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Abstract

Recently enhancers have emerged as key players regulating crucial
mechanisms such as cell fate determination and establishment of
spatiotemporal patterns of gene expression during development.
Due to their functional and structural complexity, an accurate
in silico identification of active enhancers under specific condi-
tions remain challenging. We present a novel machine learning
based method that derives epigenomic patterns exclusively from
experimentally characterized active enhancers contrasted with a
weighted set of non-enhancer genomic regions. We demonstrate
better predictive performance over previous methods, as well as
wide generalizability by identifying and annotating active en-
hancers genome-wide across different tissues/cell types in human
and mouse.
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Introduction

Identification of active enhancers and their dynamics across different cell
types, tissues and treatment specific conditions has become a prolific re-
search area [1] [2]. Facilitated by the broad availability of high throughput
sequencing techniques, the strategy for studying the molecular mechanisms
underlying cell-fate determination has largely shifted from describing the ex-
pression profiles of lineage-specific transcription factors to characterizing the
dynamic activity patterns of enhancers [3 - 5]. The context-dependent ac-
tivity of enhancer sets and their disruption by mutation to a great extent
underlie gene expression dynamics in development, cell differentiation, and
disease progression [6] [7]. Enhancers are distal regulatory elements able
to shape the cellular transcriptome by promoting the transcription of tar-
get genes [5]. Due to their functional relevance in normal development and
diseases, the genome-wide identification of active enhancers from condition
specific epigenomic data has emerged as a main goal and challenge in compu-
tational genomics [8]. Unlike other cis-regulatory elements (e.g., promoters),
enhancers manifest heterogeneous structural and functional properties that
are not completely understood [9–13]. Enhancers have specific features such
as regulation of expression of distal genes irrespective of location or direction
[2], low evolutionary conservation, non-coding transcription in the form of en-
hancer RNA [14] [15], variable motif composition, and functional dependence
on chromatin conformation (e.g. enhancer-promoter interaction) specific to
a cell or tissue [5], pose serious challenges for computational methods to
accurately identify enhancers.

Previous studies have proposed computational methods that exploit ge-
nomic and epigenomic features to predict cis-regulatory elements [16]. To
that end, the most commonly followed approach has been to assume an op-
erational definition of enhancers based on (epi)genomic features known to be
associated with them; for instance, genomic regions possess chromatin acces-
sibility in addition to other regulatory features (e.g. DNaseI and P300 [17]),
combinatorial epigenomic patterns of histone marks [18] [19], binding pat-
terns of transcription factors (TFs) [20], or combinations of such features [21].
However, choosing one operational definition above others is not straightfor-
ward, and finding an optimal one based on associated features alone strongly
depends on the state of knowledge and data availability at that time, both
unavoidable limitations. Here, we propose an alternative unbiased approach
to overcome such limitations.

Recent studies have generated unprecedented datasets of experimentally
characterized enhancers using different functional approaches exploiting novel
techniques. Kheradpour et al. have performed a massively parallel reporter
assay to test the regulatory activity of ∼ 2000 putative enhancers from two
human cell-lines studied by ENCODE (K562 and HepG2) [22]. The FAN-
TOM consortium recently provided a substantial resource of in vivo tran-
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scribed enhancers identified by sequencing of enhancer RNAs (eRNAs) using
Cap Analysis of Gene Expression (CAGE) across a multitude of tissues and
cell types in human and mouse [8] [14]. More recently, Kwasnieski et al.
have experimentally tested enhancer activity of ENCODE predictions using
CRE-seq in human K562 and H1 cell types [23]. Additionally, the VISTA
database contains more than 2000 active enhancers characterized previously
using reporter assays in human and mouse tissues [24]. The availability of
diverse experimentally characterized enhancers provides an alternative to the
use of imprecise and likely biased operational definitions of active enhancers
based exclusively on correlated omics signatures.

Here, we present a machine learning (ML) based computational method
for genome-wide prediction of cell- and tissue -specific active enhancers. The
rationale behind the study is to learn exclusively from experimentally char-
acterized active enhancers contrasted against a weighted set of non-enhancer
background genomic regions, those epigenomic patterns with discriminatory
power. We build, test, and apply the proposed method emphasizing four
open problems in regulatory (epi)genomics: whether (1) robust signatures
of enhancer activity can be learned from an integrative set of enhancers
whose activity has been experimentally characterized using different tech-
niques (2) uncovered patterns can be used to accurately predict enhancer
activity genome-wide (3) the predictive power is independent of the cellular
conditions where the discriminatory signatures were first derived from and (4)
the trained ML model generalizes to different tissues and species. We explore
such problems following a supervised ML approach and provide a publicly
available tool termed as Generalized Enhancer Predictor (GEP). The compu-
tational framework is available at https://github.com/ShaluJhanwar/GEP.

Results

An integrative training dataset

In order to extract patterns of epigenomic features discriminating active en-
hancers, we have assembled a training dataset of experimentally character-
ized active enhancers corresponding to HepG2 and K562 human cell types
(n = 2, 128) from Kheradpour et al. [22] (Table S1.A, additional file) and a
balanced set (n = 2, 128) of genomic elements with no enhancer activity in-
cluding promoter, gene-body, and heterochromatin regions with an approxi-
mate 5:3:2 ratio, respectively (see Methods). We have characterized instances
of the training set (Table S1.B, Additional file) with 16 features describing
the epigenomic state of the corresponding genomic region. Considering that
enhancer and promoter elements share similar characteristic properties [14]
[25], we have decided to include a higher relative number of promoters in
the negative class instead of the commonly used random background sam-
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pling strategy to reduce the chance of prediction errors, i.e. prediction of
promoters as enhancers.

Feature selection and model evaluation

We have chosen Random Forest (RF) and Support Vector Machine (SVM)
classifiers to build predictive models for classification of active enhancers.
In order to select informative features for accurate prediction, we estimated
the relative importance of the individual features using the RF algorithm
(see Methods). Figure 1B shows the resulting feature ranking. As ex-
pected, the top-ranked epigenomic features correspond to chromatin marks
(H3K4me1 and H3K27ac) commonly associated with enhancer activity [26]
[27]. H3K4me3 is known to be more frequent on promoters than enhancers,
and H3K4me1 is more frequent on Enhancers; hence we explored these prop-
erties as ratio of histones. Interestingly, these non-conventional features such
as the ratio of histones (H3K4me1/H3K4me3) and distance to the nearest
annotated transcription start site (TSS) are highly discriminatory as well
(top 4 rank). Based on the feature ranking in several rounds of training and
testing, as well as the broad availability of the histone marks in large studies
such as ENCODE and NIH Roadmap Epigenomics [28], we selected a mini-
mal set of nine features for model training that includes the top seven ranked
features (Figure 1B) in addition to the two frequently interrogated marks as-
sociated with gene transcription (H3K36me3) and repression (H3K27me3).
The model with these nine features was found to be as informative as the
model with all 16 features (see below).

For evaluation of the model trained on HepG2 and K562 human cell types,
we performed three experiments. First, in 10-fold stratified cross-validation
the mean test score was 0.98, showing little variability across the 10-folds
(Table S2A, Figure S1A). Second, we split the training dataset into a train
(80%) and a test (20%) set. Both the classifiers (RF and SVM) have achieved
> 93% of accuracy on the test set (Table S2B, Figure 1C). A convergence
of the predictive accuracy in the learning curve as shown in Figure S1C
suggested that the amount of training data is sufficient for learning discrim-
inatory combinations of the nine features. In the third and final experiment,
to further evaluate the predictive performance of the model, we used two
independent validation datasets of the in vivo transcribed enhancers corre-
sponding to K562 and GM12878 cell-lines (FANTOM5) expressed in at least
two replicates. Interestingly, the models have showed high performance, with
the RF performing better (F-score > 0.90) than the SVM (F-score > 0.80)
(Table S2C; Table S3; Figure 1D and Figure S1.B). Recent studies have
highlighted the relevance of sequence-based features in enhancer identifica-
tion [16]. We tested whether including additional genomic features such as
the presence of CpG Islands, evolutionary (PhastCons) and TFBS conser-
vation score (ENCODE), GC content, and TF binding motifs (Jaspar and
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PreDREM) might improve the performance of GEP using a gold-standard
benchmarking dataset of experimentally characterized enhancers (see Bench-
marking section). The resulting model have showed a slightly lower perfor-
mance (0.54 accuracy and 0.54 F-score) with respect to the original GEP
model (0.56 accuracy and 0.55 F-score (see Benchmarking section; Table S6),
suggesting that sequence-based and evolutionary signatures do not provide
additional discriminatory information using the proposed machine-learning
model. Based on the above results and the substantially shorter training
time of RF compared to SVM, the final GEP model consists of a RF trained
on eight epigenomic features and one genome annotation feature (distance
to annotated TSS) corresponding to the sequences with enhancer activity,
previously characterized in HepG2 and K562 cell types. The design of the
ML framework (GEP) is illustrated in Figure 1A.

Model performance is independent of cell type

In order to test the dependence of the method on the choice and specifics of
the cell types used for training, we performed two experiments, 1) we trained
the model on K562 data only and tested it on HepG2 and 2) vice-a-versa. In
both the experiments, the trained model have showed excellent performance
on the test sets (∼96% accuracy and 0.96 F-score) (Figure 1E). Moreover, we
tested GEP performance on a set of enhancers known to be active (in vivo
transcribed, FANTOM5) in other cell type that was not used for training i.e
GM12878. GEP showed a remarkable performance of 98% AUC on GM12878
(see Table S2C; S3 and Figure 1C). These results indicate that GEP performs
in a cell type independent manner. The genome-wide prediction of enhancers
across different cell types/tissue in mammals reported and annotated herein
further strengthened this conclusion (see below).

Application of GEP for genome-wide enhancer
identification in mammals

In order to accurately and efficiently identify active enhancers genome-wide,
we have implemented the following protocol: (1) the entire genome is frag-
mented into 500bp windows using a step size of 250bp (2) a subset of “active”
genomic regions is pre-selected based on acetylation marks [29][30] (3) a set
of annotated non-enhancer cis-regulatory elements (i.e. promoters annotated
in GENCODE TSS) is removed from downstream analyses (4) each of the re-
maining active regions is classified into “enhancer” or “non-enhancer” using
GEP (5) putative enhancer regions are ‘shrunk’ based on three enhancer as-
sociated epigenomic marks ( i.e. the upstream and downstream borders are
shifted until a position with overlap of at least one of DNaseI, H3K4me1 and
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H3K27ac is reached ) and (6) enhancer predictions with overlapping bound-
aries are clustered in order to define the final boundaries of putative enhancers
(Figure 2A). To functionally annotate these insilico predicted enhancers, we
have defined an activity score based on the overlap of regulatory activity sig-
nals (see Methods). Briefly, we considered the overlap of predicted enhancers
with five individual categories of independent data as evidence suggestive of
regulatory activity; the data includes chromatin accessibility (DNaseI), TF
binding potential as TF-ChIP-seq, TFBS motifs, experimentally validated
enhancers (VISTA and FANTOM5) and long-range chromatin interactions
(Hi-C and ChIA-PET).

Following the steps described above, we first performed genome-wide en-
hancer prediction and activity scoring in three commonly used human cell-
lines. A total of 48,598 (∼ 1.29% of genome with 594bp median size), 58,857
(1.81% of the genome with 599bp median size), and 28,821 (0.36% of the
genome and 274bp median size) putative enhancers were found to be active
in K562, GM12878 and H1 respectively. Activity scoring have revealed that
the majority of the enhancers (> 95%) were supported by at least one in-
dependent category of regulatory activity across all the cell types, > 63%
being supported by at least three (Figure 2C, Table S5). Further, we have
compared the predictions with the regulatory region categories proposed by
Yip et al. [20] based on the binding events (ChIP-seq) corresponding to
more than 100 TFs. Here, more than 75% of GEP’s enhancer predictions
fell either into the category of ‘binding active region’ (BAR) or ‘distal regu-
latory module’ (DRM) across all the cell types (Figure S2A). Only a small
fraction (< 1 %) overlapped with the ‘proximal regulatory module’ (PRM),
suggesting that most GEP predictions are not promoters. As expected, the
predicted enhancers were found to be far from TSS with median distances
ranging from 5123.5bp to 9708bp depending on the cell type (Figure S2B).

In order to predict enhancers in primary human tissues, we have exploited
the large epigemonic dataset released by the NIH Roadmap Epigenomics
consortium [28]. Given that P300 is not interrogated in most of the tissues,
we trained a new RF model using the same training data and features as
described above, but omitting P300 as a feature. The removal of P300 has
negligibly affected the performance of the model as compared to the GEP
model trained with P300 (Table S2A). Hence, the new model relies only
on the histone marks included in the ‘core epigenome’ defined by Roadmap
Epigenomics that are also present in the majority of ENCODE cell types
[31], mouseEncode cell-lines and tissues [32], and BLUEPRINT cell types
[33], making the model broadly applicable. Using the new model without
P300, we performed genome-wide predictions of enhancers active in placenta,
pancreas, gastric and small intestine human tissues. A total of 1.05% (pan-
creas; 94,453 enhancers), 1.17% (gastric; 97,504 enhancers), 2.38% (small
intestine; 187,097 enhancers) and 2.62% (placenta; 107,974 enhancers) of the
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human genome were predicted as active (Figure 2B) enhancers. For activity
scoring of enhancers predicted with Roadmap data, limited data availabil-
ity has precluded the consideration of chromatin interaction and TF binding
events. However, we included tissue-specific data corresponding to in vivo
transcribed enhancers from FANTOM5 for additional support. Notwith-
standing data limitations, a majority of predicted enhancers (> 80%) active
in each of the tissues were supported by at least one regulatory signal (Figure
2C; Table S5).

Recent studies have shown a high conservation of epigenomic signals be-
tween regulatory elements in human and mouse [34]. Following the assump-
tion, we have used GEP trained exclusively on human data to predict active
enhancers in mouse. We performed genome-wide enhancer identification on
the mouse cell types MEL (analogous to K562) and CH12.LX (analogous
to GM12878), and tissues (heart and liver). We predicted 1.70% (CH12;
20,747 enhancers), 2.09% (MEL; 40,750 enhancers), 2.74% (Heart; 44,153
enhancers) and 2.40% (Liver; 37,466 enhancers) of the genome (Figure 2D;
Table S8) possessing enhancer activity. Although cell-/tissue-type-specific
data is less abundant for mouse than human, still a majority of the predic-
tions (> 95%) were supported by more than one independent signal asso-
ciated with regulatory activity including open chromatin, TF-binding, and
TFBS motif features (Figure 2C and Figure 2D; Table S5). Overall, the re-
sults indicate that the predictive performance of the GEP model trained on
two human cell-lines is able to generalize to independent human cell types
and tissues, as well as to other mammalian model systems (mouse).

Benchmarking GEP against existing enhancer
prediction methods

Previously reported and widely accepted ML based enhancer predictors in-
clude CSI-ANN [32], RFECS [12], DEEP [16], ChromHMM [34] and Segway
[14]. We have performed benchmarking with pre-existing methods at two
broad levels using empirical evidence of regulatory activity as evaluation
categories: a) a general signatures of chromatin and regulatory activity that
included epigenomic marks suggestive of regulatory activity (P300, DNaseI
and TF-ChIP), expressed enhancers (eRNA) in K562 (FANTOM5), evidence
with recently available 3D regulatory interactions (Hi-C and ChIA-PET) and
False Positive Rate (FPR) detection using CAGE promoters specific to K562
(FANTOM5) b) specific signatures of enhancer activity using a comprehen-
sive gold-standard set of experimentally validated enhancers from different
resources. The dataset included 1,621 non-active enhancer elements (CRE-
seq assay) and 2,392 active enhancers including VISTA [20] (reporter assay),
FANTOM5 [18] (CAGE) and Kwasnieski et al., [37] (CRE-seq with P-value
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< 0.05).

When benchmarked using general signatures of regulatory potential, GEP
has showed the best performance among all, except one (second place). On
the basis of regulatory activity based on histone acetylations, TF binding
ChIP, open-chromatin and P300 binding (Table 1), GEP showed the best
performance (F-score 34.07), followed by Segway (F-score 33.26). In regula-
tory 3D-interactions analysis based on ChIA-PET and Hi-C data (Table 1),
RFECS showed the best PPV (17.8) followed by GEP (17.4), supporting the
good quality of predictions. In the case of promoter overlap (i.e., false posi-
tive rate in CAGE promoter overlap), ChromHMM showed least overlap with
K562 specific TSS from FANTOM5. CSI-ANN and DEEP showed a greater
overlapped with CAGE promoters (Table 2) relative to other methods, sug-
gesting their predictions were not enhancer specific. Furthermore, with K562
in vivo transcribed enhancer (FANTOM5) expressed in at least 2 replicates
(Table 4), GEP has over performed other methods (75.70% base-pair overlap
and 83.94 numbers overlap). Interestingly, when benchmarked with the spe-
cific signatures of regulatory potential (gold-standard experimentally charac-
terized enhancers), GEP outperformed other methods (F-score 0.55) followed
by DEEP (F-score 0.53) as shown in Table 3. Note that the data included in
the benchmarking set were not used during the training phase of the model.

Taken together, the benchmarking results (Table 1-3) demonstrated that
GEP either outperformed or showed similar performance as other tools at
both computationally as well as experimentally characterized level, implying
the importance of GEP as a novel and accurate enhancer predictor.

Discussion

Previous studies have demonstrated the use of combinatorial patterns of
epigenomic signals to determine distal genomic regions likely to have con-
text specific regulatory activity [2]. More recently, a growing body of studies
has started to experimentally characterize a large sets of enhancers active
under certain conditions. By integrating such studies, we were able to as-
semble a comprehensive repertoire of active enhancers, useful for training,
validation and benchmarking of insilico enhancer prediction methods. In-
stead of using approximate definitions of active enhancers based on single or
a combination of chromatin marks, here we have derived the epigenomic pat-
terns informative of enhancer activity exclusively from experimentally tested
genomic elements with enhancer activity. Additionally, we have structured
the genomic background in a balanced way representative of potential non-
enhancer regulatory elements (promoters) and gene body regions, in addition
to the randomly sampled genomic regions. We have designed a novel super-
vised Random Forest based model (GEP) trained on combinatorial epige-
nomic activity patterns derived from human cell types (HepG2 and K562).
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The evaluation of the proposed workflow on the different test and vali-
dation datasets across different cell types reinforced the satisfactory perfor-
mance of GEP. Furthermore, a comprehensive benchmarking of GEP against
pre-existing enhancer prediction methods based on the consistency of predic-
tions with other indicators of regulatory activity (DHS, P300, TFBS-ChIP
and histone acetylations), promoter-enhancer interaction (ChIA-PET and
ultra-deep Hi-C), enhancer expression (eRNA), and CAGE-based promoter
prediction (FANTOM5) have demonstrated the improved performance of
GEP over existing methods. Moreover, we have assembled a gold-standard
set of thousands of experimentally active and non-active enhancers using di-
verse functional techniques (i.e., CAGE, CRE-seq, and reporter assay), which
may prove useful for future studies approaching the (epi)genomic character-
ization of active enhancers, as well as their defining features, both open
problems of broad interest [13].

Unfortunately, except for the most commonly studied Encode cell types,
the availability of epigenomic data and validated enhancers for human cell
types and tissues are scarce. Considering this issue, we built the GEP model
in a way that it depends only on the commonly available features for the ma-
jority of the cell/tissues types included in international projects such as EN-
CODE [31], mouseENCODE [32], Roadmap Epigenomics [28] and Blueprint
[33]. The working of GEP relied merely on a set of histone and chromatin
marks defined as the ‘core epigenome’ by the Roadmap Epigenomics consor-
tium [43].

Interestingly, during the building and testing phase of the model, we found
that sequence-based features (e.g., motif enrichment and sequence conserva-
tion) did not improve the performance of GEP, with the exception of distance
to annotated TSS. This observation may provide hints for future studies as-
sociated with the molecular mechanisms involved in the functional diversi-
fication of regulatory elements, a topic of growing interest [13] [35]. It is
consistent with the recent results suggesting that conservation at the level
of function (e.g. motif composition) might be a common mode of enhancer
evolution, rather than conservation at a sequence level. [36].

The main goal of computational classifiers is to provide a model able
to predict the class of previously unobserved instances. We demonstrated
that GEP’s satisfactory predictive performance generalizes across human
cell types independent of the training cell types. Furthermore, based on
the growing evidence for highly conserved general mechanisms of epigenomic
regulation, at least across mammals [37], we hypothesized that discrimina-
tory patterns of enhancer activity derived from specific human cell lines can
be utilized to predict active enhancers in any cell/tissue type across mam-
malian species. If proven correct, the utility of tools such as GEP will increase
substantially, given that extensive experimental data for model training has
been produced for a few human cell lines (GM12878, K562), but not for
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other human cell types and tissues in humans and other species. As a proof
of principle, and in order to provide support to our claim, we performed
genome-wide enhancer prediction in human and mouse cell types and tissues
using a single GEP enhancer model trained on K562 and HepG2 cell lines.
Importantly, to the best of our knowledge, we showed for the first time that
the patterns computationally derived from one species can be used to make
genome-wide predictions of active enhancers in another species. These results
are consistent with the hypothesis of a conserved epigenomic code responsi-
ble for establishing gene expression patterns in a tissue and developmental
stage specific manner, which also aligns with recent discoveries in what has
been referred as ”comparative epigenomics” [38]. We have explored multiple
independent signals for enhancer activity (comprising genomic, epigenomic,
transcription regulation and chromatin structure features) to support the
regulatory activity of the majority of predictions in both human and mouse.

Note that by definition, ML based methods are limited by the amount of
data, information and knowledge available at the time of training. As such,
future conceptual developments and new experimental datasets related to the
mechanisms by which distant cis-regulatory elements work is likely to improve
computational methods, including GEP. For example, some results suggest
that the activity status of regulatory elements may be subject to gradua-
tion, or to belong to discrete classes of activity; for example primed activity
[39] functionally defined by eRNA [40]. However, the data and knowledge
available to date do not enable a clear-cut definition and representation of
regulatory activity at that resolution, thus precluding the formulation of more
specific predictive models. Likewise, further epigenoimc data from different
mammalian species is needed in order to further support our hypothesis of
epigenomic inter-species conservation and its utility for regulatory element
prediction.

Conclusions

We have built; tested and applied a novel ML based method to perform
genome-wide identification of active enhancers. The publicly available method
GEP has been trained on human cell-lines and can be readily applied for
genome-wide prediction in mammalian species following the protocol in Fig-
ure 2A, given that the required ‘core’ histone marks and chromatin acces-
sibility information (DNaseI or ATAC-seq) is available for the tissue or cell
type of interest. Unlike previous methods, the GEP model has been trained
exclusively from experimentally characterized enhancers and a heterogeneous
balanced background dataset. Benchmarking of GEP with pre-existing com-
putational methods, as well as genome-wide predictions and annotation in
different conditions and species demonstrate the practical relevance of the
method. A direct application of our method is the identification of genomic
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regions, which if mutated (regulatory alterations), would likely have a signif-
icant phenotypic effect that might be directly linked with the manifestation
of complex diseases originating from specific tissues and organs.

Methods

Raw dataset

Peak calling data used in this study for human cell-lines (K562, HepG2,
GM12878, H1) and mouse cell-/tissue types (MEL, CH12.LX) were retrieved
from the ENCODE and mouse ENCODE download portal [44]. Processed
peak calling data for enhancer identification in human tissues were down-
loaded from the NIH Roadmap Epigenomics Project [43]. In each case,
the pre-processed data for 6 histone modifications (H3K4me1, H3K4me3,
H3K27ac, H3K36me3, H3K9ac, H3K27me3), open-chromatin (DNaseI), and
TFBS ChIP-seq corresponding to cell types and tissues were used in the
analysis. All used resources are listed in Table S9 (additional file 1). The
dataset used for testing of the applicability of the model in independent cell
(tissue)-types in human and mouse was downloaded from the ENCODE and
Roadmap Epigenomics data portals. The data sources corresponding to each
cell (tissue)-type are provided in Table S9.

Training dataset

The training dataset represents positive and negative classes in 1:1 ratio.
Classes where chosen as follows:

• Positive class: active enhancers were taken from [22], where regulatory
activity in predicted human enhancers from ENCODE cell-lines HepG2
and K562 were experimentally tested using massively parallel reporter
assays. Each instance, originally of 145 bp (Table S1.A; Additional file
1), was transformed into corresponding regions of 500bp by considering
equally sized flanking sites. The 500bp size was chosen based on the
average size of enhancers active in K562 cell-line (at least 2 replicates)
according to the FANTOM5 (Figure S3) enhancer atlas [14]. A total
of 1,296 and 832 instances of active enhancers corresponding to HepG2
and K562 cell-lines, respectively, were taken from [22]. Corresponding
genomic coordinates were given in Table S1.B (additional file 1).

• Negative class: Non-enhancer cis-regulatory elements (i.e., promoters),
exons, introns and intergenic regions were taken in defined shares de-
viating from their genomic fractions as negative instances for training
purposes. The heterogeneous set was selected following a random sam-
pling procedure subjected to the following constraints: (1) genome-wide
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location of the instances follows the same distribution across chromo-
somes as the one presented by the enhancer set; and (2) the whole
negative set is comprised of promoter, gene body and heterochromatin
elements with approximate proportions of 50, 30 and 20 per cent; re-
spectively. Positive and negative training classes were assembled in-
dependently for each cell-line (HepG2 and K562) and subsequently
merged to obtain a single training dataset with a total of 2,128 positive
(negative) instances (Table S1.B, additional file 1). All annotations
were based on human Gencode v19 and mouse vM1 [45] corresponding
to genome assembly versions hg19 and mm9 respectively.

Feature Extraction and Selection

A set of features was selected in order to numerically characterize the state
of each instance. The set contains varied types of features including: his-
tone modifications, chromatin accessibility, DNA binding proteins, ratio of
chromatin marks (H3K4me1/H3K4me3 and H3K4me3/H3K27me3), and the
distance to the nearest TSS. For each feature based on ChIPseq data, the
corresponding peak files were downloaded from ENCODE [44]. Details on
data resources are listed in Table S9 (additional file 1). A feature ranking
approach was followed as implemented within the random forest algorithm
in scikit-learn v0.16.0 python library, setting the best parameter value of
n estimators to 100.

Model Building and Evaluation

The models were trained using two popular ML classifier algorithms i.e. Ran-
dom Forest and Support Vector Machine, as implemented in the python li-
brary scikit-learn v. 0.16.0. Parameter optimization was performed based
on the 10-fold cross validation performance. For model validation, in vivo
transcribed enhancers in K562 and GM12878 cell-lines were taken from FAN-
TOM5 [46] and used as independent test sets. Only enhancers expressed in at
least two replicates were considered as active in a particular cell-line. Model
performance was evaluated using standard ML-metrics i.e. accuracy, F-score,
and Area under the ROC curve (AUC).

Computational Validation of Genome-wide Predictions

In order to provide support for potential regulatory activity, genome-wide en-
hancer predictions were characterized based on (epi)genomic features known
to be associated with active enhancers. We used a simple activity scoring
method for predicted enhancers based on the evidences of overlapping with
independent signals of regulatory activity. To this end, available enhancer as-
sociated elements were divided into maximum of five categories, based on the
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common characteristics. Each category of signals can be present or absent
in a specific enhancer, and the sum of present signal categories represents
the confidence score with a maximum of five. The proposed categories of en-
hancer activity associated elements were i) overlap with DNaseI, H3K4me1 or
H3K4me3 ii) annotated TFBS motifs from JASPAR [47] and PreDREM [48]
iii) experimental validation, including enhancer sets validated using CRE-Seq
[23], CAGE [14] and reporter assay (VISTA [24]) iv) ChIP-seq of transcrip-
tion factors [49] regulatory modules proposed by Yip et al. based on ChIP-seq
of more than 100 TFs v) long-range chromatin interactions of promoters and
enhancers (loops) including predictions based on ChIA-PET [41] and ultra-
deep Hi-C [42]. Details of the datasets used for functional characterization
purposes are provided in Table S9 (additional File 1).

Benchmark with existing prediction methods

In order to compare GEP prediction accuracy with those of previously pub-
lished methods including CSI-ANN [32], RFECS [12], DEEP [16], ChromHMM
[34] and Segway [14], publicly available genome-wide enhancer predictions
corresponding to individual methods for myelogenous leukemia K562 cell-
line (hg19 genome) were downloaded. ChromHMM and Segway predictions
were obtained from ENCODE [50], whereas genome-wide predictions of K562
given by DEEP, RFECS and CSI-ANN were obtained from DEEP [51]. Using
empirical evidence of regulatory activity as evaluation categories, a bench-
marking of GEP with existing methods has been performed at two broad
levels:

a) A general signatures of chromatin and regulatory activity - this cate-
gory includes epigenomic marks suggestive of regulatory activity, expressed
enhancers (eRNA) in K562 (FANTOM5) and evidence with recently avail-
able 3D regulatory interactions (Hi-C and ChIA-PET). Additionally, CAGE
promoters specific to K562 (FANTOM5) was considered to calculate False
Positive Rate (FPR) of predictions. Due to the variations in stringency,
filter criteria, clustering and annotation strategies, the numbers and the cor-
responding fraction of the genome reported as ”enhancers”, were highly vari-
able among the tools (Table 3). Consequently, for the sake of a fair com-
parison, a comparative analyses at two levels a.1) base pairs a.2) number
of enhancers, was performed using the following performance measures. Let
A be the number of bases in the predicted enhancers that overlap with the
evaluation category of choice, B represents the total number of bases in the
predicted enhancers, C denotes the total number of bases in a given evalua-
tion category, n be the number of enhancers overlapped with given evaluation
category and N provides the total number of putative enhancers provided at
genome-wide level, the mathematical form of the measures can be given as
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PPV =
A

B

F − score = 2 ∗ A

B + C

%enhancer overlapped =
n

N

b) Specific signatures of enhancer activity: A comprehensive gold-standard
set of experimentally validated enhancers was assembled from different re-
sources corresponding to K562 cell type. The dataset includes 1,621 non-
active enhancer elements, which have shown no activity in CRE-seq assay
and 2,392 enhancers, whose activity was confirmed by one of the experimen-
tal methods such as VISTA [20] (reporter assay), FANTOM5 [18] (CAGE)
and Kwasnieski et al.,[37] (CRE-seq with P-value < 0.05). Using this com-
prehensive set of 1,621 negative (class 0) and 2,392 positive samples (class
1), genome-wide enhancer predictions corresponding to different tools were
evaluated using the weighted F1-score (F1 ”weighted” ). To capture the pre-
dictive power for positive and negative classes, the weighted F1-score (F1
”weighted” ) using F1-score of individual classes (F1 ”1” and F1 ”0” ) was
computed as shown by following equations using metric module of scikit-learn
v0.16.0 python library.

F1 =
2 ∗ (precision ∗ recall)
precision + recall

F1weighted =
F11 ∗N1 + F10 ∗N0

N1 + N0

GEP source and documentation

The computational framework is available at https://github.com/ShaluJhanwar/GEP
and the GEP manual has been prepared using readthedocs. Below is a snap-
shot of GEP online documentation.
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Table 1: Benchmarking of GEP with existing ML tools. Activity signal is
based on the overlap with the union of regulatory activity signatures
in K562, including DNaseI, TF-ChIP, P300 and histone acetylation.
PPV and F-score have been calculated per base, with positions in
predicted enhancers covered by at least one activity feature consid-
ered as true positive, else as false positives. Chromatin interaction
is based on the overlap of predicted enhancer with chromatin in-
teraction loops obtained via ultra-deep Hi-C or ChIA-PET in K562
(minimum of 1bp overlap required per instance). FANTOM en-
hancers TPR (sensitivity) is based on the recall of expressed K562
enhancers (significant CAGE signal in at least 2 replicates) anno-
tated by the FANTOM5 consortium

Method
Activity
Signal

Chromatin
interaction

FANTOM5
enhancers

PPV F-score PPV
TPR

(per-base)
TPR

(per-instance)

GEP 0.788 0.341 0.174 0.757 0.839
DEEP 0.886 0.311 0.143 0.543 0.748

CSI-ANN 0.782 0.306 0.155 0.664 0.677
RFECS 0.250 0.239 0.178 0.312 0.381

ChromHMM 0.323 0.284 0.163 0.217 0.296
Segway 0.250 0.333 0.118 0.575 0.836

Table 2: Benchmarking of GEP based on promoter overlap. The overlap
of predicted enhancers with regions identified as active promoters
defined by CAGE-seq of K562 (-1000 bp to +500bp to TSS), was
used as a false positive definition.

Method
False

Discovery Rate (promoters only)

(Per-base) (Per-instance)

GEP 0.045 0.073
DEEP 0.271 0.297

CSI-ANN 0.306 0.503
RFECS 0.018 0.045

ChromHMM 0.018 0.030
Segway 0.028 0.032
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Table 3: Benchmarking of GEP based on experimentally characterized active
and inactive enhancers. The dataset of experimentally characterized
enhancers were obtained from different studies and resources (Kwas-
nieski et al. [23], VISTA, and FANTOM5). The number as well as
percentage of genome identified as enhancers varied across different
methods.

Method Approach
Number

of
enhancers

Percentage of hg19
covered (without chrY)

F-score

GEP Supervised 48,598 0.0013 0.55
DEEP Supervised 151,500 0.0100 0.53

CSI-ANN Supervised 17,309 0.0114 0.5
RFECS Supervised 65,329 0.0430 0.46

ChromHMM Semi-supervised 205,137 0.0367 0.43
Segway Unsupervised 1,237,490 0.0931 0.5
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Figure 1: Workflow and validation of GEP. A) Machine-learning framework
used for training, feature selection and evaluation of GEP B) Rel-
ative importance of (epi)genomic features using Random Forest.
Black bars represent the relative importance of the features for dis-
tinguishing enhancer from non-enhancer class during training of
the GEP model from experimentally validated enhancers in K562
and HepG2 C) ROC curve of the classifiers when train on 80%
of the training data and test on 20% of the training data D) ROC
curve on validation of FANTOM5 in vivo transcribed enhancer sets
using random forest E) ROC curves with random forest in order to
test independence of cell types during enhancer prediction.
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Figure 2: Genome-wide identification of enhancers in mammals using GEP
A) Insilico genome-wide identification and evaluation of active en-
hancers using GEP B) Number of insilico predicted putative en-
hancers across different cell-/tissue types in human and mouse.
Activity scoring of predicted enhancers in C) human cell types and
tissues and D) mouse cell types and tissues. The overlap of active
elements with suggestive of enhancer activity that includes DNaseI,
active histone marks, TF-ChIP, TFBS motifs, chromatin interac-
tion (ultra-deep HiC and ChIA-PET) and experimental evidences
of enhancers from different resources.
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Figure S1: Implementation of classifiers on training and validation datasets.
A) ROC representing the mean AUC during 10-fold cross valida-
tion of the entire training data B) ROC on validation of FAN-
TOM5 in vivo transcribed enhancer sets using SVM C) Learning
curve representing training and testing score in 10 fold stratified
cross-validation during training using random forest.
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Figure S2: Characterization of genome-wide predicted enhancers using GEP
across mammalian cell types and tissues. A) Comparison of pre-
dicted enhancers with 6 regulatory modules of Yip et al. [20]
predictions, where different modules correspond to distal regu-
latory module (DRM) containing distal regulatory elements (en-
hancers, insulators etc), proximal regulatory module (PRM) con-
taining promoters, binding active regions (BAR) with TF binding
active regions B) Median distance to TSS (bp) of genome-wide
predicted enhancers across different cell-/tissue-types in humans:
K562, GM12878, H1, Gastric, Small-Intestine, Pancreas, Placenta
and mouse: MEL, CH12.LX, Liver, Heart.
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