associated with kidney morphology, the activity of transport channels, and with 

monosaccharide metabolic processes as shown in Figure 1 (Supplementary Figure 2, 

Supplementary Table 9). 

Overlap with Related Traits 

 As individuals with CKD often have coexisting heart disease or diabetes, we examined 

the identified eGFR variants for evidence of pleiotropic effects.  Lookup of the index variants 

across 26 cardiovascular and diabetes-related phenotypes in UK Biobank, excluding individuals 

with CKD, identified 7 phenotypes for which a subset of the index variants was also genome-
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wide significant (diabetes, coronary atherosclerosis, hypertension, essential hypertension, 

other disorders of circulatory system, pulmonary heart disease, and phlebitis and 

thrombophlebitis), and several additional phenotypes for which the eGFR variants showed 

nominal significance (Supplementary Tables 5,10).  Colocalization analysis with these 

phenotypes identified 7 loci (prioritized genes: FGF5, PRKAG2, TRIB1, LOC101928316, L2HGDH, 

UMOD/PDILT, LOC105371257) having significantly colocalized association signals with 

hypertension, essential hypertension, and/or coronary atherosclerosis and 1 locus (prioritized 

gene: GCKR) that colocalized with association of type 2 diabetes (Supplementary Table 5).  Six 

of the seven index variants within loci that showed significant colocalization with the 

cardiovascular traits were associated with essential hypertension and/or hypertension, 

underscoring the connection between high blood pressure and CKD.  In addition, the index 

variants were examined for association with 1,403 traits phenome-wide (without exclusion of 

CKD cases).  As shown in Figure 2, the index variants are significantly associated (p-value < 5x10-

8) with additional traits including hypothyroidism and disorders of lipid metabolism. 

Construction of genetic risk scores 

 We developed genetic risk scores (GRS) from the meta-analysis results to assess the 

relationship between the identified variants and the likelihood of having CKD.  Several p-value 

and r2 clumping thresholds were tested to select variants for inclusion in the GRS, but all 

yielded relatively similar predictions of CKD status (AUC range: 0.500-0.533).  The best 

prediction was obtained using all independent markers (r2 < 0.2) with p-value < 5x10-6 and the 

European and East Asian subsets of 1000 Genomes for LD clumping.  These scores were then 

tested as predictors of CKD in UK Biobank.  The GRS alone was associated with CKD (p-value = 

2.13x10-11), but did not improve prediction of CKD status compared to birth year and sex alone 

(AUC: 0.694), or birth year, sex, and CKD clinical risk factors (diabetes, hypertension, and 

hyperlipidemia) (AUC: 0.864).  Inclusion of the GRS in addition to birth year, sex, and clinical risk 

factors provided the best predictor of CKD of the tested models (AUC: 0.865).  We also tested 

prediction of CKD using the best-performing GRS from the overall meta-analysis (without birth 

year or additional risk factors) separately in men and women.  The GRS was slightly more 

predictive in women (AUC: 0.543) than in men (AUC: 0.527), possibly due to differing lifestyle or 

hormonal factors between the sexes influencing development of CKD.  These results show that 

the variants identified from association studies of eGFR are correlated with the presence of CKD 

on a population level, but are not sufficient to identify individuals with CKD from those without.  

This is consistent with findings from prior studies examining GRS of eGFR23. 

Sex-specific Analysis in HUNT 

We aimed to determine whether any variants showed sex-specific association as there 

are known differences in the prevalence of CKD between men and women.  Association tests of 

eGFR in HUNT stratified by sex identified three loci (Figure 3, Supplementary Figure 3) that had 

significantly different effect sizes between men and women (p-value for difference < 0.017, 

Table 2).  At these loci, we prioritized 3 candidate functional genes, PPM1J, MCL1, and 
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SLC47A1, based on significant colocalization of eQTL and eGFR association signals and high 

linkage disequilibrium with missense variants.  Interestingly, lookup of these variants in UK 

Biobank for association with other phenotypes (http://pheweb.sph.umich.edu:5003) identified 

significant associations with rs6665912 (MCL1) for increased occurrence of chest pain (p-value 

= 4.6x10-6) and coronary atherosclerosis (p-value = 2.3x10-5).  Sex-stratified analysis of chest 

pain and coronary atherosclerosis after exclusion of CKD cases in UK Biobank showed a 

consistent sex difference for both traits for this variant, though with opposite sex-specificity to 

that seen for eGFR (chest pain: p-valuemen = 6.7x10-5, p-valuewomen = 0.041, coronary 

atherosclerosis: p-valuemen = 1.9x10-4, p-valuewomen = 0.021).   

 We obtained the summary statistics from the CKDGen consortium sex-stratified eGFR 

analysis in order to test these variants for replication14.  As the CKDGen consortium results were 

imputed using HapMap-II, we performed meta-analysis of the HUNT and CKDGen sex-specific 

results and then assessed the identified lead variants or available LD proxies for consistent 

association.  After meta-analysis, both rs6665912 (MCL1) and the proxy variant of rs2440165 

(rs2453580; r2 = 0.997, SLC47A1) showed greater significance in women than in men 

(rs6665912: p-valuewomen= 3.67x10-7, p-valuemen = 0.059, rs2453580: p-valuewomen = 3.36x10-13, 

p-valuemen = 0.0030).  However, rs6665912 was not significant in the CKDGen data alone.  We 

were unable to test rs12722725 (PPM1J) for replication, as neither this variant nor any LD 

proxies with r2 > 0.6 were available in the HapMap-II imputed results. 

Analysis in HUNT: 

 Within the HUNT dataset alone, a total of 28 significant eGFR loci were identified, of 

which 1 was novel (Supplementary Tables 11,12, Supplementary Figure 4).  The novel variant, 

prioritized gene CDKL5, was also identified through the combined meta-analysis.  Step-wise 

conditional analysis was performed and 3 additional variants within the identified eGFR loci 

reached genome-wide significance (Supplemental Table 13).  Analysis of urea and creatinine 

identified 4 and 25 previously known loci, respectively, while analysis of CKD did not identify 

any significant variants with MAF > 0.5%.  In addition, analysis of custom variants included in 

the genotyping array for a subset of individuals (N= 37,472) identified one rare stop-gain variant 

in the known locus PKD2 associated with creatinine (Supplementary Table 12).   

 

Discussion 

In summary, analysis of the HUNT biobank and meta-analysis of eGFR across more than 

350,000 individuals identified 147 loci, of which 53 were novel.  The identified loci give new 

insight into the genes underlying kidney function and development of CKD.  In support of this, 

many of the prioritized genes cluster into known kidney associated pathways.  For example, 

Wnt signaling has been implicated in kidney development and disease24.  FAM53B controls β-

catenin nuclear localization25, a key component of Wnt signaling.  β-catenin translocation into 

the nucleus allows for activation of target genes via interaction with TCF transcription 
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factors26,27.  Variants in FAM53B were associated with changes in eGFR, which is potentially due 

to altered Wnt signaling and expression of target genes.  Similarly, DCDC2 variants were also 

associated with eGFR levels.  Knockdown or overexpression of DCDC2 is known to alter β-

catenin activation of TCF transcription factors28, thereby altering Wnt signaling.  Likewise, 

variants in genes associated with the epidermal growth factor receptor (ErbB) family were also 

observed.  ErbB receptors are involved in kidney development29, control of solute levels (eg. Ca, 

Na)30,31, and play a role in hypertension32,33.  Our eGFR association results identified variants in 

two genes (NRG1 and MUC4) known to bind to ErbB receptors.  NRG1 binds to ErbB3 and ErbB4 

while the beta chain of Mucin-4 (MUC4) interacts with ErbB234.  Lastly, we identified variants 

associated with both decreased eGFR and increased tubulointerstitial kidney CDKL5 expression.  

CDKL5 overexpression has been shown to impair ciliogenesis35.  Defects in cilia are known to 

cause polycystic kidney disease and nephronophthisis, among other disorders36.  These clues 

provide an initial link to how these identified genetic regions may lead to changes in kidney 

function. 

Experimental evidence also supports hormonal regulation of MCL1 and SLC47A1 

expression, two of the genes prioritized from the sex-stratified analysis of eGFR.  For example, 

Mcl-1 (encoded by MCL1) functions as a regulator of apoptosis and has been extensively 

studied due to its role in carcinogenesis.  In estrogen-receptor positive breast cancer cell lines, 

estrogen increased expression of Mcl-137.  SLC47A1 is also known as MATE1 (multidrug toxin 

and extrusion protein 1).  Experimental studies of MATE1 identified higher levels of expression 

in the kidneys of 30-45 day old male mice compared to female38.  Furthermore, He at al. found 

that kidney expression of MATE1 could be modified by treatment with testosterone or 

estradiol, compared to olive oil as a control39.   

It is also interesting to consider the interplay between kidney function and other related 

traits based on the overlap between identified genetic regions.  For example, the ABO gene was 

prioritized based on eGFR meta-analysis results.  ABO encodes a protein that is responsible for 

determination of an individual’s ABO blood type.  Associations near this gene have been 

previously identified for other phenotypes, including LDL and total cholesterol40, coronary 

artery disease41, and type 2 diabetes42.  As diabetes is a significant risk factor for the 

development of CKD, these shared associations may help to identify potential common 

mechanisms.  Comparison of association results with cardiovascular related traits also identified 

shared associations with hypertension, the second major risk factor for CKD.  Six of the 147 loci 

identified from meta-analysis showed significant colocalization with hypertension, which may 

help to identify additional shared pathways between high blood pressure and kidney function.   

While additional studies are needed to understand eGFR associations that are specific to 

disease subtypes, the present results build upon previous studies to increase the number of 

eGFR associated loci and highlight pleiotropic associations with cardiovascular disease.  Follow-

up experimental studies are needed to validate the role of the identified genes in kidney 

function, and additional genetic studies are needed to verify these associations in more diverse 
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cohorts.  Nevertheless, these results identify additional genes that are likely involved in 

regulating kidney function and may help to identify new therapeutic targets or diagnostic 

measures for progression to chronic kidney disease. 

Methods: 

Description of Cohorts 

HUNT 

The HUNT study43 is a longitudinal, repetitive population-based health survey conducted 

in the county of Nord-Trøndelag, Norway in which kidney-related phenotypes have not 

previously been tested for genetic association.  Since 1984, the entire adult population in the 

county has been examined three times, through HUNT1 (1984-86), HUNT2 (1995-97), and 

HUNT3 (2006-08).  A fourth survey, HUNT4 (2017-2019), is ongoing.  Approximately 120,000 

individuals have participated in HUNT1-HUNT3 with extensive phenotypic measurements and 

biological samples.  A subset of these participants have been genotyped using Illumina 

HumanCoreExome v1.0 and 1.1 and imputed with Minimac3 using a combined HRC and HUNT-

specific WGS reference panel.  Variants with imputation r2 < 0.3 were excluded from further 

analysis.  We analyzed available kidney related phenotypes within the HUNT study, including 

creatinine (N = 69,591), eGFR (N = 69,591), urea (N = 20,700), and CKD (Ncases = 2044 and Ncontrols 

= 65,575).  eGFR values were calculated using the MDRD equation44,45.  CKD status was taken 

from ICD-9 codes 585 and 586 and ICD-10 code N18.  Association testing of quantitative traits 

was performed using BOLT-LMM46 v2.2 on the inverse-normalized residuals of the traits 

adjusted for genotyping batch, sex, 4 principle components, and age.  Association testing for 

CKD was performed using SAIGE47 with sex, 4 principle components, and birth year as 

covariates.  Associations stratified by sex for eGFR were also performed.  For the stratified 

analyses, phenotypes were separately inverse-normalized and were adjusted for batch, age, 

and 4 principle components.  Linkage disequilibrium within HUNT was calculated using PLINK 

v1.9048.  Conditional analysis for eGFR was performed within the HUNT dataset using BOLT-

LMM v.2.3.1, conditioning on the lead variant within the identified loci until no variants with 

MAF > 0.5% had p-value < 5x10-8.  To identify sex-specific effects, loci were identified separately 

in men and women and were filtered to those that were significant in one sex but near nominal 

significance in the other.  Differences in effect sizes between males and females were then 

tested using Z = (βM - βW)/(SEM
2 + SEW

2 – 2rSEM SEW)0.5, where r is the Pearson correlation for 

male and female effect sizes across all variants49.  Significance between sexes was determined 

using Bonferroni correction for the number of tested loci. 

 BBJ  

BioBank Japan (BBJ) is a registry of patients from 12 medical centers across Japan who 

are diagnosed with at least one of 47 common diseases50.  Summary statistics for 58 

quantitative traits, including eGFR, are publicly available17.  Participating individuals were 

genotyped with either the Illumina HumanOmniExpressExome BeadChip or HumanOmniExpress 
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and HumanExome BeadChips.  Imputation was performed with Minimac using the East Asian 

reference panel from 1000 Genomes phase 151.  Variants with imputation r2 < 0.7 were 

excluded.  BBJ eGFR values were calculated using the Japanese ancestry modified version of the 

CKD-EPI equation52 and were available on 143,658 of those enrolled.  Individuals with eGFR 

values of less than 15 mL/min/1.73 m2 were excluded from analysis. Values were standardized 

using rank-based inverse normalization.  Association analysis was performed using mach2qtl 

with sex, age, the top 10 principle components, and disease status of all studied diseases (N = 

47) included as covariates. 

CKDGen Consortium 

 The CKDGen consortium includes meta-analysis results from 33 individual studies of 

European ancestry (N = 110,527) that were imputed with the 1000 Genomes phase I reference 

panel9.  Summary statistics for eGFR were taken from the published dataset (ckdgen.imbi.uni-

freiburg.de).  Detailed descriptions of individual cohorts are available9.  Briefly, each group 

generated association statistics based on the natural log of eGFR using age and sex as 

covariates.  eGFR was estimated from creatinine levels using the MDRD equation44,45.  Variants 

with imputation quality ≤ 0.4, and those found in less than half of individuals were excluded 

from further analysis.  Meta-analysis was performed using the inverse-variance method in 

METAL53.  Pre and post meta-analysis genomic control (GC) correction was performed.   

MGI 

The Michigan Genomics Initiative (MGI) is a repository of patient electronic health and 
genetic data at Michigan Medicine54 (N = 26,738).  MGI participants are recruited primarily 
through pre-surgical encounters at Michigan Medicine and consent to linking of genetic and 
clinical data for research purposes.  DNA was extracted from blood samples and then 
participants were genotyped using Illumina Infinium CoreExome-24 bead arrays.  Genotype 
data was then imputed to the Haplotype Reference Consortium using the Michigan Imputation 
Server, providing 17 million imputed variants after standard quality control and filtering.  eGFR 
values were computed using the CKD-EPI equation from creatinine values.  The mean eGFR 
value was used for individuals having more than one eGFR measurement.  Mean eGFR was then 
regressed on sex, current age, array version and PC1-4 and the subsequent residuals were 
inverse-normalized.  Single-variant association testing of the inverse normalized residuals was 
performed in epacts using a linear regression model. 

Meta-analysis 

 Meta-analysis was performed using the p-value based approach in METAL53.  This 

approach was chosen to account for differing units between the effect sizes of the CKDGen (log-

transformed) and MGI/BBJ/HUNT (inverse-normalized) summary statistics.  This approach was 

validated by comparison to traditional standard error-based meta-analysis of the cohorts with 

available inverse-normalized summary statistics, and showed extremely high correlation of p-

values (Pearson r= 0.966, Supplementary Figure 5).  Summary statistics from contributing 
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studies were GC corrected prior to meta-analysis.  Lead index variants were determined as the 

most significant variant in ± 1 Mb windows that were found in at least 2 studies.  Adjacent 

windows were merged if the LD r2 between lead variants was ≥ 0.2.  Identified variants were 

considered to be novel if the most significant variant was more than 1 Mb away from previously 

reported lead variants.  Linkage disequilibrium between variants was calculated using LDlink55 

or PLINK48 with the European and East Asian 1000 Genomes Phase III reference panels56. 

Variant and Gene Annotation 

 Variants were annotated using WGSA57 and dbSNP58.  Annotation of variants with 

associated biological processes was performed using the UniProt59 and NCBI gene 

(https://www.ncbi.nlm.nih.gov/gene) databases.  Genes for identified loci were prioritized 

based on the consensus between the nearest gene, significantly colocalized eQTLs, missense 

variants within 1 Mb and in moderate LD (r2 > 0.3) with the lead variant, and the gene 

prioritized by Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT)60 

(Supplementary Figure 6).  In cases where there was not consensus between the different 

annotation methods, the gene was prioritized as the nearest gene.  DEPICT analysis was 

performed using the DEPICT 1.1 1000 Genomes version.  Variants from meta-analysis that were 

found in two or more studies with p-value < 5x10-8 were included.  LD information from the 

European and East Asian subsets of 1000 Genomes was used to construct loci within DEPICT.  

Significance of DEPICT results was determined using Bonferroni correction across the number of 

tissues or gene-sets tested.  Gene sets with more than 25% overlap were collapsed into a single 

set for construction of the network diagram, as previously done61.  Colocalization analysis of the 

kidney association results with GTEx V722, NephQTL21, and Ko et al.20 eQTL data was performed 

using the R package coloc62.  Priors for p1, p2, and p12 within the coloc analysis were set to 

1x10-4, 1x10-4, and 1x10-6, respectively.  Following the criteria published by Giambartolomei et 

al.62, eQTLs were considered to colocalize with the kidney association results if the posterior 

probability (PP) for a shared variant was > 80%. 

Comparison with Related Traits 

Association results for phenome-wide lookup were taken from analysis of UK Biobank63 

using SAIGE47, which accounts for relatedness and population stratification by using a 

relationship matrix.  CKD cases were excluded from the analysis of cardiovascular and diabetic 

traits as has been previously suggested for identifying pleiotropic effects54.  Colocalization 

analysis was performed using the R package coloc, with the priors for p1, p2, and p12 set to 

1x10-4, 1x10-4, and 1x10-6, respectively.  Genetic regions for colocalization testing were defined 

as the most significant variant in each locus ± 500 kb.  Variants were considered to colocalize if 

the probability for a common variant was greater than 80%. 

Genetic Risk Scores 

 Variants were selected for inclusion in the genetic risk score (GRS) using the clumping 

procedure in PLINK48 with varying r2 thresholds of 0.2, 0.4, 0.6, and 0.8 and p-value thresholds 
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of 5x10-8, 5x10-6, 5x10-4, and 5x10-3 on the meta-analysis results from all cohorts.  As the meta-

analysis included both European and East Asian samples but the validation set included 

primarily European samples, we separately constructed the GRS using either the European only 

or European and East Asian subsets of 1000 Genomes Phase 3 for clumping in PLINK.  Effect 

sizes were estimated from meta-analysis of the BioBank Japan, MGI, and HUNT results only due 

to the differing effect size units of the CKDGen consortium results.  GRS were then calculated 

within UK Biobank as the sum of risk alleles carried by each individual weighted by the effect 

size of each variant.  As decreased eGFR is predictive of increased CKD, the negative value of 

the resulting risk score was used for further analysis.  GRS were then tested as predictors of 

CKD, either alone or as a logistic model including birth year, sex, and GRS or birth year, sex, 

GRS, and diabetes, hypertension, and hyperlipidemia status.  When fitting the logistic model for 

prediction of CKD, individuals in UK Biobank were randomly split into two halves, with one half 

of individuals used for model fitting and the other half used for testing of the model.  Prediction 

ability was assessed by area under the ROC curve (AUC).  
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Table 1: Lead Variants for Novel eGFR Loci from Meta-analysis 

Chr Pos (hg19) rsID Ref Alt Freqa P-value Directiona Prioritized Gene 

1 10733081 rs284316 T C 0.3331 1.50 x 10-9 + CASZ1 

1 100808363 rs11166440 A G 0.4119 7.07 x 10-9 - CDC14A 

1 180905694 rs3795503 T C 0.6017 7.54 x 10-13 - KIAA1614 

1 227085824 rs1800674 A G 0.5615 4.23 x 10-8 - PSEN2 

2 18679586 rs10856778 C G 0.8311 1.04 x 10-9 + LOC105373454 

2 43441169 rs35136921 T C 0.4564 2.74 x 10-11 + THADA 

2 54574942 rs1405833 C G 0.2733 5.10 x 10-10 - C2orf73 

2 178146362 rs17581525 C G 0.1889 6.11 x 10-11 + NFE2L2 

2 191278341 rs6725814 A G 0.261 3.39 x 10-8 + MFSD6 

2 230612451 rs6756038 A G 0.7353 4.72 x 10-9 - TRIP12 

3 38479475 rs7429308 T C 0.4951 4.90 x 10-11 - ACVR2B, XYLB 

3 193816778 rs10933714 A T 0.5232 2.81 x 10-9 - LOC102724877 

3 195477791 rs2291652 A G 0.4385 2.36 x 10-8 - MUC4 

4 23758662 rs73243607 T C 0.962 3.37 x 10-8 - PPARGC1A 

5 107459529 rs12652687 T C 0.1447 3.61 x 10-8 - FBXL17 

6 24354045 rs3765502 T C 0.2351 4.01 x 10-8 - DCDC2 

6 107172979 rs7766720 T C 0.1424 4.13 x 10-8 - LINC02532 

7 50737852 rs73116822 T C 0.9282 2.71 x 10-9 + GRB10 

7 56072841 rs4948100 T C 0.3796 1.17 x 10-8 + GBAS 

7 128737958 rs56088330 A T 0.6814 8.12 x 10-10 + LOC112267982 

8 9074223 rs7006504 T C 0.297 1.91 x 10-9 - RP11-10A14.5 

8 32399662 rs4489283 T C 0.6897 2.47 x 10-9 + NRG1 

8 126477978 rs2001945 C G 0.4361 4.37 x 10-11 + TRIB1 

8 134332960 rs10283362 T C 0.8607 2.04 x 10-8 - RPL32P20 

9 34130435 rs61237993 A G 0.654 1.85 x 10-8 - DCAF12 

9 112206404 rs10816812 A T 0.6295 1.00 x 10-8 + PTPN3 

9 136146597 rs550057 T C 0.7393 1.58 x 10-9 - ABO 

9 139107879 rs11103387 T C 0.7296 8.07 x 10-10 - QSOX2 

10 35171118 rs11010013 A G 0.6928 1.50 x 10-8 - SS18L2P1 

10 79253261 rs3127447 A C 0.3283 3.04 x 10-8 + KCNMA1 

10 94810665 rs856534 A G 0.4342 1.23 x 10-9 + EXOC6 

10 126418782 rs11245344 T C 0.4673 3.37 x 10-11 + FAM53B 

11 68883556 rs7131509 T C 0.5311 2.76 x 10-10 - 
TPCN2, 

LOC107984345 

12 48736985 rs2732481 T G 0.2444 1.82 x 10-9 - ZNF641 

13 48654455 rs9534949 C G 0.6165 4.84 x 10-9 + MED4 

14 50735947 rs72683923 T C 0.0109 2.98 x 10-8 + L2HGDH 

15 39274261 rs8026431 A C 0.6364 3.13 x 10-9 - LOC105370781 

15 57830151 rs117047297 T C 0.9836 3.16 x 10-8 - CGNL1 

15 63634405 rs1075456 T G 0.6601 3.05 x 10-9 - CA12 
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15 67561355 rs12443279 C G 0.3495 3.03 x 10-8 - IQCH 

16 69718112 rs77944668 A G 0.6984 1.45 x 10-8 - NFAT5 

16 73024276 rs1858800 T C 0.761 1.82 x 10-8 - ZFHX3 

16 79938996 rs35286975 C G 0.7933 1.94 x 10-10 - LINC01229 

17 34950239 rs12937411 T C 0.6134 1.62 x 10-10 - MYO19, DHRS11 

19 18384950 rs1075403 T G 0.6992 1.57 x 10-10 - KIAA1683 

19 49217305 rs281386 A G 0.591 4.77 x 10-8 + MAMSTR 

20 62336334 rs1758206 T C 0.8245 1.51 x 10-9 + ZGPAT, LIME1 

21 16582710 rs56038390 A G 0.3014 1.28 x 10-9 - LOC105369292 

21 35356706 rs2834317 A G 0.8977 1.58 x 10-8 + LOC105372790 

22 38600542 rs2267373 T C 0.3949 2.65 x 10-10 + MAFF 

X 18597869 rs4825261 A C 0.7148 1.36 x 10-9 - CDKL5 

X 118630622 rs454741 A G 0.641 5.15 x 10-10 - 
LOC107985719, 

SLC25A43, CXorf56 

X 133808916 rs11796053 A G 0.4934 4.93 x 10-8 + PLAC1 

aReported frequency and direction of effect is with respect to the alternative allele 
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Table 2: Lead Variants for Loci Showing Differences between Males and Females in HUNT Study 

aReported frequency and direction of effect is with respect to the alternative allele 
bMale results are shaded in gray 
 

  

Chr Pos (hg19) rsID Ref Alt Freqa Betaa SE P-valueb Prioritized Genec 

1 113258681 rs12722725 T C 0.113 -0.0722 0.0117 5.60 x 10-10 PPM1J 

      -0.0329 0.0129 1.10 x 10-2  

1 150544093 rs6665912 T C 0.236 -0.0546 0.0088 5.90 x 10-10 MCL1 

      -0.0188 0.0096 5.10 x 10-2  

17 19428719 rs2440165 T C 0.405 -0.0497 0.0076 6.70 x 10-11 SLC47A1 

      -0.0156 0.0083 6.10 x 10-2  
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Figure 1: Gene sets prioritized from eGFR meta-analysis 
DEPICT analysis of eGFR meta-analysis results identifies significant 
gene sets associated with kidney function and metabolic processes.  
Overlap between gene sets is depicted by the width of connecting 
lines.  *Denotes collapsed gene sets. 
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Figure 2: Pleiotropic associations of eGFR Index Variants  
Index variants, given as chromosome:position on the left axis and prioritized gene on the right, 
from eGFR meta-analysis showing significant associations (p-value < 5x10-8) with at least one 
additional phenotype in UK Biobank (Nmax = 408,961).  127 variants were tested for association 
with 1,403 phenotypes. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/421552doi: bioRxiv preprint 

https://doi.org/10.1101/421552
http://creativecommons.org/licenses/by-nc-nd/4.0/


Graham et al. 

 

21 
 

 

Figure 3: Locus zoom plots of regions showing differential association between men and women. 

eGFR meta-analysis results in HUNT stratified by sex were filtered to identify regions significant in one 

sex but near-nominal significance in the other. 

 

 

 

Women Men 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/421552doi: bioRxiv preprint 

https://doi.org/10.1101/421552
http://creativecommons.org/licenses/by-nc-nd/4.0/

