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Abstract 
Intraspecific genetic structure in widely distributed marine species often mirrors the 
boundaries between temperature-defined bioregions. This suggests that the same thermal 
gradients that maintain distinct species assemblages also drive the evolution of new 
biodiversity. Ecological speciation scenarios are often invoked to explain such patterns, but 
the fact that adaptation is usually only identified when phylogenetic splits are already evident 
makes it impossible to rule out the alternative scenario of allopatric speciation with 
subsequent adaptation. We integrated large-scale genomic and environmental datasets along 
one of the world’s best defined marine thermal gradients (the South African coastline) to test 
the hypothesis that incipient speciation in the sea is due to divergence linked to the thermal 
environment. We identified temperature-associated gene regions in a coastal fish species that 
is spatially homogeneous throughout several temperature-defined biogeographical regions on 
the basis of selectively neutral markers. Based on these gene regions, the species is divided 
into geographically distinct regional populations. Importantly, the ranges of these populations 
are delimited by the same ecological boundaries that define distinct infraspecific genetic 
lineages in co-distributed marine the species, and biogeographical disjunctions in species 
assemblages. Our results indicate that ecologically-mediated selection represents an early 
stage of marine speciation in coastal regions that lack physical dispersal barriers. 
 
Keywords: adaptation, dispersal barrier, ecological speciation, seascape genomics, 
ddRADseq, ecological genomics, incipient speciation, marine biogeography, selection 
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Introduction 
 
Molecular phylogenies of marine species present along 
continuous coastlines have revealed that spatial 
disjunctions between distinct evolutionary lineages are 
often associated with the boundaries between different 
marine biogeographic regions [1,2], but such genetic 
patterns tend to be present in only a fraction of species 
[1,3–6] (Fig. 1). This discrepancy is often attributed to 
life history: actively dispersing species, and those with 
extended planktonic dispersal phases, cross the 
boundaries between bioregions more frequently than 
species with short propagule duration, making them 
less likely to diverge in spatial isolation [5,7]. 
However, support for this paradigm is not consistent, 
as numerous studies from North America [6,8], South 
Africa [1,9] and Australasia [4,10] have failed to 
identify a clear link between genetic structure and 
dispersal potential. 
 
An alternative explanation for this paradox is offered 
by ecological divergence that preceded the allopatric 
distribution patterns evident on the basis of selectively 
neutral genetic markers. This is primarily supported by 
‘phylogenetic shifts approaches’, in which 
phylogenetic splits coincide with ecological 
divergence [11]. The evidence for ecological 
speciation is particularly strong when phylogenetic 
splits are not associated with physical dispersal 
barriers that can completely isolate sister lineages [11], 
when contact zones are located in regions where 
environmental conditions are intermediate [1,12] and 
when each lineage displays reduced fitness in the 
habitat of its sister lineage [13–15]. Phylogenetic splits 
that are shared by multiple species across the same 
boundary may differ considerably in age [1,16], and by 
extension, this supports the hypothesis that species in 
which phylogenetic divergence is not yet evident have 
undergone ecological differentiation very recently.  
 
The phylogenetic evidence for ecological drivers of 
speciation is nonetheless circumstantial, because 
divergence events mostly occurred during the 
Pleistocene or earlier [16–18], and it is difficult to 
extrapolate from contemporary conditions when 
species’ historical distribution patterns are unknown 
and past oceanographic conditions not well 
understood. Because of such uncertainties, it is 
controversial to ascertain whether adaptation to 
divergent environments that reduced levels of gene 
flow because of the maladaptation of migrants was the 
primary driver of divergence, or whether it occurred 
after a phylogenetic split that may very well have 
evolved during an extended period of physical 
isolation.  
 
More compelling evidence for ecological speciation in 
the sea would come from scenarios in which there is 

support for genetic differentiation that coincides with 
biogeography, but in which phylogenetic divergence 
indicative of speciation has not yet occurred [15]. The 
fact that phylogeographic breaks tend to be present in 
only a fraction of the species whose ranges span the 
boundaries between ecologically distinct marine 
regions [1,3,4] suggests that the condition of recent 
divergence may be met by those species that display 
no genetic divergence on the basis of the selectively 
neutral datasets typically employed in 
phylogeographic studies [19,20]. 
 
The South African coastline is characterised by 
ecologically distinct marine bioregions (Fig. 1) that are 
arranged along a thermal gradient [1]. This provides a 
unique opportunity for studying the importance of 
incipient environmentally-driven parapatric speciation 
in the sea, as biogeography (and, by extension, 
ecological speciation) is believed to be primarily a 
function of species’ thermal tolerance ranges [21–23]. 
Numerous species complexes exist along this coastline 
that comprise cryptic species whose ranges are limited 
by the boundaries between bioregions [1], and which 
exhibit distinct temperature preferences [13,14]. This 
suggests that thermal adaptation contributes towards 
limiting gene flow between biogeographic regions by 
reducing migrant fitness and by subjecting migrants to 
competitive exclusion [1]. However, in some species, a 
single evolutionary lineage is found across multiple 
bioregions (Fig. 1). The latter are suitable candidates 
for determining whether diversifying selection driven 
by the environment, and corresponding reductions in 
gene flow, may have preceded phylogenetic splits.  
 
We tested this hypothesis by generating genome-wide 
data from one of these phylogenetically homogeneous 
species [24], the Knysna sandgoby, Psammogobius 
knysnaensis (Fig. 1). We expect population divergence 
that mirrors coastal biogeography to be evident based 
only on temperature-associated genes. This would 
present compelling evidence that in coastal regions 
that lack physical dispersal barriers, thermal selection 
plays a defining role in the early stages of parapatric 
ecological speciation. 
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Figure 1. Sampling sites, marine bioregions and 
examples of genetic breaks in South African coastal 
animals; a A map indicating the location of sampling 
sites within southern Africa’s temperature-defined 
marine bioregions; b maximum and minimum sea 
surface temperatures at each sampling site; these 
temperatures divide bioregions into two groups each 
(indicated by ellipses), and by themselves only 
partially explain the region’s biogeography; c 
examples of distribution ranges (grey horizontal bars) 
and location of genetic breaks (black vertical bars) in 
coastal South African animals, arranged hierarchically. 
The top panel depicts species that occur as a single 
phylogenetic lineage in multiple bioregions: 1. 
Psammogobius knysnaensis (the study species, marked 
with an asterisk) [24] and 2. Scutellastra longicosta 
[16]. The middle panel depicts species with 
phylogenetically distinct sister lineages that are not 
distinguishable morphologically (cryptic species): 3. 
Callichirus kraussi [25] and 4. Palaemon peringueyi 
[26]. The bottom panel depicts morphologically 
distinguishable sister species: 5. Hymenosoma spp. 
[27] and 6. Tricolia spp. [28]. Abbreviations: W, cool-
temperate west coast; SW, transition zone on the 
south-west coast; S, warm-temperate south coast; SE, 
transition zone on the south-east coast; E, subtropical 
east coast. 
 
 
 

Methods 
 

(a) Sampling procedure 
Tissue samples from a total of 312 individual
Psammogobius knysnaensis were collected from
mouth areas of nine estuaries throughout the spec
range (Table 1) using a pushnet. Upon capture, a
clip was obtained from one of the pectoral fins u
sterilised fingernail scissors, and immedia
preserved in 100% ethanol. The fish w
subsequently released. Samples in the West C
National Park (Langebaan Lagoon) were colle
under research permit no. CRC/2015/033--2015/V1
 

(b) Generation and processing of geno
data 

Genomic DNA was extracted using the CT
protocol [29], and double digest restriction s
associated DNA (ddRAD) libraries were constru
for a subset of 129 individuals and 12 replicates 
particularly high quality DNA, following the prot
described in [30] and modified as described
Sandoval-Castillo et al. [31]. Libraries were poole
groups of 48 or 93 samples per lane and sequenced
an Illumina HiSeq 2000 (100 bp paired-end re
platform at the McGill University and Gen
Québec Innovation Centre. Raw sequences w
processed as described in the Supporting Informati
 

(c) Identification of loci under ther
selection and neutral loci 

We assessed the contribution of coastal sea sur
temperature (SST) to the overall pattern of gen
differentiation using the R package gINLAnd 
This software uses a spatial generalized linear m
model to quantify the correlation between genoty
and environmental variables, while controlling for
effects of spatial population structure and popula
history. Briefly, gINLAnd estimates the covaria
associated with the spatial distribution of the sam
and a locus-specific effect of each environm
variable; it then estimates the likelihood of 
competing models: a model with the environme
effect and a reduced model without the environme
effect. Finally, gINLAnd assesses the strength
genetic dependence on the environmental variable
computing a Bayes factor between the two models
avoid false positives, we used a conservative appro
in which only those loci which showed a log B
factor (BF) ≥10 were considered to be under selec
(a log BF>4.6 is considered decisive [33]). A 
depicting loci under selection is shown in Fig. S1.
calculated a multidimensional scaling projection of
coastal distance between sampling sites using th
package MASS 7.3 [34], which is more meanin
than using the original geographic coordinates bec
this would have required connecting sites 
terrestrial habitat. As the application of satellite-b
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SST data is often problematic when studying coastal 
biogeography, because it includes data from offshore 
regions [35], we used southern African temperature 
data based on in situ measurements, as described in the 
Supporting Information.  
 
To compare the temperature-associated loci with a 
data set comprising only selectively neutral loci, the 
following approach was used. Thermal selection may 
be only one of a number of drivers of selection, so we 
used BayeScan v. 2.1 [36] to identify markers under 
selection on the basis of outlier scans rather than 
temperature data. This method was used because it has 
a low error rate compared to other tests for the 
detection of outlier loci [37]. Default settings were 
applied with prior odds set to 10, but a very high false 
discovery rate of 20% was applied to create a neutral 
data set with a low probability of containing any 
remaining loci under selection. We then excluded 304 
outlier loci, together with 27 additional loci identified 
by gINLAnd that were not found by BayeScan, to 
create a data set of 8201 selectively neutral loci. 
 

(d) Functional annotation 
To identify the possible functions of genes under 
thermal selection, we blasted the flanking sequences of 
temperature-associated loci against the NCBI non-
redundant nucleotide database. The resulting reads 
were then annotated against the UniProtKB/Swiss-Prot 
database [38]. We then performed a gene ontology 
term analysis in topGO 2.24.0 [39]. Genes whose 
function indicates an influence of thermal selection 
were identified by searching the relevant literature. 
 

(e) Population genetic structure 
Genetic structure was investigated separately for loci 
under selection and neutral loci. We employed both 
clustering and phylogenetic approaches. Discriminant 
Analysis of Principal Components (DAPC) was 
performed with the R package ADEGENET v. 2.1.0 
[40]. DAPC defines a model with synthetic variables 
in which the genetic variation is maximized between 
clusters of individuals (K), and minimized within 
clusters. We used k-means clustering and the Bayesian 
Information Criterion (BIC) to identify the best-
supported number of clusters. Patterns of genetic 
structure were also explored using fastStructure 1.0 
[41], which uses variational Bayesian inference under 
a model assuming Hardy-Weinberg equilibrium and 
linkage equilibrium. We used a simple prior and set all 
other parameters to the default value, expect for the 
convergence criterion, which was lowered to 10-8. The 
programme was run for each value of K = 1-9 
independently, and each value was cross-validated 
1000 times. The python script chooseK was used to 
identify an optimal range of K values, and the resulting 
barplots were visualised with the R package distruct2.2 
[42].  

 
Phylogenetic analyses were performed in BEAST v. 
2.4.7 [43]. A maximum clade credibility (MCC) tree 
was reconstructed using a discrete phylogeographic 
analysis [44]. In this case, the data set comprised 
individual alleles of each individual that were 
reconstructed in PHASE v. 2.1.1 [45] using default 
settings. When more than one pair of haplotypes was 
possible for an individual, the one with the highest 
probability was used. In addition to reconstructing a 
phylogenetic tree, this method can infer the most likely 
bioregion in which each ancestral node in the MCC 
tree was present. One hundred million generations 
were specified, and trees saved every 100 000 
generations, and the first 20% of trees were discarded 
as burn-in. Model and prior settings followed those 
recommended in the tutorial available at 
http://hpc.ilri.cgiar.org. For comparison, a 
corresponding MCC tree was created for previously 
published mtDNA COI data [24] using the same 
settings. 
  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419036doi: bioRxiv preprint 

https://doi.org/10.1101/419036
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

Results 
 
The ddRADseq [30] procedure was used to generate a 
genome-wide dataset of single nucleotide 
polymorphisms (SNPs) from individuals collected at 
nine sites that are located within four temperature-
defined marine bioregions (Fig. 1). A total of 
405,648,596 raw reads were generated on two Illumina 
lanes. After demultiplexing and quality filtering, an 
average of 1,560,510 reads were obtained per 
individual, totalling 224,713,440 reads. The filtered 
catalogue resulted in 8,532 ddRADseq loci containing 
15,633 SNPs. A final dataset was obtained by 
extracting only the SNPs with the best quality score 
from each polymorphic ddRADseq locus to remove 
SNPs that are likely in linkage disequilibrium. After 
removing individuals with more than 20% missing 
data, the final data set comprised 109 individuals 
genotyped for 8,532 SNPs. We then used a spatially 
explicit generalized linear mixed model to test for 
direct associations between SNP allele frequencies and 
temperature-related variables, while controlling for the 
effects of spatial structure and shared population 
history, using the program gINLAnd [32]. Unlike FST-
based outlier scans, which identify loci on the basis of 
population information [36], the identification of loci 
in in genotype-environment association methods such 
as gINLAnd is thus not influenced by any regional 
population structure [46]. We explored various 
combinations of maximum or minimum temperature as 
the environmental variable with covariance factors that 
included geographic distance, biogeographic 
boundaries and a combination of the two. A simplistic 
resistance matrix approach [47] was used, where 
geographic distance and biogeographic boundaries 
between pairs of sites were given a resistance value 
(one unit of resistance per km between sites and ten 
units of resistance if sites were located in different 
marine bioregions). We then calculated 
multidimensional scaling projections based on the 
resistance pairwise matrices, and these were used as 
covariance factor to control for spatial structure. We 
further explored the effect of using only SNP data 
from the coolest and the warmest marine bioregions, 
using geographic distance as the controlling factor (see 
Table S1 for detail on number of SNPs identified). 
Most subsequent analyses were performed with the 
data set recovered using minimum temperature (with 
geographic distance as the covariance factor), which is 
thought to represent a key selective agent of adaptive 
divergence in the study region because it can limit 
species’ distributions [48,49]. 
 
SNPs from ddRADseq originate from all genomic 
regions, and some may be located on protein-coding 
genes that are strongly affected by temperature. While 
such associations may not necessarily imply a causal 
relationship, identifying their function may contribute 

towards an improved understanding of possible drivers 
of genetic divergence between temperature-defined 
bioregions. Although no fully annotated transcriptome 
for the family Gobiidae is presently available, nine of 
the loci (identified using either maximum or minimum 
temperature, with geographic distance as the 
covariance factor) could be annotated as genes 
involved in mitigating thermal stress (Table S2). Three 
of these (14-3-3 gene, tyrosine protein kinase and 
tubulin beta chain) are of particularly interest because 
they were involved in heat stress responses in a species 
of goby [50], or cold stress adaptation/acclimation in 
other teleosts [51,52]. In all but two cases, loci that 
were identified using minimum temperature data were 
also identified using maximum temperatures (Table 
S2). This suggests that even though most experimental 
studies investigated responses to heat stress, 
genetically fixed differences of these genes between 
temperature-defined marine bioregions may reflect 
general adaptations to different thermal environments, 
and thus play a role in determining thermal tolerance 
ranges. 
 
To ascertain that the study species does not yet exhibit 
genetic divergence based on putatively neutral data, 
which could indicate that geographical isolation 
preceded thermal adaptation, we created a reduced 
dataset comprising selectively neutral data. In addition 
to excluding loci identified as being under thermal 
selection, we excluded outlier loci from genome scans 
[36] to better estimate demographic parameters and 
population differentiation [31]. 
 
Two complementary methods of investigating a link 
between population structure and biogeography were 
performed on both the temperature-associated loci and 
the neutral loci, Discriminant Analysis of Principal 
Components (DAPC) [53] and fastStructure [41]. 
Statistical support was high for 3-4 clusters (K) when 
analysing the temperature-associated loci, while a 
single cluster (K = 1) was found for the neutral loci 
with both methods (Fig. S2, Fig. S3). Even though 
temperature alone only accounts for two marine 
bioregions (Fig. 1), and despite the fact that 
geographic distances and/or the boundaries between 
bioregions were controlled for when identifying 
temperature-associated loci, an affiliation of genetic 
clusters with up to four bioregions was found when 
using the temperature-associated loci. The distinctness 
of subtropical (SE) individuals from the temperate (W, 
SW and S) sites was evident in all analyses, and most 
analyses using minimum temperature as the 
environmental variable also identified the W coast as a 
distinct cluster. There was even evidence for distinct 
SW and S coast clusters, although these were 
comparatively poorly differentiated. This result was 
robust, and also recovered using fastStructure (Fig. 2). 
 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419036doi: bioRxiv preprint 

https://doi.org/10.1101/419036
http://creativecommons.org/licenses/by-nd/4.0/


6 

 

 
 
Figure 2. Population genetic structure inferred for 
temperature-associated loci. a DAPC scatterplot with 
inertia ellipses representing 95% confidence intervals, 
with colours reflecting the dominant bioregion 
represented in a particular cluster (left: loci correlated 
with maximum temperature; right: loci correlated with 
minimum temperature, in both cases controlling for 
geographic distance); b DAPC compoplots indicating 
membership probabilities for each individual (vertical 
bars) within one of four genetic clusters; correlation 
with temperature and the controlling factor are 
indicated on the right (maxtemp = maximum 
temperature, mintemp = minimum temperature, 
geodist = geographic distance, biogeo = biogeography; 
*indicates that only sites 1, 8 and 9 were used to find 
loci correlated with minimum temperature); c 
corresponding concensus fastStructure barplot for four 
genetic clusters (K); for comparison, barplots for K=2-
5 are shown in Fig. S4. Site numbers and abbreviations 
correspond to those in Fig. 1 and Table S3. 
 
 
 
Congruent with the clustering methods, a maximum-
clade credibility tree (Fig. 3a) of temperature-
associated loci (minimum temperature with geographic 
distance as the covariance factor) recovered both the 
western and south-eastern group as mostly distinct but 
poorly differentiated clusters nested within a tree 
whose oldest nodes were inferred to have existed on 
the south coast. Some branches are nested within 
clades that mostly have location states from other 

regions, which may reflect migration between adja
marine bioregions. For comparison, a maximum-c
credibility tree reconstructed from mtDNA 
sequences [24] shows no clear regional structure (
3b). 
 
 
 
 

 
Figure 3. Reconstruction of phylogenetic relations
between individuals of Psammogobius knysnae
from four South African marine bioregions u
maximum-clade credibility trees from a phased S
data of temperature-associated loci (correlated 
minimum temperature) and b mtDNA COI data, 
location state reconstructions of ancestral nodes. I
clear regional structure is evident, but there 
possible migrants (some branches are nested wi
clades that mostly have location states from o
regions). In contrast, there are no clear regional cl
in b. Site numbers and abbreviations correspon
those in Fig. 1 and Table 1, and trees are not draw
scale. 
 
 
 
Discussion 
 
Speciation is a continuous process comprisin
number of evolutionary stages that range f
adaptive differentiation to complete reproduc
isolation between populations [54]. Identifying 
primary drivers of speciation is challenging becau
considerable amount of time has often already pa
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by the time incipient speciation becomes evident. This 
makes it difficult to distinguish ecologically-driven 
divergence with ongoing gene flow from allopatric 
divergence and secondary contact [55,56]. 
 
Biogeography is often considered to be a function of 
species’ thermal tolerance ranges [21–23]. The fact 
that South Africa’s coastal biogeography is mirrored 
by intraspecific spatial genetic structure suggests that 
species present in more than one province should 
comprise multiple evolutionary lineages that represent 
cryptic species [1]. The goby Psammogobius 
knysnaensis is one of a number of coastal southern 
African species that occur in multiple marine 
bioregions, but which displays no regional divergence 
on the basis of selectively neutral markers [24] of the 
type that are primarily used in phylogeographical 
research [19,20]. Here, we reject the previous finding 
of genetic homogeneity and show that this species is in 
fact represented by multiple regional groups delimited 
by temperature-defined bioregions. The fact that this is 
only evident for temperature-associated loci, and not 
for putatively neutral loci, confirms that divergence 
must have taken place in the absence of an interruption 
of gene flow due to physical dispersal barriers. Under 
these conditions, a pattern of isolation-by-adaptation 
[57] can be expected to eventually evolve, as migrants 
dispersing into adjacent bioregions will have fewer 
surviving offspring and reduced survival rates 
compared to residents. A west-to-east thermal 
differentiation was evident particularly for the 
minimum temperatures, where the two easternmost 
sites had much warmer water than the other sites (Fig. 
1). However, there was no indication that marine 
bioregions could be identified on the basis of high or 
low temperatures alone, and the identification of loci 
under thermal selection and subsequent detection of up 
to four genetic clusters cannot be explained as being 
an artefact of the temperature variables used in the 
gINLAnd analyses. 
 
Adaptations to the thermal environment are complex 
and ubiquitous in nature. Temperature affects many 
different biological pathways, with strong effects on 
the integrity of proteins and cellular structures and on 
the rates of physiological processes, particularly in 
ectotherms [58,59]. The thermal environment can 
promote partial reproductive isolation between 
populations, which might drive them along the 
speciation continuum [60]. This is particularly true for 
organisms that (i) have distinct populations with 
parapatric distributions along the thermal gradient, (ii) 
do not maintain a stable internal temperature 
(poikilotherms), and (iii) are found across stable 
thermal gradients (e.g. aquatic environments), which 
are regions where exogenous divergent selection is not 
expected to weaken due to marked temperature 
fluctuations [60]. Our study system meets all these 

conditions and represents an example of parapatric 
ecological divergence with genomic hallmarks of 
incipient evolutionary divergence driven by the 
thermal environment. 
 
Unlike previous spatial demographic inferences from 
coastal southern Africa, which typically reflect the 
influence of past climatic changes [16,17,61,62], the 
spatial genetic patterns identified here can be 
explained by present-day environmental conditions. 
On the east coast, northward dispersal in the nearshore 
area is facilitated by wind-driven circulation [63], but 
this is unlikely to occur beyond site 9 (the northern 
distribution limit of P. knysnaensis) [62,64] because 
under contemporary conditions, the southward-flowing 
Agulhas Current flows very close to the coast and 
causes the parallel southward flow of nearshore 
circulation [65]. In the western portion of the species’ 
range, gene flow between south and west coast is 
primarily facilitated by the westward drift of surface 
water [66]. The limited evidence for gene flow in both 
cases would be difficult to explain if one exclusively 
invoked physical isolation, given the high dispersal 
potential of the species’ larvae coupled with the 
region’s strong ocean circulation. It suggests that 
migrants from a particular bioregion are maladapted to 
the environmental conditions in adjacent bioregions. 
For example, the distinctness of the west coast 
population from those on the south-west and south 
coast may reflect the influence of cold-water 
upwelling in the west [67]. 
 
We hypothesise that thermal selection, perhaps in 
combination with factors such as oceanography and 
primary productivity that covary with temperature to 
influence local adaptation [60], acts primarily on the 
sensitive larvae. Under this scenario, ecologically 
diverging populations are limited in their ability to 
exchange genes and, as such, reproductive isolation is 
expected to ensue [60]. There are no known 
conspicuous phenotypes that differ between the 
presumably locally-adapted P. knysnaensis 
populations, but this is unsurprising because thermal 
adaptation often initially creates cryptic changes at the 
level of cell membranes or thermal stability of 
enzymes [68]. Studies that combine information from 
population genomics and controlled laboratory 
experiments using temperature-defined populations 
along an evolutionary continuum of speciation are 
expected to improve the identification of phenotypes 
enriched for selection signals of thermal adaptation. 
 
Conclusion 
Allopatric speciation in the marine environment is 
often invoked along continuous but ecologically 
subdivided coastlines, despite evidence that the 
physical dispersal barriers to whom this is attributed 
are insufficient to completely isolate regional 
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populations [69–71]. Our study contributes to the 
growing evidence that in adjacent, temperature-defined 
marine provinces, divergence of loci linked to the 
thermal environment can precede significant spatial 
divergence of selectively neutral markers [72,73]. This 
strongly favours a scenario of parapatric ecological 
divergence over one in which allopatric divergence is 
followed by thermal adaptation. In the context of 
larger biogeographical patterns, where range 
boundaries in the sea often coincide with the 
boundaries between temperature-defined bioregions 
[74,75], this evidence suggests that temperature-driven 
diversifying selection may be an important early-stage 
factor in the evolution of marine biodiversity. 
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