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Abstract

To make decisions in a social context, humans try to predict the behavior of others, an
ability that is thought to rely on having a model of other minds. Having such a model,
known as a theory of mind, allows one to infer the intentions of others, simulate their beliefs,
and predict their possible actions, taking into account the fact that others too have a sim-
ilar theory of mind. Here we show that Bayesian inference of other minds explains human
decisions in a group decision making task known as the Volunteer’s Dilemma. Our Bayesian
model incorporates the effect of ones own actions on future rewards that could accrue to the
social group one belongs to. Quantitative results from our normative model of human social
decision making suggest that humans maintain a model of other minds and use this model
to infer the future actions of others when deciding on their current action. We show that our
model explains human data significantly better than model-free reinforcement learning and
other previous models.

1 Introduction

The importance of social decision making in human behavior has spawned a large body of research
in social and decision neuroscience (Sanfey, 2007; Camerer, 2011; Henrich et al., 2005; Behrens
et al., 2009; Rilling and Sanfey, 2011; Dunne and ODoherty, 2013; Ruff and Fehr, 2014; Joiner
et al., 2017). Human behavior relies heavily on predicting future states of the environment under
uncertainty and choosing appropriate actions to achieve a goal. In a social context, the degree
of uncertainty about the possible outcomes increases dramatically because the behavior of other
human beings can be much more difficult to predict than the physics of the environment. There
are two major approaches for action selection in decision making: ”model-free” and ”model-based”
(Dayan, 2012; Sutton and Barto, 1998; Daw and Dayan, 2014). In the model-free approach, the
decision maker performs actions based on the past history of actions and rewards. At each step,
the chosen action is the one with the maximum average (or total) reward obtained from previous
trials (McAllister, 1991; Mookherjee and Sopher, 1997; Dickinson and Balleine, 2002). In this
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approach, there is a direct link between choices and past rewards. On the other hand, in model-
based decision making, the subject learns a model of the environment, updates the model based
on observations and rewards, and chooses actions based on the current state of the model (Daw
et al., 2011; Culbreth et al., 2016). As a result, the relationship between rewards received and
current choice is indirect. Besides the history of rewards received, the learned model can include
other factors such as potential future rewards and more general rules about the environment.
Therefore, the model-based approach is more flexible than model-free decision making (Doll et al.,
2012; Dolan and Dayan, 2013). On the other hand, model-based decision making requires more
cognitive resources, for example, for simulation of future events. The basic assumption underlying
both approaches, and decision making in general, is that the decision maker seeks to maximize a
utility function (Glscher et al., 2010; Seo and Lee, 2017).

The model-free approach is similar in social versus non-social decisions, involving in both cases
a mapping from states to choices based on reward history. In the model-based approach, the main
difference is that in social decisions, the learned model includes models for other humans. Having
a theory of mind (ToM, i.e, the ability to model others’ minds) allows one to infer intentions
of others, simulate their beliefs and predict their possible actions, taking into account the fact
that they too have a similar theory of mind (Wimmer and Perner, 1983; Amodio and Frith,
2006). Having a theory of mind requires the ability to handle uncertainty about others’ intentions
and behavior, thereby introducing a need for probabilistic reasoning. Such reasoning involves
combining probabilistically any prior knowledge about others (based on past experiences with
them) with their more recent actions to update one’s belief about their intentions and impending
actions. Additionally, assuming others have similar reasoning abilities as our own, one must also
take into account others’ beliefs about our own intentions and actions. Thus, in multiple-round
social decision making tasks, an individual must simulate the effect of one’s own decision on the
future decisions of others (Coricelli and Nagel, 2009; Yoshida et al., 2010; Hill et al., 2017; Nagel
et al., 2018).

The majority of theoretical frameworks used to model feedback-dependent changes in deci-
sion making strategies, such as reinforcement learning (RL) and related Markov Decision Process
(MDP) models, assume that optimal decisions can be determined from the state of the decision
maker’s environment and that this state is fully observable to the decision maker (Costa and
Averbeck, 2013; Ligneul et al., 2016; O’doherty et al., 2017). Clearly, these assumptions do not
capture the reality and complexity of human social decision making. One powerful approach to
studying social decision making has been to use tasks developed in behavioral economics using the
theoretical framework of game theory (Hampton et al., 2008; Coricelli and Nagel, 2009; Yoshida
et al., 2010). This approach has proven successful for studying social decision-making in laboratory
settings and to probe the underlying neural systems using fMRI or electrophysiology.

Here, we adopt a different, more general theoretical approach based on the hypothesis that
the brain performs Bayesian inference based on observations using probabilistic representations
of the world and utilizes the results of Bayesian inference to choose optimal actions. Our ap-
proach is grounded in the rigorous theoretical framework of Partially Observable Markov Decision
Processes (POMDPs) developed in the field of Artificial Intelligence for solving tasks involving
decision making under uncertainty (Kaelbling et al., 1998). In POMDP models, it is assumed
that the state dynamics are Markov (next state only depends on the current state) and the agent
cannot directly observe the state. Instead, it must use its sensors to obtain observations and
maintain a probability distribution (”belief”) over the set of possible states, based on the obser-
vations, observation probabilities, and the underlying dynamics. An exact solution to a POMDP
yields the optimal action for each possible belief over possible states. The optimal action maxi-
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mizhttps://v2.overleaf.com/project/5b96b54298d6c075a131c1e4es (or minimizes) the expected re-
ward (or cost) of the agent over a possibly infinite horizon. The mapping of each possible belief to
an optimal action is known as an optimal policy for the agent for interacting with its environment.

In this article, we investigate whether POMDPs can provide a formal probabilistic framework
for understanding human behavior in the context of group decision making tasks involving rea-
soning about others’ intentions. Our work builds on previous research on optimal inference about
a hidden variable in the environment in perceptual decision making and simple social decision
making tasks involving two players (Dayan and Daw, 2008; Rao, 2010; Huang and Rao, 2013;
Khalvati and Rao, 2015; Hula et al., 2015; Baker et al., 2017). We extend this line of research to
tasks involving reasoning about the behavior of groups of several people. A preliminary version
of this approach was presented in Khalvati et al. (2016).

Here we show that when success in a group decision making task requires accurate prediction of
others’ intentions and long-term outcomes, human behavior is very similar to a POMDP strategy
based on optimal inference about others’ beliefs. We compare the POMDP model to a model-
free method and other state-of-the-art methods for fitting human behavior in our social decision
making task. Unlike the POMDP model, these methods are not normative and are descriptive
models that derive the action of a player in the current round from their actions in previous
rounds (Fischbacher et al., 2001; Wanga et al., 2012; Wunder et al., 2013). We focus specifically
on the Volunteer’s Dilemma task, wherein a few individuals endure some costs to benefit the whole
group (Olson, 1971; Diekmann, 1985; Archetti and Scheuring, 2011). Examples of the task include
guarding duty, blood donation, and stepping forward to stop an act of violence in a public place
(Darley and Latane, 1968). Volunteering leads to a dilemma wherein the decision that maximizes
an individual’s utility differs from the strategy which maximizes benefits to the group to which
the individual belongs. Moreover, in the Volunteer’s Dilemma, not only is the common goal not
reached when there are not enough volunteers, but having more than the required number of
volunteers leads to a waste of resources. As a result, an accurate prediction of others’ intentions
based on one’s beliefs is crucial to make accurate decisions. In order to mimic the Volunteer’s
Dilemma in a laboratory setting, we use the binary version of a multiround Public Goods Game
(PGG) (Fehr and Gachter, 2000; Krajbich et al., 2009; Hauert et al., 2002). In the classical PGG
task, the group reward is a linear function of total contribution from group members. In each
round of the binary PGG task we use, at least k players (out of N total players, N > k) need to
contribute in order to generate a bigger reward for the entire group (Palfrey and Rosenthal, 1984;
Diekmann, 1985; Archetti, 2009b,a; Archetti and Scheuring, 2011).

We show that the traditional POMDP model can be extended to social decision making sce-
narios by incorporating models of other agents, allowing us to make testable predictions about
how the brain makes inferences about others’ behaviors. Our POMDP model not only explains
actions of subjects, but also the underlying computational mechanism behind those actions. Also,
in contrast to other methods, when fit to a subject’s behavior, it can predict other events during
the experiment such as success or failure of producing the group reward.

2 Results

2.1 Human Behavior in Public Goods Game

Participants were 29 adults (mean age 22.97 years old ± 0.37, 14 women). Based on self-reported
questionnaires, none of them reported a history of neurological or psychiatric disorders. This
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Figure 1: Multi-Round Public Goods Game (PGG). The figure depicts the sequence of
computer screens a subject sees in one round of the PGG. The subject is assigned 4 other players as
partners and each round requires the subject to make a decision: Keep 1 monetary unit (i.e., free-
ride) or contribute. The subject knows whether the threshold to generate public goods (reward
of 2 MU for each player) is 2 or 4 contributions (from the 5 players). After the subject acts, the
overall outcome of the round is revealed (success or failure in securing the 2 MU group reward)
but each individual player’s actions remain unknown.

study was approved by the Institutional Review Board of the local ethics committee from Parma
University (IRB no. A13-37030), and all participants gave their informed written consent. We
analyzed the behavioral data of 12 Public Goods Games (PGGs) in which participants played 15
rounds of the game within the same group of N players (N = 5); feedback was given at the end
of every trial. Figure 1 depicts one round of the PGG task. In each session, the subject played
with a different group of players. No communication among players was allowed before or during
the experiment. At the beginning of each round, 1 monetary unit (MU) was endowed (E) to each
player. In each round, a player could choose between two options: contribute or free-ride.

Contribution had a cost of C = 1 MU, implying that the player could choose between keeping
their initial endowment or giving it up. Public goods were produced as the group reward (G =
2 MU to each player) if and only if at least k players each contributed 1 MU. k was set to 2 or
4 randomly for each session and conveyed to group members before the start of the session. The
resultant reward after one round was E - C + G = 2 MU for the contributor and E + G = 3
MU for the free-rider when public good was produced (the round was a SUCCESS). On the other
hand, the contributor had E - C = 0 MU and the free-rider has E = 1 MU when no public good
was produced (the round was a FAILURE). Although subjects were told that they were playing
with other humans, in reality, they were playing with a computer that generated the actions of all
the other N − 1 = 4 players based on an algorithm (see Methods and Materials).

As shown in Figure 2a, subjects contributed significantly more when the number of required
volunteers was higher with an average contribution rate of 55% (SD = .31) for k = 4 in comparison
to 33% (SD = .18) for k = 2 (one-tailed paired sample t-test, t = 3.94, df = 29, p = 0.00025 ,
95% CI difference = [0.08, 0.36]). In addition, Figure 2b shows that the probability of generating
public good was significantly higher when k = 2 with a SUCCESS rate of 87% (SD = 0.09)
compared to 36% (SD = .29) when k = 4 (one-tailed paired sample t-test, t = 10.08, df = 29,
p = 4.0× 1011, 95% CI difference =[0.39, 0.62]) (Figure 2b). All but 6 of the subjects contributed
more when k = 4 (Figure 2c). Of these 6 players, 5 chose to free-ride more than 95% of the time.
Also, SUCCESS rate was higher when k = 2 for all players (Figure 2d).

Average contribution did not change significantly as subjects played more games. In each
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(a) (b) (c) (d)

Figure 2: Human Behavior in the PGG Task (a) The average contribution probability
across subjects is significantly higher when the task requires more volunteers (k) to generate the
group reward. (b) Average probability of SUCCESS across all subjects in generating the group
reward is significantly higher when k is lower. (c) Average probability of contribution for each
subject for k = 2 versus k = 4. Each point represents a subject. Subjects tend to contribute more
often when the task requires more volunteers. (d) Average SUCCESS rate for each subject was
higher for k = 2 versus k = 4.

condition, most of the players played at least 5 games (27 for k = 2 and 26 for k = 4). For k = 2,
in their first game, the average contribution rate of players was .37 (SD = .25) while in their fifth
game, it was .30 (SD = .24) (one-tailed paired sample t-test, t = 1.34, df = 27, p = 0.095). When
k = 4, the average contribution rate was .57 (SD = .30) in the first game and .61 (SD = .35) in
the fifth game (one-tailed paired sample t-test, t = .69, df = 26, p = 0.25).

2.2 Probabilistic Model of Theory of Mind for the Public Goods Game

Consider one round of the PGG task. A player can be expected to choose an action (contribute
or free ride) based on their prediction of the number of contributions they expect the others to
make in that round. Since the actions of individual players remain unknown through the game,
the only observable parameter is the total number of contributions. One can therefore model this
situation using a single random variable θ, denoting the average probability of contribution by any
group member. With this definition, the total number of contributions by all the other members
of the group can be expressed as a binomial distribution. Specifically, if θ is the probability of
contribution by each group member, the probability of observing m contributions from the N − 1
others in a group of N people is:

P (m|θ) =

(
N − 1

m

)
θm(1− θ)N−1−m. (1)

Using this probability, a player can calculate the expected number of contributions from others,
compare with k and decide whether to contribute or free-ride accordingly. For example, if θ is
very low, there is not a high probability of observing k − 1 contributions by others, implying free
riding is the best strategy.

There are two important facts that make this decision making more complex. First, the player
does not know θ. θ must be estimated from the behavior of the group members. We assume that
there is a probability distribution over θ in the player’s mind, representing their belief about the
cooperativeness of the group. Each player starts with an initial probability distribution, called
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the prior belief about θ and updates this belief over successive rounds based on the actions of the
others. The prior belief may be based on the previous life experience of the player, or what they
believe others would do through fictitious play (Brown, 1951). For example, the player may start
with a prior belief that the group will be a cooperative one but change this belief after observing
low numbers of contributions by the others. Such belief updates can be performed using Bayes’
rule to invert the probabilistic relationship between θ and the number of contributions given by
Equation 1.

A suitable prior probability distribution for estimating the parameter θ of a Binomial dis-
tribution is the Beta distribution, which is itself determined by two (hyper) parameters α and
β:

θ ∼ Beta(α, β).

Beta(α, β) : P (x|α, β) ∝ xα−1(1− x)β−1
(2)

Starting with a prior probability Beta(α0, β0) for θ, the player updates their belief about θ
after observing the number of contributions from others in each round through Bayes’ rule. This
updated belief is called the posterior probability of θ. The posterior probability of θ in each round
serves as the prior for the next round. With the Beta distribution as the prior and the Binomial
distribution as the distribution of observations (here, the number of contributions), the posterior
probability distribution remains a Beta distribution (details in Methods and Materials) (Murphy,
2012). In our case, with a prior of Beta(αt−1, βt−1) after observing c contributions (including one’s
own when made) in round t, the posterior probability of θ becomes Beta(αt, βt) where αt = αt−1+c
and βt = βt−1 +N − c. Note that we include one’s own action in the update of the belief because
one’s own action can change the future contribution level of others.

Intuitively, α represents the number of contributions made thus far and β the number of
free rides. α0 and β0 (that define prior belief) represent the player’s a priori expectation about
the relative number of contributions versus free-rides respectively before the session begins. For
example, when α0 is larger than β0, the player starts the task with the belief that people will
contribute more than free ride. Large values of α0 and β0 imply that the player comes to the
game with a lot of prior observations about other players and therefore, the player’s belief will not
change significantly after one round of the game when updated with the relatively small number
c as above.

Decision making in the PGG task is also made complex by the fact that the actual cooper-
ativeness of the group itself (not just the player’s belief about it) may change from one round
to the next: players observe the contributions of others and may change their own strategy for
the next round. For example, players may start the game making contributions but change their
strategy to free riding if they observe a large number of contributions by others. We model this
phenomenon using a parameter γ ≤ 1, which serves as a discount factor for the prior: the prior
probability for round t is modeled as Beta(γαt−1, γβt−1), which allows recent observations about
the contributions of other players to be given more importance than observations from the more
distant past. Thus, in a round with c total contributions (including the subject’s own contribution
when made), the subject’s belief about the cooperativeness of the group as a whole changes from
Beta(αt−1, βt−1) to Beta(αt, βt) where αt = γαt−1 + c and βt = γβt−1 +N − c.

2.3 Action Selection

How should a player decide whether to contribute or free ride in each round? One possible
strategy is to maximize the reward for the current round by calculating the expected number of
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Figure 3: POMDP Model of the Multi-Round Public Goods Game. The subject does
not know the average probability of contribution of the group. The POMDP model assumes the
subject maintains a probability distribution (”belief”) about the group’s average probability of
contribution (denoted here by θ) and updates this belief about θ after observing the outcome of
each round. The POMDP model chooses an action that maximizes total expected reward across
all rounds based on the current belief and the consequence of the action on group behavior in
future rounds.

contributions by others based on the current belief. Using equation 1 and the prior probability
distribution over θ, the probability of seeing m contributions by others when the belief about the
cooperativeness of the group is Beta(α, β) is given by:

P (m|α, β) =

∫ 1

0

P (m|θ)P (θ|α, β)dθ ∝
∫ 1

0

(
N − 1

m

)
θm(1− θ)N−1−mθα−1(1− θ)β−1dθ

∝
(
N − 1

m

)∫ 1

0

θα+m−1(1− θ)β+N−m−2dθ
(3)

One can calculate the expected reward for the contribute versus free-ride actions in the current
round based on the above equation. Maximizing this reward however is not the best strategy.
As alluded to earlier, the actions of each player can change the behavior of other group members
in future rounds. The optimal strategy therefore is to calculate the cooperativeness of the group
through the end of the session and consider the reward over all future rounds in the session before
selecting the current action. Such long-term reward maximization based on probabilistic inference
of hidden state in an environment (here, θ, the probability of contribution of group members) can
be modelled using the framework of Partially Observable Markov Decision Processes (POMDPs).
Further details can be found in Methods and Materials but briefly, to maximize the total expected
reward, Markov decision processes start from the last round, calculate the reward for each action
and state, and then step back one time step to find the optimal action for each state in that round.
This process is repeated in a recursive fashion. Figure 3 shows a schematic of the PGG experiment
modeled using a POMDP.
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(a) (b)

Figure 4: Optimal Actions prescribed by the POMDP Policy as a Function of Belief
State. Plot (a) shows the policy for k = 2 and plot (b) for k = 4. The purple regions represent
those belief states (defined by αt and βt) for which free-riding is the optimal action; the yellow
regions represent belief states for which the optimal action is contributing. These plots confirm
that the optimal policy depends highly on k, the number of required volunteers. The policies
make sense intuitively: for example, when the contribution rate from others is so low that getting
the group reward is unlikely, it makes sense to free-ride (regime of large βt, small αt in (a)) and
likewise when the contribution rate is so high that a contribution from the subject is unnecessary
(regime of large αt, small βt in (a)). (For the two plots, the decay rate was 1 and t was 9).

As an example of the POMDP model’s ability to select actions for the PGG task, Figures 4a
and 4b show the best actions for a given round (here, round 9) as prescribed by the POMDP
model for k = 2 and k = 4 respectively (the number of minimum volunteers needed); the best
actions are shown as a function of different belief states the subject may have, expressed in terms
of the different values possible for belief parameters αt and βt. This mapping from belief to actions
is called a policy.

We find that the POMDP policy aligns with our intuition about action selection in the Volun-
teer’s Dilemma task. A player chooses to free ride for two reasons: (i) when the cooperativeness
of the group is low and therefore there is no benefit in contributing, and (ii) when the player
knows there are already enough volunteers and contributing leads to a waste of resources. The
two purple areas of Figure 4a represent these two conditions for k = 2. The upper left part
represents large αt and small βt, implying a high contribution rate, while the bottom right part
represents small αt and large βt implying a low contribution rate. When k = 4, all but one of
the 5 players must contribute for group success - this causes a significant difference in the optimal
POMDP policy compared to the k = 2 condition. As seen in Figure 4b, there is only a single
region of belief space for which free-riding is the best strategy, namely, when the player does not
expect contributions by enough players (relatively large βt). On the other hand, as expected, this
region is much larger compared to the same region for k = 2 (see Figure 4a). The POMDP model
predicts that free-riding is not a viable action in the k = 4 case (Figure 4b) because not only does
this action require all the other 4 players to contribute in order to generate the group reward in
the current round, but such an action also increases the chances that the group contribution will
be lower in the next round, resulting in lesser expected reward in future rounds.

In a game with a predetermined and known number of rounds, even if the player considers
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the future, one might expect the most rewarding action in the last rounds to be free riding as
there is little or no future to consider. However, our data did not support this conclusion. Our
simulations using the POMDP model showed that considering a much longer horizon (50 rounds)
instead of just 15 rounds gave a much better fit to the subjects’ behavior. Such a long horizon
for determining the optimal policy makes the model similar to an infinite horizon POMDP model
(Thrun et al., 2005). As a result, the optimal policy for all rounds in our model is very similar to
the policy for round 9 shown in Figures 4a and 4b.

2.4 POMDPModel Explains Human Behaviour in Volunteer’s Dilemma
Task

The POMDP model has three parameters, α0, β0, and γ which determine the subject’s actions
and belief in each round. We fitted these parameters to the subject’s actions by minimizing the
error, i.e. the difference between the POMDP model’s predicted action and the subject’s action
in each round. The average percentage error across all rounds is then the percentage of rounds
that the model predicts incorrectly (contribute instead of free-ride or vice versa). We defined
accuracy as the percentage of the rounds that the model predicts correctly. We also calculated
the leave-one-out cross validated (LOOCV) accuracy of our fits.

We found that the POMDP model had an average accuracy across subjects of 84% (SD = 0.06)
while the average LOOCV accuracy was 77% (SD = 0.08). Figure 5a compares the average
accuracy and LOOCV accuracy of the POMDP model with two other models. The first is a
”model-free” reinforcement learning model known as Q-learning: actions are chosen based on
their rewards in previous rounds (Tsitsiklis, 1994) with the utility of group reward, initial values,
and learning rate as free parameters (5 parameters per subject – see Methods and Materials).
The average accuracy of the Q-learning model was 79% (SD = .07) which is significantly worse
than the POMDP model’s accuracy given above (one-tailed paired t-test, t = 6.75, df = 29,
p = 1.26 × 10−7 , 95% CI difference = [0.01, 0.08]). Also, the average LOOCV accuracy of the
POMDP model was significantly higher than the average LOOCV accuracy of Q-learning, which
was 73% (SD = .09) (one-tailed paired t-test, t = 2.20, df = 29, p = 0.02, 95% CI difference
=[0.00, 0.09]).

We additionally tested a state-of-the-art descriptive model known as the linear two-factor model
(Wunder et al., 2013), which predicts the current action of each player based on the player’s own
action and contributions by others in the previous round (this model has three free parameters
per subject – see Methods and Materials). The average accuracy of the two-factor model was 78%
(SD = 0.09) which is significantly lower than the POMDP model’s accuracy (one-tailed paired t-
test, t = −4.86, df = 29, p = 2.1×10−5, .95% CI difference = [−0.10, 0.02]. Moreover, the LOOCV
accuracy of the two-factor model was 47% (SD = 20), significantly lower than the POMDP model
(one-tailed paired t-test, t = −7.61, df = 29, p = 1.4 × 10−8, 95% CI difference = [−.38,−.22]).
The main reason behind the failure of the linear two-factor model, especially in LOOCV accuracy,
is that group SUCCESS depends on the required number of volunteers (k) as well. This value is
automatically incorporated into POMDP in calculation of expected reward. Also, reinforcement
learning works directly with rewards and therefore does not need explicit knowledge of k (however,
we need separate parameter for each k in the initial value function of Q-learning, see Methods and
Materials).

The POMDP model, when fit to a subject’s actions, can also explain other events during the
PGG in contrast to the other models described above. For example, based on equation 3 and the
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(a) (b)

Figure 5: POMDP Model’s Performance and Predictions (a) Average and LOOCV ac-
curacy across all models. The POMDP model has significantly higher accuracy compared to the
other models. (b) POMDP prediction of a subject’s belief about group success in each round (on
average) for different k’s (blue circles) compared to actual data (black circles, same data as in
figure 2d).

action chosen by the POMDP model, one can predict the subject’s belief about the probability of
group SUCCESS in the current round. This prediction cannot be directly validated but it can be
compared to actual SUCCESS in generating the group reward. If we consider actual SUCCESS
as the ground truth, the average accuracy of POMDP model’s prediction across subjects was
71% (SD = .07). Moreover, the prediction matched the pattern of SUCCESS rate data from
the experiments for k = 2 versus k = 4 (Figure 5b). The other models presented above are not
capable of making such a prediction.

Finally, we can gain insights into the subject’s behavior by interpreting the parameters of our
POMDP model in the context of the task. As alluded to above, the prior parameters α0 and β0
represent the subject’s prior expectations of contributions and free-rides respectively. Therefore,
the ratio α0/β0 characterizes the subject’s expectation of contributions by group members while
the average of these parameters, (α0 + β0)/2, indicates the weight the subject gives to prior
experience with similar groups before the start of the game. The discount factor (or decay rate) γ
determines the weight given to past observations compared to new ones: the smaller the discount
factor, the more weight the subject gives to new observations. We examined the distribution of
these parameter values for our subjects after fitting the POMDP model to their behavior. The
ratio α0/β0 was in the reasonable range of .5 to 2 for almost all subjects (Figure 6a; in theory
the ratio can be as high as 200 or as low as 1/200 (see Methods and Materials). The value of
(α0 + β0)/2 across subjects was mostly between 40 to 120 (Figure 6b) suggesting that prior belief
about groups did have a significant role in players’ strategy, but it was not the only factor since
observations over multiple rounds can still alter this initial belief. We also calculated the expected
value of contribution by others in the first round, which is between 0 and N − 1 = 4 based on
the values of α0 and β0 for the subjects. For almost all subjects, this expected value was between
2 and 3 (Figure 6c). Moreover, the discount factor γ was almost always above .95, with a mean
of .93 and a median of .97 (Figure 6d). Only three subjects had a discount factor less than .95
(not shown in the figure), suggesting that almost all subjects relied on observations made across
multiple rounds when computing their beliefs rather than reasoning based solely on the current
or most recent observations.

We also calculated each subject’s prior belief about group SUCCESS (probability of SUCCESS
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(a) (b) (c) (d)

Figure 6: Distribution of POMDP Parameters across Subjects. (a) Histogram of ratio
α0/β0 shows a value between .5 and 2 for almost all subjects, suggesting that the POMDP model
assigns a reasonable prior probability for contributions versus free rides for these subjects. (b)
Histogram of average of α0 and β0. For the majority of subjects, this value is between 40 to 120,
suggesting that the prior belief that the subject brings to the group decision making task plays
an important role in the subject’s decisions, but the values are small enough for observations
to influence decisions over multiple rounds. (c) Histogram of prior belief Beta(α0, β0) translated
into expected contribution by others in the first round. Note that the values, after fitting to the
subjects’ behavior, are mostly between 2 and 3. (d) The box plot of discount factor or decay rate
γ across subjects shows that this value is almost always above .95. The median is .97 (orange
line) and the mean is .93 (green line).

(a) (b)

Figure 7: Prior Belief about the Group SUCCESS (a) When k = 2, all subjects expected
a high probability of group SUCCESS in the first round (before making any observations about
the group). (b) When k = 4, almost all subjects assigned a chance of less than 60% to group
SUCCESS in the first round.

in the first round) based on α0, β0, and the subject’s POMDP policy in the first round. As group
SUCCESS depends on the required number of volunteers (k), probability of SUCCESS is different
for k = 2 and k = 4 even with the same α0 and β0. Figures 7a and 7b show the distribution of
this prior probability of SUCCESS across all subjects for k = 2 and k = 4. For k = 2, all subjects
expected a high probability of SUCCESS in the first round, whereas a majority of the subjects
expected less than 60% chance for SUCCESS when k = 4.
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3 Discussion

We introduced a normative model based on POMDPs for explaining human behavior in a group
decision making task. The POMDP model combines probabilistic reasoning about the environment
with long-term reward maximization. In the model, the environment consists of multiple states
hidden to the decision maker. Based on observations and known transitions between the states, the
POMDP model maintains a belief (posterior probability distribution) over the hidden states. Using
this probability distribution and simulation of future states, the POMDP model finds for each time
step an action that maximizes the expected total reward through the end of the task. In the case
of social decision making, we assumed subjects maintain a model of others’ intentions (a theory
of mind) to predict their actions and possible changes in their intentions as social interactions
progress. For the Volunteer’s Dilemma, we used a POMDP model in which the hidden state is
the intention of a group member to contribute, captured in our model as the average probability
that a group member will contribute. Our results show that the POMDP model significantly
outperforms model-free reinforcement learning and a state-of-the-art descriptive model in fitting
human behavior. In addition, the POMDP model when fit to a subject’s actions accurately
predicts SUCCESS rate in each round without being explicitly trained for such predictions. A
potential drawback of the POMDP model is that maintaining a mental model has a cognitive and
computational cost. However, having such a model facilitates the learning process significantly,
especially in a highly dynamic environment such as group decision making (Hu and Wellman,
1998; Frank and Goodman, 2012; Lowe et al., 2017).

A strength of the POMDP model is that it can model social tasks beyond economic decision
making, such as prediction of others’ intentions and actions in everyday interactions (Koster-Hale
and Saxe, 2013; Tamir and Thornton, 2018). In these cases, we would need to modify the model’s
definition of state of other minds to include dimensions such as valence, competence, and social
impact instead of propensity to contribute monetary units as in the PGG task (Posner et al., 2005;
Gray et al., 2007; Cuddy et al., 2008; Tamir et al., 2016).

Our model assumes that the subject estimates the cooperativeness of others in each round
before choosing the next action. It is possible to extend this reasoning by considering the effect
of the chosen action on other minds in terms of their cooperativeness, and so on in a recursive
fashion. If such a multi-level theory of mind is extended to infinite depth, the game converges
to the Nash equilibrium (Nash, 1950). In reality, however, such an infinite-depth theory of mind
appears not to occur in actual social interactions among humans (Kagel and Roth, 2016; Camerer,
2011; Henrich et al., 2005), with multi-level theory of mind limited to very few levels as observed
in some experiments (Camerer et al., 2004; Yoshida et al., 2008; Hula et al., 2015).

The idea of combining belief with rewards in social decision making has been previously pro-
posed (Camerer and Hua Ho, 1999) but this relationship was based on heuristics rather than a
formal mathematical framework as in the case of the POMDP model. Our specific POMDP model
was based on the binomial and beta distributions for binary values due to nature of the task, but
the model can be easily extended to the more general case of a discrete set of actions using multi-
nomial and Dirichlet distributions. Additionally, the model can be extended to multivariate states,
e.g., when the players are no longer anonymous. In such cases, the belief is a joint probability
distribution over all parameters of the state.

An important open question is how the various components of the POMDP model could
be neurally implemented in the brain. Some suggestions on neural implementation were made
in a previous POMDP model for sensory decision making (Rao, 2010; Huang and Rao, 2013).
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Specifically, belief computation was ascribed to cortical circuits (Park et al., 2017) while policy
learning based on cortical beliefs was assigned to the basal ganglia network. In the context of the
present model, belief update corresponds to updating αt as γαt−1 + c and βt as γβt−1 + N − c.
Such an update can be implemented neurally using two leaky accumulators (Usher and McClelland,
2001), which in turn can be mapped into a probability (Kiani and Shadlen, 2009; Kiani et al.,
2014). Such accumulators have been widely used in modelling other simpler decision making tasks
(Ratcliff and McKoon, 2008; Brunton et al., 2013; Purcell and Kiani, 2016; Tajima et al., 2016)
and there is neurophysiological evidence supporting such an implementation in cortical circuits
(Gold and Shadlen, 2007; Purcell et al., 2010; Churchland and Ditterich, 2012; Domenech et al.,
2018).

Deficits in theory of mind (ToM) are a key feature of autism spectrum disorder. Yet, tasks such
the false belief task usually employed to measure such ToM deficits do not provide quantitative
measurements of the underlying neurocognitive operations (Baron-Cohen et al., 2001). In contrast,
the strength of the POMDP approach to modeling ToM is that it allows a precise deconstruction
of the computational signals involved. The present findings thus suggest that POMDP models
may be used in the field of computational psychiatry to characterize putative abnormalities in
specific computational mechanisms, thereby opening the door to a new classification of mental
disorders in terms of dysfunctional computational mechanisms (Huys et al., 2016).

4 Methods and Materials

4.1 Experiment

30 right-handed students at the University of Parma were recruited for this study. One of them
aborted the experiment due to anxiety. Data from the other 29 participants were collected,
analyzed, and reported. Based on self-reported questionnaires, none of the participants had a
history of neurological or psychiatric disorders. The local Ethics Committee approved the study,
which was carried out according to the ethical standards of the 2013 Declaration of Helsinki. As
mentioned in Results, each subject played 14 sessions of the Public Goods Game (PGG) (i.e.,
the Volunteer’s Dilemma), each containing 15 rounds. In the first 2 sessions, subjects received no
feedback about the result of each round. However, in the following 12 sessions, social and monetary
feedback were provided to the subject. The feedback included the number of contributors and free
riders, and the subject’s reward in that round. Each individual player’s action, however, remained
unknown to the others. Therefore, individual players could not be tracked. We present analyses
from the games with feedback.

In each round (see Figure 1), the participant had to make a decision within three seconds by
pressing a key; otherwise the round was repeated. 2.5 to 4 seconds after the action selection,
the outcome of the round was shown to the subject for 4 seconds. Then, players evaluated the
outcome of the round before the next round started. Subjects were told that they were playing
with 19 other participants located in other rooms. Overall, 20 players were playing the PGG
in 4 different groups simultaneously. These groups were randomly chosen by a computer at the
beginning of each session. In reality, subjects were playing with a computer. In other words, a
computer algorithm was generating all the actions of others for each subject. Each subject got a
final monetary reward equal to the result of one PGG randomly selected by the computer at the
end of the study.

In a PGG with N = 5 players, we denote the action of player i in round t with the binary
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value of ati (1 ≤ i ≤ N) with ati = 1 representing contribution and ati = 0 representing free-riding.
The human subject is assumed to be player 1. We define the average contribution rate of others

āt2:N =
∑N

i=2 a
t
i

N−1 and generate each of the N − 1 actions of others in round t using the following
probabilistic function:

logit(āt2:N) = e0a
t−1
1 + e1((

1−KT−t+1

1−K
)e2 āt−12:N −K) (4)

where K = k/N where k is the required number of contributors (k = 2 or k = 4 in our experi-
ments).

This model has 3 free parameters: e0, e1, e2. These were obtained by fitting the above function
to the actual actions of subjects in another PGG study (Park et al., 2013), making this function a
simulation of human behavior in the PGG task. For the first round, we used the mean contribution
rate of each subject as their fellow members’ decision.

4.2 Markov Decision Processes

A Markov Decision Process (MDP) is a tuple (S,A, T,R) where S represents the set of states of the
environment, A is the set of actions, T is the transition function S×S×A→ [0, 1] that determines
the probability of the next state given the current state and action, i.e. T (s′, s, a) = P (s′|s, a),
and R is the reward function S × A→ R representing the reward associated with each state and
action. In an MDP with horizon H (total number of performed actions), given the initial state
s0, the goal is to choose a sequence of actions that maximizes the total expected reward:

π∗ = arg max
a0,a1,a2,...,aH−1

H−1∑
t=0

Est [R(st, at)]. (5)

This sequence, called the optimal policy, can be found using the technique of dynamic pro-
gramming (Thrun et al., 2005). For an MDP with time horizon H, define the value function V
and action function U at the last time step t = H as:

∀s ∈ S :

{
V H(s)← maxaR(s, a)

UH(s)← arg maxaR(s, a)
(6)

For any t from 0 to H − 1, the value function V t and action function U t is defined recursively as:

∀s ∈ S, 0 ≤ t < H :

{
V t(s)← maxa{R(s, a) +

∑
s′∈S T (s′, s, a)V t+1(s′)}

UH(s)← arg maxa{R(s, a) +
∑

s′∈S T (s′, s, a)V t+1(s′)}
(7)

Starting from the initial state s0 at time 0, the action chosen by the optimal policy π∗ at time
step t is U t(st).

When the state of the environment is hidden, the MDP turns into a Partially Observable MDP
(POMDP) where the state is estimated probabilistically from observations or measurements from
sensors. Formally, a POMDP is defined as (S,A, Z, T,O,R) where S,A, T,R are defined as in the
case of MDPs, Z is the set of possible observations, and O is the observation function Z×S → [0, 1]
that determines the probability of any observation z given a state s, i.e., O(z, s) = P (z|s). In
order to find the optimal policy, the POMDP model uses the posterior probability of states, known
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as the belief state, where bt(s) = P (s|z0, a0, z1, ..., at1). Belief states can be computed recursively
as follows:

∀s ∈ S : Bt+1(s) ∝ O(zt, s)
∑
s′∈S

T (s, s′, at)Bt(s
′) (8)

If we define R(bt, at) as the expected reward of at, i.e., Est [R(st, at)], starting from initial belief
state, b0, the optimal policy for the POMDP is given by:

π∗ = arg max
a0,a2,...,aH−1

H−1∑
t=0

Est [R(bt, at)]. (9)

A POMDP can be considered an MDP whose states are belief states. This belief state space
however is exponentially larger than the underlying state space. Therefore, solving a POMDP
optimally is computationally expensive (Smallwood and Sondik, 1973), unless the belief state can
be represented by a few parameters as in our case. For solving larger POMDP problems, various
approximation and learning algorithms have been proposed - we refer the reader to the growing
literature on this topic (Ross et al., 2008; Silver and Veness, 2010; Khalvati and Mackworth, 2013;
Shani et al., 2013; Luo et al., 2018).

4.3 POMDP for Binary Public Goods Game

The state of the environment is represented by the average cooperativeness of the group, or equiv-
alently, the average probability θ of contribution by a group member. Since θ is not observable,
the task is a POMDP and one must maintain a probability distribution (belief) over θ. The Beta
distribution, represented by two free parameters (α and β), is the conjugate prior for binomial
distribution. Therefore, when performing Bayesian inference to obtain the belief state over θ,
combining the Beta distribution as the prior belief and the binomial distribution as the likelihood
results in another Beta distribution as the posterior belief. Using the Beta distribution for the
belief state, our POMDP turns into an MDP with a two-dimensional state space represented by
α and β. Starting from an initial belief state Beta(α0, β0) and with an additional free parameter
γ, the next belief states is determined by the actions of all players at each round as described
in Results. For the reward function, we used the monetary reward function of the Public Goods
Game (PGG). Therefore, the elements of our new MDP derived from the PGG POMDP are as
following:

• S = (α, β)

• A = {c, f}

• T (s′, s, a) :

{
P ((γα + k′ + 1, γβ +N − 1− k′)|(α, β), c) =

(
N−1
k′

)B(γα+k′,γβ+N−1−k′)
B(γα,γβ)

P ((γα + k′, γβ +N − k′)|(α, β), f) =
(
N−1
k′

)B(γα+k′,γβ+N−1−k′)
B(γα,γβ)

• R(s, a) :

{
R((α, β), c) = E − C +

∑N
k′=k−1

(
N−1
k′

)B(α+k′,β+N−1−k′)
B(α,β)

G

R((α, β), f) = E +
∑N

k′=k

(
N−1
k′

)
B(α+k′,β+N−1−k′)

B(α,β)
G

B(α, β) is the normalizing constant: B(α, β) =
∫ 1

0
θα−1(1− θ)β−1dθ.

According to the experiment, the time horizon should be 15 time steps. However, we found
that a very long horizon (H = 50) for all players provides a better fit to the subjects’ data. For
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each subject, we found α0, β0, and γ that made our POMDP’s optimal policy fit the subject’s
actions as much as possible. For simplicity, we only considered integer values for states (integer
α and β). The fitting process involved searching over integer values from 1 to 200 for α0 and β0
and values between 0 to 1 with a precision of .01 (.01, .02, . . . , .99, 1.0) for γ. The fitting criterion
was round-by-round accuracy. For consistency with the descriptive model, the first round was
not included (despite the POMDP model’s capability for predicting it). Since the utility value
for public good for a subject can be higher than the monetary reward due to social or cultural
reasons (Fehr et al., 2002; Rilling et al., 2002), we investigated the effect of higher values for the
group reward G in the reward function of the POMDP. This however did not improve the fit.

In round t, if the POMDP model selects the action ”contribution”, the probability of SUC-
CESS can be calculated as

∑N−1
m=k−1 P (m|αt, βt) (see Equation 3). Otherwise, the probability of

SUCCESS is
∑N−1

m=k P (m|αt, βt). This probability value was compared to the actual SUCCESS
and FAILURE of each round to compute the accuracy of SUCCESS prediction by the POMDP
model.

4.4 Model-Free Method: Q-Learning

We used Q-learning as our model-free approach. There are two Q values in the PGG task, one for
each action, i.e., Q(c) and Q(f) for ”contribute” and ”free-ride” respectively. At the beginning of
each PGG, Q(c) and Q(f) are initialized to the expected reward for a subject for that action based
on a free parameter p which represents the prior probability of group SUCCESS. As a result, we
have: {

Q0(c)← p(E − C +G) + (1− p)(E − C)

Q0(f)← p(E +G) + (1− p)E
(10)

We customized the utility function for each subject by making the group reward G a free
parameter. Moreover, as the probability of SUCCESS is different for k = 2 and k = 4, we used
two separate parameters p2 and p4 instead of p, depending on the value of k in the PGG.

In each round of the game, the action with the maximum Q value was chosen. The Q value
for that action was then updated based on the subject’s action and group SUCCESS/FAILURE,
with a learning rate ηt. This learning rate was a function of the round number, i.e. ηt = 1

λ0+λ1t

where λ0 and λ1 are free parameters and t is the number of the current round. Let the subject’s
action in round t be at, the Q-learning model’s chosen action be ât, and the reward obtained be
rt. We have: {

ât = arg maxa∈{c,f}Q
t(a)

Qt+1(at)← (1− ηt)Qt(at) + ηtrt
(11)

For each subject, we searched for the values of λ0, λ1, the group reward G, and the probability
of group SUCCESS p2 or p4 that maximize the round-by-round accuracy of the Q-learning model.
Similar to the other models, the first round was not included in this fitting process.

4.5 Descriptive Model

Our descriptive model was based on a logistic regression that predicts the subject’s action in the
current round based on their own previous action and the total number of contributions by others
in the previous round. As a result, this model has 3 free parameters (two features and a bias
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parameter). Let at1 be the subject’s action in round t and at2:N be the actions of others in the same
round. The subject’s predicted action in the next round t+ 1 is then given by:

ât+1
1 =

{
c κ0 + κ1a

t
1 + κ2(

∑N
i=2 a

t
i) > 0

f otherwise
(12)

We used one separate regression model for each subject. As the model’s predicted action is based
on the previous round’s actions, the subject’s action in the first round cannot be predicted by this
model.

4.6 Greedy Strategy

If a player wants to solely maximize the expected reward in the current round and ignores the
future, the optimal action is always free-riding independent of the average probability of contri-
bution by a group member. This is because free-riding always results in one unit more monetary
reward (3 MU for SUCCESS or 1 MU for FAILURE) compared to contribution (2 MU or 0 MU),
except in the case where the total number of contributions by others is exactly k− 1. In the latter
case, choosing contribution yields 1 unit more reward (2 MU) compared to free-riding (1 MU).
This means that the expected reward for free-riding is always more than that for contribution
unless the probability of observing exactly k − 1 contributions by others is greater than .5. We
show that this is impossible for any value of θ. First, note that the probability of exactly k − 1
contributions from N − 1 players is maximized when θ = (k − 1)/(N − 1). Next, for any θ, the
probability of k − 1 contributions from N − 1 players is:(

N − 1

k − 1

)
θk−1(1− θ)N−k ≤

(
N − 1

k − 1

)
(
k − 1

N − 1
)k−1(

N − k
N − 1

)N−k = .753 < .5 (13)

for N = 5 and for either k = 2 or k = 4.
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