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Abstract. Cell plasticity is important for tissue developments during which
somatic cells may switch between distinct states. Genetic networks to yield

multistable states are usually required to yield multiple states, and either ex-
ternal stimuli or noise in gene expressions are trigger signals to induce cell-type

switches between the states. In many biological systems, cells show highly plas-

ticity and can switch between different state spontaneously, but maintaining
the dynamic equilibrium of the cell population. Here, we considered a mecha-

nism of spontaneous cell-type switches through the combination between gene

regulation network and stochastic epigenetic state transitions. We presented
a mathematical model that consists of a standard positive feedback loop with

changes of histone modifications during with cell cycling. Based on the model,

nucleosome state of an associated gene is a random process during cell cy-
cling, and hence introduces an inherent noise to gene expression, which can

automatically induce cell-type switches in cell cycling. Our model reveals a

simple mechanism of spontaneous cell-type switches through a stochastic his-
tone modification inheritance during cell cycle. This mechanism is inherent to

the normal cell cycle process, and is independent to the external signals.

1. Introduction. Cell-type switches are important in mammalian development
and the progress of of complex diseases, such as immune responses and drug re-
sistance. At the molecular level, cell-type switch is often marked by variants of
gene expression in marker genes, which show plasticity of cell types over time. The
underling mechanisms to regulate the dynamical process of cell-type switch are im-
portant for our understanding of embryo developmental and disease progressing
[62].

Cell type switches often associate with multiple expression modes of marker
genes; switches between different cell types can be induced by either stochastic
gene expression or external regulations in the sense of bifurcation [12, 15, 31, 33,
34, 48, 52, 55, 57, 61]. Stochastic gene expression is a main source of phenotype
switch in bacteria[7]; the stochasticity comes from both intrinsic noise of promotor
activities and extrinsic noise from environmental fluctuations. In mammalian cells,
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changes in the activities of regulators in the gene regulation network is one of the
driving force to induce cell type switch, e.g., stem cell differentiation [10, 23, 24, 42].
During development, cells undergo a unidirectional course of differentiation, which
can be viewed as a dynamical process on the Waddington epigenetic landscape with
multistable states, the input signals can change the landscape to guide the transition
between different states [15, 19, 72].

Chromatin regulators play crucial roles in establishing and maintaining gene ex-
pression states [4, 30]. Histone modifications and DNA methylations are important
epigenetic states that can regulate the chromatin state of a DNA sequence, and
modulate the gene expression dynamics. These epigenetic modifications are mod-
ulated by intercellular enzyme activities, and hence dynamically change over time
and during cell cycle [50]. The stochastic epigenetic inheritance during cell cycle can
result in spontaneous alteration of epigenetic state during development; epigenetic
changes in regulatory loci often correlate with expression changes during stem cell
differentiation [3, 8, 27, 58, 73].

Here, to investigate how stochastic epigenetic inheritance affect the dynamical
process of cell fate decision, we studied a computational model that combines posi-
tive feedback regulation with histone modification of the gene promoter. Moreover,
cell cycle was included in the model through the stochastic inheritance during cell
cycle. We show that the dynamic behavior of histone modification in the cell divi-
sion can induce spontaneous cell-type switches during normal development process,
from which the Waddington landscape is constructed. Moreover, we show that the
combination of feedback regulation with histone modification can produce interme-
diate cell states that are essential in EMT and cell plasticity.

2. Model.

2.1. Model description. To investigate the role of histone modification in cell
type switch, we considered a simple model that combine a self-activation positive
feedback with stochastic histone modification in the promoter region (Fig. 1). We
assumed that the cell type is represented by the expression of a marker gene; the
encoded protein regulates (either directly or indirectly) its own promoter activity
to form a positive feedback to maintain the bistable transcriptional landscape. This
type of simple motif has been extensively studied in many systems with different
states in response to various induction stimulus, variance in the induction stimulus
are able to induce switches between the two stable states [1, 16, 22, 25, 41, 47,
64]. In this study, to study how nucleosome states affect the cell-type switch, we
further assumed that the positive feedback is modulated by the histone modification
of nucleosomes in the promoter region; the proteins active its own transcription
by binding to the promoter region, and the binding affinity is dependent on the
nucleosome state, which is stochastically change over cell cycle [50].

In eukaryotic cells, most DNA sequences are enclosed into basic organizational
chromatin units–nucleosomes. A typical nucleosome has approximately 147 nu-
cleotide base pairs that wrap around a histone octamer; the octamer is composed
of one (H3−H4)2 tetramer capped by two H2A-H2B dimers[21]. The N -tail of
the two copies of histone H3 can undergo various types of covalent modifications;
the modification can either repress or active gene expression. For example, the
trimethylation of H3 lysine 4 (H3K4me3) is often associated with active transcrip-
tion, and the trimethylation of H3 lysine 27 (H3K27me3) is associated with tran-
scription repression. During erythroblast differentiation, changes in the markers of
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CELL-TYPE SWITCHES INDUCED BY HISTONE MODIFICATIONS 3

Figure 1. Illustration of gene regulation combines a positive feed-
back with stochastic histone modification at the enhancer region.
Histone modifications alter the 50% effective concentration (EC50)
of the toggle switch to regulate gene expression (see Formulations
for details).

H3K4me3 and/or H3k27me3 are seen in different genes [8, 58]. In our study, we
focused at the gene expression activation modification H3K4me3, and assumed that
the modification increases the promotion of the protein to its own transcription.

2.2. Formulations. Denote m and p respectively as the mRNA and protein con-
centrations of the marker gene. The proteins are translated from mRNA, and
positive regulate the mRNA transcription. Hence, we have the following based
differential equations:

dm

dt
= λm(p)− dmm, (1)

dp

dt
= λpm− dpp, (2)

where λm, λp are transcription and translation rates, and dm, dp are degradation/dilution
rates of mRNA and proteins. The transcription rate λm was assumed to be depen-
dent on the protein concentration through a Hill type function[6, 17]:

λm = λm,1 + λm,2
pn

Kn + pn
. (3)

Here, λm,1 is the basal transcription rate, and λm,2 the maximum promotion in
transcription due to the protein regulation, the coefficient K (50% effective concen-
tration, EC50) measures the binding affinity of the protein to the enhancer, lower
K measures higher affinity.

While we assumed that the nucleosome state affects the binding affinity through
the modulation of chemical potential of the reactions, the EC50 K depends on the
number of active markers u through an exponential function

K(u) = e−γ1u+γ2 , γ1 > 0 (4)

Here, u (0 ≤ u ≤ 1) represents the fraction of nucleosomes in the enhancer region
that are modified with the active marks, γi are constants.

During DNA replication, markers of the two copies of H3 are randomly assigned
to the two daughter cell DNA strands, each of which form a H3 dimer with a newly
synthesized unmarked protein H3. Next, the nucleosome states of newly synthe-
sized DNA are re-builded before mitosis by kinetic process of writing and erasing
the marks following the enzyme-regulated biochemical reactions [28, 50, 70]. Conse-
quently, the nucleosome states of the daughter cells depend on those of the mother
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cell though a random dynamics. Through a stochastic simulation based on the de-
tail biochemical reactions of this process, we have shown that the probability of the
number of marked nucleosomes of the daughter cell is approximately a conditional
binormal distribution through the nucleosome state of the mother cell [28]. Thus,
we made the following assumptions. Consider a DNA region enclosed in N nucle-
osomes, let uk (0 ≤ uk ≤ 1, for any k) the fraction of marked nucleosomes at the
kth cycle, the probability density of uk+1, given the value uk, is given by [28]

P (uk+1 = y|uk) = NC
byNc
N ϕ(uk)byNc(1− ϕ(uk))N−byNc, (5)

here ϕ is a predefined function so that the mean of uk+1, given uk, satisfies

〈uk+1〉|uk
= ϕ(uk). (6)

In (5), C
byNc
N is the combination number of taken byNc from N , and byNc means

the greatest integer less than or equal to yN . The function ϕ is crucial for defining
the random inheritance of histone modification from mother cell and daughter cells.
In this study, we took ϕ as linear and Hill type functions, respectively.

Finally, there are often extrinsic noise to gene expression due to environmental
fluctuations. To consider the effects of extrinsic noise perturbation to the trans-
lational efficiency λp, we replaced the constant λp with a log-normal distribution
random process[2, 36, 56, 69].

λpe
σξ(t)/〈eσξ(t)〉,

where ξ(t) is a standard white noise, σ > 0 is a constant to indicate the perturbation
strength. Log-normal rather than normal distribution has been applied to fit the
decay profile of eukaryotic mRNA [60] and many science issues [40].

In summary, we have equations for the gene expression dynamics that combine a
positive feedback with histone modifications. Let T the duration of one cell cycle,
the equation for the concentrations of mRNA m and protein p at the kth cycle
((k − 1)T < t < kT ) was formulated as a random differential equation

dm

dt
= λm(p, uk−1)− dmm,

dp

dt
= λp(e

σξ(t)/〈eσξ(t)〉)m− dpp,

λm(p, uk−1) = λm,1 + λm,2
pn

(K(uk−1))n + pn
,

K(uk−1) = e−γ1uk−1+γ2 ,

(k − 1)T < k ≤ kT. (7)

Given the initial nucleosome state u0 and the transition function ϕ in (6), the
nucleosome state uk at the kth is determined iteratively by the random map in
according with (5). Thus, given the initial conditions m and p at time t = 0 and
u0 at the first cycle, and assuming that m and p are continuous cross cell cycles,
the random differential equation (7) and the stochastic process (5) together define
a random dynamics of the long-term gene expression cross many cell cycles.

In this study, we selected model parameter values referred to mammalian cells
(human fibroblast), which are summarized in Table 1.

3. Result.
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CELL-TYPE SWITCHES INDUCED BY HISTONE MODIFICATIONS 5

Table 1. Model parameters used in simulations.

Parameter Definition Value
λm,1 basal transcriptional rate 2h−1

λm,2 maximum promotion in transcription 18h−1

due to the protein regulation
λp translational efficiency 2h−1

dm mRNA degradation rate 0.5h−1

dp protein degradation rate 0.08h−1

N number of nucleosome 60
n Hill coefficient 4
T duration of one cell cycle 20h
γ1 constant coefficient 6.780
γ2 constant coefficient 9.433

3.1. External noise-induced cell-type switch. First, we considered the system
without the effect of histone modifications by assuming the nucleosome state u a
constant over time, i.e., the EC50 K is a constant. In this case, we have a random
dynamical equation

dm

dt
= λm,1 + λm,2

pn

Kn + pn
− dmm,

dp

dt
= λp(e

σξ(t)/〈eσξ(t)〉)m− dpp,
t > 0. (8)

When the external noise was ignored (σ = 0), equation (8) describes a simple motif
of self-activation, and has bistable steady states when there is cooperative binding
(n > 1) and other parameters satisfy (Figure 2, see Appendix A for detail)

ρ >
4n

(n− 1)2
, K∗ < K < K∗∗, (9)

where ρ = λm,2/λm,1, and (here α = (λpλm,1)/(dpdm))

K∗ = K(p∗) = p∗
[

ρ

p∗/α− 1
− 1

] 1
n

, (10)

K∗∗ = K(p∗∗) = p∗∗
[

ρ

p∗∗/α− 1
− 1

] 1
n

, (11)

and

p∗ =
α
(

(n+ 1)ρ+ 2n− (n− 1)
√
ρ(ρ− 4n

(n−1)2 )
)

2n
, (12)

p∗∗ =
α
(

(n+ 1)ρ+ 2n+ (n− 1)
√
ρ(ρ− 4n

(n−1)2 )
)

2n
. (13)

Here K∗ and K∗∗ are the saddle-node bifurcations, corresponding to the critical
value of cell-type switches.

Since K depends on the nucleosome state parameter f through

K = e−γ1u+γ2 ,
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6 RONGSHENG HUANG AND JINZHI LEI

the critical values for the nucleosome state are given by

u∗ =
γ2 − logK∗

γ1
, u∗∗ =

γ2 − logK∗∗

γ1
. (14)

Figure 2A shows that bifurcation diagram with respect to the feedback strength K.
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Figure 2. The bifurcation diagram with respect to K and u. (A)
The protein level at steady state as a function of K. Dashed lines
show the saddle-node bifurcations (K∗ and K∗∗). (B) The heat
map representation of joint density distribution of the protein level
and u for a typical trajectory without the external noise. In the
simulation, a = 0.1, b = 0.8.

Now, we focus our discussion at the parameter region (9) so that the system
is bistable; the low and high stable states mark the two distinguished cell types.
While we take K = 450 and a suitable noise (σ = 1.8), the protein level switches
between the two well-separated states: the low state with 0 < p < 500 and the
high state with p > 500 (Fig. 3A). To further investigate how cell-type switches
depend on the external noise, we fixed the parameters λm,1, λm,2, varied K over
the interval K∗ < K < K∗∗, and increase the noise strength σ from 0 to 2.0. For
each pair of parameters (K,σ), we initialized the state (both mRNA and protein
concentrations) at the low level cell type, solved the equation (8) to 105 cycles. We
calculated the frequency (times per cycle) of cell-type switches between low and
high states that is represented by dividing the number of cell-type switches by the
total cell cycles. The obtained frequency is shown at Figure 3B, which indicated
that noise-induced cell-type switches occur only when the noise strength σ is larger
than 1.5. A sample dynamics of λp with σ = 1.5 is shown at Figure 3C, which
corresponds to a large noisy effect on the parameter λp. These results show that
without the effects of histone modifications, cell-type switches occur only when the
noise σ is very large.

To quantify the lifetime of the two states under noise perturbation, we defined
the lifetime based on model simulation. Let the solution p(t) of a cell with initial
conditions at the low state, we defined the time series {ti} and {si} as

ti = min{t|t > si−1, p(t) reaches the high state}
and

si = min{s|s > ti, p(t) reaches the low state}.
It is easy to have

0 = s0 < t1 < s1 < t2 < s2 < · · · .
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CELL-TYPE SWITCHES INDUCED BY HISTONE MODIFICATIONS 7

The duration time (lifetime) of the solution (cell) staying at the high state and the
low state can be estimated by the two time series

T ihigh = si − ti (i = 1, 2, · · · )

and

T ilow = ti − si−1 (i = 1, 2, · · · )
respectively. The series {T ihigh} and {T ilow} gives possible lifetimes of high and low

level states, which are random numbers with exponential distribution (Fig. 3D).
From Figure 3C, there is no obvious difference between the lifetime of high and low
level states.
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Figure 3. Cell-type switches induced by external noise. (A) Sam-
ple dynamics of protein level in 105 cycles. In the simulation,
K = 450, σ = 1.8. (B) The heat map representation of the switch-
ing frequency with respect to K and σ. (C) A sample dynamics
of λp with σ = 1.5. Inset is the probability distribution of ln(λp).
(D) The probability distribution of the steady state lifetimes with
correspond to the trajectory in (A).

3.2. Stochastic histone modification-induced cell-type switch. Now, we con-
sidered the effects of random histone modification inheritance to gene expression.
In our model, the state of histone modifications uk stochastically change in cell
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8 RONGSHENG HUANG AND JINZHI LEI

cycle following the random dynamics described by (5) and (6). First, we considered
a simplest case by assuming a linear function ϕ,

ϕ(uk) = a+ b(uk − a), 0 < a, b < 1. (15)

Here, the parameter a gives the fixed point of the iteration uk+1 = ϕ(uk). Thus,
The parameters a and b are crucial for determining the random dynamics of the
histone modification states {uk}, which is well defined by the binomial distribution
(5)-(6) and (15) (Fig. 4A).

The stationary distribution of uk can be well described by a Beta distribution
random number (Fig.4B). Specifically, a Beta distribution random number is a
random number 0 ≤ x ≤ 1 with probability density function

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
, (16)

where α and β are shape parameters, and Γ(z) is the gamma function. The mean
and variance of a Beta distribution are given by

E(x) =
α

α+ β
, var(x) =

αβ

(α+ β)2(α+ β + 1)
, (17)

respectively. Hence, given the parameters a and b in the function ϕ, we can obtain
the random dynamics uk and the corresponding mean and variance, from which we
can solve the Beta distribution parameters α and β from (17). Figure 4B shows
the density functions of uk obtained from numerical simulation and from the Beta
distribution with parameters (α, β) from (17), which show good agreement.
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In previous discussions, the EC50 parameter K in the transcription rate (3) is
dependent on the nucleosome state uk through (4). When there is no external
noise (σ = 0), the transcription rate depends on the nucleosome state uk, and cell-
type switch occurs when uk cross the critical values u∗ or u∗∗. Figure 2B gives the
distribution of protein level p and nucleosome state u along a trajectory, which show
clear bistability with u is taking intermediate values. Based on the Beta distribution
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CELL-TYPE SWITCHES INDUCED BY HISTONE MODIFICATIONS 9

of the nucleosome state {uk}, the frequency of cell-type switch is dependent on the
parameters a and b, which can be adjusted biologically through the regulation of the
stochastic histone modification inheritance. In particularly, it is easy to induce bi-
directional switch by proper selected parameters a and b in the inheritance function
(15) (to be detailed below).

To examine how the frequency of cell-type switch depends on the stochastic
histone modification, we fixed σ = 0, and varied both a and b from 0.1 to 0.9. The
frequencies of cell-type switches between low and high states are shown at Figure
5A-B. The switching frequency is mainly dependent on a, and has particularly high
frequency when a is closes to 0.5, regardless of the value of b. Hence, for a given
value b, we can adjust the switching frequency by varying the parameter a, the
average of nucleosome state uk at the stationary state.

Next, we study the dependence of the switching frequency with external noise
σ. First, we fixed a = 0.5, varied b from 0.1 to 0.9, and increased σ from 0 to 2.0.
Results show that the switching frequency is insensitive to the parameter b and the
external noise strength σ unless the external noise is large (σ > 1.5) (Fig. 5C).
Next, we fixed b = 0.7, varied a from 0.1 to 0.9, and increased σ from 0 to 2.0,
the switching frequency is mainly determined by the parameter a (Fig. 5D). These
results show that through the regulation of histone modifications, cell-type switches
occur even when there is a weak external noise, an the cell-type switching frequencies
are insensitive with the external noise strength σ, and are mainly determined by
the random dynamics of epigenetic inheritance. We note that the parameter a
is associated with histone modification inheritance, and hence can be regulated
through related enzyme activities.

3.3. Cell plasticity induced by stochastic histone modification. Many sys-
tems show cell plasticity, various type cells are able to switch between different types
to achieve dynamical equilibrium in response to stimulations [18, 32, 49, 54, 65, 66].
In our simple motif, cell plasticity is represented by the ability of bi-directional
cell-type switches. Previous studies have shown that without the stochastic histone
modification inheritance, external noise induced bi-directional cell-type switch can
happen only when the noise strength is large enough (σ > 1.5) (also refer [37]).
Here, we examined how regulations with histone modification is cable of induing
the bi-directional switch and cell plasticity.

To investigate the dynamics of cell plasticity, we modified the model to include
cell proliferation. During cell proliferation, each cell divides into two daughter cells,
each daughter cell inherit the mRNA and protein levels from the mother cell, and
the nucleosome state u is determined according to the distribution (5). We set the
external noise strength σ = 0.5, and took the parameters a = 0.5 and b = 0.7,
and started model simulation from a single cell with random initial condition. The
distribution of protein levels in the population evolve following population doubling,
and the cell population increase to 220 cells in 20 cycles. Simulations show that the
protein distributions approach to the same stationary distribution starting from
different initial states (Fig. 6A). This result reveals cell plasticity in population
dynamics based on the proposed model, quantitatively explain the phenomena of
dynamic equilibrium in stem cell regenerations [5, 26, 39, 68].

The stationary distribution of protein levels is determined by parameters a and
b for the regulations of histone modification. We fixed b = 0.7 and varied a, the
protein distribution switched from the low level state to the high level state with the
increasing of a, and display bimodal distribution when a is closed to 0.5 (Fig.7A).
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Figure 5. Frequencies of cell-type switches with histone modi-
fication to affect the transcription activities. (A) The heat map
representation of the switching frequency with respect to a and
b without the external noise. (B) The switching frequency as a
function of a with varying parameter b. (C) The heat map rep-
resentation of the switching frequency with respect to b and the
noise strength σ (here a = 0.5). (D) The heat map representation
of the switching frequency with respect to a and the noise strength
σ (here b = 0.7).

Moreover, while we fixed a = 0.5 and varied b, the stationary protein distribution
is mostly unchanged with different b values (Fig.7B). These results show that cell
plasticity can be explained by the stochastic inheritance of epigenetic states, and the
epigenetic state regulation is important for determining the stationary distribution
of gene expression in a colony of cell populations.

3.4. Waddington epigenetic landscape. To further study how stochastic his-
tone modification affect the dynamics of cell-type switch, we compared the Wadding-
ton landscape of the phenotype development.

In the case without histone modifications, the system dynamics is described by
the random dynamical equation (8). While we assumed a quasi-equilibrium to
mRNA production, and the noise σ is small enough, we have

m ≈ λm,1
dm

(
1 + ρ

pn

Kn + pn

)
, eσξ(t)/〈eσξ(t)〉 ≈ (1 + σξ(t)).
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Figure 6. Dynamic equilibrium of cell regeneration. Figures show
the probability distribution of the protein level at the end of cycle
0, 5, 10, 15, and 20. Results for 4 sample simulations ((A)-(D))
are shown, each with different initial conditions. Parameters are
a = 0.5, b = 0.7.

Hence, the equation (8) can be written as a stochastic differential equation

dp = dp

(
α

(
1 + ρ

pn

Kn + pn

)
− p
)
dt+ σdpα

(
1 + ρ

pn

Kn + pn

)
◦ dW. (18)

Here ◦ means the Stratonovich interpretation for the external noise[20]. Denote

a(p) = α

(
1 + ρ

pn

Kn + pn

)
, (19)

the equation (18) can be rewritten as

dp = dp

(
a(p) +

σ2

2
dpa(p)a′(p)− p

)
dt+ σdpa(p)dW, (20)

in terms of Itô interpretation [46]. Hence, the probability density of protein con-
centration at time t, P (p, t), satisfies the Fokker-Plank equation of form

∂P

∂t
= − ∂

∂p

[
dp

(
a(p) +

σ2

2
dpa(p)a′(p)− p

)
P

]
+

1

2

∂2

∂p2

[
(σdpa(p))

2
P
]
. (21)

Let the stationary solution of the equation (21)

P (p) = e−Φ(p)/σ2

, (22)
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Figure 7. Stationary distribution of proteins in a cell colony.
(A)The probability distribution of the protein level at the end of
20 cycles with fixed b = 0.7 and varied a: a = 0.4, a = 0.5, and
a = 0.6. (B) The probability distribution of the protein level at the
end of 20 cycles with fixed a = 0.5 and varied b: b = 0.6, b = 0.7,
and b = 0.8. We take σ = 0.5 in simulations.

we obtain the potential landscape

Φ(p) = −σ2

(
2

∫
dp (a(p)− p)
(σdpa(p))

2 dp− ln(σ2d2
pa(p))

)
. (23)

This potential landscape, which depends on model parameters, is capable of describ-
ing the stationary distribution of protein level through (22). Based on the potential
Φ(p), varying the parameter K results in the switch from one local minimum to the
other, which give the mechanism of cell-type switch induced by external stimulus
(Fig. 8A).

When there are stochastic histone modifications, the parameter K is a random
dynamics during cell cycling, and hence the stationary potential landscape can not
be defined in a simple way. In this case, while we consider the development of cell
colony expansion, the distribution of cell state is changing over time. Hence, let
P (p, t) the distribution of proteins of the cell population at time t, we defined the
potential as Φ(p, t) = − lnP (p, t). Thus, the potential Φ(p, t) gives the evolution of
epigenetic distribution, which can be considered as the Waddington epigenetic land-
scape of the cell population dynamics. Figure 8B shows the Waddington landscape
of a colony starting from a single cell in according with the dynamics in Figure 6.
From the landscape, staring from a single cell of random initial condition, the cell
converges to either high or low protein level state in cycle 1; in the latter stage
of colony expansion, the cells can switch between the two cell states, showing cell
plasticity, and approach stable distribution of cell states.

3.5. Epigenetic regulation induced multistability. In many biological systems
of cell-type switches, there are intermediate cell states that play important roles in
mediating cell fate transitions [44]. Typical biological systems with intermediate cell
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Figure 8. Potential landscapes. (A)The potential landscape (23)
as a function of protein level with K = 200, K = 450, and K = 750.
In the simulation, σ = 0.1. (B)The Waddington landscape of
colony evolution from a single cells. The potential was obtained
from according to simulations results of 30 independent trajecto-
ries. Parameters are a = 05, b = 0.7.

states include the epithelial-to-mesenchymal transition (EMT)[63, 45], hematopoi-
etic progenitor cell differentiation[67], and CD4+ T cell lineage specification. Many
computational models were proposed, based on feedback regulations or noise per-
turbations in gene expressions, trying to understand the mechanisms and roles of
intermediate cell states in cell fate decisions [71, 51].

Here, we asked whether combinations between feedback regulations and stochas-
tic epigenetic state transition are able to induce the intermediate cell states. To
this end, we assumed a cooperative effects in the histone modifications so that the
transition function ϕ was taken as a nonlinear function

ϕ(uk) = c+ d
uk

m

u0
m + ukm

. (24)

The function (24) represents a biological mechanism of positive feedback regulations
in histone modifications. These type feedbacks have been considered in previous
studies of nucleosome state transition [9, 59]. Under this assumption, we can adjust
the parameters to obtain a dynamical process with intermediate cell states between
the distinguished low and high protein level states (Fig. 9A). From Figure 9A, the
cell can either switch directly between the low and high level states, or indirectly
through the intermediate state, which show similar dynamics as in the intermediate
state of EMT[44]. Moreover, in the simulation, the nucleosome state shows bimodal
distribution with two distinguish states (Fig. 9B), however the protein level shows
multi-modal distribution with three stable stale (Fig. 9C). This result suggests that
the intermediate state is the consequence of the combination between regulations in
the nucleosome state (u) and the positive feedback in gene expression. These results
reveal a novel mechanism to induce the multistep transition in cell-type switches, in
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which the changes in epigenetic state play important roles as a buffer of phenotype
changes in cell fate decision.
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Figure 9. Dynamics of intermediate cell states. (A) A sample
dynamics of transitions between three cell states based on the as-
sumption (24). (B) The distribution of nucleosome state uk. (C)
The distribution of the protein levels along the trajectory. In the
simulation, we took m = 6, c = 0.25, d = 0.5, u0 = 0.488, n = 2.5,
γ1 = 0.499, γ2 = 6.471, σ = 0.5, and the other parameters are the
same as those in Table 1.

4. Discussion. Advances in single-cell technologies have enable us to study cell
states in high resolution levels, including identification of new cell types that oc-
cupy less well-characterized roles in an atlas of cells (see the Human Cell Atlas
project [53]). In particularly, the previously identified distinct cell types may con-
nected to each other through continuous spectrum of cell-type changes [43]. These
observations have led to new thoughts of stem cell differentiation and cell fate deci-
sions from stem cell differentiation tree to complex differentiation landscapes [35];
the stem cell are flexible in space and time, and display continuum differentiation
during regeneration. These new technologies have challenged the classical opinion
of distinct cell states arise from dynamic attractors determined by genetic works
[13, 29, 72]. In additional to the gene circuits to maintain the stable cell fates, the
epigenetic states play important roles in modulating the cell plasticity along cell
cycling. Alternation of histone modification or DNA methylation are often seen in
stem cell differentiations and therapy-induced drug resistance [8, 11, 14].

The current study was intended to investigate how epigenetic modifications are
involved in the regulation of cell-type switches. We established a simple model that
couples a positive feedback with histone modification and cell cycling. Our model
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provides a mechanism of cell plasticity induced by the inherent random transition
of histone modifications during normal cell cycle. Therewith, the flexibility of stem
cells is an inherent property of cell cycling, which can be important in maintaining
the heterogeneity and robust dynamics of stem cell regeneration [38]. Moreover,
we found that coupling the regulations between histone modification and positive
feedback gene circuit can result in the intermediate cell states that play essential role
in EMT. Extension of the proposed simple model may provide insights to the future
study of how inherent epigenetic regulations work together with the complex gene
circuits to modulate the process of cell-type switches, as well as the understanding
of drug resistance in cancer therapy.

Appendix A. Bistability analysis. Consider the deterministic differential equa-
tion 

dm

dt
= λm,1 + λm,2

pn

Kn + pn
− dmm

dp

dt
= λpm− dpp.

(25)

The steady state is given by the equation

dm

dt
=
dp

dt
= 0, (26)

which yields

p =
λp
dp
m =

λp
dpdm

(
λm,1 + λm,2

pn

Kn + pn

)
. (27)

The equation (27) has multiple roots when n > 1 and suitable parameter values K.
To obtain the conditions for the multiple roots, we solved K from (27), which gives

K(p) = p

[
ρ

p/α− 1
− 1

]1/n

, (28)

where

α =
λpλm,1
dpdm

, ρ =
λm,2
λm,1

.

It is easy to verify that any root p of (27) satisfies

α < p < α(1 + ρ). (29)

Hence, we limited our discussion to the condition (29). The critical point K∗ for
bistability corresponds to the value K = K∗ so that

dK

dp
= 0,

which gives

αρp+ n(p− α)(p− α(1 + ρ)) = 0. (30)

Thus, it is easy to have the following: If

ρ <
4n

(n− 1)2
, (31)

K(p) is monotonously decrease with p, and (27) has a unique solution; if

ρ >
4n

(n− 1)2
, (32)
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the derivative dK
dp has two roots at

p∗ =
α
(

(n+ 1)ρ+ 2n− (n− 1)
√
ρ(ρ− 4n

(n−1)2 )
)

2n
, (33)

p∗∗ =
α
(

(n+ 1)ρ+ 2n+ (n− 1)
√
ρ(ρ− 4n

(n−1)2 )
)

2n
, (34)

and α < p∗ < p∗∗ < α(1 + ρ). Thus, the function K(p) decreases when α < p < p∗,
increases when p∗ < p < p∗∗, and decreases when p∗∗ < p < α(1 + ρ). Therewith,
the equation (25) has two saddle-nodes

K∗ = K(p∗) = p∗
[

ρ

p∗/α− 1
− 1

] 1
n

(35)

K∗∗ = K(p∗∗) = p∗∗
[

ρ

p∗∗/α− 1
− 1

] 1
n

. (36)

The above equations give the explicit formulation of the saddle-nodes, and (25) is
bistable when n > 1 and

ρ >
4n

(n− 1)2
K∗ < K < K∗∗. (37)
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transcription factor program for näıve pluripotency., Science, 344 (2014), 1156–1160.
[11] H. Easwaran, H.-C. Tsai and S. B. Baylin, Cancer epigenetics: tumor heterogeneity, plasticity

of stem-like states, and drug resistance., Mol Cell, 54 (2014), 716–727.
[12] M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Stochastic gene expression in a

single cell., Science, 297 (2002), 1183–1186.
[13] T. Enver, M. Pera, C. Peterson and P. W. Andrews, Stem Cell States, Fates, and the Rules

of Attraction, Stem Cell, 4 (2008), 387–397.
[14] M. Farlik, F. Halbritter, F. Müller, F. A. Choudry, P. Ebert, J. Klughammer, S. Far-

row, A. Santoro, V. Ciaurro, A. Mathur, R. Uppal, H. G. Stunnenberg, W. H. Ouwehand,

E. Laurenti, T. Lengauer, M. Frontini and C. Bock, DNA Methylation Dynamics of Human
Hematopoietic Stem Cell Differentiation., Cell stem cell, 19 (2016), 808–822.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419481doi: bioRxiv preprint 

https://doi.org/10.1101/419481
http://creativecommons.org/licenses/by-nd/4.0/


CELL-TYPE SWITCHES INDUCED BY HISTONE MODIFICATIONS 17

[15] J. E. Ferrell, Bistability, bifurcations, and Waddington’s epigenetic landscape., Curr Biol, 22
(2012), R458–66.

[16] J. E. Ferrell Jr, Self-perpetuating states in signal transduction: positive feedback, double-

negative feedback and bistability, Curr Opin Cell Biol, 14 (2002), 140.
[17] J. E. Ferrell Jr and W. Xiong, Bistability in cell signaling: How to make continuous processes

discontinuous, and reversible processes irreversible, Chaos, 11 (2001), 227–236.
[18] W. A. Flavahan, E. Gaskell and B. E. Bernstein, Epigenetic plasticity and the hallmarks of

cancer, Science, 357 (2017), eaal2380–10.

[19] C. Furusawa and K. Kaneko, A dynamical-systems view of stem cell biology., Science, 338
(2012), 215–217.

[20] N. G van Kampen, Stochastic Processes in Physics and Chemistry, Third edition edition,

Elsevier (Singapore), 2010.
[21] D. J. Gaffney, G. Mcvicker, A. A. Pai, Y. N. Fondufemittendorf, N. Lewellen, K. Michelini,

J. Widom, Y. Gilad and J. K. Pritchard, Controls of nucleosome positioning in the human

genome, PloS Genetics, 8 (2012), e1003036.
[22] T. S. Gardner, C. R. Cantor and J. J. Collins, Construction of a genetic toggle switch in

escherichia coli, Nature, 403 (2000), 339–42.

[23] W. Guo, Z. Keckesova, J. L. Donaher, T. Shibue, V. Tischler, F. Reinhardt, S. Itzkovitz,
A. Noske, U. Zürrer-Härdi, G. Bell, W. L. Tam, S. A. Mani, A. van Oudenaarden and R. A.

Weinberg, Slug and Sox9 cooperatively determine the mammary stem cell state., Cell, 148
(2012), 1015–1028.

[24] P. Gupta, G. U. Gurudutta, D. Saluja and R. P. Tripathi, PU.1 and partners: regulation of

haematopoietic stem cell fate in normal and malignant haematopoiesis., J Cell Mol Med, 13
(2009), 4349–4363.

[25] J. Hasty, J. Pradines, M. Dolnik and J. J. Collins, Noise-based switches and amplifiers for

gene expression, Proc Nat Acad Sci USA, 97 (2000), 2075.
[26] K. Hayashi, S. M. C. de Sousa Lopes, F. Tang and M. A. Surani, Dynamic equilibrium and

heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states.,

Stem Cell, 3 (2008), 391–401.
[27] M. Hemberger, W. Dean and W. Reik, Epigenetic dynamics of stem cells and cell lineage

commitment: digging Waddington’s canal., Nat Rev Mol Cell Biol, 10 (2009), 526–537.

[28] R. Huang and J. Lei, Dynamics of gene expression with positive feedback to histone modifi-
cations at bivalent domains, Int J Mod Phys B, 4 (2017), 1850075.

[29] S. Huang, I. Ernberg and S. Kauffman, Cancer attractors: a systems view of tumors from
a gene network dynamics and developmental perspective., Semin Cell Dev Biol, 20 (2009),

869–876.

[30] R. Jaenisch and A. Bird, Epigenetic regulation of gene expression: how the genome integrates
intrinsic and environmental signals., Nat Genet, 33 Suppl (2003), 245–254.

[31] M. Kaern, T. C. Elston, W. J. Blake and J. J. Collins, Stochasticity in gene expression: from
theories to phenotypes., Nat Rev Genet, 6 (2005), 451–64.

[32] S. Kanji, V. J. Pompili and H. Das, Plasticity and maintenance of hematopoietic stem cells

during development., Recent Patents on Biotechnology, 5 (2011), 40–53.

[33] B. B. Kaufmann and O. A. Van, Stochastic gene expression: from single molecules to the
proteome., Curr Opin Genet Dev, 17 (2007), 107–112.

[34] B. B. Kaufmann, Q. Yang, J. T. Mettetal and V. O. Alexander, Heritable stochastic switching
revealed by single-cell genealogy, PloS Biol, 5 (2007), e239.
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