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Abstract 
Even in response to apparently simple tasks such as hand moving, human brain 

activity shows remarkable inter-subject variability. Presumably, this variability reflects 

genuine behavioural or functional variability. Recently, spatial variability of resting-state 

features in fMRI - specifically connectivity - has been shown to explain (spatial) task-

response variability. Such a link, however, is still missing for M/EEG data and its spectrally 

rich structure. At the same time, it has recently been shown that task responses in M/EEG 

can be well represented using transient spectral events bursting at fast time scales. Here, we 

show that individual differences in the spatio-spectral structure of M/EEG task responses, 

can, to a reasonable degree, be predicted from individual differences in transient spectral 

events identified at rest. In a MEG dataset of diverse task conditions (including 

motor responses, working memory and language comprehension tasks) and resting-state 

sessions for each subject  (n = 89), we used Hidden-Markov-Modelling to identify transient 

spectral events as a feature set to learn the mapping of space-time-frequency content from 

rest to task. Resulting trial-averaged, subject-specific task-response predictions were then 

compared with the actual task responses in left-out subjects.  All task conditions were 

predicted significantly above chance. Furthermore, we observed a systematic relationship 

between genetic similarity (e.g. unrelated subjects vs. twins) and 

predictability. These findings support the idea that subject-specific transient spectral events 

in resting-state neural activity are linked to, and predictive of, subject-specific trial-averaged 

task responses in a wide range of experimental conditions. 
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1. Introduction 
Human non-invasive neuroimaging data is characterized by high inter-subject variability. 

Even for simple tasks such as moving a hand or seeing a well-defined visual pattern, the 

specific responses elicited in different subjects can be heterogeneous in terms of spatial 

location or extent, as well as magnitude, timing and oscillatory content. The origin of this 

variability is not clear, but there is increasing evidence that it reflects intrinsic inter-

individual differences in resting-state activity. Support for this hypothesis has been 

demonstrated recently using human functional magnetic resonance imaging (fMRI) data, 

where spatial activation maps for a number of different tasks (motor, sensory, working 

memory) were reliably predicted from connectivity profiles derived from resting state data 

(Tavor et al., 2016). Other fMRI studies examining functional connectivity patterns showed 

that these patterns  - both in rest and task - can serve as unique, subject-specific signatures 

of brain activity, also known as neuronal ‘fingerprinting’ (Finn et al., 2015) indicating another 

potential link between rest and task brain activity. However, these studies and others, 

focusing on rest-task relationships (e.g. Cole et al., 2016), were being undertaken in the 

domain of fMRI. 

 

However, a common criticism of fMRI is that it represents a rather indirect measure of brain 

activity. This leads to the question whether the same relationship or predictability holds for 

more direct measures of brain activity such as magnetoencephalography (MEG) or 

electroencephalograpy (EEG). M/EEG can capture the oscillatory and synchronized activity of 

neuronal populations and - unlike fMRI - can resolve brain activity at a temporal resolution 

down to milliseconds, reaching the temporal scale at which important aspects of cognition, 

and the neural dynamics that are tied to these processes, arise. Thus, the natural question 

arises whether features of M/EEG task responses can be predicted from rest as well. There is 

already a large body of work focusing on the link between rest and task processing in 

M/EEG. Features of the most prominent rhythms, such as alpha or beta oscillations, in 

human resting state M/EEG data are known to be functionally relevant and have 

considerable cross-subject variability (Klimesch, 1999). As in fMRI, the M/EEG literature has 

already demonstrated both the variability of transient electrophysiological features at rest 

and also during task-processing and their functional relevance. For example, resting state 

features in EEG have been shown to impact on task responses (Becker, Ritter, & Villringer, 
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2008; Mazaheri & Jensen, 2008; Nikulin et al., 2007), relate to perceptual and cognitive 

performance (Busch, Dubois, & VanRullen, 2009), (Mathewson, Gratton, Fabiani, Beck, & Ro, 

2009). On the other hand, ongoing activity in the alpha or beta frequency range is also highly 

variable during task processing and shows functional relevance during working memory 

tasks (Klimesch, 1997), observation of movements (Pineda et al., 2005) as well during 

effortful speech comprehension (Becker, Pefkou, Michel, & Hervais-Adelman, 2013; Obleser 

& Weisz, 2012). The link between ongoing and task activity has been demonstrated  both 

intra-individually (i.e. on a trial-by-trial level) and inter-individually (i.e. on a subject-by-

subject level), and such links seems to exist beyond specific sensory and cognitive domains 

and have been demonstrated also invasively in animal brain activity (e.g. (Arieli, Sterkin, 

Grinvald, & Aertsen, 1996)). While all these studies showed evidence of some link or 

interaction between rest and task activity in neuronal activity, a more direct link – i.e. 

predicting individualised task responses from spontaneous neuronal activity - is still missing 

for M/EEG. 

 

In this study, building on the work of Tavor et al. (2016) that focused on fMRI spatial 

variability, we aim to predict cross-subject variability of task MEG time-frequency responses 

using spatio-spectral dynamics as derived from resting MEG data. Tavor et al. (2016) 

succeeded in predicting task fMRI activation spatial maps using spatial (i.e. connectivity) 

properties derived from resting fMRI data by using modes that corresponded to spatially-

localised sub-portions of the connectivity profiles extracted from the individual static 

functional connectivity network matrices. Here, for predicting spectrally rich M/EEG task 

responses, and since we are bringing in the spectro-temporal dimension, we require a 

method that can reliably extract the relevant spectral subject-specific properties (or modes) 

from rest data in an unsupervised fashion while accommodating the dynamics contained in 

the data. 

 

There are a number of possible approaches for extracting the required dynamic spatio-

spectral modes from resting M/EEG data; including ICA and sliding-window estimates of 

functional connectivity (Brookes et al., 2011; Hipp, Hawellek, Corbetta, Siegel, & Engel, 

2012). However, it has recently been shown that task responses in M/EEG can be well 

represented using transient spectral events bursting at fast time scales (van Ede et al.,  2018, 
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Shin et al., 2017; Vidaurre et al., 2016; Zich et al., 2018). This work has revealed that 

sustained oscillations in task data observed after trial-averaging may actually correspond to 

the temporal smearing of responses bursting at fast timescales with variable timing. We 

therefore hypothesised that subject-specific transient spectral events in resting-state neural 

activity might be predictive of subject-specific trial-averaged task responses, in a wide range 

of experimental conditions. 

 

Here, we looked to test this idea by using the approach of Hidden-Markov-Modeling (HMM) 

to identify fast transient spectral events, since the HMM has previously been shown to be 

capable of extracting events with rich spectral profiles in both rest and task MEG data. For 

example, the HMM has proven useful in resting MEG data for identifying fast transient 

events with distinct multi-regional power amplitudes and amplitude correlations (Baker et 

al., 2014), or with distinct multi-regional spectral and cross-spectral (e.g. coherence) 

properties (Vidaurre et al., 2018);  and in task MEG data for capturing task-modulations of 

spectral properties (Vidaurre et al., 2016; Zich et al., 2018).   

 

We sought to predict between-subject variability in the time-frequency responses in a 

number of different tasks using resting state data.  For this we use data from the ‘Human 

Connectome Project’ (HCP), a consortium of several research institutes that has collected 

data of a relatively large number of MEG subjects and incorporates both resting state data 

and a range of task data, including motor movements, and cognitive tasks involving working-

memory and language comprehension (Van Essen et al., 2013).  
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2. Methods 
2.1. Subjects and data.  

The data used here are human non-invasive resting state and task magnetoencephalography 

(MEG) data publicly available from the Human Connectome Project (HCP) consortium (Van 

Essen et al., 2013, Larson-Prior et al., 2013), acquired on a Magnes 3600 MEG (4D 

NeuroImaging, San Diego, USA) with 248 magnetometers. The resting state data consist of 

89 subjects (mean 28.7 years, range 22-35, 41 f / 48 m, acquired in 3 subsequent sessions, 

lasting 6 minutes each). Task data were available for a subset of these subjects, with 2 

sessions per task. Each task has a similar or identical experimental design to the 

corresponding task acquired during fMRI imaging. The tasks acquired in the MEG include a 

motor task condition - where hands or feet had to be moved paced by an external cue (every 

1.2s), a working memory (WM) task - where people had to remember the occurrence a of n-

back previously shown item (with n=0 and 2) with the items being either tools or faces and 

finally, a third task group - involving language comprehension - where in one condition, 

subjects had to listen to a number of sentences (making up a complete story) and then 

answer questions regarding that story, and in another condition subjects had to solve math 

problems (Larson-Prior et al., 2013). Data were segmented to the onset of EMG (motor task), 

the non-target item (WM task), or to the onset of a sentence (language task). For each of the 

task groups, overlapping but not identical subsets of the total pool of resting state subjects 

was available (motor task n=56, WM task n=70, language comprehension n=72). 

 

We analysed 10 different task conditions in total across these 3 main task groups – 4 for the 

motor task (right hand, left hand, right foot, left foot), 4 for the WM task (0-back face items, 

0-back tool items, 2-back face items, 2-back tool items, all being part of the non-target 

condition which also required a motor response), and 2 task conditions within the language 

condition - sentences vs. math problems.  

 

2.2. Preprocessing.  

2.2.1 Source estimation and parcellation 

For each subject, the MEG data were acquired in a single continuous run comprising both 

rest and task. We used the MEG data from the HCP database denominated as ‘preprocessed’ 

as starting point. At this level of preprocessing, removal of artefactual independent 
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components, bad samples and channels had been already performed (see Larson-Prior et al., 

2013 ). Following these steps, the data were subject to bandpass filtering (1-48Hz, 

Butterworth) and LCMV beamforming (using beamforming routines from the Matlab based 

Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) ), resulting in 5798 virtual 

source voxels (with 8mm grid resolution) and down-sampled to 200 Hz. In order to reduce 

dimensionality of the analysed data, we used a custom parcellation of 76 parcels covering 

the whole brain, extracting the first principal component (PC) across all time-courses within 

each parcel. The parcellation was created in a way such that each first PC explained about 

60% of the variance across all voxels within each parcel by starting with 2 large parcels 

covering each hemisphere and then subsequently splitting these parcels into smaller ones). 

The parcellation was based – analogous to all other preprocessing steps – on the resting 

state only. 

Note that all resting state runs for a subject were acquired in a single session. As a result, we 

concatenated the resting state runs for a subject, and applied a single beamformer, parcel 

time-course extraction and spatial leakage reduction. Then, the transformations (learnt only 

from the rest data for a subject) are applied to the task data runs for any subjects we are 

looking to predict. This ensures maximum consistency of within-subject pre-processing for 

all sessions, without having knowledge of or being biased by any task data information of 

these subjects. 

 

2.2.2 Spatial leakage reduction 

For spatial leakage reduction, we chose the multi-variate orthogonalisation approach as 

described in (Colclough, Brookes, Smith, & Woolrich, 2015), using the ‘closest’ 

implementation).  

 

2.2.3 Task epoching  

Task data was segmented into epochs depending on the event of interest: For the motor 

task, data were time-locked to the onset of the electromyogram (EMG), for the WM task, 

epochs were locked to the visual onset of the (non-target) item and for the language 

comprehension task the beginning of the sentence or maths problem was the time-locking 

event. To ensure conformity of the concatenated data sets, both resting state data and task 

data were normalized to zero mean and unit variance (performed per subject and parcel). 
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Motor task epochs were segmented from -1.1 to 1.1secs, working memory task data and 

language task data from -1.1 to 2.2 secs. Baseline correction was performed from -0.5 to -

0.2s. 

 

2.3. Conventional Estimate of Time-Frequency Task Responses 

We performed conventional wavelet (WL) time-frequency analysis (7 cycles, Morlet mother 

wavelet) for the segmented task data. The resulting WL-based task responses serve as 

comparison with the HMM-based (regularised) task responses at the group level. The WL 

based task responses were baseline corrected in a pre-stimulus time window (-0.5s to -0.2s 

for all task conditions). If not specified otherwise, general custom Matlab scripts were used 

(Matlab R2016b, Natick, USA) and the in-house OHBA Software Library (OSL), which is built 

on Fieldtrip and SPM, and is available at https://github.com/OHBA-analysis/osl-core). 

 

2.4. Prediction of Subject-Specific Time-Frequency Task Responses using Resting Data 

After pre-processing, resting state parcel time-courses were analysed one parcel at a time 

using the pipeline outlined in Fig. 1. In Supplementary Information (SI) Fig. 1, the approach 

is illustrated in more detail (including usage of the HMM). In general, the pipeline has the 

following steps: In the training step, we first identify group and individual state time courses 

and their (spectral) signatures in rest. Note that each HMM state corresponds to a spectral 

event of certain type, i.e. with a distinct spectral profile. We then estimate - in task - 

individual state time courses by fitting the rest states to the task data. In the general 

framework (Fig. 1), in the prediction step we then predict – in the unseen subject – its own 

task response by combining their individual resting state signatures with the observed state 

time course for the group.  

 

2.4.1. Training 

As illustrated in Fig. 1a-c (and in more detail in SI Fig. 1a-c) we train as a first step (SI Fig. 1a) 

an autoregressive Hidden-Markov-Model (HMM-AR, with 4 hidden states and an 

autoregressive (AR) observation model with order 5) to identify states representing different 

types of spectral events in the group resting state data (concatenated over subjects, n=89). 

We used the HMM toolbox, available at https://github.com/OHBA-analysis/HMM-MAR. 

Hidden-Markov Modelling is a stochastic modelling approach that considers the data as 
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being generated from a discrete sequence of hidden underlying states. The HMM infers both 

the characteristics of the states and their time courses simultaneously. Within the HMM, the 

observation model (sometimes referred to as the emission distribution) describes, for each 

state, the distribution explaining the data when that state is active. In our case the 

observation model is a univariate autoregressive (AR) model of order 5, meaning that the 

hidden states basically correspond to a spectral event of certain type, i.e. with a distinct 

spectral profile, and that each visit to a state corresponds to a distinct spectral event of that 

type. We refer to this approach as an HMM-AR - for further details of the approach see 

Vidaurre et al., (2016), where the more general case of a multivariate AR observation model 

is discussed. Here, we infer separate HMM-AR parameters for each brain region (or parcel), 

resulting in the state time-courses (indicating the probability of the state being active at 

each time point) per state and subject, and the group-averaged state spectra at rest (i.e. the 

state observation models or the spectral profiles of the different spectral event types). The 

group-averaged state spectral properties of each spectral event type or state at rest are 

computed as described in section 2.4.3, “State Spectra Estimation” using a multi-taper 

approach. 

Subsequently (SI Fig. 1b), we infer the HMM-AR on the epoched task data for all subjects 

and trials, but, crucially, with the observation model held fixed to the pre-estimated group-

averaged state spectra at rest (i.e. from the previous step). The resulting state time-courses 

are trial-averaged to give the subject-specific task-locked dynamics for each state; we refer 

to these average state time courses as “occupancies”, indicating the relative amount of time 

spent in that state at each time point (or alternatively, the rate of occurrence of the spectral 

event types defined by that state). 

 

Finally (SI Fig. 1c), as part of a leave-one-out cross validation scheme, we learn a linear 

mapping from each individual’s average rest occupancy to their own actual task occupancy 

at each time point within the task window, leaving out one subject. This will be used to 

improve the prediction of the subject-specific state occupancies in task (i.e. the subject-

specific task-locked dynamics for each state). The most straightforward way to predict the 

subject-specific state occupancies in task would be to simply set them to be the same as the 

group-averaged occupancies in task (as in Fig. 1). However, this would not take into account 

the extent to which individuals tend to spend different amounts of time in each state; and 
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assuming that there is a relationship between the amount of time spent in a state at rest and 

in the task, taking this into account will improve our prediction of the subject-specific task 

responses. This linear mapping (see next methods section “Prediction” for details) is learned 

separately at each time-point within trial, by using linear regression across all subjects 

between the subject-specific state occupancies in rest and the subject-specific states 

occupancies in task at the time-point in question. As a result, we obtain regression 

coefficients that vary as a function of time within the trial (SI Fig. 1c). 

 

2.4.2 Prediction 

This is illustrated in Fig. 1d-f and in more detail in SI Fig. 1d-f. In the prediction stage, we will 

make use of the trained model, and apply it to a new, left-out (LO) subject to predict their 

unseen time-frequency task response. As with the training, this is carried out one parcel at a 

time. 

 

First, the HMM-AR is fit to the LO subject’s rest data, but with the observation model held 

fixed to the group-averaged state spectra at rest (from SI Fig. 1a), resulting in the LO 

subject’s state time-courses at rest (SI Fig. 1d). These state time-courses are used to obtain 

LO subject’s state occupancies and state spectra at rest. The state-specific spectra are 

estimated by the method described in section 2.4.3, “State Spectra Estimation”. 

 

Next, we predict the LO subject’s state occupancies in task (i.e. the LO subject’s task-locked 

dynamics for each state). As mentioned previously, the most straightforward thing to do, 

would be to simply set the predicted LO subject’s state occupancies in the task to be the 

same as the group-averaged state occupancies in the task (from SI Fig. 1b). However, we 

instead take into account the extent to which individuals tend to spend different amounts of 

time in each state, by assuming that that is a related quantity between rest and task. For 

each trial time-point, this is done by taking each subject’s average state occupancies at rest 

(SOR, collapsed over time m= 1…. m, for all n subjects) : 

 

𝑆𝑂𝑅$$$$$$%&'…) = 	
∑ 𝑆𝑂𝑅%,(/)1
/&'

𝑚  
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Having obtained the rest state occupancies (SOR) for all subjects, we perform a linear 

regression on all subjects except the left out subject (n being the index of the left out 

subject) to find the linear relationship between the state occupancy in a task at time t (SOT) 

and the average state occupancy at rest (SOR) across all subjects (except LO subject, n). This 

linear relationship is identified for each state (s), parcel (p), task (k)  and time (t)): 

 

𝑆𝑂𝑇(%,4,5,/) = 𝑎(%,4,5,/) + 𝑏(%,4,5,/) 9

𝑆𝑂𝑅):'$$$$$$$$$$
⋯
⋯

𝑆𝑂𝑅'$$$$$$$
< 

 

The obtained coefficients a and b are then used to predict the LO subject’s state occupancies 

in task (SI Fig. 1e), (again, separately for each state, parcel, task and time):  

 

𝑆𝑂𝑇𝑃(),%,4,5,/) = 𝑎(%,4,5,/) + 𝑏(%,4,5,/)𝑆𝑂𝑅) 

 

The above leave-one-out pipeline (see also Supp Fig. 1) is repeated for all n subjects, so that 

every subject has a predicted SOT for all times, tasks, and parcels (without having seen its 

own task data).  

 

Finally, the predicted LO subject’s state occupancies in task (time x states) and the LO 

subject’s state spectra at rest (frequency x states) are combined (by matrix multiplication), 

to give a prediction of the LO subject’s time-frequency task response (time x frequency) (SI 

Fig. 1f). These are then baseline corrected in the same way as the conventionally produced 

time-frequency responses (see section 2.3., “Conventional Estimate of Time-Frequency Task 

Responses”). Henceforth, these will be referred to as the ‘predicted task responses’. 

 

2.4.3. State spectra estimation 

Once the state time-courses are defined, we refine the estimate of their spectral profiles. 

Recall that these spectral profiles capture the nature of the type of the spectral events that 

each state represents. While this can be done in a parametric way, i.e. using the parameters 

obtained by the observation model (i.e. the AR coefficients in our case, e.g. see (Vidaurre et 

al., 2016)), we choose here to do this non-parametrically by means of a multi-taper spectral 
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approach. Analogous to (Vidaurre et al., 2016), state-wise spectral power is computed as 

follows:  

 

𝑆(5)	(𝑓) =
1
√𝑅

AA𝜌/
(5)𝛿/

(5)𝑦/𝑒:FGiI/
J

/&'

K

L&'

 

with 

𝜌/
(5) =

M𝛾/
(5)

M∑ 𝛾/
(5)/	𝑇J

/&'

 

 

where 𝜌	is weighting the spectral power at time point t by how much a point is represented 

by state k. These derived state spectra will serve as input into the reconstruction and 

prediction step of our approach pipeline (see Fig. 1 and SI Fig. 1, see Methods section 2.4.1, 

“Training”). State spectra are computed once per subject and parcel. The group-average 

state spectra will be used to created group-average reconstructed time-frequency responses 

that will be compared against the conventional wavelet-based time-frequency responses. 

 

2.4.4 Validation of prediction approach.  

In the validation step, we assess the quality of the prediction by comparing the LO subject’s 

time-frequency predicted task response (from SI Fig. 1F) to their actual task response. The 

HMM-AR limits the dimensionality of the predicted task response (because the AR model 

has only 5 parameters, and because there are only 4 states) so it is by design not capable of 

capturing all features of the actual task response. To account for this in the comparison, we 

therefore compare the predicted response to the ‘HMM regularized’ estimate of the LO 

subject’s task response. This was computed by fitting the HMM-AR to the LO subject’s actual 

task data, but while holding the observation models fixed to be the group-averaged state 

spectra at rest (as we do in the prediction). This results in state occupancies and the 

associated state spectra in the task for the LO subject which are then combined (by means of 

matrix multiplication), to give ‘HMM regularized’ time-frequency task responses for the LO 

subject. These are baseline corrected in the same way as the conventionally produced time-

frequency responses (see section 2.3., “Conventional Estimate of Time-Frequency Task 

Responses”). Henceforth, these HMM regularized TF estimates will be referred to as the 
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‘actual task responses’, and the conventional (wavelet-based) time-frequency task 

responses as ‘WL based task responses’. 

Finally, to assess the quality of the prediction, a linear correlation analysis is used to 

compare the predicted and actual task response for the LO subject. Before the correlation, 

predicted task responses (i.e. 2D time-frequency maps) are concatenated over all parcels for 

each LO subject. If the prediction is performing sufficiently well, then this predicted task 

response should be more similar to the actual task response of the LO subject than to the 

actual task responses of any other subject. In a second step, correlation coefficients are 

normalized (demeaned, with unit variance) over rows and columns. In order to determine 

the statistical significance of this effect, a two-sample t-test is performed testing whether 

diagonal and off-diagonal samples come from the same distribution. 

 

2.5. Sources of variability of prediction performance across tasks and subjects.  

Next, we examine whether there is any systematic variation in how well we can predict 

different tasks and different subjects. Specifically, we investigate the relationship between 

prediction performance and a measure of the ‘stability’ of each subject’s first-level task. 

Prediction performance was quantified using the average diagonal value of the correlation 

matrix (see Fig. 5), and the task stability was quantified (within subjects) using the resulting 

t-value over all trials for a time window of interest from 0.1s to 0.5s post-stimulus, frequency 

range from 8-26 Hz (testing the difference from zero), and for a representative  parcel-of-

interest for each task, as shown in Fig. 3. For the motor task, we chose a parcel 

corresponding to the contra-lateral motor area, for the working memory task we chose a 

parcel in proximity to visual cortex, and for the language task a parcel near the auditory 

cortex was chosen. These measures are computed for every task and subject.  

 

2.6. Influence of genetic factors on prediction of task responses.  

The aim of the present study is to predict task responses of a subject from their own resting 

state patterns. Related to this question, we examine whether there is any systematic 

structure in cross-subject predictions, i.e. when trying to predict one subject’s task response 

from another subject’s resting state patterns. Specifically, we hypothesize that such a 

relationship is potentially governed by genetic similarity. The HCP data, specifically the MEG 

subjects used in this study are selected on grounds of family structure, resulting in roughly a 
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third of monozygotic twins (further denoted MZ), another third of dizygotic twins (DZ) and 

the remainder being unrelated subjects (UNREL). It has been shown that both for the fMRI 

and MEG imaging modality, similarity in patterns of functional connectivity in these data sets 

is related to similarity of genetic structure (Colclough et al., 2017; Vidaurre, Smith, & 

Woolrich, 2018). We examine whether these different levels of genetic similarity show 

differences with respect to the capability of our model to predict these subject’s task 

responses (for example from one twin to another etc.). To do so, after grouping the subjects 

into groups MZ, DZ and UNREL, for all tasks at hand (n=10) we accumulate the previously 

computed and normalized correlation coefficients for predicted vs. actual task responses for 

each pool of subjects (see “Validation of prediction approach” for the normalization 

approach). 

In order to test whether the difference between cross-subject predictability is systematic, 

we perform permutation tests for the following groups: MZ vs DZ, DZ vs UNREL, with 

another reference group, SAME, testing for how well we predict from the actual subject (see 

“Validation of prediction approach”). For each grouping, labels of the two conditions are 

shuffled 1000 times and we compare the actual group mean difference against the 

distribution of differences from the permutation distribution.  
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3. Results 
3.1.1. Data: Subject variability 

We start by illustrating the sort of subject variability apparent in task and rest data, and the 

potential relationships between them. This is shown qualitatively in Fig. 2, using the right-

hand movement task, locked to the EMG onset. Fig. 2A shows the group-averaged resting 

state spectra; and Fig. 2D shows a prominent, typical task induced beta event-related 

desynchronization (ERD). Next, we looked to see if there were any indications of subject-

specific relationships between the spectral properties of the trial-averaged task beta ERD 

and the spectra in the resting state data.  

 

First, we looked at the amplitude of the beta ERD, by plotting in the second column of Fig. 2 

the power spectra in rest and task (calculated during the ERD) over subjects, with the 

subjects ordered by their task beta ERD amplitude. Second, we looked at the peak-

frequency of the beta ERD, by plotting in the third column of Fig. 2 the same power spectra 

in rest and task over subjects, but now with the subjects ordered by their task beta ERD 

peak-frequency. 

 

This illustrates two points. First, the subject-specific trial-averaged task and rest spectra 

show a considerable amount of between-subject variability, in terms of both the amplitude 

and shape of the spectral profiles. Second, there appears to be a qualitative relationship 

between the task and rest spectral profiles of individual subjects. Most notably, the task 

beta ERD peak-frequency ordering reveals a similar trend over the subjects between task 

(Fig. 2F) and rest (Fig. 2C). For example, subjects that have a high task beta ERD peak-

frequency, also tend to have a higher amount of power in high beta than low beta in the rest 

data. It is these types of relationships that our approach can potentially leverage to allow the 

prediction of trial-averaged task spectral responses from rest data. 

 

3.1.2 Data: Group level task responses 

An overview over the typical MEG WL based task responses for the available tasks is given in 

Fig. 3. This shows the group-averaged WL based task responses, i.e. the task-related power 

changes for each of the three main task conditions – a motor task, visual working memory 

and a language comprehension task (showing one representative parcel each). The motor 
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task (Fig. 3A) shows the typical movement-related alpha and beta ERD in a contralateral 

motor-cortex associated parcel (approximate parcel location is indicated by red dots on the 

rendered brains) and a typical motor-evoked response, i.e. a power increase in the lower 

frequency range (especially in the contralateral motor areas). The group task response for 

the visual working memory task (Fig. 3B) shows both the typical visual alpha ERD following a 

visual stimulus (which occurs during this task) and the motor preparation component 

reflected by ERD in the beta band contralateral to the required button press (needed to 

respond to matches / non-matches). Both the motor component as well as the visual 

component show power increases in the lower frequency range reflecting the evoked 

responses usually associated with such a task. The language comprehension task (Fig. 3C) 

shows alpha ERD in a parcel encompassing auditory cortex and higher auditory areas, as well 

as typical language-related theta power increase. Both are sustained for the duration of the 

sentence presentation (exceeding beyond the shown time window). These average task 

responses illustrate that while the tasks share some common spectral features, such as 

alpha or beta ERD, they vary in their exact spectral profile, temporal dynamics and spatial 

patterns. 

 

3.2. Properties of identified HMM states: spectral features and their modulation in task 

conditions  

We were interested in seeing how well the HMM inferred on resting state data can be used 

to “predict”, or represent the group-averaged task responses, whether the HMM can 

capture the task feature on a group level. Note that this group level prediction is a pre-

requisite to our objective of using the HMM inferred on resting state data to predict subject-

specific responses. To do this, we compute group-averaged actual task responses, calculated 

by projecting the HMM state-specific resting power spectra (i.e. the spectral profiles of the 

transient spectral events represented by each state found in the rest data) onto the task 

data (see Method section 2.4.4 for computing of the actual task responses). These are then 

compared with conventional group-averaged WL task responses in Fig. 4.  

 

The group-level multi-taper based (MT) spectra for each resting HMM state are shown in Fig. 

4A-C (for the same parcels chosen as in Fig. 3). These are calculated purely from rest data. 

Then, task HMM state-time courses are calculated by effectively projecting the resting HMM 
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states onto the task data. The resulting group averaged task HMM state occupancies are 

depicted in 4D-F (these correspond to the rate of occurrence of the different spectral events 

represented by each HMM state). In all three task groups, these task HMM state-time 

courses reflect a combination of induced and evoked response dynamics of the task 

response, showing distinct visible modulations in state probability for each type of dynamics. 

For example, the purple state in the motor task example (Fig. 4D) shows a task-related 

increase in probability (relative to a pre-movement baseline), with its spectral profile 

showing a 1/f like behaviour.  

 

By combining the resting HMM state spectral profiles (in Fig 4A-C) with the task HMM state 

spectral profiles (in Fig 4D-F) - via means of matrix multiplication – we obtain the actual 

time-frequency task response for each task, which are shown in Fig 4G-I. These can be 

compared with conventional group-averaged WL task responses shown in Fig 4K-M. For 

example, in the motor task, the actual task response (Fig 4G) reproduces low-frequency 

increases in power, as well as the expected beta ERD known for limb movements. The latter 

originates from a state with a pronounced beta peak, but which decreases in probability (Fig 

4K).  

 

Overall, the qualitative correspondence between Figs. 4G-I and 4K-M demonstrates that the 

spectral properties of the different spectral events (i.e. states) the HMM has identified, from 

the resting state data, are useful to reproduce qualitative features of the actual task 

responses of the same group of subjects.   

 

3.3. Validation of approach: Group level statistical assessment of single-subject predictions 

For the subject-specific predictions we apply the pipeline as outlined in Fig. 2 (see also 

Method section 2.4.1: Training and section 2.4.1: Prediction), where we obtain the predicted 

task responses for all task conditions, parcels and subjects. The predicted task responses are 

compared to the actual task responses (i.e. the states projected onto the task data, as in Fig. 

4) by linear correlation analysis. In Fig. 5, the validation results for each of the 3 main types 

of tasks (motor, WM, language) are shown (illustrated for the same tasks as in Fig 3 and Fig. 

4). Fig. 5A shows the correlation matrix that reflects how strongly the actual task responses 

correlate with the predictions, either from the same subject (indicated by values in the 
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diagonal) or from other subjects (indicated by values in the off-diagonal part of the matrix). 

A good prediction should result in the diagonal (prediction of same subjects) prominently 

standing out. Fig 5A shows the ‘raw’ correlation coefficients for this validation step, while 

Fig. 5B shows the same correlation matrix after normalization (of row and columns, 

respectively). In order to statistically test the difference between same-subject prediction vs 

random-subject prediction, we tested the null hypothesis that both these groups (same vs 

other, i.e. in- vs off-diagonal) come from the same distribution (using a two-sample 

Student’s t-test). This was rejected for all task conditions, as all p-values were less than 1.86 

x 10-5 (for the math problem solving task). Thus, predictions for all tasks are better when 

using resting state data (specifically their spectral profiles of the different types of spectral 

events, or states, as identified by HMM-AR in rest data) from the same subjects as compared 

to random subjects (defining our ‘chance level’ in the present case). 

 

3.4. Single-subject predictions 

We next sought to characterise the nature of the between-subject variability that we are 

predicting. Supplementary Fig. 2 shows three example subjects, illustrating the between-

subject variability that is being predicted in two ways in the right-hand motor task. First, we 

show the average predicted power in a post-stimulus time-window (190-390 ms) in the beta 

band. Second, we show the predicted task-related time-frequency (or spectro-temporal) 

variability in a motor parcel contralateral to movement. In summary, this illustrates how the 

predictions are reflecting both spectro-temporal and spatial aspects of between-subject task 

variability. 

 

3.5 Amplitude and peak-frequency variability drive single subject prediction differentially  

After having shown that our approach is capable of predicting task responses both on a 

group and single-subject level, we wanted to better understand what the model relies on for 

its predictions, and whether it predicts one particular feature of the task data better than 

another. In particular, we want to examine whether the model is better suited to predict 

cross-subject variation in amplitude changes or in other spectral features such as peaks of 

alpha or beta rhythm ERD.  
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To this end we first performed principal component analysis (PCA) on a snapshot of the task 

data. We chose a contra-lateral motor cortical parcel in the right-hand movement task, 

during a post-movement time window at 190-390ms post-stimulus, using the baseline 

corrected power over the whole frequency range available (1-50 HZ), averaged over this 

time window, obtaining one vector of power values per subject. Performing PCA over 

subjects will reveal the principal components driving subject variability. Fig. 6 shows the 

results, focusing on the resulting first (left column) and second principal components (right 

column) for the task data. The first principal component (PC1) reflects mainly the variation in 

average amplitude of the beta-band ERD typical for this task, while the second principal 

component (PC2) mainly reflects subject-specific variations in the peak frequency of this 

response.  

 

After having run the PCA on the task data, we projected these task-PCs onto the predictions 

to obtain the weights for this fit (shown in the second column of Fig 6). Interestingly, our 

approach results in PC2 being better preserved (or estimated) in the predictions than the 

weights from PC1, as is apparent by a higher correlation of the PC2 of the task response with 

its projection onto the predictions (correlation coefficient r = 0.62 for PC2 compared to r = 

0.28 for PC1). Next, the extent to which PC1 and PC2 encodes amplitude or peak variation is 

demonstrated by sorting the (subject-specific) task responses and the predicted equivalent 

response according to the weights of PC1 and PC2 (Fig 6C). Overall, Fig. 6 shows that the 

model is more capable of reflecting spectral features such as peak variation (e.g. the peak 

frequency of the beta ERD, as reflected in PC2) rather than amplitude changes (e.g. amount 

of beta ERD, as reflected in PC1). 

 

In a next analysis, we want to find out how important these two main modes of variation – 

i.e. amplitude and spectral peak variations - are for explaining cross-subject variability. Fig. 

6J-L demonstrates that using only these first two principal components, cross-subject 

variability similar to the ‘full’ task data can be well-represented. This similarity is indicated by 

a relatively high correspondence of the two matrices that represent the cross-subject 

variability for the given task and their resulting correlation coefficient of r=0.77. While the 

correspondence to the full data is even higher for a larger number of retained principal 
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components, the improvement in explained variance is more incremental, and the 

subsequent components (3 and onwards) are less clear to interpret. 

 

3.6. Prediction quality across tasks 

Another question that is important to address is the variability of prediction performance, 

i.e. how well we predict subject specific task responses from rest, in the tasks examined and 

what is the potential source of this variability in prediction performance. While all tasks yield 

predictions that are significantly better than chance, the quality of the predictions across 

task conditions varies to some extent. We hypothesized that one potential source underlying 

the variability in prediction quality might be the (cross-subject) variability of signal-to-noise 

ratios (SNR) for the different tasks. The result is visualized in Fig. 7. SNR of task responses 

was defined by the subject’s first-level statistics (i.e. t-values indicating the within-subject 

level of significance of the observed task responses). It can be seen that for each task - both 

on a group averaged as well as on the individual subject level - stronger and more stable 

responses (as indicated by t-values, plotted on the x-axis) imply better prediction 

(normalized correlation coefficients, plotted on the y-axis). In general, the motor task 

conditions (right / left hand and feet) are predicted best, followed by the working memory 

conditions, and finally, the language comprehension task conditions (sentence 

comprehension, math problem solving). Of interest is that a similar analysis where we 

examined another potential source of prediction performance variability - effect size, i.e. 

subject-specific average amount of alpha or beta ERD rather than subject-specific SNR (as 

done above)  -  yields no such relationship (results not shown). 

 

3.7. HMM predicted task responses show hereditary structure 

We asked how the genetic structure, which is a feature available in the present HCP data set, 

is related to predictability (Fig. 8). We hypothesized that task responses might be better 

predicted from resting state data of genetically more closely related subjects (e.g. identical 

or non-identical twins) than task responses predicted from completely unrelated subjects. 

 

Non-parametric analysis of variance revealed that the normalized correlation coefficients 

(estimating the similarity between prediction and actual task responses, see Methods) 

pooled into groups; reflecting that same subjects (SAME), identical twins (MZ), non-identical 
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twins (DZ) and the remainder (UNREL) are not originating from the same distribution (as 

determined by permutation testing). Non-parametric (rank-based) post-hoc testing between 

the groups showed that all differences in prediction performance between groups were 

significant (pSAME_vs_MZ, pMZ_vs_UNREL, pDZ_vs_UNREL  all  < 0.001, cf. Fig. 8). Generally, correlation 

coefficients are higher (i.e. predictions are better) the more genetically similar subjects are, 

in terms of the ability for the resting state data from one subject to be able to predict 

another subject’s task response. 
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4. Discussion 

4.1. Summary and interpretation of results  

We have shown that MEG trial-averaged subject-specific task-activity can be predicted using 

subject-specific transient spectral events identified in resting-state MEG data using Hidden 

Markov Modelling.  This prediction is made without prior knowledge about the task 

responses of specific subjects, and is mediated by hereditary factors. This has been 

demonstrated in a large, freely available data set with a set of diverse experimental 

conditions ranging from simple hand movements to more cognitively demanding tasks 

involving working memory, attention and language processing.  

 

The HMM methodology applied here has been previously employed to identify transient 

events in both rest and task data in an unsupervised manner, and both for 

electrophysiological as well as hemodynamic data (Baker et al., 2014; Vidaurre et al., 2016; 

2018). Here we used a region-by-region HMM-AR to identify transient spectral events 

defined as having distinct spectral profiles, in order to link rest and task with the following 

findings.   

 

First, the spectral properties of the different transient spectral events represented by the 

HMM states extracted from rest were shown to be relevant and effective in describing task 

dynamics at the group-averaged level. Subsequently, subject-specific spectral profiles of 

transient spectral events identified by HMM-AR were then used to predict trial-averaged 

task dynamics on a single-subject level (Fig. 1, Supplementary Fig. 1). We found that the 

accuracy of the presented approach typically depends on two factors: The accuracy of the 

individual spectral profiles of the spectral events as extracted by HMM-AR, and the accuracy 

of the predicted state dynamics, i.e. the state time-courses or rate of occurrence of the 

spectral events represented by each state, for the states associated with these spectral 

profiles. Both these properties critically affect the prediction accuracy, since these two 

features ultimately generate the predicted (‘HMM-regularised’) time-frequency task 

responses in our model.  

 

In terms of the general prediction performance, the model tended to predict individual 

differences in spectral features better than differences in the response amplitude, as 
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indicated by the results from our principal component analysis of actual task responses and 

their equivalent counterparts in the predicted responses (Fig. 6). In how far this observation 

is caused by the specific approach chosen (i.e. the HMM-AR), is not completely clear and 

further work would be needed to elucidate this. In any case, the fact that cross-subject 

variability of spectral features (especially peak frequency, as encoded in the second PC in 

Fig. 6) is driving a good part of the task prediction implies that these modes might be useful 

for aligning subjects frequency-wise in the context of task-related analyses, in analogy to the 

more spatially oriented alignment procedures for fMRI.   

 

With respect to the different task conditions, we saw that task response predictions worked 

best in task conditions with strong and robust event-related task responses both at the 

subject and group level (Fig. 7). This relationship is likely to come from two different sources. 

First, a robust task response means that during the training step in our framework, the 

actual task dynamics, i.e. the state time courses of the hidden states (which serve as a model 

for the left-out subject) are better estimated when task responses are robust (i.e. less noisy 

and more genuinely subject-specific); this is true for both subject and group level 

estimations. Second, a robust response also means that ERD behavior is better estimated in 

terms of its precise spectral properties (i.e. its peak frequency). 

 

4.2. Previous work and related approaches 

The results in this work may be relevant for the incipient debate on the interpretation of 

frequency-specific patterns of neural activity. The success of using the HMM to identify 

transient spectral events in order to link rest and task speaks in favour for the existence of 

transient bursts, or a hybrid combination of bursts and sustained rhythms rather than for 

pure rhythmically sustained oscillations (Shin et al., 2017, van Ede et al., 2018); or at least 

that there is utility of identifying fast (event-like) transient changes in spectral dynamics. 

However, a complete comparative analysis with non-bursting representations of spectral 

activity is required to better support this idea. 

 

In a broader sense, the present study is part of a body of work that tries to link rest to task 

features, or, more generally, structure to function. Previous approaches have shown links 

between resting state connectivity patterns and task activations (Biswal, Yetkin, Haughton, & 
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Hyde, 1995; Cole, Ito, Bassett, & Schultz, 2016; Tavor et al., 2016), connectivity and subjects 

or behavioral measures (Shen et al., 2017; Smith et al., 2015), anatomically related structural 

features such as grey matter volume linked to behavioral skills such as navigation (Maguire 

et al., 2000) as well as links between structure and spatio-spectral content (Abeysuriya et al., 

2018; Hadida, Sotiropoulos, Abeysuriya, Woolrich, & Jbabdi, 2018). All of these findings point 

to the functional relevance of inter-subject variance – variance that is necessarily eliminated 

by conventional approaches such as averaging (Seghier & Price, 2018). This approach builds 

upon the previous work to show the relevance of this variability in the time-frequency 

domain by both representing inter-subject variance and showing its link with the resting 

state. 

 

The evidence that there is a hereditary component (Fig 10) - meaning that prediction from 

resting state data of genetically related subjects yields better task predictions than 

predicting from unrelated subjects - adds weight to this finding. It supports the idea that 

these inter-subject differences are not trivial, but biologically meaningful, since related 

subjects show related MEG patterns. Previous reports already indicated that inter-subject 

variability, specifically of functional connectivity in resting state (Colclough et al., 2017) as 

well as spontaneous HMM state (and meta-state) dynamics (Vidaurre et al., 2018) have a 

strong genetic component, and the finding of genetic influence in the present results is 

another hint at the relevance of genetic factors for subject variability. Both the spectral 

profiles and the mapping from resting state to task state dynamics should have some 

hereditary component to them to yield the present results (being a combination of these 

two) - however, no systematic comparison has been done to assess their relative 

contribution more precisely. Regarding the origin of this genetic component – one possibility 

might be for example cortical folding, which is known to be hereditary to a certain degree – 

which could affect measurements on the scalp and ultimately source reconstructed rest and 

task signatures. However, while this might explain spatial variability it is less clear how this 

would explain spectral variability (such as differences in peak frequency for alpha or beta 

rhythms, for example). 

 

With respect to predicting task activations from rest, what differentiates our approach from 

most of the previous approaches (Shen et al., 2017; Tavor et al., 2016) is the challenge of an 
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effectively 3-dimensional task-structure (time-frequency-space), which is more complex than 

the prediction of static, spatial activation maps (being effectively reducible to 1D 

representation). Taking this into account, the results are quite encouraging and in terms of 

statistical robustness comparable to previously reported results for prediction of spatial 

activation maps in fMRI (Tavor et al., 2016). The data set used in the present study shares a 

subset of task conditions with the fMRI study (both data sets being part of the Human 

Connectome Project, (Larson-Prior et al., 2013)) and a subset of subjects. However, apart 

from the different imaging modality examined – fMRI vs MEG -  there is one other 

noteworthy difference: While our approach seemed to be best at predicting the more 

‘simple’ tasks (involving hand or feet movements), and less good at predicting more 

cognitive tasks (involving subtle changes in relative power), the approach presented in Tavor 

et al., (2016) showed an opposite effect, performing best in highly cognitive tasks (e.g. 

language processing). One reason for this might be the sensitivity of our model to 

spontaneous or induced oscillations such as alpha or beta rhythms prominent in M/EEG 

resting state – rhythms that are known to be detected (at rest) most clearly  in functionally 

more ‘fundamental’ sensorimotor and posterior visual areas, and detected less in frontal or 

other more ‘cognitive’ areas higher up in the neural processing hierarchy (Srinivasan et al., 

2006). 

 

In a narrower sense, the presented framework, i.e. using HMM-AR and regression-based 

modeling to predict subject-specific task responses via the identification of transient spectral 

events, is (in principle) not the only way to predict trial-averaged task responses in M/EEG, 

or related electrophysiological, data. As outlined in Fig. 1, any approach that is capable of 

decomposing resting state activity into spatio-spectral modes might be similarly used to 

identify links between rest and task activity. For example, methods like non-negative matrix 

factorization (Lee, Hashimoto, Wible, & Yoo, 2011), autoregressive modes (Porcaro, 

Zappasodi, Rossini, & Tecchio, 2009) or other sliding window approaches (O'Neill et al., 

2017) are possible options. However, the need for sliding windows - or entirely collapsing 

spectral features over time - differentiates these from the HMM approach. The unsupervised 

decomposition of a time-series into consistently reoccurring, transient spectral events with 

distinct spectral modes - without the need of fixing window length or imposing another 
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temporal structure - is potentially beneficial for the identification of relevant, yet transient 

and dynamics patterns needed to predict task responses in M/EEG. 

 

Of course, prediction approaches are not at all limited to spatio-spectral features only, but 

can capitalize on very different properties, for example on static functional connectivity as 

shown repeatedly for hemodynamic activation maps (Tavor et al., 2016), (Shen et al., 2017)). 

However, it is not clear whether such an approach would be capable of dealing with the 

complex spatio-spectral dynamics as it is necessary in the domain of M/EEG time-frequency 

task responses. 

 

4.3. Limitations and challenges 

The approach presented here has its limitations. One potential limitation is the assumption 

of constant spectral features (i.e. stable peak frequency in both rest and task within an HMM 

state). This assumption may not be always valid. There have been reports of task-induced 

changes not just of the amplitude of ongoing oscillations – which is well established since the 

discovery of alpha oscillations (Berger, 1929) and later for beta oscillations as well 

(Pfurtscheller & Lopes da Silva, 1999) – but also changes of the precise peak frequency of the 

induced changes (e.g. shift in the alpha frequency range during increased cognitive demand 

(Haegens, Cousijn, Wallis, Harrison, & Nobre, 2014). It would be interesting to see whether 

the incorporation of potential and systematic frequency changes induced by task processing 

improves prediction quality.  

 

Furthermore, the presented HMM-AR approach used here for prediction of subject-specific 

task-responses – while operating on whole-brain data via iterating over all available brain 

parcels – is at its core a mass-univariate approach, since it uses a different HMM-AR on the 

single time-course of data from each brain region. Thus, by necessity, it ignores any cross-

regional interactions. The univariate approach might also be a factor that explains that in our 

model, sensorimotor task might be predicted better than more cognitive tasks, but this 

would need further investigation. For future studies, multivariate approaches might be 

exploited to enable the incorporation of additional features (for example, connectivity 

measures) with the hope to potentially increase prediction quality. Nonetheless, the mass-

univariate approach pursued here has demonstrated success in predicting subject-specific 
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properties in diverse MEG task responses. Utilizing similar HMM methodology to identify  

transient spectral events in task data, a recent study has shown changes in HMM state 

dynamics reflecting modulated beta oscillations as a function of motor learning (Zich et al., 

2018), adding support to the usefulness and sensitivity of using the HMM with activity from 

one brain region at a time. 

 

One other important subject-specific feature of electrophysiological task responses is largely 

missing - the latency of evoked and / or induced components - a feature of task responses 

often used for clinical diagnosis, and a feature reflecting conduction velocity (Halliday, 

McDonald, & Mushin, 1972), the degree of impairment of fibre tracts, pathways or the 

impairment of brain areas critically involved in a task-active network. While our model is 

capable of learning amplitude variations of oscillatory activity to a certain degree, it cannot 

really predict latency variations in task responses. It is possible for the approach we have 

developed to be adapted so that subject-specific differences in the latency of responses can 

be taken into account. However, this is not trivial, since the relationship between resting 

state features and the latency of the task responses is unclear, and thus needs further 

investigation. 

 

4.4. Implications for the functional significance of ongoing activity 

One interesting insight with respect to the identified hidden states in our study is that (at 

least for the given parametrization of the HMM-AR approach chosen here) the approach 

often appears to assign alpha or beta oscillations to discrete states (Fig. 4). Both types of 

oscillations are known to have functional relevance, modulating task-related activity (Becker, 

Ritter, & Villringer, 2008; Mazaheri & Jensen, 2008; Nikulin et al., 2007) as well as behaviour 

(Busch, Dubois, & VanRullen, 2009; Mathewson, Gratton, Fabiani, Beck, & Ro, 2009). This 

might suggest that these two components do not co-occur, but can be modelled separately  

- this however is beyond the scope of this study. Interestingly, these oscillatory components 

are also the aspects of the task response variability that the model predicts best, i.e. in task 

conditions that have pronounced and stable induced oscillatory changes (specifically often 

power decreases) in alpha or beta power.  
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Apart from alpha or beta components, another component that gets well-identified as a 

discrete state, is a scale-free, broad-band, or 1/f component (see for example the group 

results for the spectral modes in Fig. 4). This type of scale-free activity, reflecting self-

similarity or fractality, is thought to have similar functional significance as the more 

established oscillatory components in M/EEG (He, 2014). In our model, this type of state is 

relevant and necessary for modelling and predicting the evoked responses in the task data 

(usually showing a power increase < 7 Hz, as is apparent in Fig. 3 and Fig. 4). However, while 

this 1/f state is the identified HMM-state best suited to modelling these evoked responses, 

the relationship between this scale-free component in rest and the evoked responses in task 

is less clear. Here, a higher AR model order might distinguish better between a pure slope 

and for example, evoked theta to elucidate this question. At the current state, predicting the 

lower-frequency, evoked components during task processing seems to be less good than 

modelling and prediction of the oscillatory, induced components. It would have been 

interesting to establish a closer link between this 1/f type of state in rest and task, however, 

this is beyond the scope of the present paper. 

 

4.5. Outlook & conclusion 

Being able to predict time-frequency task responses and their variability in human subjects 

based on resting state data is highly attractive. Potentially, this might be very useful in a 

clinical setting. For fMRI, the potential clinical usefulness of task-free neuroimaging has 

already been demonstrated by predicting the location of language-relevant areas in patients 

from rest and its feasibility for pre-surgical planning (Parker Jones, Voets, Adcock, Stacey, & 

Jbabdi, 2017). This suggests that something similar might be achieved with M/EEG in a 

clinical context. The dominating device in clinical settings is the EEG (and sensor-based 

analysis), but a similar approach as the one presented here for MEG source data should be 

feasible as well. 

 

In conclusion, we believe that the framework presented here contributes to the goal of task-

free neuroimaging and help to better understand, model and predict inter-subject variability 

of task responses, identifying the hidden states that serve as the building blocks of this 

variability. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 17, 2018. ; https://doi.org/10.1101/419374doi: bioRxiv preprint 

https://doi.org/10.1101/419374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Acknowledgments 
The Wellcome Centre for Integrative Neuroimaging is supported by core funding from the 

Wellcome Trust (203139/Z/16/Z). MWW's research is supported by the NIHR Oxford Health 

Biomedical Research Centre, by the Wellcome Trust (106183/Z/14/Z), and the MRC UK MEG 

Partnership Grant (MR/K005464/1). Data were provided [in part] by the Human Connectome 

Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 

1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint 

for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at 

Washington University. We would also like to thank Dr. Alexis Hervais-Adelman for helpful 

comments regarding the manuscript. 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 17, 2018. ; https://doi.org/10.1101/419374doi: bioRxiv preprint 

https://doi.org/10.1101/419374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Figures 

 

 
Figure 1. An overview of the approach shown for one task condition, and which is carried out 

separately on all parcels. a-c. Training stage. (a) Spectral modes are identified on the entire 

group resting state data (e.g. by using HMM, where modes correspond to different types of 

spectral events represented by the HMM states), resulting in the group-averaged rest spectra 

for each mode. (b). The epoched task data for all subjects and trials is projected onto the 

group-averaged mode spectra at rest, resulting in group-averaged task-locked dynamics for 

each mode (c). d-f. Prediction of the task-response for the left-out (LO) subject. (d) The LO 

subject’s resting state activity, from panel (a), is projected onto the group mode spectra to 

create subject-specific state-time courses and subsequently, subject-specific spectral modes 

(e). Finally, the group-averaged task-locked mode dynamics, from panel (c), and the LO 

subject-specific mode spectra at rest, from panel (e), are combined to create a LO subject-

specific prediction of the time-frequency task response (f). This is a simplification of our 

approach, a more detailed schematic, specific to the use of the HMM, is depicted in 

Supplementary Fig. 1. 
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Figure 2. Illustration of the subject variability in task and rest spectral content, and the 

potential relationships between them. Here, we use the right-hand movement task, locked to 

EMG onset, as an example. Note that the top row shows rest data, and the bottom row shows 

task data. A. Group-averaged power spectrum of resting data from a parcel in the left motor 

cortex (data was high-pass filtered above 1Hz). B, C. Subject-wise representation of resting 

state spectra ordered by task features – see below in E and F for type of sorting. D. Time-

frequency amplitude response in the task condition, showing a beta-band event-related 

desynchronisation (ERD) (red square). E. Task power spectra during the ERD for each subject, 

ordered by their beta ERD amplitude (averaged over the red time-frequency window in D). 

Note that the task power spectra in E and F were computed by averaging over the ERD time-

period, i.e. within the time-window indicated by the dashed red-lines in D. This ordering index 

was used in B. F. Same power spectra as E, but now with subjects ordered by their beta ERD 

peak-frequency (found within the time-window indicated by the dashed red-lines in D) - this 

subject ordering index is  used for the resting state data in C. 
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Figure 3. Group-level summary of the different task responses used in this study. A. Motor 

task (a right-hand movement, time-locked to the movement onset). B. Visual working memory 

task (2-back, faces, time-locked to appearance of the non-target items). C. Language 

comprehension task (time-locked to beginning of a sentence). On the left of each panel, is the 

wavelet-based time-frequency maps locked to task onset, for the parcels indicated by the red 

dots on the rendered brains on the right of each panel. The red line in the time-frequency 

plots indicates the time-point show in the rendered brains on the right side, which are shown 

for three different frequency ranges, corresponding to sub-alpha (<7 Hz, including theta and 

delta range), alpha, and beta.  
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Figure 4. Group result HMM-regularised task responses for all three task groups (motor, WM, 

language), showing a typical parcel for each condition and its comparison to the conventional 

wavelet-based time-frequency task maps. A-C. HMM state-specific spectral profiles (using 

state-wise multi-tapering) for the motor task, visual WM task and language task (from 

different parcels, close to motor cortex, visual cortex and auditory cortex, see inlets). D-F. 

Group average task fractional occupancies (FO), showing the rate of occurrence of each HMM 

state for the indicated parcel and task. Both the motor task and the visual WM task are 

reflecting the periodic nature of the experimental design – i.e. preceding or following stimuli 

can also be seen within the analysed task window (for example, D shows a preceding stimulus, 

E includes a following one). In F, the language comprehension shows a more sustained 

response (alpha/beta power decrease, theta-delta increase) corresponding to a less periodic 

experimental design of that task (one sentences lasts several seconds). Note, that the task 

fractional occupancies are baseline corrected for visualisation purposes. G-I. Group-averaged, 

HMM-regularized task responses. K-M. Group-averaged, conventional wavelet-based 

responses. Note that the state spectra (i.e. the spectral profiles of the different transient 

spectral event types) used for generation of the HMM-regularized responses are coming from 

the resting state data only.  
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Figure 5. Group level statistics for the prediction results (here one task condition is shown for 

each group of tasks – motor, working memory and language comprehension - showing the 

level of correspondence between task responses and predictions. A-C. These matrices show 

the correlation coefficients between actual and predicted task responses of either the same 

subjects (in the diagonal) or of different subjects (in the off-diagonal). Results are shown for a 

motor task (right hand movement, A), working memory task (2-back, face stimuli, B) and 

language comprehension task (sentence understanding, C), respectively. D-F. Same task 

conditions, now with the correlation coefficients normalised over rows and columns (see 

Methods). G-I. Predicted task-responses and actual (HMM-regularized) task responses from 

the same subjects are more similar to each other (by means of their correlation coefficient, 

visualised by blue asterisks and the vertical line indicating the mean) than pairs of task 

response and predictions from different subjects (distribution is visualised by the red lined 

plot). All task conditions were predicted above chance level.    
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Figure 6. Subject-variability of responses in motor task condition, showing that peak frequency 

in the beta band is the strongest component of predicted variability. A,B. Performing Principal 

Component Analysis (PCA), on a time-frequency snapshot (over subjects) in a defined post-

movement time-window in a motor task on a parcel in contralateral motor cortex A. PCA yields 

a first principal component (PC) that mainly models the subject-specific mean of the post-

stimulus induced (beta-band) power change. The curves labeled with --  and ++ designate 

lower or higher weightings of PC1 to illustrate its effect (in case of PC1 a simple scaling).  B. 

The second PC appears to model a spectral shift of the beta-band response (higher weights 

correspond to higher beta frequency). Here, --  and ++ indicate lower and higher weighting of 

PC2 (added on average PC1 to illustrate its effect).  C,D. Projecting the predictions onto these 

components as identified in A and B, the resulting weights across subjects correlate with the 

actual PCA weights from the task data (rho=0.28 and rho=0.62 for the first and second 

components respectively). The second PC shows the strongest correlation, indicating a better 

prediction of spectral features than amplitude features of actual task responses. E,F. 

Performing a median split grouping subjects into low and high weights groups (for each 

component) shows these amplitude and frequency effects. First component modulates beta 

ERD while the second one shifts the frequency peak of beta ERD. G,H. The same effect is still 

visible when looking at the projection of the task-PCs onto the predictions. J,K,L. We examined 

the extent to which the cross-subject correlation structure (full in J) is explained by the PCs 

obtained. J. Full cross-subject correlation structure. K. By using PC1 and PC2 only 

(corresponding to beta-amplitude and beta-frequency variations across subjects), back 

projection into data space results in cross-subject correlations similar to the full data. L. Adding 

PC1 and PC2 for back-projection (n=2) results in correlation of 0.77 with full cross-subject 

correlation structure. Adding more PCs increases similarity to full structure even more, but 

not drastically (NB: using the first PC only (n=1) represents a special case, i.e. only modelling 

the subject-specific mean of beta ERD. Since this does not really yield any relevant cross-

subject structure in a correlation analysis, resulting correlation with the full cross-subject 

correlation matrix is near-zero.  
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Figure 7. Quality of prediction depends on the subject-specific robustness of actual subject-

specific task responses. This scatter-plot visualises the link between first-level significance, or 

‘stability’ of task responses (as reflected by the t-values for each subject in a post-stimulus 

time-window [reflecting the difference from baseline] for a given task condition, plotted on 

the x axis) and the resulting prediction performance (i.e. the normalised correlation 

coefficients in the diagonal from Fig. 4, representing the y axis). Average effects across task 

conditions (as depicted by the coloured crosses) as well as single subjects are shown.  
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Figure 8. Genetic factors play a role in cross-subject predictions, 

with subjects being better predicted by their genetically closer 

counterparts than by unrelated subjects. As expected, when pooling 

over all same-subjects (‘SAME’), the normalized correlation 

coefficients are highest (corresponding to the distribution of all 

pooled diagonal entries from correlation matrices in Fig. 5). The 

second-best prediction across subjects is obtained when predicting 

task responses from one monozygotic twin’s rest data to its sibling 

(labeled ‘MZ’, sharing 100% of their genetic information). For 

dizygotic twins (labeled ‘DZ’, 50% of shared genetic information) 

predictions are slightly worse (not significant compared to MZ), 

however they are still significantly better than when predicting task 

responses of random subjects (‘UNREL’, i.e. unrelated subjects with 

no shared genetic information). Stars indicate level of significance 

(***p<0.005, results of permutation testing (with 1000 

permutations), following Bonferroni correction for multiple 

comparisons), light green boxes indicate the median. 
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Supplementary Figures 

 
Supplementary Figure 1. The detailed methodological approach shown for one task condition, 

and which is carried out separately on all parcels (for ease of illustration, we show only 3 

states). (a-e) Training stage. (a) The group resting state data (one parcel, all subjects 

concatenated) is fed into an HMM-AR, resulting in the time-courses for each hidden state and 

subject, and the group-averaged state spectra (i.e. the spectral profiles of the different 

transient spectral event types) at rest. A hidden state  as identified by HMM-AR corresponds 

to the general concept of a mode as illustrated in Fig. 1. Here, it specifically reflects transient 

spectral events at rest. (b) The HMM-AR is fit to the epoched task data for all subjects and 

trials, but with the observation models held fixed to the group-averaged state spectra - coming 

from the transient spectral events at rest -  from panel (a). (c) The resulting state time-courses 

are trial-averaged to give the subject-specific task-locked dynamics (or task occupancy) for 

each state. (d) We then do a linear regression across to learn the relationship between the 

subject-specific rest occupancies (see panel (d)) and task occupancies from (c) at each time-

point within a trial. (f-i) Prediction of the left-out (LO) subject’s task response. (f) The HMM-

AR is fit to the LO subject’s rest data, but with the observation model held fixed to the group-

averaged state spectra at rest, from panel (a), resulting in the LO subject’s state time-courses 

at rest. (g) The state time courses are used to obtain LO subject state occupancies and its 

corresponding state spectra that we derived from the transient spectral events at rest.  (h) 

The LO subject’s state occupancies in task are predicted by mapping the LO subject’s state 
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occupancies at rest through the linear relationship trained at each trial time-point, from panel 

(e). (i) Finally, the predicted LO subject’s state occupancies in task and the LO subject’s state 

spectra at rest are combined  via matrix multiplication (see Methods) to create a LO subject’s 

prediction of the time-frequency task response.  
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Supplementary Figure 2. Examples of the between-subject variability being predicted in 

single-subject task responses, shown for three subjects during the motor task (right-hand 

movement).  A. HMM regularized task responses [top] and predicted task time-frequency 

responses [bottom] (in a motor parcel contra-lateral to the moved hand). B. Whole-brain 

renderings of the induced beta-band response in the actual task data [top] and the predictions 

[bottom] generated by our approach. 
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