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Abstract 

While previous studies have revealed an extended network of cortical regions 

associated with motor sequence production, the specific role of each of these areas is 

still elusive. To address this issue, we designed a novel behavioural paradigm that 

allowed us to experimentally manipulate the structure of motor sequences 5 

representations in individual participants. We then conducted fMRI while participants 

executed 8 trained sequences to examine how this structure is reflected in the 

associated activity patterns. Both model-based and model-free approaches revealed a 

clear distinction between primary and non-primary motor cortices in their 

representational contents, with M1 specifically representing individual finger 10 

movements, and premotor and parietal cortices showing a mixture of chunk, sequence 

and finger transition representations. Using model-free representational parcellation, 

we could divide these non-primary motor cortices into separate clusters, each with a 

unique representation along the stimulus-to-action gradient. These results provide new 

insights into how human neocortex organizes movement sequences.  15 

 

Key words: motor sequence representation, chunking, representational fMRI analysis, 

MVPA 
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Introduction 20 

The highly-sophisticated performance of a pianist often makes us wonder how the 

brain learns, stores, and produces such complex action sequences. One prevalent idea 

is that such movements are organized in a hierarchical fashion, where several 

elementary movements are combined into one single unit, often called “motor chunk” 

(Lashley, 1951). These motor chunks send ordered descending commands to the 25 

generating circuits for each elementary movement with one go, allowing faster and 

more accurate execution of entire sequence using less cognitive resource (Rosenbaum 

et al., 1983). These motor chunks could also be further organized into larger chunks 

or flexibly re-used to create different sequences (Sakai et al., 2003). Such hierarchical 

structure would greatly reduce computational cost for planning and executing long 30 

motor sequences (Ramkumar et al., 2016). An alternative idea is that sequences are 

non-hierarchically represented as a continuous set of transition probabilities between 

neighbouring movements (Hunt and Aslin, 2001; Reber, 1967; Stadler, 1992; Verwey 

and Abrahamse, 2012). To date, there is solid behavioural evidence for both 

organisations. Evidence of whether and how they are represented in the brain is, 35 

however, still inconclusive.  

Although recent evidence from human functional magnetic resonance imaging 

(fMRI) studies has suggested that the network of widespread brain regions, including 

prefrontal cortex (PFC), dorsal/ventral premotor cortex (PMd/v), supplementary 

motor area (SMA), precuneus, basal ganglia (BG), and areas along intraparietal sulcus 40 

(IPS), are involved in the production and acquisition of more complex sequences 

(Grafton et al., 1995; Hikosaka et al., 1999; Honda et al., 1998; Penhune and Steele, 

2012; Sadato et al., 1996; Wymbs et al., 2012), the critical question that still remains 

is how sequences are represented in these areas (Hikosaka et al., 1999). Similarly, a 
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number of electrophysiological studies in non-human primates have shown that some 45 

neurons show differential firing rates during the same elementary movement, 

depending on the sequential context such as preceding or following movement 

(Baldauf et al., 2008; Tanji and Shima, 1994). Other neurons have been found to be 

active at both initiation and termination of a sequence (Fujii and Graybiel, 2003), or 

were selective for specific categories of sequences (Shima et al., 2007). However, the 50 

use of relatively short and simple sequences in these studies precludes further 

assessment of hierarchical movement representations. 

The aim of this study was therefore to dissociate hierarchical and non-

hierarchical sequence representations at the behavioural level, and then investigate 

their neural correlates. To this end, we used representational fMRI analysis 55 

(Diedrichsen and Kriegeskorte, 2017) to investigate how the brain represents a set of 

well-learned, complex movement sequences (11 finger presses). Rather than 

analysing the increases or decreases of spatially smoothed activity, representational 

fMRI analysis makes inferences based on the similarity (or dissimilarity) of 

multivariate activity patterns across multiple experimental conditions (Ban and 60 

Welchman, 2015; Chikazoe et al., 2014; Ejaz et al., 2015; Kriegeskorte et al., 2008; 

Yokoi et al., 2018). One potential problem in applying this method to study the 

hierarchical organization of movement sequences is that the specific organisation of 

motor memories may be different across individuals (Jimenez et al., 2011; Ramkumar 

et al., 2016), and is often influenced (and hence confounded) by biomechanical 65 

constraints (Koch and Hoffmann, 2000). To address this problem, we first established 

a new behavioural paradigm that allowed us to experimentally manipulate the 

structure of motor sequence representations.  
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Results 70 

Declarative chunking leads to specific structure of motor memory 

Our paradigm was aimed at inducing a stable way of motor chunking by manipulating 

the way that participants built up their explicit, declarative memory of the sequence. 

We then sought to detect neuronal correlates of this organisation in the structure of 

activity pattern in motor and premotor areas as measured with fMRI. During scanning, 75 

we required participants to produce sequences with their right hand completely from 

the memory provided only with a sequence cue (Fig. 1A-C). The training was 

therefore devoted to enabling participants to remember the 8 sequences (Fig. 1B; for 

more detail, see Materials & Methods). On day 1, they practiced to produce 8 

different chunks of 2 or 3 items (Fig. 1C), and associate these with a specific letter 80 

(A-H). On the second day, participants started to learn 8 different sequences as 

combinations of four of the learned chunks. At the end of this training, participants 

could reliably recall most of the sequences – the number of incorrect presses they 

made in each sequence execution had reduced dramatically; the error rate per press 

was 9±8% (Fig 1D). The inter-press intervals (IPIs) within each chunk quickly 85 

reduced on the first day and remained relatively stable for the following days. In 

contrast, IPIs for the boundaries of two successive chunks were much longer and 

reduced only slowly over the course of training days (Fig. 1D). Even on the fifth day, 

the between-chunk IPIs were executed more slowly (439±107ms) than the within-

chunk intervals (215±53ms, t12=-7.07, p=1.31×10-5; Fig. 1d). The longer between-90 

chunk IPI is commonly taken as a behavioural indicator that the two sequence 

elements are stored as separate units.  
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Figure 1. Explicit induction of a structured sequence memory. (A) Experimental 95 

setup. Participants practiced fast sequence of isometric finger presses on the custom-

built keyboard device (left). The traces show example force data (fingers 1-5) from 

one sequence execution (right). Each arrow-head on peak force indicates a successful 

finger press.  (B) Sequences and chunks. The participants were divided into two 

groups, which practiced partly overlapping sequences with different chunking. Pairs 100 

of identical sequences across the two groups are indicated by lines. (C) Training 

consisted of cued trials (upper row) and un-cued trials (lower row). On day 1, 

participants learned to produce single chunks from memory using a letter (A-H) cue. 

On the following days, they practiced sequences (indicated by Roman letters I-VIII) 

as combinations of learned chunks. On Day 2, cued and un-cued trials were 105 

alternated. On Day 3-5, cued trials and a set of three un-cued trials were alternated.  
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(D) Inter-press intervals over the course of the behavioural training. Within- and 

between-chunk intervals averaged over the sequence types are displayed in the blue 

and the red dots, respectively (axis on the left side).  Average number of incorrect 

presses are indicated as the grey squares (axis on the right side). Data points with an 110 

arrow was the average performance in the imaging session. Only data from uncued 

trials are shown. Error-bars indicate the s.e.m. 

 

While this result provided clear evidence for chunking, it remains unclear to 

what degree the longer between-chunk IPIs are caused by memory retrieval and/or 115 

stable motor representation (i.e., planning-ahead of successive movements). To test 

this, we asked participants to perform a follow-up session after the fMRI scan in 

which the sequences were instructed not by the sequence cue, but rather directly using 

all digit cues (e.g., 13524232514, Fig. 2A). This frees participants from the 

requirement to recall the sequence from memory. Nonetheless, on trained sequences 120 

the between-chunk intervals were still longer than the within-chunk intervals (377 ± 

136ms vs. 275 ± 75ms; t14 = -6.01, p = 3.2×10-5, Fig. 2E - trained), suggesting that 

induced chunking affected motor performance over and beyond explicit recall. 

Importantly, our data also shows that the observed effect is not driven by 

differences in the biomechanical difficulty of finger transitions. The sequence design 125 

(Fig. 1B) was such that 5 out of the 8 sequences were the same across the two 

experimental groups, with the difference that they learned them using a different 

chunking structure. The normalized press intervals for those sequences showed a 

pattern that clearly reflected the original instruction (Fig. 2B). The inter-subject 

correlation of these patterns was significantly higher for within-group than between-130 

group comparison (Fig. 2C, t14=5.35, p=1.0×10-4). 
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Figure 2. Cognitively induced chunking structure influences subsequent skilled 

motor performance. (A) In the follow-up session conducted after the imaging session, 

the sequences were directly cued with 11 digits, removing the need for memory recall. 135 

(B) Average IPIs, normalized to the entire sequence duration, for group G1 and G2. 

Each group of participants showed group-specific pattern of press intervals, which 

cannot be attributed to biomechanical difficulty of the finger transitions.  (C) 

Correlation (Pearson’s r) of IPI profiles across participants was higher for 

participants within a group than across the two groups. (D) Generalisation test with 140 

trained sequences, sequences that consisted of trained chunks in a novel order, 

sequences that contained trained chunks in random sequences, and completely novel 

sequences.  (E) Within-chunk intervals were faster than between-chunk intervals for 

all sequence categories. (F) Group-averaged regression weights for the 3 

experimental effects, and 2 nuisance effects. Weight estimates were averaged across 145 

all possible regression models using Bayesian model-averaging (see methods). 

Dashed horizontal line separates between effects of interest and no interest. Error-
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bars indicate s.e.m. across the subjects. Significance of statistical test were shown by 

asterisks (*: p<0.05, **: p<0.005, ***: p<0.0001). 

 150 

If participants acquired a motor representation of the chunks, they should also 

be able to use this knowledge when producing the chunk in a novel context (Sakai et 

al., 2003). To test this, the participants additionally executed 3 sets of novel sequences 

(Fig. 2D). These new sequences either consisted of trained chunks in new 

combinations and orders (“Chunk”), of 2 trained chunks embedded in an otherwise 155 

random sequence (“Chunk+New”), or completely untrained sequences with no 

relation to learned chunks (“New”). As expected, IPIs in the “New” sequences were 

executed considerably slower than for IPIs in trained sequences. For the other two 

sequence types, the intervals that lay within a learned chunk were performed 

significantly faster than novel intervals (t14<-6.01, p<3.2×10-5; Fig. 2D). Overall, 160 

these results suggest that originally declaratively (i.e., cognitively) imposed chunk 

structure left a reliable imprint in the motor behaviour, which generalized to novel 

contexts.  

Interestingly, we also observed that the between-chunk IPIs of the trained 

sequences were faster than the between-chunk IPIs of the “Chunk” sequences (t14=-165 

3.80, p=0.002). This advantage may have two reasons. First, participants may have 

acquired a higher-order sequence representation that encoded the transitions between 

chunks. Alternatively, it may be due to a form of non-hierarchical, association 

learning (Hunt and Aslin, 2001; Reber, 1967; Stadler, 1992; Verwey and Abrahamse, 

2012) at the level of the individual elements: finger transitions that had been 170 

encountered in practice frequently would become associated and therefore performed 

faster. To disentangle these two explanations, we modelled all IPIs for the follow-up 
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session for each individual, using three effects of interest: The frequency of this 2-

finger transition in training to capture associative learning, whether the interval was 

within or between chunk to determine the influence of chunking, and whether the 175 

chunk transition was already learned within a trained sequence to capture higher-order 

sequence representations. The full model also contained two effects of no interest: 

biomechanical effect of each 2-finger transition, and post-error slowing (Botvinick et 

al., 2001) (see methods). Using Bayesian model-averaging, we determined the 

influence of each component in the context of the other ones.  180 

The result presented in Fig. 2F indicated both association of individual finger 

presses and a hierarchical representation of chunk transitions coexisted. Again, we 

observed very robust within-chunk effect (t14=8.19, p=1.04×10-6, group-t test), as 

well as significant effect of executing known chunk transitions (t14=3.51, p=0.003), 

providing a robust behavioural evidence that our participants developed hierarchical 185 

representation of the learned finger sequences. Simultaneously, we also found a 

significant frequency-dependent effect of 2-finger transitions (t14=3.90, p=0.0016). 

Thus, our results provided clear evidence for a co-existence of hierarchical and non-

hierarchal (associative) representation of movement sequences. With this behavioural 

evidence, we next assessed where and how these different representations are 190 

implemented in different brain regions. 

 

Cortical regions with robust sequence “encoding” 

In the fMRI session, the participants received a brief visual cue for the sequence type 

and then executed the sequence twice (Fig. 3A). The activation associated with each 195 

sequence was estimated for each voxel by averaging the task-evoked BOLD activity 

over the two executions. We then applied representational fMRI analysis to study the 
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cortical sequence representation. Using a searchlight approach (Fig. 3B) we first 

determined whether the activation patterns had any information about the executed 

sequences. For this, we computed a cross-validated estimate of the Mahalanobis 200 

distance (crossnobis distance estimator, Diedrichsen et al., 2016; Walther et al., 2016) 

between any possible pair of the sequences. Systematically positive crossnobis 

estimates indicate reliable differences between the activity pattern for different 

sequences. Given that we averaged the activity across two executions and given that 

all sequences consisted of the same finger presses arranged in a different order (Fig. 205 

1B), any difference in activity patterns must reflect some dependency of the activity 

on the sequential context. 

 

 

Figure 3. Overall sequence encoding on the flattened cortical surface. (A) Time 210 

course of a single trial in the fMRI session. A presentation of the visual cue (sequence 
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I-VIII) was followed by two executions of that sequence. (B)  Searchlight approach. 

We extracted the activity patterns for small circular areas (~22mm diameter) of the 

reconstructed cortical surface. The pre-whitened activity patterns were then used to 

calculate the crossnobis distance, an estimator for pattern separability, or submitted 215 

to PCM, which flexibly tests different representational models. The resulting statistics 

(mean distance across the sequences, or log-Bayes factor for each representational 

model) was then assigned back to the centre node of the region. (C) A group-

averaged map of the strength of sequence encoding (average pair-wise distance 

between sequences) plotted on a flattened cortical map. Cing: cingulate sulcus, SFS: 220 

superior frontal sulcus, CS: central sulcus, PoCS: post central sulcus, IPS: 

intraparietal sulcus.  

 

Figure 3C shows the resultant group searchlight map displayed onto the flattened 

cortical surface. Consistent with recent studies (Kornysheva and Diedrichsen, 2014; 225 

Wiestler and Diedrichsen, 2013; Wiestler et al., 2014; Yokoi et al., 2018), sequences 

were “encoded” over the wide area over the cortical surface, including M1, S1, PMd, 

and areas around the IPS. Notably, we also found significant encoding in SMA/pre-

SMA, extending into the rostral cingulate zone (RCZ, Picard and Strick, 1996), 

although the signal from these areas was weak compared with other areas such as 230 

PMd or IPS (Kornysheva and Diedrichsen, 2014; Wiestler and Diedrichsen, 2013; 

Wiestler et al., 2014). While some areas showed bilateral representations, they were 

consistently strongest in the left, contra-lateral hemisphere. We also detected 

relatively strong sequence encoding in the left lateral prefrontal cortex and bilaterally 

in the precuneus (Fig. 3C).  235 
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Determining the representational structure of sequence “encoding”  

While Figure 3C tells us that we can decode the sequence identity from the activation 

pattern in this area, it does not answer whether these patterns differences are caused 

by neuronal populations that represent finger transitions, chunks, or entire sequences. 240 

In regions in which we observe significantly positive dissimilarities, we therefore 

looked in detail into the representational structure characterised by the 

representational dissimilarity matrix (or equivalently the second-moment matrix, 

Diedrichsen & Kriegeskorte, 2017) of the patterns (Fig. 4B).  

 Based on our behavioural results, we first considered three levels of 245 

hierarchical sequence representation (sequence, chunk, and single finger).  At the 

highest level, we propose a sequence representation, with a unique neuronal activity 

pattern for each of the 8 trained sequences. As we assume that all sequences are 

equally strongly encoded, such a representation would predict that all possible 

pairwise distance are equal. A dedicated sequence representation would explain 250 

transitions between chunks are performed faster in trained than in novel sequences. At 

the next level, we have distinct neural activity patterns for each learned chunk. A 

region with a pure chunk representation would therefore transition during the 

sequence through the four activity states associated with the four chunks. The 

resultant RDM is therefore predicted by how many chunks different sequences have 255 

in common. For instance, sequence 1 and 2 consist of the same chunks in a different 

order (Fig. 1B) and are therefore predicted to elicit highly similar activity patterns. At 

the lowest hierarchical level, we considered representations of single fingers. As all 

sequences consisted of exactly the same presses arranged in a different order, a single-

finger representation should lead to identical activity patterns for all sequences. In a 260 

recent study, however, we found that the activity pattern for a sequence is strongly 
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determined by the first finger (Yokoi et al., 2018). Therefore, this representation 

predicts that sequences starting with the same finger should be very similar to each 

other (Fig. 4A). Thus, a single-finger representation would be detectable in this 

experiment as a first-finger representation. Additionally, we also considered that 265 

regions may show a distinct activity pattern for each finger transitions. The sequences 

were designed to maximally dissociate the predictions from these four models 

(sequence, chunk, first-finger, and transition).  

With these candidate representational models, we applied pattern component 

modelling (PCM, Diedrichsen et al., 2011; Diedrichsen et al., 2017) to estimate the 270 

contribution of each candidate representational model to the observed activity patterns. 

PCM provides a direct and powerful Bayesian approach to test representational 

models (Diedrichsen and Kriegeskorte, 2017), and is functionally equivalent to RSA 

or encoding model approaches. Importantly, it provides a principled and flexible way 

to test for combinations of model components (or feature sets). We therefore used 275 

PCM to evaluate the likelihood of the data under all 16 possible combinations of the 4 

candidate models within the general sequence “encoding” map (Fig. 3C, Fig. S1). The 

relative weight of each model component was fitted. Because different combination 

models had different number of free parameters, we used leave-one-subject-out cross-

validation (Diedrichsen et al., 2017), fitting each model to all participants except one, 280 

and then evaluating the likelihood of the data from the left-out participant under the 

model (see Method for more detail).  

Figure 4C shows the log-Bayes factor for a fully flexible “noise-ceiling” 

model, in which the predicted representation structure for each individual was the 

average representational structure for all the other participants (Walther et al., 2016) 285 

(see Method). Positive evidence for this model over the null model (no representation) 
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simply indicates that the structure of representation was consistent across individuals. 

Almost all of the region tested survived the subsequent Bayesian group analysis 

(Rigoux et al., 2014; Rosa et al., 2010; Stephan et al., 2009) and its typical threshold 

(see Method). From the noise-ceiling map, we can clearly see that representational 290 

structure of the primary sensorimotor areas showed the highest inter-individual 

consistency being followed by areas around IPS and then frontal premotor areas (Fig. 

4C).  

Next, we examined whether these representations could be explained by our 4 

candidate model components, or any combination of these. We therefore fitted all 295 

possible combination of components and then determined the model-averaged Bayes 

factor as a measure of evidence for the presence of each components in the context of 

the others (see methods). 

 

 300 
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Figure 4. Fitting candidate representational models onto data. (A) Four candidate 

representational model components of an example sequence (red numbers). Each 

circle represents a hypothetical neural population; arrows between the circles 

represents descending commands to activate the units. For example, the sequence 

representation at the top sends ordered descending commands to the chunk 305 

representations, and each chunk representation sends commands to the single finger 

representation. Note that for the single-finger level, a unit for each single finger is 

shown multiple times. The non-hierarchical transition representation activates each 

press, based on the previous press. Given the sequences used (Fig. 1B), each 

representational component predicts a unique structure of the representational 310 

dissimilarity matrix (RDM). S: sequence, C: chunk, F: first-finger, T: transition. (B) 

Empirical RDMs for representative cortical regions. We fitted various combinations 

of the candidate models to explain observed representational structure at each 

cortical searchlight (see also Fig. 3b,c). (C) Group-level map of model evidence (log-

Bayes factor) for the noise-ceiling over the null model. LH: left hemisphere, RH: right 315 

hemisphere, CS: central sulcus, SFS: superior frontal sulcus, PoCS: post-central 

sulcus, Cin: cingulate sulcus, and IPS: intraparietal sulcus. The logBF map was 

thresholded using a protected exceedance probability (PXP) of 0.75 (Rigoux et al., 

2014; Rosa et al., 2010; Stephan et al., 2009). 

 320 
Representation of simple, elementary movements:  

Replicating our previous results (Yokoi et al., 2018), the representational structure in 

M1 and S1 was almost fully determined by the first finger in each sequence. The 

model-averaged log-Bayes factor revealed strong evidence for the first finger 

component (Fig. 5A). The logBF for the first-finger model was 1.26 ± 8.67 above the 325 

lower noise ceiling – which resulted in an insufficient protected exceedance 
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probability (PXP) for the noise-ceiling model of 0.57. As the first finger press was 

executed with a similar force as all subsequent presses (t14=0.42, p=0.34), this 

indicates that the same movement elicits more BOLD activity in M1 when it is 

executed in the beginning, rather than in the middle of a sequence. This simple model 330 

could fully explain the representational structure in these areas.  

 

 

Figure 5. Bayesian model-averaging revealed elementary movements are robustly 

represented across individuals whereas higher-order representations are spatially 335 

overlapping. (A-F) Average log Bayes factor for first-finger (A), chunk (B), entire 

sequence (C), union of chunk and entire sequence models (D), union of transition and 

chunk models (E), and union of transition and sequence models (F) mapped onto 

flattened cortical surfaces. Each map was thresholded with a PXP of 0.75 (see 

Method). Areas with above-threshold PXP, but a logBF <1, are shown in dark blue.  340 
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Representation of complex, higher-order movement hierarchy:  

In contrast to M1 and S1, the first finger model did not provide a good explanation for 

the representational structure in premotor and parietal areas (Fig. 5A). Model-

averaging also revealed that there was only very weak or no evidence for either the 345 

chunk (Fig. 5B) or sequence model alone (Fig. 5C). Only when we assessed the 

average likelihood of the chunk, sequence, and sequence + chunk model (i.e., chunk 

∪ sequence), there was strong evidence in cortical regions along the left IPS and 

premotor areas (Fig. 5D). In these regions, the union of sequence and chunk models 

fitted the data significantly better than the lower noise-ceiling; logBF (union model vs. 350 

noise-ceiling) = 2.58 ± 3.29, PXP=0.952, for premotor cluster, and logBF =3.76 ± 

4.83, PXP=0.85, for parietal cluster. We also found relatively strong evidence in left 

pre-SMA and more rostral medial regions, areas in the inferior frontal gyrus 

(including BA 44), right SPL and precuneus, as well as the right premotor cortex (Fig. 

5D). The result suggests that chunk and sequence representations are not spatially 355 

segregated, but together can explain the structure of sequence representations in 

premotor and parietal cortices.  

 

Non-hierarchical movement representations: 

Similar to the chunk and entire sequence representations, there was almost no 360 

evidence for a representational structure that was explained by the 2-finger transition 

model alone (not shown in the figure). In contrast, we found firm behavioural 

evidence for learning of finger transitions (Fig. 2F). Therefore, we again assessed the 

evidence for the union of finger transition and other hierarchical (i.e., chunk or entire 

sequence) representations and found positive evidence similar regions where we 365 

found evidence for the hierarchical representations (Fig. 5E,F). For example, in left 
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premotor and parietal cortices, the best fitting combination model included finger 

transitions. The result suggests that there is no spatial distinction between the neural 

populations for the hierarchical and the non-hierarchical movement representations.  

 370 

Model-free division of cortex according to the representational structure. 

The noise ceiling model (Fig. 4C) provided evidence for a systematic 

representational structure across participants in premotor and parietal areas, which 

could be modelled by a combination of chunk, sequence and transition representations 

(Fig. S2). However, there was no clear spatial separation of these representations. 375 

Rather, in most regions, at least 2 of the three components were necessary to account 

for the data, while others, such as bilateral precuneus and lateral prefrontal regions, 

were not well explained by any of these combinations. Therefore, it is likely that these 

areas have some unique way of representing sequences that was not captured in our 

candidate models. We therefore took a model-free approach to dissect cortical 380 

representation of sequences into discrete areas by applying an unsupervised clustering 

algorithm to the similarity (or “connectivity”) of the observed RDMs across the 

searchlight nodes within the areas that showed general encoding (Fig. 6A). The 

similarity between the resultant 10 clusters (Fig. 6B) could then be evaluated using an 

agglomerative hierarchical clustering algorithm which revealed that they formed 385 

several “families” (clusters 1-4, 5-7, and 8-10, Fig. 6C, for detail, see Method).  

The resultant clusters revealed some features consistent with the model-based 

approach. Specifically, one cluster encompassing the left M1 and S1 captured the area 

that could be fully explained by the first-finger representation (cluster 5, Fig. S3). In 

premotor and parietal areas, the clustering was able to reveal features that could not 390 

be captured by the model-based approach alone. The approach showed that the 
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regions with clear positive evidence for the mixture of higher-order representations 

(Fig. 5B,D,E,F) were sub-divided into several distinct clusters. For example, BA 5 

and caudal PMd had a very similar representational structure (cluster 6), consistent 

with the strong anatomical connections shown between these areas (Kurata, 1991; 395 

Tomassini et al., 2007). A related cluster (cluster 7) accounted for the structure of the 

representation along the IPS. Further anterior, cluster 9 and 10 included left rostral 

PMd, SMA, and preSMA, and the dorsolateral prefrontal cortex, with cluster 8 

encompassing the right PMd. When we applied the model-based PCM to these 

clusters, we found that they each showed a different mixing ratios of higher-order 400 

representations (Fig. S4). 

Cascade of information processing during sequence production. 

From the 4 remaining clusters, 1 and 2, as well as 3 and 4 formed one family 

(Fig. 6B). These areas, except for the cluster 4, showed only a very low inter-subject 

consistency in the PCM approach. One possible reason is the fact that we randomized 405 

the associations between the visual cues and the actual sequences across the 

participants. Because our “representational pracellation” approach is based on within-

subject similarity of the RDMs, it is likely that these clusters captured either visual 

features of the presented cues (I, … VIII), or verbal features of internal rehearsal 

processes, rather than the features related to motor execution. Therefore, over the all 410 

clusters, we re-calculated the noise-ceiling after re-aligning the conditions across 

participants in terms of the visual cue identity, and compared it with the original 

noise-ceiling. The result demonstrated that the representational structure of clusters 2 

and 3 was more consistent in “visual” than “motor” space (Fig. 6D,E). As expected, 

the cluster encompassing M1 and S1 was located at the most “motor” position, while 415 
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the other clusters occupied positions that suggest a mixture of motor and perceptual / 

symbolic representations of the sequences.   

 

Figure 6. Parcellation of cortical motor sequence representations. (A) Schematic of 

the model-free clustering approach. (B) Resultant 10-cluster solution, mapped on the 420 

cortical surface. (C) Agglomerative clustering (Ward’s clustering) described 

relationships across the clusters. Colour similarity is directly related to cluster 

similarity (D) Condition relabelling according to actual visual cues each participant 

received during the task. Each participant received different visual cues for the same 

sequences. (E) A comparison between noise-ceilings obtained under a motor-based 425 

labelling and a visual cue-based labelling for each cluster. Vertical axis represents 

the logBF-ratio of noise-ceiling models (visual vs motor).  
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In sum, the current results provide a set of novel insights into the cortical 

organisation of a sequential motor memory. First, we confirmed a clear hierarchy 430 

between M1 and premotor / parietal areas, with neural populations in primary sensory 

and motor area engaged in the generation of individual finger presses. In contrast, 

higher motor areas, such as PMd, SMA, and the parietal cortex showed true sequence 

dependency. While chunk, sequence, and transition representations together could 

account for these representations, no clear specialisation or hierarchical ordering 435 

emerged from this model-based analysis. Rather, most areas showed a mixture of 

representations between these regions. Our model-free approach provided the first 

insight into qualitatively different groups of representations. Finally, the relabelling 

analysis established the position of the clusters along the continuum between cue-

oriented to more execution-related areas.  440 
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Discussion 

The current study provides the first direct evidence for a diverse set of neural 

representations of complex motor sequences in the human neocortex across frontal 

and parietal cortices. Our experimental approach was to impose a specific structure 445 

along which participants first build up a declarative knowledge of the sequences. We 

confirmed that this imposed structure was reflected in participants’ motor behaviour 

even after the need for memory recall was removed. We then could study the neural 

correlates of the sequence representation using both model-based and model-free 

multivariate fMRI analyses. The cortical clusters identified by model-free approach 450 

were further characterized in terms of stimulus-to-response gradient. 

It has long been debated whether the consistent regularities in the timing of 

sequential behaviours reflects a hierarchical organization of sequence representations 

(Sakai et al., 2003), the associative learning of transition statistics (Verwey and 

Abrahamse, 2012), or merely arises from the biomechanical requirement at the 455 

specific finger transitions (Jimenez, 2008). Our experimental design with two groups 

of participants acquiring physically the same sequences through two cognitive routes 

provides clear behavioural evidence for chunking independent of the biomechanical 

property of those sequences (see also, Verwey and Dronkert, 1996). The results of 

follow-up experiment also indicate that the frequency of 2-finger transition 460 

independent of chunking influence performance. In the subsequent fMRI analysis, we 

confirmed that these two different types of representations coexist in premotor and 

parietal areas. 

Our multivariate fMRI approach allowed a direct assessment of sequence 

representations. Many prior univariate studies on motor sequence learning have 465 

revealed experience-dependent activity changes in multiple brain regions, including 
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DLPFC, M1, PM, SMA, IPS and precuneus (Doyon et al., 2002; Grafton et al., 1995; 

Honda et al., 1998; Kawashima et al., 1998; Penhune and Steele, 2012; Sadato et al., 

1996; Sakai et al., 1998). A recent line of multivariate fMRI studies (Kornysheva and 

Diedrichsen, 2014; Nambu et al., 2015; Wiestler and Diedrichsen, 2013) has provided 470 

direct evidence that these previously reported regions represent some information 

about motor sequences. In the current study, we went one step further by 

characterizing this information in detail.  

 

Primary vs non-primary sensorimotor areas  475 

Our data indicates that M1 and S1 only represent single finger movements, but 

no sequential information. The differences between the different sequences can be 

explained purely by the fact that the first finger had a stronger influence on the overall 

BOLD activity pattern than the remaining finger presses. This replicates our previous 

study (Yokoi et al., 2018) where we showed the same effect with balanced set of 6-480 

digit sequences. In that study, we measured the patterns for each involved finger 

separately and demonstrated that each sequence was more similar to the pattern of the 

first finger. The paper also provides evidence that the first-finger effect has neuronal, 

rather than hemodynamic causes. One explanation for these effects is that M1 

receives the greatest input drive from the higher motor areas and/or subcortical 485 

structures at the initiation of sequential movements to move from a resting to an 

activated state. Otherwise the neural state of M1 appears to be determined by the 

elementary movements only. The source of this signal may be neural populations in 

PFC or basal ganglia, which have been shown to fire most vigorously at the start of an 

action sequence (Fujii and Graybiel, 2003; Jin and Costa, 2010). In fact, we found 490 

evidence for the first-finger representation in basal ganglia ROIs, although the signal 
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in these structures was much weaker compared to the cortical regions (Supplementary 

Information, Fig. S5).  

In contrast, we found strong evidence for sequential representations outside 

M1/S1, most notably in PMd and parietal regions. Together, these results highlight 495 

the functionally different roles between primary and non-primary motor areas in 

production of voluntary sequential movements. 

 

Rethinking the hierarchical and non-hierarchical motor representations.  

Unexpectedly, premotor and parietal areas showed a mixture of different 500 

hierarchical and non-hierarchical sequence representations. This lack of spatial 

segregation between more complex representations might be simply due to that the 

underlying neural circuit for each representation is described in sub-voxel scale and 

hence could not be dissociated with the spatial resolution of current study. 

Alternatively, it may support the view that hierarchical behaviour itself does not 505 

necessary require hierarchically arranged neural architecture (Botvinick and Plaut, 

2004; Yamashita and Tani, 2008). Our brain may possibly employ some unique way 

to organize hierarchical movement sequences without explicit architecture-level 

hierarchy (Koechlin and Jubault, 2006). Neural circuits in premotor and parietal 

cortices, which initially only transmit the selection signal from the “higher” cognitive 510 

areas, may self-organize as an “intermediate” layer into different types of 

representation in both “hierarchical” or “non-hierarchical” manner as movement 

sequences are repeated (Diedrichsen and Kornysheva, 2015). This may explain the 

co-existence of chunk- and transition-based motor skills found in our behavioural 

results. If so, the important next challenge is to understand the principles that govern 515 

the self-organisation of these networks. 
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An important concept in this context is the notion of “untangling” of the 

population response (Russo et al., 2018). To produce a temporally ordered sequence 

of neuronal signals, the generating neuronal region needs a representation of the 

sequential context, i.e., the neuronal state needs to be sufficiently different for 520 

movement A if it is followed by B, as compared to when A is followed by C. Similar 

neuronal states for movement A in these two contexts would lead to ‘tangling’ of the 

population response and the danger of confusion and would require substantial input 

to bring the neuronal dynamics on the correct path. Consistent with our findings, very 

recent results (Russo et al., 2018, personal communication) indicate that the neural 525 

state in M1 shows high tangling on the level of movements, whereas SMA appears to 

provide an untangled signal, where the neuronal state for the same movement depends 

on the sequential context. While this approach does currently not specify how this 

untangling is realized, it is conceivable that the neuronal population would develop an 

internal representation that looks like a mixture of a hierarchical on non-hierarchical 530 

organization.  

 

Representational parcellation of human neocortex during skilled sequence 

production. 

While many of existing attempts of cortical parcellation have been relying on 535 

correlations between time series across different brain regions, mostly during the rest 

(i.e., functional connectivity, Margulies et al., 2016; Yeo et al., 2011), our parcellation 

approach is unique in using correlations between representational structures 

(“representational parcellation”). The specific advantage of the current task-based 

representational parcellation approach is that in close combination with model-based 540 
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representational fMRI analysis it allows us to make direct inference about the 

functional role for each network/cluster.  

Parietal family (Clusters 6 and 7): Cluster 7 consisting of a large area along 

the left IPS was characterized by its strong evidence for higher-order representation 

(i.e., chunk + sequence, Fig. 5D). This fits well with the classical reports that lesions 545 

around the left IPS cause apraxia, a deficit arising from the loss of higher-order motor 

representations (Haaland et al., 2000). Additionally, these areas showed the second 

highest level of inter-subject consistency (Fig. 4C). Relabeling analysis according to 

the visual cue identity suggested that cluster 7 showed more perceptual / abstract 

representations than M1. Consistent with this idea, the areas along the IPS represent 550 

sequential movements in both intrinsic and extrinsic frames (Wiestler et al., 2014).  

Cluster 6 included both left caudal PMd and bilateral BA 5/precuneus, two brain 

regions with dense anatomical connections (Kurata, 1991; Tomassini et al., 2007), 

highlighting the critical role of caudal PMd as a bottleneck to translate the higher-

order movement planning for the adjacent generating circuit (M1) (Dum and Strick, 555 

2005; Ohbayashi et al., 2003). Consistently, a recent study has shown that inactivation 

of PMd in monkeys impaired the production of well-learned short motor sequences 

(Ohbayashi et al., 2016).  

Frontal family (Clusters 8-10): The large complex of rostral PMd, PMv, SMA, 

and pre-SMA formed the cluster 9 and 8 on the left and the right hemispheres, 560 

respectively (Fig. 6B). More rostral prefrontal areas were classified into the cluster 10 

bilaterally (Fig. 6B). While both showed significant model evidence for a mixture of 

hierarchical and non-hierarchical movement representations, the impact of cue-based 

relabelling on the noise-ceiling was the smaller in cluster 10 (Fig. 6E). These 

observations fit, at least partly, with the theory of rostro-caudal gradient of more 565 
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abstract to concrete representation (e.g. Botvinick, 2008; Koechlin and Jubault, 2006). 

Thus, although highly intermixed, cluster 9 and 8 are more likely to represent 

concrete movement representations, such as chunks or transitions, whereas cluster 10 

may contain more abstract representations involving the entire sequence. Such 

speculation is in line with the previous electrophysiological studies finding that 570 

neurons in pre-SMA, SMA and PMd specifically fire at the specific transition of 

successive movements (Ohbayashi et al., 2003; Ohbayashi et al., 2016; Tanji and 

Shima, 1994), and neurons in PFC, in turn, fire at the initiation of specific category of 

sequences (Shima et al., 2007).  

 Peripheral family (Clusters 1-4): The remaining clusters 1, 2, and 3 contained 575 

areas with relatively low level of model evidence and inter-subject representational 

consistency; bilateral precuneus, IPL (close to SMG), and the most posterior part of 

parietal regions, including pericarcaline sulcus (Figs. 4C and 6A). Activation of these 

areas has been reported to be related to sequence production and/or learning (Honda 

et al., 1998; Petit et al., 1996; Sakai et al., 1998). Interestingly, the spatial 580 

arrangement of the cluster 1 and 2 reflects the dense reciprocal connection between 

precuneus and other regions, including IPL and surrounding visual areas (Cavanna 

and Trimble, 2006; Margulies et al., 2009).  Although highly speculative, the gradual 

reduction of relabelling effect in clusters 3, 2, and 1 might reflect the cascade of 

information processing. Together with the fact that precuneus is often activated during 585 

episodic memory retrieval (Cavanna and Trimble, 2006), these “networks” might 

reflect the participants’ retrieval of each sequence given the visual cues.  
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Limitations & open issues: 

Our experiment was specifically designed to study how learned sequences are 590 

represented. Therefore, we are not able to track how the underlying representations 

change over the course of prolonged training. Furthermore, previous studies have 

demonstrated that sub-cortical structures, such as striatum, is one of the critical 

structures for the formation of movement chunks or habits (Graybiel, 1998; Graybiel 

and Grafton, 2015; Wymbs et al., 2012). Unfortunately, the spatial resolution of the 595 

current study (2.3 mm isotropic) was not optimal for applying MVPA to subcortical 

structures, resulting is relatively low noise-ceilings here (Supplementary Information, 

Fig. S5). An important future challenge is to understand the interplay between 

representations in sub-cortical and cortical structures in different stages of sequence 

learning. 600 

 

Conclusion:  

Our results provide evidence for a mixture of hierarchical and non-hierarchical 

sequence representations in premotor, prefrontal and parietal cortices. Using a model-

free approach we were able to derive the first map of the sequence representations, 605 

suggesting differential roles for each cortical area. The next challenge is to understand 

how these representations are formed over the course of learning.  
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Materials & Methods 

Participants  625 

All experimental procedures were approved by local ethics committee at the 

University College London (London, UK). We recruited 23 healthy, right-handed, 

neurologically healthy volunteers, who participated in the study after providing 

written informed consent. None of the participants was a professional musician. Of 

these, 8 participants were excluded, as they did not meet the performance criterion 630 

necessary to go on to the imaging session and post-test. The remaining 15 participants 

went through the imaging session, and the subsequent post-test.  Of these 15 

remaining participants, the data from 3 participants were excluded, as they  failed to 

achieve sufficient behavioural performance during scanning (57% correct vs. 81% 

correct for all other subjects). As a result, only the data from the remaining 12 635 

participants (5 females, 7 males, age: 23±4) was submitted to analysis. These 

participants reported 5.8±3.8 years of practice with musical instruments (e.g., piano, 

guitar, violin, etc.). 

 

Apparatus  640 

We used a custom-built five-finger keyboard device (Fig 1A). The keys of the device 

were immobile and equipped with force transducers that could measure isometric 

finger forces (Wiestler and Diedrichsen, 2013; Yokoi et al., 2017). The analog signals 

were passed through a penetration panel in the magnet room to avoid radio-frequency 

leakage. The signals were then low-pass filtered, amplified, digitized, and sent to PC 645 

for online task control and data recording. The forces were recorded at 200 Hz. 

During the training sessions, the participants placed only their right hand on the 

keyboard to perform the task, while in the scanner the fingers of their left hand were 
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placed on a mirror-symmetric device to monitor potential implicit mirror movement 

(Diedrichsen et al., 2013).  650 

 

Procedure (behavioural) 

Sequences production task  

We employed a discrete sequence production (DSP) task, in which participants were 

asked to produce a specific sequence of key presses as fast and accurate as possible.  655 

Over the course of 5-6 days (~2 hours per each day), participants learned to produce 8 

different sequences consisting of 11 presses from the memory as quickly as possible. 

All the sequences were matched with the number of finger presses used; 2 presses 

with thumb, middle, ring, and little fingers, and 3 presses with index finger, 

respectively. A finger press was detected when the force crossed a threshold of 3 N 660 

and a release was detected when it fell below the threshold. To successfully complete 

a finger press, the pressed finger needed to be pressed, while all other finger needed to 

be released.  

During the imaging task, a central fixation cross was presented. Each trial 

started with a 2.5s of the presentation of a visual cue (roman numerals I-VIII) that 665 

indicated the sequence to be executed. The cue presentation was followed by 0.5s of 

interval. Then, the fixation cross turned green, and 11 asterisks were presented, 

triggering the subject to produce the sequence (Fig. 3A). For each correct press the 

corresponding asterisks turned green - for each incorrect press red. Participants were 

instructed to complete the sequence even if an error has occurred. After each 670 

execution, feedback was given (during the ITI) by the colour of fixation cross (white: 

correct, red: one or more presses were incorrect, and blue: unfinished, but presses 

were correct).  
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Behavioural training 675 

In order to ensure consistent and stable chunk structure across individuals, we 

deliberately imposed chunk structure by manipulating how the participants build up 

their explicit memory of the sequences. In brief, we initially trained the participants 

with single “chunks” (Fig. 1B) until they could produce these chunks from memory, 

and then trained them with sequences that consisted of these chunks. Eight different 680 

chunks of 2 or 3 presses (cued by alphabets) were organized into 8 different 

sequences, every one of which consists of combination of 4 chunks (Fig. 1A). The 

associations between chunks and chunk cues (A, B, ~, H), and between sequences and 

sequence cues (I, II, ~, VIII) were randomised across participants. To dissociate the 

influence of the explicit training from subsequent biomechanical optimisation of the 685 

sequence, we assigned participants randomly to one of two groups, which were 

trained with different set of chunks. Five sequences were physically identical across 

the two groups (i.e., the same order of finger presses chunked differently, Fig. 1B). 

The sequences were designed to maximize the difference in the prediction of the 

different representations models (see below).  690 

Training consisted of 5 days before the imaging session. On day 1 and early 

blocks of day 2, subjects were specifically trained with individual chunks. We 

alternated cued trials in which the chunk cue (A-H) was presented together with the 

required digits, and uncued trials where only the chunk cue was presented. In each 

block, each chunk type was repeated for three times. Participants received a total of 695 

720 trials of chunk training. Starting on day 2, participants practices entire movement 

sequences. On cued trials, the sequence cue (I-VIII) and chunk cues were presented 

(Fig 1C), but no longer with finger cues. On uncued trials, participants needed to 
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retrieve the entire sequence from memory. In each block, each sequence type was 

repeated for three times. They received a total of 1512 trials of sequence training. 700 

 On the fifth day of the training session, after the practice session, the 

participants practiced the task in a supine position on a mock MRI scanner bed. For 

the half of the participants, we added the 6th day of additional familiarization session 

to ensure that they could correctly produce the sequences within 4 seconds. They were 

familiarized with the actual task in the scanner during on average 10±8	blocks of the 705 

familiarization session.  

 

Post-test session  

To confirm that the cognitively imposed chunk structures actually influenced 

participants’ motor representations, we conducted a post-test session within 1 week 710 

after the imaging session (1±0.6 days). In the session, all the digits were presented on 

the screen to release the participants from the necessity to recall any sequence from 

memory. No sequence cues were provided. Additionally, we assessed the 

generalization of learned chunks to unlearned sequences by additionally introducing 3 

new sets of sequences (Fig. 2D): New: completely novel sequences which did not 715 

contain any of the trained chunks; Chunk: sequences composed of trained chunks in 

untrained order; and Chunk + New: novel sequences that contained two learned 

chunks at random positions in the sequence. Each category except for Chunk, which 

had 16 different sequences, had 8 different sequences, resulting in totally 40 

sequences. Sequences were executed 4 times in a row. The order of sequences was 720 

randomized and all sequences were repeated for 4 times (16 executions per a 

sequence). The resultant 640 executions were divided into 16 blocks.  
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Imaging session: Behaviour 

During the imaging session, the participants were placed on the scanner bed with their 725 

knees slightly bent and supported by a wedge-shaped cushion. The two keyboards 

were tied together with plastic screws and stabilised on the participants’ lap with foam 

pads. Visual stimuli were presented on a back-projecting screen, and participants 

viewed the screen through the mirror mounted above the head coil. The presentation 

of the sequence cue (2.5 s), was followed by two execution phases for the same 730 

sequence (4 s for each). After this, the next trial started after an ITI of 0.5 s (Fig. 3A). 

The order of 8 sequences were randomized and each sequence had 3 trials (with 2 

executions each) within each functional imaging run. Each run also contained 4 

randomly interspersed rest phases (12 s). The number of correct trials for the run was 

presented in the screen at the end of the run. Each functional run lasted about 7 min 735 

and 9 runs per participant were conducted. Short breaks (up to a few minutes) were 

interleaved on the participants’ request.  

 

Imaging data acquisition  

Imaging sessions were conducted on a Siemens Trio 3T scanner system with a 32-740 

channel head coil at the Welcome Trust Centre for Neuroimaging (London, United 

Kingdom). B0-field maps were acquired at the beginning of the session to correct for 

inhomogeneities of the magnetic field (Hutton et al., 2002). Functional images were 

acquired for 9 runs of 135 volumes each, using a 2-D echo-planer imaging sequence 

(TR = 2.72 sec, in-plane acceleration factor = 2, resolution = 2.3mm isotropic with 0.3 745 

mm gap between each slice, and 32 slices interleaved). The slices were acquired in an 

axial orientation and covered the dorsal aspects of the brain, including most of the 

frontal, parietal, occipital lobes, and basal ganglia. The ventral aspects of the frontal 
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and temporal lobes, brainstem, and the cerebellum were not scanner. The first 5 

volumes of each run were discarded to ensure stable magnetization. A T1-weighted 750 

anatomical image was obtained using MPRAGE sequence (1mm isotropic resolution). 

 

Behavioural data Analysis   

Recorded force data were analyzed offline. Reaction time (RT) from the go cue, 

movement time (MT) starting from first finger press to the last finger release, inter-755 

press intervals (IPIs), and the number of incorrect presses at each execution were 

calculated. An IPI was defined as the interval between two consecutive press onsets. 

We obtained similar result when using the interval between two consecutive peak 

force times as a measure of IPI.   

 760 

Linear IPI modelling 

To assess the contribution of imposed chunk structure and other effects, we 

ran a linear regression analysis on the IPI data of the follow-up session. We treated 

the individual IPIs for all trials as a single data vector. We then built linear models to 

explain the variation in the IPIs. These models consisted of all possible combinations 765 

of the following components: 1) transition: the frequency of the specific digit 

transition (25 total) in training, the sign of the regressor was negative, so that higher 

frequencies would predict lower IPIs; 2) chunk: whether the IPI was within a chunk 

(coded as -1) or not (0); 3) sequence: whether the between-chunk transition was 

trained (-1) or not (0); 4) biomechanical difficulty: the mean IPI of that particular 770 

finger transition in a control experiment that tested for the execution speed of all 

possible 2- and 3-finger transitions, as will be reported in a separate paper, and 5) 

post-error slowing: whether the proceeding press was incorrect (1) or correct (0). All 
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models also included an intercept. All components, except for the intercept part, were 

then z-standardized before entering them into the regression analysis. For each model 775 

tested, we calculated AICc. For Fig 2F, the regression coefficients for the models 

were averaged by using the following Akaike-weight;  

𝑤$ =
exp −0.5𝛥AICc$
exp −0.5𝛥AICc$$

 

, where 𝑤$ is the Akaike-weight for the model i, 𝛥AICc$ is the difference in AICc 

between the model i and the best model. Such model averaging gives better prediction 780 

accuracy than using the best model alone (Burnham and Anderson, 2004). For 

averaging, the regression weights were treated as zero when a model combination did 

not contain those terms. The resultant model-averaged regression weights separately 

calculated for the participants were then submitted to the group statistical test. 

 785 

Imaging data analysis  

Preprocessing and first-level model 

Functional imaging data were pre-processed using SPM 8 

(http://www.fil.ion.ucl.ac.uk/spm/). Functional images were first slice-time-corrected, 

motion corrected, and then co-registered to the individual anatomical image. We also 790 

corrected for B0 inhomogeneity by using field map images when correcting the head 

motion. The data were then submitted to a 1st-level GLM to estimate the size of the 

evoked activity for each sequence in each run. We used the standard high-pass 

filtering with a cut-off frequency of 128s before GLM estimation. We applied robust-

weighted least square estimation (Diedrichsen and Shadmehr, 2005) to reduce the 795 

effect of any motion-induced artefact.  

Each trial was modelled as a boxcar function, starting at the presentation of the 

go-cue with a length of 7.5 s for each execution. The boxcar function was then 
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convolved with a standard hemodynamic response function. In the GLM used for 

subsequent analysis we included the activity of both correct and incorrect trials in the 800 

analysis. This was justified by two reasons. First, even if participants made a mistake, 

they were instructed to complete the sequence. This often happened automatically, as 

a substantial number of errors arose from omissions, in which the participants did not 

apply enough force to have the press registered. Secondly, given that each trial 

consisted of two executions of the sequences, many trials consisted of a correct and 805 

incorrect execution. Given the low temporal resolution of fMRI, we had little power 

to resolve this. An alternative analysis in which we excluded error trials from the 

activity estimation yielded similar, albeit noisier results.  

 

Surface-based analyses  810 

Our primary focus of analysis was cortical surface. We first reconstructed individual 

cortical surfaces (i.e., the pial and white-grey matter surfaces) from the anatomical 

image by using Freesurfer software (Fischl et al., 1999). The reconstructed cortical 

surfaces were then registered to a common symmetrical template (“fsaverage_sym”) 

(Greve et al., 2013). Subsequently, we defined the surface-based searchlight 815 

(Oosterhof et al., 2011) as small circular patches that contains 160 voxels 

(approximately 11 mm radius) centred on each node which was defined on the 

reconstructed cortical surface. The activity patterns of these 160 voxels for each 

centre were submitted to the multivariate analysis, and the result from each 

searchlight was re-assigned to the centre (for detail, see Multivariate fMRI analyses). 820 

The overall result was then used to restrict the regions of interest for further analysis.  

For detailed testing of representational models, we defined a discrete 

searchlight parcellation. In contrast to the continuous searchlight map, we aimed to 
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define a reduced set of only partly overlapping searchlights. This was done for 

computational efficiency for model testing, as well as for the model-free clustering 825 

approach. The searchlight centres were chosen only within regions in which the 

continuous searchlight analysis showed an average pattern distance across the 

sequence conditions greater than 0.03 (Fig. 3C). Within this region, we defined 

hexagonally-arranged searchlight centres on the flattened cortical surface coordinate 

for both hemispheres (using a 7 mm of spacing). We then defined a circular area 830 

around each surface nodes, such that each searchlight contained 150 voxels. This 

definition resulted in 465 (302 for the left hemisphere) partly overlapping tiles on the 

cortical surface (Fig. S1).  

 

Multivariate fMRI analyses overview 835 

For each of the defined searchlight, the beta-weights for each sequence type for each 

imaging run were extracted. The resultant beta-weights across voxels were then 

spatially pre-whitened by using multivariate noise-normalization with a regularized 

estimate of the spatial noise-covariance matrix (Walther et al., 2016). As a result, the 

activity estimates across voxels became approximately uncorrelated with respect to 840 

the noise (Diedrichsen and Kriegeskorte, 2017). We first took an RSA-approach to 

restrict the regions where the sequences are encoded. We then applied PCM to the 

regions with substantial sequence encoding to assess detailed content of sequence 

encoding. 

The key quantity for both of these representational analysis techniques is the 845 

second moment (G) of the patterns for the sequences. The second-moment matrix is a 

covariance matrix, where the mean activity for each condition (across voxels) is not 

subtracted out (Diedrichsen and Kriegeskorte, 2017; Diedrichsen et al., 2017). Thus, 
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when two patterns for sequence i and sequence j are similar to each other, the 

corresponding i,jth element of G has a high value. For RSA, we computed the cross-850 

validated estimate of G and derived from this cross-validated pattern distances. For 

PCM, we explicitly modelled the structure of G and then evaluated the likelihood of 

the data under these different models.  

 

Overall sequence encoding 855 

 To define the cortical region which reliably encode different sequences, we assessed 

the discriminability of the elicited activity patterns on the surface-based searchlight. 

For this purpose, we first calculated a cross-validated estimate of the second moment 

matrix 𝐆 as, 

𝐆 =
1
𝑀 𝐔6𝐔~68 /𝑃

;

6<=
, 860 

where M is the total number of imaging runs, 𝑃 is the number of voxels within a 

searchlight, 𝐔6 is estimated pre-whitened activity pattern for the m-th imaging run, 

and 𝐔~6 is the estimate of the pattern independent of the m-th imaging run. Both of 

𝐔6 and 𝐔~6 have size of 8×𝑃. We then computed a cross-validated distance estimate 

from 𝐆. The squared cross-validated Mahalanobis distance estimator (crossnobis for 865 

short, Diedrichsen et al., 2016), between activity estimates for sequence 1, 𝐮=, and for 

sequence 2, 𝐮A, can be calculated as, 

𝑑=,AA = 𝐆=,= − 2𝐆=,A + 𝐆A,A, 

where  𝐆$,E is the i,jth element of  𝐆. We calculated the mean of all pair-wise 

crossnobis distance estimators across the sequences at each searchlight (Fig. 4). The 870 

crossnobis estimator is unbiased – meaning it can be used to directly test whether a 

distance is larger than zero. Finding consistently positive distance estimates therefor 
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implies that the two condition activity patterns differ from each other more than 

expected by chance. 

 875 

Model-based approach  

The above analysis is sensitive to any possible differences between the patterns 

associated with the different sequences. To dissect different forms of sequence 

representation, we used pattern component modelling (PCM) that allows to model the 

covariance structure (second moment matrix) across the activity patterns according to 880 

different representational hypotheses (Diedrichsen and Kriegeskorte, 2017; 

Diedrichsen et al., 2011; Diedrichsen et al., 2017; Yokoi et al., 2018). For our 

experiment, we defined the following five representational model components, 

including a null-model which predicts no difference across the sequences.  

 885 

Sequence model 

This model component assumes that each sequence is associated with unique activity 

pattern with common variance,  

𝐔 = 𝐌GHI𝐔GHI, 

where the weighting matrix 𝐌GHI is an identity matrix (i.e., 𝐌GHI = 𝐈K) and the 890 

pattern 𝐔GHI is uncorrelated (i.e., 𝐔GHI𝐔GHIL = 𝜎GHIA 𝐈K). Therefore, the predicted second 

moment matrix has the simple form of, 

𝐆GHI = 𝜎GHIA 𝐈. 

 

Chunk model  895 

The chunk model assumes that the activity for each sequence is a combination of 

activities associated with the chunks it contains, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 17, 2018. ; https://doi.org/10.1101/419754doi: bioRxiv preprint 

https://doi.org/10.1101/419754


 42 

𝐔 = 𝐌NOPQR𝐔NOPQR, 

where the weighting matrix 𝐌NOPQR specifies the membership of chunks used in each 

sequence (e.g., 𝐌NOPQR
= = 1,1,1,1,0,0,0,0 , Fig. 1b), and the pattern 𝐔NOPQR is also 900 

assumed to be uncorrelated (i.e., 𝐔NOPQR𝐔NOPQRL = 𝜎NOPQRA 𝐈K). Therefore, the predicted 

second moment matrix has the specific form that reflects the composition of 

sequences in terms of chunks, 

𝐆GHI = 𝜎NOPQRA 𝐌NOPQR𝐌NOPQR
L . 

 905 

1st-finger model 

We have previously shown that differences in the sequence-specific activity pattern of 

M1 and S1 can we well explained by the fact that the first finger press shows a 

particularly strong activation compared to the subsequent finger presses (Yokoi et al., 

2018). Because each sequence contained each finger equally often (and because the 910 

peak force of all finger presses was approximately the same), we can assume that the 

only thing that would differentiate these sequences in a region that only encodes 

single-finger movements, is which finger starts the sequence. The first-finger model 

therefore characterizes the part of the activity pattern that is different between 

sequences as a scaled version of the pattern associated with the first finger, 915 

𝐔 = 𝐌=S𝐔GS, 

where the 8×5 weighting matrix 𝐌=S has a scaler 𝜎=S at the column corresponds to 

the starting finger of each sequence (row), and the 𝐔GS is the activity patterns 

associated with single finger presses. As we did not measure the single finger activity 

𝐔GS for the current experiment, we utilized the fact that the second moment of single 920 

finger patterns 𝐆GS in M1 and S1 is well-characterised by the natural statistics of hand 

usage (Ejaz et al., 2015). The predicted second moment matrix is therefore, 
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𝐆=S = 	𝐌=S 𝐔GS𝐔GSL 𝐌=S
L = 𝐌=S𝐆GS𝐌=S

L = 𝐌=S𝐆QG𝐌=S
L , 

where 𝐆QG is a second moment matrix predicted from the natural statistic of hand 

movement (Ejaz et al., 2015). Replacing 𝐆QG with the second moment matrices for 925 

single finger representation that was derived from an independent experiment (Yokoi 

et al., 2018) did not affect the results. The second moment matrix predicted by this 

model therefore reflects which sequences share the first finger, and how similar the 

respective finger representations are to each other. 

 930 

Two-finger transition model 

As an alternative to the hierarchical representation of sequences, this transition model 

assumes that every sequence is represented as a combination of specific transitions 

that are defined continuously between each pair of movements (e.g., sequence 1-3-2-

4-1-5 is composed of transitions 1-3, 3-2, 2-4, 4-1, and 1-5). Similar to the previous 935 

models, the activity patterns are modelled as, 

𝐔 = 𝐌UVWQG𝐔UVWQG, 

where the weighting matrix 𝐌UVWQG describes which of specific transitions occur in 

each sequence. The pattern 𝐔UVWQG are assumed to be uncorrelated with each other, but 

the strength that a transition i is represented was assumed to be proportional to the 940 

frequency of occurrence in training fi (i.e., 𝐔UVWQG𝐔UVWQGL = 𝜎UVWQGA diag f=, … , f^ ). The 

predicted second moment matrix is therefore,  

𝐆UVWQG = 𝜎UVWQGA 𝐌UVWQG𝐅𝐌UVWQG
L  

𝐅 = diag f=, … , f^ . 

Dropping the assumption of training-dependent strength of transition representations 945 

(and hence setting F to the identity matrix) did not change the results qualitatively.  
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Null-model 

As a baseline to evaluate each model, we defined a null-model that hypothesized no 

difference between any of the sequence patterns. For this, the hypothesized second 950 

moment matrix was  

𝐆` = 𝟎K, 

where 𝟎K is a 8×8 matrix whose elements are all 0. 

 

Noise-ceiling model 955 

In addition to the above models, we also fitted a fully-flexible noise-ceiling model to 

assess the maximally explainable information shared across individual. Here, we used 

a naïve noise-ceiling model that uses the empirical, cross-validated estimate of the 

second moment matrix as the predicted second moment matrix; 

𝐆^b = 𝐆. 960 

We fitted this noise-ceiling model separately for the two groups, as these groups of 

participants practiced partly different set of sequences with different chunking 

structure. We then combined the evidence for both groups for evaluation. 

 

Model design 965 

The prediction of each model was determined for each group separately, as 

they differed in both sequences and chunks. Because the two groups had 5 sequences 

that were identical, but were chunked differently, difference in the representational 

structure across these shared sequences could be specifically attributed to the 

difference at the level of the chunk representation.  970 

Importantly, the activity estimates for each trial contained trials that either 

contained an error, or were not completed (see First-level modelling). We included 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 17, 2018. ; https://doi.org/10.1101/419754doi: bioRxiv preprint 

https://doi.org/10.1101/419754


 45 

these trials, because even for these incorrect trials, most of the sequence was produced 

correctly. To account for the fact that the beginning of the sequence was more often 

executed than the end of the sequence, we weighted each element of the 975 

representation (e.g., the first, second, third and fourth chunks or the first to tenth 

transitions) by the relative %-correct with which this element was produced. For 

example, the %-correct of chunks were on average 96, 94, 86, and 82%, hence each 

chunk element in the PCM model was weighted accordingly, which slightly changed 

the structure of corresponding weighting matrix. 980 

 

Model evaluation  

First, we fitted the all 16 combinations of above models (i.e., first-finger, 2-finger 

transition, chunk, and entire sequence models). As each of the combination models 

had different number of free parameters, i.e., combination weights, we evaluated the 985 

models using leave-one-subject-out cross-validation to prevent overfitting 

(Diedrichsen et al., 2017). Because the combination weights should be the same for 

the same search region (i.e., searchlight) across the two groups of participants, they 

were constrained to be the same across the two groups. We then used the resultant 

cross-validated log-likelihood (ℒ6) for each model m as an estimate of the model 990 

evidence. The log Bayes factor (BF) of model A over model B can then be calculated 

as 

log BFhi = log ℒh − log ℒi. 

The evidence for each of the model components in the context of all other 

components can then be calculated (as for the behavioral analysis) using Bayesian 995 

model averaging. The log BF for each component is then the sum of the posterior 

probabilities for the models that contained the component (c=1) versus the sum of the 
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posterior probability for the models that did not (c=0) (Burnham and Anderson, 2004; 

Shen, 2018).  

log BFN = log

1
𝑁6:N<=

exp log ℒ66:N<=

1
𝑁6:N<`

exp log ℒ66:N<`

 1000 

To assess the evidence for the union of two components models, we summed the 

posterior probability of all models that contained either or both of these components. 

For visualization, except for the Figure 4C, we employed a typical threshold for the 

logBF (logBF=1, Kass and Raftery, 1995).  

 1005 

Model-free approach 

As a complement of our model-based approach, we also applied a model-free 

clustering of cortical surface regions based on their representational structure. As an 

input data, we used the crossnobis distance estimator (see Overall sequence encoding) 

for all the 28 pairs across the 8 sequences calculated at each searchlight (i.e., input 1010 

data is an N-by-28 matrix, where N is the number of searchlight centers). We 

calculated an N-by-N similarity matrix across the searchlight centers for each 

participant by first calculating correlation distance d=(1-r) across the nodes. We chose 

the correlation distance in order to emphasize the profile of dissimilarity, rather than 

the magnitude. The resultant correlation distances were then transformed into 1015 

similarity using a Gaussian similarity transformation;  

𝑤 = exp −
𝑑A

2𝜎A , 

where w is the similarity, d the correlation distance, and 𝜎 the width of Gaussian. The 

width was determined individually as lower 5 percentile value of the correlation 

distances. We then applied the spectral clustering algorithm (Von Luxburg, 2007) to 1020 
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the group-averaged-similarity matrix with Jordan-Weiss normalization (Ng et al., 

2002). To assess the similarity across the estimated clusters, we further applied 

agglomerative hierarchical clustering (Ward’s method) to the resultant cluster-average 

of Laplacian eigenvectors. 

 1025 

Inferential Statistics 

Behavioural data analysis 

To compare within- and between-chunk intervals, we used paired t-test. To test group-

specificity of press-interval patterns, pairwise correlation coefficients (Pearson’s r) 

across the subjects (within- and across-group) were first z-transformed and then 1030 

submitted to a two-sample t-test. The individual AIC model-averaged regression 

weights were tested by one-sample t-test. 

Imaging analysis  

We applied a group-level Bayesian analysis (Rigoux et al., 2014; Rosa et al., 2010; 

Stephan et al., 2009) on the log-Bayes factor data of the participants (spm_bms() 1035 

function implemented in the SPM 12). Group-log-Bayes factor map was thresholded 

in terms of the protected exceedance probability (PXP) by 0.75 which is the posterior 

probability of a model being greater than 0.5 (i.e., probability that an effect is present 

more than a half of subjects) (Rosa et al., 2010). All the statistical analyses were 

performed on MATLAB (Mathworks, Inc.).   1040 
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