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Abstract	

Efforts	to	map	the	functional	architecture	of	the	developing	human	brain	have	

shown	that	connectivity	between	and	within	functional	neural	networks	changes	

from	childhood	to	adulthood.	While	prior	work	has	established	that	the	adult	

precuneus	distinctively	modifies	its	connectivity	during	task	versus	rest	states	

(Utevsky,	Smith,	&	Huettel,	2014),	it	remains	unknown	how	these	connectivity	

patterns	emerge	over	development.	Here,	we	use	functional	magnetic	resonance	

imaging	(fMRI)	data	collected	at	two	longitudinal	timepoints	from	over	250	

participants	between	the	ages	of	8	and	26	engaging	in	two	cognitive	tasks	and	a	

resting-state	scan.	By	applying	independent	component	analysis	(ICA)	to	both	task	

and	rest	data,	we	identified	three	canonical	networks	of	interest	–	the	rest-based	

default	mode	network	(DMN)	and	the	task-based	left	and	right	frontoparietal	

networks	(LFPN,	RFPN)	–	which	we	explored	for	developmental	changes	using	dual-

regression	analyses.	We	found	systematic	state-dependent	functional	connectivity	

in	the	precuneus,	such	that	engaging	in	a	task	(compared	to	rest)	resulted	in	greater	

precuneus-LFPN	and	precuneus-RFPN	connectivity,	whereas	being	at	rest	

(compared	to	task)	resulted	in	greater	precuneus-DMN	connectivity.	These	cross-

sectional	results	replicated	across	both	tasks	and	at	both	developmental	timepoints.	

Finally,	we	used	longitudinal	mixed	models	to	show	that	the	degree	to	which	

precuneus	distinguishes	between	task	and	rest	states	increases	with	age,	due	to	age-

related	increasing	segregation	between	precuneus	and	LFPN	at	rest.	Our	results	

highlight	the	distinct	role	of	the	precuneus	in	tracking	processing	state,	in	a	manner	

that	is	both	present	throughout	and	strengthened	across	development.			

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419028doi: bioRxiv preprint 

https://doi.org/10.1101/419028


	 3	

Introduction	

The	human	brain	exhibits	distinct	patterns	of	functional	connectivity	

between	disparate	brain	regions,	even	when	at	rest.	These	patterns	are	so	reliably	

evoked	across	studies	and	participants	that	they	can	be	described	as	a	set	of	

canonical	neural	networks	reflecting	the	intrinsic	functional	organization	of	the	

human	brain	(Smith	et	al.,	2009;	van	den	Heuvel	&	Hulshoff	Pol,	2010).	The	default-

mode	network	(DMN),	comprised	of	the	precuneus,	posterior	cingulate	cortex,	

medial	prefrontal	cortex,	and	bilateral	temporoparietal	junction,	is	the	network	

most	readily	associated	with	rest	states,	as	its	activity	increases	during	rest	and	

decreases	during	task	engagement	(Raichle	et	al.,	2001;	Shulman	et	al.,	1997).	Other	

networks,	however,	also	show	patterns	of	intrinsic	connectivity	during	rest,	

including	lateralized	frontoparietal	networks	(FPNs)	that	are	more	generally	

associated	with	task-positive,	goal-directed	attention	(Corbetta	&	Shulman,	2002;	

Vincent,	Kahn,	Snyder,	Raichle,	&	Buckner,	2008)	and	found	to	be	anti-correlated	

with	the	DMN	(Fox	et	al.,	2005).		

	 Within	the	regions	of	the	DMN,	the	precuneus	stands	out	for	its	distinctive	

role.	Several	studies	have	shown	that,	despite	being	a	component	of	the	DMN,	

precuneus	activation	increases	during	tasks	such	as	memory	retrieval	(Fletcher	et	

al.,	1995;	Lundstrom,	Ingvar,	&	Petersson,	2005;	Maddock,	Garrett,	&	Buonocore,	

2001),	reward	monitoring	(Hayden,	Nair,	McCoy,	&	Platt,	2008),	and	emotion	

processing	(Maddock,	Garrett,	&	Buonocore,	2003);	see	(Cavanna	&	Trimble,	2006)	

for	review).	Notably,	Utevsky,	Smith,	&	Huettel	(2014)	found	precuneus	to	be	the	

only	neural	region	that	both	increased	connectivity	with	DMN	at	rest	compared	to	
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task	and	increased	connectivity	with	left	FPN	(LFPN)	at	task	compared	to	rest.	

While	greater	precuneus-DMN	connectivity	during	rest	may	be	expected	as	a	result	

of	increased	within-network	connectivity,	the	finding	of	greater	precuneus-LFPN	

connectivity	during	task	is	more	counterintuitive,	as	precuneus	is	not	part	of	the	

LFPN.	These	results	suggest	that	precuneus	serves	as	a	functional	core	of	the	DMN	

by	altering	its	network	connectivity	to	LFPN	and	DMN	according	to	whether	the	

brain	is	in	a	task	or	a	rest	state.	

	 While	precuneus	connectivity	has	been	studied	using	data	from	adults	

(Honey	et	al.,	2009;	Leech,	Braga,	&	Sharp,	2012;	Leech,	Kamourieh,	Beckmann,	&	

Sharp,	2011;	Utevsky	et	al.,	2014),	the	role	of	the	precuneus	in	mediating	between	

task	and	rest	states	has	not	yet	been	investigated	across	development.	Previous	

work	using	resting-state	data	has	shown	that	within-network	functional	and	

structural	connectivity	increases	with	age	for	DMN	and	FPNs	(Baum	et	al.,	2017;	

Fair	et	al.,	2007,	2008;	Uddin,	Supekar,	Ryali,	&	Menon,	2011),	and	that	the	DMN	and	

FPNs	become	increasingly	segregated	from	each	other	with	age	(Sherman	et	al.,	

2014),	consistent	with	the	idea	that	within-network	connections	are	strengthened	

and	between-network	connections	are	weakened	across	development	(Fair	et	al.,	

2009).	Therefore	we	expected	that	the	precuneus,	as	a	node	of	the	DMN,	would	

show	developmental	changes	in	connectivity	with	DMN	and	FPN,	reflecting	change	

in	the	degree	to	which	this	functional	region	mediates	between	task	and	rest	states.		

	 Here,	we	used	network-based	connectivity	analyses	to	probe	the	role	of	the	

precuneus	in	a	large	accelerated	longitudinal	sample.	Over	250	participants	

between	the	ages	of	8	and	26	completed	a	resting	state	scan	and	two	cognitive	task	
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scans	at	two	longitudinal	timepoints	approximately	two	years	apart.	We	used	data	

from	the	first	longitudinal	timepoint	to	identify	rest	and	task-based	networks	of	

interest,	DMN	and	left	and	right	FPN	(RFPN).	We	then	used	dual-regression	analyses	

(Filippini	et	al.,	2009;	R.	Leech	et	al.,	2012;	Robert	Leech	et	al.,	2011;	Nickerson,	

Smith,	Öngür,	&	Beckmann,	2017;	Smith	et	al.,	2014)	to	examine	task	versus	rest	

connectivity	with	our	networks	of	interest	at	both	longitudinal	timepoints	and	for	

both	tasks	(see	Figure	1	for	a	schematic	analysis	diagram).	This	design	allowed	us	to	

self-replicate	connectivity	results	across	two	longitudinal	timepoints,	and	self-

replicate	developmental	results	across	two	different	tasks.	Our	results	extended	

previous	findings	in	adults	(Utevsky	et	al.,	2014)	to	children	and	adolescents,	while	

also	testing	the	hypothesis	that	the	role	of	the	precuneus	as	a	functional	core	of	the	

DMN	strengthens	across	human	development.			

	

Materials	and	Methods	

Participants	and	experimental	tasks		

Data	for	the	current	study	were	drawn	from	the	first	two	timepoints	of	a	

large	longitudinal	imaging	study	(BrainTime)	that	was	conducted	at	Leiden	

University	in	the	Netherlands.	At	the	first	longitudinal	timepoint	(T1),	data	were	

collected	from	299	participants	(mean	age:	14.15	years;	age	range:	8.01-25.95	

years;	156	female).	Data	at	the	second	longitudinal	timepoint	(T2)	were	collected	

approximately	two	years	later	from	254	of	the	original	participants	(mean	age:	

16.07	years;	age	range:	9.92-26.62;	131	female).	While	previous	papers	have	

published	findings	from	the	BrainTime	study’s	resting	state	data	(Peters,	Jolles,	van	
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Duijvenvoorde,	Crone,	&	Peper,	2015;	Peters,	Peper,	van	Duijvenvoorde,	Braams,	&	

Crone,	2017;	van	Duijvenvoorde,	Achterberg,	Braams,	Peters,	&	Crone,	2015;	van	

Duijvenvoorde,	Westhoff,	de	Vos,	Wierenga,	&	Crone,	submitted	manuscript);	and	

data	from	its	two	tasks	separately	(Braams,	Güroǧlu,	et	al.,	2014;	Braams	&	Crone,	

2016b,	2016a;	Braams,	Peper,	Van	Der	Heide,	Peters,	&	Crone,	2016;	Braams,	van	

Duijvenvoorde,	Peper,	&	Crone,	2015;	Braams,	Peters,	Peper,	Güroğlu,	&	Crone,	

2014;	Peters	&	Crone,	2017;	Peters,	Braams,	Raijmakers,	Koolschijn,	&	Crone,	2014;	

Peters,	Koolschijn,	Crone,	van	Duijvenvoorde,	&	Raijmakers,	2014;	Peters,	van	der	

Meulen,	Zanolie,	&	Crone,	2017;	Peters,	Van	Duijvenvoorde,	Koolschijn,	&	Crone,	

2016;	Schreuders	et	al.,	2018),	this	is	the	first	study	integrating	all	of	the	functional	

task	and	rest	data	from	BrainTime’s	first	two	longitudinal	timepoints.		

Written	informed	consent	was	obtained	from	adult	participants	while	parent	

consent	and	participant	assent	was	obtained	from	minor	participants	under	a	

protocol	approved	by	the	institutional	review	board	of	Leiden	University	Medical	

Centre.	Participants	were	screened	for	MRI	contra-indications.	All	participants	were	

right-handed,	had	no	history	of	neurological	or	psychiatric	disorders,	and	had	their	

anatomical	scans	reviewed	and	cleared	for	incidental	findings	by	a	radiologist.	

	 At	both	longitudinal	timepoints,	participants	first	completed	a	5.1-minute	

resting-state	scan	in	which	they	were	instructed	to	lie	still	with	their	eyes	closed	but	

remain	awake.	Then,	participants	completed	two	runs	of	a	feedback	learning	task,	in	

which	they	learned	associations	between	stimuli	through	positive	and	negative	

feedback		(Task	A;	Peters,	Braams,	et	al.,	2014;	Peters,	Koolschijn,	et	al.,	2014;	

Peters,	van	der	Meulen,	et	al.,	2017;	Peters	et	al.,	2016),	followed	by	two	runs	of	a	
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self/other	reward	processing	task,	in	which	they	guessed	coin	flip	outcomes	to	win	

money	for	themselves	or	another	person	(Task	B;	Braams,	Güroǧlu,	et	al.,	2014;	

Braams	&	Crone,	2016a,	2016b,	Braams	et	al.,	2016,	2015;	Braams,	Peters,	et	al.,	

2014).	Finally,	anatomical	images	were	obtained.		

	 Data	were	split	into	four	subgroups	based	on	longitudinal	timepoint	and	task	

(e.g.	the	original	T1	TaskA+Rest	subgroup	consisted	of	all	participants	who,	at	T1,	

completed	at	least	one	run	of	Task	A	and	the	resting	state	run).	Within	each	

subgroup,	data	were	excluded	based	on	data	quality	concerns	(see	Preprocessing	

below)	or	for	task	performance	indicating	poor	task	engagement	(performance	less	

than	three	times	the	interquartile	range	in	the	feedback	learning	task;	failing	to	

make	a	response	on	>30%	of	trials	in	the	reward	processing	task).	These	exclusion	

criteria	left	a	final	sample	of	225	participants	in	the	T1	Task	A+rest	subgroup,	197	

participants	in	the	T1	Task	B+rest	subgroup,	198	participants	in	the	T2	Task	A+rest	

subgroup,	and	187	participants	in	the	T2	Task	B	+	rest	subgroup.	See	Table	1	for	

demographics	of	each	subgroup.		

	

Table	1:	Participant	demographics	for	each	subgroup	

Group	 Final	N		
(N	female)	

Mean	age	
(years)	

Age	range		
(years)	

T1	Task	A	+	rest	 225	(116)	 14.58	 8.01-25.95	
T1	Task	B	+	rest	 197	(109)	 14.82	 8.01-25.95	
T2	Task	A	+	rest	 198	(102)	 16.58	 10.02-26.62	
T2	Task	B	+	rest	 187	(96)	 16.75	 10.02-26.62	
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Image	acquisition	

	 Scanning	was	performed	on	a	3-T	Phillips	Achieva	MRI	system	using	a	

standard	whole-head	coil.	Functional	scans	were	acquired	using	a	T2*-weighted	

echo-planar	imaging	(EPI)	sequence	(TR	=	2.2	s,	TE	=	30	ms,	descending	sequential	

acquisition	of	38	axial	slices,	flip	angle	=	80°,	FOV	=	220	x	114.7	x	220	mm3,	voxel	

size	=	2.75	mm3).	The	resting	state	scan	consisted	of	142	volumes,	each	run	of	Task	

A	consisted	of	128	to	222	volumes,	and	each	run	of	Task	B	consisted	of	212	volumes.	

All	functional	runs	included	two	initial	dummy	volumes	to	allow	for	signal	

equilibration.	Experimental	images	were	back-projected	onto	a	screen	that	was	

viewed	through	a	mirror.	

	 Following	functional	scanning,	a	T1-weighted	anatomical	scan	(TR	=	9.76	ms,	

TE	=	4.59	ms,	flip	angle	=	8°,	FOV	=	224	x	168	x	177.3,	140	slices,	voxel	size	=	1.17	x	

1.17	x	1.2	mm,	inversion	time	=	1050	ms)	and	a	high-resolution	EPI	scan	(TR	=	2.2	s,	

TE	=	30	ms,	84	slices,	flip	angle	=	80°,	FOV	=	220	x	168	x	220	mm3,	voxel	size	=	1.96	

x	2	x	1.96	mm),	were	obtained	to	facilitate	coregistration	and	normalization	of	

functional	data.	

	

Preprocessing	

	 Data	were	preprocessed	using	FSL	version	5.0.4’s	(Smith	et	al.,	2004;	

Woolrich	et	al.,	2009)	FMRIB’s	Expert	Analysis	Tool	(FEAT),	including	motion	

correction	by	realignment	to	the	middle	volume	of	each	time	series	(Jenkinson	&	

Smith,	2001),	slice-time	correction,	removal	of	non-brain	tissue	(Smith,	2002),	

spatial	smoothing	using	a	Gaussian	kernel	of	6	mm	full	width	at	half	maximum,	
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grand	mean	intensity	normalization,	and	high-pass	temporal	filtering	(Gaussian-

weighted	least-squares	straight	line	fitting	with	a	150s	cut-off).	Functional	scans	

were	first	coregistered	to	the	high-resolution	EPI	images,	which	were	in	turn	

registered	to	the	T1	images,	which	were	finally	registered	to	the	Montreal	

Neurological	Institute	(MNI)	avg152	T1-weighted	template	using	FSL’s	Nonlinear	

Image	Registration	Tool	(FNIRT).	

	 For	quality	control,	we	examined	5	partially	correlated	measures	of	quality	

assurance	for	each	run:	1)	average	signal-to-fluctuation-noise	ratio	(SFNR;	

Friedman	and	Glover,	2006),	2)	average	volume-to-volume	motion,	3)	maximum	

absolute	motion,	4)	percentage	of	volumes	with	framewise	displacement	greater	

than	0.5	mm	(Power,	Barnes,	Snyder,	Schlaggar,	&	Petersen,	2012),	5)	percentage	of	

outlier	volumes	with	root-mean-square	intensity	difference	relative	to	the	reference	

volume	(refRMS)	greater	than	the	75th	percentile	plus	the	value	of	150%	of	the	

interquartile	range	of	refRMS	for	all	volumes	in	the	run	(i.e.	standard	boxplot	

threshold	for	outlier	detection).	Within	each	participant’s	data	for	each	task,	we	

identified	the	“best”	of	the	two	runs	as	the	run	with	the	lowest	percentage	of	refRMS	

outlier	volumes	and	included	only	that	run	in	subsequent	analyses.	Finally,	within	

each	task’s	best	runs	and	within	the	resting	state	data,	we	excluded	the	95th	

percentile	of	worst	runs	for	each	data	quality	metric	and/or	>=	3mm	of	motion	

and/or	>=	10%	poor	quality	volumes,	whichever	criteria	was	strictest	(see	

Participants	and	experimental	tasks	section	for	final	included	sample	sizes).	This	left	

us	with	one	task	and	one	rest	run	per	participant	in	each	analysis	subgroup	(i.e.	

each	participant	in	the	T1	Task	A+rest	subgroup	contributed	one	T1	Task	A	run	and	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419028doi: bioRxiv preprint 

https://doi.org/10.1101/419028


	 10	

their	T1	resting	state	run	to	the	analyses).	Because	each	analysis	subgroup	drew	

from	the	same	initial	participant	pool	but	faced	slightly	different	percentile-based	

exclusion	criteria,	the	exact	makeup	of	each	analysis	subgroup	included	overlapping	

but	non-identical	participants.	

	 As	even	mild	motion	artifacts	can	distort	connectivity	analyses	(Power	et	al.,	

2012;	Satterthwaite	et	al.,	2012),	we	implemented	additional	analyses	to	correct	for	

motion	issues.	We	regressed	out	variance	tied	to	six	motion	parameters	(rotations	

and	translations	along	the	three	principal	axes).	Furthermore,	for	every	run,	we	

regressed	out	all	volumes	with	framewise	displacement	greater	than	0.5	mm	and	all	

refRMS	outlier	volumes.	Though	this	is	not	identical	to	the	scrubbing	procedure	of	

Power	and	colleagues	(2012),	it	accomplishes	the	same	goal	of	removing	signal	

discontinuities	and	spurious	effects	of	head	motion	that	cannot	be	accounted	for	by	

conventional	motion	regression.	

	

Independent	Component	Analysis	

	 T1	data	for	each	task+rest	subgroup	were	run	through	separate	probabilistic	

group	independent	component	analysis	(ICA;	Beckmann	&	Smith,	2004).	Each	ICA	

had	two	inputs	per	subgroup	participant:	one	resting-state	scan	and	one	task-based	

scan.	Input	data	were	first	downsampled	to	3mm	isotropic	resolution	using	a	12-

parameter	affine	transformation	implemented	in	FSL’s	Linear	Image	Registration	

Tool	(FLIRT;	Jenkinson	&	Smith,	2001)	to	reduce	data-processing	demands.	

Through	FSL’s	Multivariate	Exploratory	Linear	Optimized	Decomposition	into	

Independent	Components	(MELODIC),	data	were	voxel-wise	demeaned	and	
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normalized,	whitened,	and	projected	into	a	25-dimensional	subspace	(the	number	

of	selected	components	was	based	on	Utevsky	et	al.,	2014),	resulting	in	25	

independent	components	(ICs)	per	subsample.		

From	each	T1	task+rest	subgroup’s	ICA	output,	we	identified	the	ICs	

corresponding	to	our	three	networks	of	interest	(DMN,	RFPN,	and	LFPN)	as	those	

with	the	highest	spatial	correlation	to	the	canonical	network	maps	of	Smith	and	

colleagues	(2009)	(Figure	2A).		

	

Dual-Regression	Analysis	

We	examined	changes	in	connectivity	between	task	and	rest	states	by	

submitting	the	network	maps	of	each	group’s	task	and	rest	runs	to	dual-regression	

analyses	(as	in	Utevsky	et	al.,	2014).	Dual-regression	analysis	quantifies	voxelwise	

connectivity	for	each	IC	while	controlling	for	the	other	ICs	(Filippini	et	al.,	2009;	

Nickerson	et	al.,	2017).	Each	dual-regression	analysis	comprised	two	stages	(Figure	

1).	First,	each	IC	map	was	regressed	onto	each	run’s	functional	dataset,	resulting	in	

run-specific	time	courses	for	each	IC.	Second,	those	resulting	timecourses	were	then	

regressed	onto	each	run’s	functional	data	to	estimate	each	voxel’s	connectivity	with	

each	IC	while	controlling	for	the	other	24	ICs.	

	 Each	task+rest	group	at	T1	used	its	own	ICs	for	its	own	separate	dual-

regression	analysis.	So	that	the	ICs	entering	the	dual	regression	were	consistent	

across	longitudinal	timepoints,	T1	ICs	were	used	for	their	corresponding	T2	

subgroups’	dual-regression.	In	other	words,	T1’s	TaskA+Rest	ICs	were	used	for	the	

dual-regression	analysis	of	T1	TaskA+Rest	and	the	dual-regression	analysis	for	T2	
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TaskA+Rest,	while	T1’s	TaskB+Rest	ICs	were	used	for	the	dual-regression	of	T1	

TaskB+Rest	and	the	dual-regression	analysis	for	T2	TaskB+Rest.	

	

Data collection & 
preprocessing

Dual Regression Analysis

Identifying Unique Task and Rest Connectivity
Whole-brain maps

permutation-based FWE thresholding at p<0.01

Group ICA
Decompose each T1 subgroup's

combined Task & Rest data 
into 25 spatial ICs

Spatial regression
Y = Xβ + ε

X = Group-level maps
25 spatial ICs 

per T1 subgroup

Y = Subject data
fMRI task or rest run

For T1 ICs, estimate subject-specific temporal
dynamics, separately for each T1 and T2 subgroup 

Temporal regression
Y = Xβ + ε

Y = Subject data
fMRI task or rest run

X = Subject-specific timecourses
Temporal dynamics for each T1 IC

For each voxel, estimate subject-specific functional connectivity
with each T1 IC, separately for each T1 and T2 subgroup

Coactivation subtraction

Task Rest Task-Rest difference

- =

Identifying Developmental Trends in Longitudinal Data
Probe ROI activity across T1 & T2 using mixed models

ROI definition
Conjunction of DMN Rest>Task & FPNs Task> Rest for T1;

masked by precuneus anatomical ROI 

Data subgroups

Task A & Rest
T1

Task B & Rest
T1

Task B & Rest
T2

Task A & Rest
T2

	

Figure	1:	Schematic	diagram	of	analytic	approach	(adapted	from	Utevsky,	Smith,	&	
Huettel,	2014).	After	data	were	collected	and	preprocessed,	each	task	dataset	was	
paired	with	the	corresponding	rest	dataset	for	the	same	subgroup	of	participants.	
Data	from	two	tasks	across	two	developmental	timepoints	were	used,	resulting	in	
four	subgroups.	Each	T1	subgroup	of	combined	task	and	rest	data	were	entered	into	
a	group	Independent	Component	Analysis	(ICA),	resulting	in	25	spatial	network	
maps	for	the	T1	Task	A	+	Rest	data,	and	another	25	spatial	network	maps	for	the	T1	
Task	B	+	Rest	dataset.	The	network	maps	for	each	T1	Task	subgroup	were	then	
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entered	in	separate	dual	regression	analyses	for	each	corresponding	T1	and	T2	Task	
subgroup	(e.g.	T1	Task	A	+	Rest	network	maps	were	used	for	a	T1	Task	A	+	Rest	
dual	regression	and	a	separate	T2	Task	A	+	Rest	dual	regression).	This	allowed	us	to	
quantify,	for	each	participant,	each	voxel’s	connectivity	with	each	network	while	
controlling	for	the	other	24	networks.	Each	participant’s	resting-state	connectivity	
map	was	then	subtracted	from	their	task-state	connectivity	map,	allowing	us	to	
examine	within-participant	connectivity	differences	for	each	of	our	networks	of	
interest	(default-mode	network	[DMN],	left	frontoparietal	network	[LFPN],	and	
right	frontoparietal	network	[RFPN]).	The	resulting	task-rest	difference	maps	were	
submitted	to	permutation-based	thresholding	to	examine	statistically	significant	
differences.	Finally,	precuneus	region	of	interest	(ROI)	analyses	were	conducted	by	
submitting	Task-Rest	connectivity	differences	at	both	timepoints	to	mixed	models	
including	age-related	parameters.	

	

Task-Rest	General	Linear	Model	

	 To	investigate	differences	in	task	and	rest	connectivity	within	each	

participant,	each	participant’s	resting-state	connectivity	map	was	subtracted	from	

their	task-state	connectivity	map	separately	for	each	task	(Task	A	>	Rest;	Task	B	>	

Rest),	for	each	of	the	three	networks	of	interest	(DMN,	LFPN,	and	RFPN)	and	at	each	

longitudinal	timepoint	(T1	and	T2).	The	resulting	difference	maps	indicating	task-

minus-rest	changes	in	connectivity	with	each	network	were	entered	into	separate	

group-level	general	linear	models	for	each	task+rest	subgroup,	network,	and	

longitudinal	timepoint.	To	further	control	for	spurious	motion-related	results	that	

could	arise	from	participants	moving	more	during	task	than	rest—above	and	

beyond	motion	controls	implemented	during	preprocessing—each	model	contained	

additional	subject-level	nuisance	regressors	representing	individual	differences	in	

motion	between	task	and	rest:	1)	difference	in	average	signal-to-fluctuation-noise	

ratio,	2)	difference	in	average	volume-to-volume	motion,	3)	difference	in	percentage	

of	volumes	with	framewise	displacement	greater	than	0.5	mm,	and	4)	difference	in	
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percentage	of	refRMS	outlier	volumes.	Finally,	we	included	5)	an	additional	

nuisance	regressor	to	account	for	gender	(Filippi	et	al.,	2013;	Smith	et	al.,	2014).	All	

nuisance	regressors	were	demeaned.	

	 We	generated	bidirectional	contrasts	comparing	task	and	rest	states	in	each	

of	the	three	networks	of	interest	for	each	task+rest	subgroup	at	each	longitudinal	

timepoint.	Statistical	significance	was	determined	using	Monte	Carlo	permutation-

based	statistical	thresholding	with	10,000	permutations,	family-wise	error	

corrected	for	multiple	comparisons	across	the	whole	brain	(Winkler,	Ridgway,	

Webster,	Smith,	&	Nichols,	2014).	Activation	clusters	were	estimated	using	

threshold-free	cluster	enhancement	(Smith	&	Nichols,	2009).	

	 We	conducted	conjunction	analyses	across	both	tasks,	separately	for	each	

longitudinal	timepoint	(i.e.	conjunction	of	T1	TaskA>rest	with	T1	TaskB>rest;	

conjunction	of	T2	TaskA>rest	with	T2	TaskB>rest)	for	each	network	of	interest	

using	the	minimum	statistic	(Nichols	et	al.	2005).	This	allowed	us	to	examine	neural	

connectivity	during	task	states	in	general,	rather	than	connectivity	specific	to	Task	A	

or	Task	B.	These	conjunction	analyses	resulted	in	a	task>rest	and	a	rest>task	

connectivity	map	for	each	network	of	interest	(DMN,	LFPN,	and	RFPN)	and	at	each	

longitudinal	timepoint.		

	

Region	of	Interest	(ROI)	Identification	

	 In	order	to	restrict	subsequent	age-related	analyses	to	our	a	priori	region	of	

interest,	we	identified	a	precuneus	ROI	by	masking	the	T1	conjunction	of	task>rest	

connectivity	with	LFPN,	task>rest	connectivity	with	RFPN,	and	rest>task	
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connectivity	with	DMN	(see	Figure	2B)	with	the	Harvard-Oxford	atlas’s	anatomical	

precuneus	ROI	thresholded	at	70%	(Desikan	et	al.,	2006).	Participants’	task	and	rest	

connectivity	parameters	were	then	extracted	from	this	precuneus	ROI	for	each	

longitudinal	timepoint	and	network.		

	

Experimental	Design	and	Statistical	Analysis	

Age-related	differences	in	connectivity	parameters	were	further	probed	

across	data	from	both	longitudinal	timepoints	using	a	mixed	model	approach	in	R	

with	the	package	nlme	(Pinheiro,	Bates,	DebRoy,	Sarkar,	&	Team,	2018).	Mixed	

models	(also	known	as	hierarchical	linear	models,	multilevel	models,	or	random-

effects	models)	as	applied	to	longitudinal	datasets	allow	longitudinal	timepoints	to	

be	nested	within	participants	by	modeling	participant	identity	as	a	random	effect.	

ROI	mixed	models	were	run	on	connectivity	parameters	combined	across	T1	and	

T2,	separately	for	each	Task	(e.g.	T1	&	T2	Task	A	+	Rest	data	in	one	set	of	analyses;	

T1	&	T2	Task	B	+	Rest	data	in	a	separate	set	of	analyses).	This	allowed	us	to	self-

replicate	any	developmental	changes	in	task-versus-rest	connectivity	across	two	

different	tasks.	

To	test	for	significant	developmental	differences,	we	first	fit	a	null,	intercept-

only	model	including	a	fixed	and	random	intercept.	We	then	compared	the	

intercept-only	model	to	three	different	age-related	models:	one	with	a	mean-

centered	linear	continuous	age	term	to	test	for	monotonic	age-related	changes,	one	

with	mean-centered	linear	and	quadratic	age	terms	to	test	for	additional	quadratic	

age-related	changes	(e.g.	developmental	peaks	or	troughs),	and	one	with	mean-
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centered	linear,	quadratic,	and	cubic	age	terms	to	test	for	additional	cubic	age-

related	changes	(e.g.	developmental	changes	that	emerge	and	then	stabilize;	

Madhyastha	et	al.,	2017).	Likelihood	ratio	tests	between	the	intercept-only,	linear,	

quadratic,	and	cubic	models	were	used	to	determine	whether	the	age-related	

models	with	significant	age	parameters	significantly	improved	model	fit	over	the	

intercept-only	model	or	the	next	simplest	model	with	a	significant	age	parameter.		

In	order	to	rule	out	overall	task	performance	or	engagement	as	a	confound	

for	any	significant	age-related	findings,	we	ran	additional	models	adding	a	metric	of	

task	engagement	as	an	additional	regressor	to	any	model	with	significant	age-

related	findings	that	may	have	been	driven	by	neural	activity	during	task.	The	

metric	for	Task	A	was	participants’	learning	rates,	as	measured	by	the	percentage	of	

trials	in	which	feedback	was	successfully	used	on	the	subsequent	trial	(Peters,	

Braams,	et	al.,	2014;	Peters	et	al.,	2016).	The	metric	for	Task	B	was	participants’	self-

reported	liking	of	winning	money	for	self,	reported	at	the	end	of	the	scanning	

session	(Braams,	Güroǧlu,	et	al.,	2014;	Braams,	Peters,	et	al.,	2014;	Braams	et	al.,	

2015).	Task	B	self-report	metrics	were	not	collected	from	87	participants	at	T1	and	

6	participants	at	T2,	so	task	engagement	control	analyses	were	run	with	353	

datapoints	from	248	participants	for	Task	B	(see	Table	2).	
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Table	2:	Number	of	participants	and	datapoints	in	mixed	model	analyses	

T1	&	T2	Task	+	Rest	subgroup		 N	participants		 N	datapoints	
Task	A	+	Rest:		
All	participants	

265	 423	

Task	B	+	Rest:		
All	participants	

253	 384	

Task	A	+	Rest:		
Task	engagement	analyses	

265	 423	

Task	B	+	Rest:		
Task	engagement	analyses	

248	 353	

Because	self-reported	task	engagement	metrics	were	not	collected	from	a	subset	of	
Task	B	participants,	task	engagement	control	analyses	for	Task	B	were	run	with	
fewer	participants	and	datapoints	than	the	age-only	models.		

	

Results	

Precuneus	connectivity	distinguishes	task	and	rest	states	across	development	

	 The	whole-brain	conjunction	analyses	across	both	tasks	at	each	longitudinal	

timepoint	show	that	precuneus	is	both	significantly	more	connected	with	both	LFPN	

and	RFPN	at	task	than	at	rest,	and	significantly	more	connected	with	DMN	at	rest	

than	during	task	(Figure	2B,	Table	3).	Thus,	in	our	cross-sectional	samples	at	both	

T1	and	T2,	we	replicate	Utevsky	and	colleagues’	(2014)	finding	that	precuneus	

connectivity	distinguishes	between	tasks	and	rest	states	in	adults	via	varying	

connectivity	with	DMN	(rest>task)	and	LFPN	(task>rest).	Notably,	we	also	extend	

this	finding	to	connectivity	with	RFPN	(task>rest),	and	to	cross-sectional	neural	

data	from	participants	between	the	ages	of	8	and	26.	

	 The	whole	brain	conjunction	also	indicated	that	lateral	occipital	cortex	and	

pre-/postcentral	gyrus	exhibited	a	similar	connectivity	profile	to	precuneus,	though	

we	note	that	precuneus	was	the	largest	conjunction	cluster	at	both	longitudinal	
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timepoints	(Table	3).	As	we	a	priori	hypothesized	that	precuneus	would	exhibit	

state-dependent	connectivity	changes	(Utevsky	et	al.,	2014),	subsequent	ROI	

analyses	to	probe	developmental	connectivity	changes	were	conducted	within	our	

conjunction	result,	masked	by	a	precuneus	anatomical	ROI	(see	Materials	and	

Methods:	ROI	Identification).			

	

LFPN
Task > Rest

RFPN
Task > Rest

DMN
Rest > Task

Timepoint 1 Timepoint 2

Canonical networks of interest

x = 0

y = 0
z = 0

LFPN RFPN

DMN

A

B

x = 0 x = 0 	
Figure	2	Task	versus	rest	connectivity	with	default	mode	network	(DMN)	and	left	
and	right	frontoparietal	networks	(LFPN	and	RFPN).	A.	Canonical	networks	of	
interest	from	Smith	et	al.,	2009,	downsampled	to	3mm	resolution.	Images	
thresholded	at	2.3	<	z	<	4.		B.	Task	vs	Rest	connectivity	for	the	three	canonical	
networks	of	interest.	Rest>Task	connectivity	with	DMN	and	task>rest	connectivity	
with	LFPN	and	RFPN	show	a	conjunction	over	precuneus	(white).	FWE-corrected	
p<0.01	with	threshold-free	cluster	enhancement	
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Table	3:	Regions	exhibiting	task-	and	rest-dependent	connectivity	changes	
with	DMN	and	FPNs		
Longitudinal	
timepoint	

Probabilistic	
anatomical	label	

X	 Y	 Z	 p	value	 cluster	
extent	

T1	 precuneus	cortex	
(86%)	

3	 -63	 33	 <0.001	 152	

	 inferior	lateral	
occipital	cortex	
(61%),	occipital	
fusiform	gyrus	
(9%)	

-45	 -75	 -9	 <0.001	 108	

	 postcentral	gyrus	
(51%),	precentral	
gyrus	(30%)	

-60	 -6	 24	 <0.001	 101	

	 insular	cortex	(74%),	
frontal	orbital	
cortex	(8%)	

-36	 15	 -12	 0.002	 12	

T2	 precuneus	cortex	
(26%),	cuneal	
cortex	(18%),	
supracalcarine	
cortex	(17%),	
intracalcarine	
cortex	(9%)	

12	 -66	 21	 <0.001	 179	

	 inferior	lateral	
occipital	cortex	
(50%),	superior	
lateral	occipital	
cortex	(11%)		

-39	 -81	 6	 <0.001	 75	

	 superior	lateral	
occipital	cortex	
(67%),	precuneus	
(1%)	

30	 -69	 51	 <0.001	 71	

	 precentral	gyrus	
(23%),	postcentral	
gyrus	(19%),	
central	opercular	
cortex	(4%)	

-57	 -6	 18	 0.003	 63	

	 frontal	pole	(87%)	 -24	 60	 0	 <0.001	 35	

	 inferior	lateral	
occipital	cortex	
(39%),	occipital	
fusiform	gyrus	
(19%)	

-42	 -72	 -12	 <0.001	 26	
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Regions	at	the	conjunction	of	left	frontoparietal	network	(LFPN)	task	>	rest,	right	
frontoparietal	network	(RFPN)	task	>	rest,	and	default	mode	network	(DMN)	rest	>	
task,	FWE-corrected	p	<	0.01	(see	Methods)	with	a	cluster	extent	of	at	least	10	
voxels.	Probabilistic	anatomical	labels	refer	to	the	likelihood	that	the	listed	max	
voxel	coordinates	are	within	the	given	Harvard-Oxford	Cortical	Structural	Atlas	
region.		
	

Task/Rest	connectivity	differences	between	precuneus	and	LFPN	increase	with	age	

We	applied	mixed	models	to	the	longitudinal	precuneus	connectivity	

parameters	extracted	from	our	precuneus	ROI.	This	allowed	us	to	test	for	age-

related	changes	in	task-rest	connectivity	between	the	precuneus	and	each	of	the	

three	networks	of	interest,	while	accounting	for	the	repeated	measures	in	our	

longitudinal	data.	Separate	mixed	models	were	applied	to	TaskA+Rest	data	and	to	

TaskB+Rest	data,	which	allowed	us	to	use	two	different	tasks	to	1)	self-replicate	any	

developmental	findings	across	tasks	and	2)	show	that	such	findings	are	

generalizable	to	task-state	rather	than	specific	to	a	particular	task.		

We	found	a	significant	linear	effect	of	age	in	task>rest	precuneus	connectivity	

with	LFPN	in	both	of	the	tasks	(bLinearAge	=	0.56,	p	=	0.0016	for	Task	A	subgroup;	

(bLinearAge	=	0.55,	p	<	0.001	for	Task	B	subgroup),	such	that	increasing	age	was	

associated	with	greater	task-minus-rest	differences	in	precuneus-LFPN	connectivity	

(Figure	3A).		For	both	tasks,	adding	a	linear	age	term	significantly	improved	model	

fit	over	the	intercept-only	model	(c2(1)	=	10.19,	p	=	0.0014	for	Task	A	subgroup;	

c2(1)	=	12.65,	p	<	0.001	for	Task	B	subgroup).	Additional	quadratic	and	cubic	age	

regressors	were	not	significant	in	models	for	both	tasks	(all	ps	>	0.05).		

We	next	ran	control	analyses	to	examine	whether	these	effects	could	be	

attributed	to	overall	task	performance	or	engagement.	When	learning	rate,	as	a	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419028doi: bioRxiv preprint 

https://doi.org/10.1101/419028


	 21	

metric	of	task	performance/engagement,	was	added	to	the	linear	age	model	for	Task	

A	(feedback	learning	task),	age	remained	a	significant	predictor	(bLinearAge	=	0.51,	p	=	

0.0070),	but	learning	rate	was	not	a	significant	predictor	(bLearningRate	=	0.12,	p	=	

0.39)	of	task>rest	precuneus-LFPN	connectivity.	When	self-reported	reward	liking,	

as	a	metric	of	task	performance/engagement,	was	added	to	the	linear	age	model	for	

Task	B	(reward	processing	task),	age	remained	a	significant	predictor	(bLinearAge	=	

0.52,	p	=	0.0037)	but	reward	liking	was	not	a	significant	predictor	(bRewardLiking	=	-

0.26,	p	=	0.41)	of	task>rest	precuneus-LFPN	connectivity.	Thus,	our	age-related	

changes	in	connectivity	cannot	be	attributed	to	age-related	changes	in	overall	task	

performance	or	engagement.		

We	found	no	significant	age-related	changes	in	task-minus-rest	precuneus	

connectivity	with	DMN	and	RFPN	that	replicated	across	both	tasks.	There	was	a	

significant	cubic	effect	of	age	on	task-minus-rest	connectivity	between	precuneus	

and	DMN	in	the	Task	A	subgroup	(bCubicAge	=	0.20,	p	=	0.035),	but	the	model	with	

linear,	quadratic,	and	cubic	age	regressors	did	not	fit	significantly	better	than	the	

intercept	only	model	(c2(3)	=	4.54,	p	=	0.21).	Furthermore,	this	cubic	effect	of	age	on	

precuneus-DMN	connectivity	did	not	replicate	in	the	Task	B	subgroup	(bCubicAge	=	-

0.0027,	p	=	0.80).	All	other	linear,	quadratic,	and	cubic	age	effects	were	non-

significant	for	task-minus-rest	connectivity	between	precuneus	and	DMN,	and	

precuneus	and	RFPN	(all	ps	>	0.05).	Thus,	although	precuneus	was	significantly	

more	connected	to	DMN	for	rest>task,	and	significantly	more	connected	to	RFPN	for	

task>rest	across	the	sample	and	at	both	timepoints,	no	developmental	changes	were	

observed	in	this	connectivity.		
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Figure	3:	Precuneus-left	frontoparietal	network	(LFPN)	connectivity	changes	across	
development	at	rest	but	not	task.	A.	Across	both	tasks,	task-rest	connectivity	
differences	between	precuneus	and	LFPN	significantly	linearly	increased	with	age.	
Further	probing	task-connectivity	and	rest-connectivity	revealed	B.	no	significant	
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age-related	relationships	between	precuneus-LFPN	connectivity	at	task	but	C.	a	
significant	linear	age-related	decrease	in	precuneus-LFPN	connectivity	at	rest.	Note	
that	the	resting	state	data	in	both	C	panels	were	drawn	from	the	full	set	of	
participants.	Each	C	panel	reflects	overlapping	but	different	samples	that	were	
submitted	to	separate	dual	regression	analyses.		Connected	lines	link	longitudinal	
datapoints	from	the	same	participant.	Shaded	areas	represent	95%	confidence	
intervals	around	linear	best-fit	lines.	

	

Connectivity	between	precuneus	and	LFPN	diminishes	with	age	during	rest	but	not	

task	

	 To	further	probe	whether	the	age-related	linear	increase	in	task-rest	

precuneus	connectivity	with	LFPN	was	due	to	increased	connectivity	during	task	or	

decreased	connectivity	during	rest,	we	ran	additional	mixed	models	on	the	

connectivity	parameters	between	precuneus	and	LFPN	at	task	and	at	rest.	For	both	

Task	A	and	Task	B,	there	was	no	significant	linear	effect	of	age	upon	precuneus-

LFPN	connectivity	during	task	(bLinearAge	=	0.80,	p	=	0.63	for	Task	A;	bLinearAge	=	0.088,	

p	=	0.55	for	Task	B;	Figure	3B).	Additional	models	with	task	engagement	and	linear	

age	as	predictors	of	precuneus-LFPN	connectivity	during	task	found	age	and	task	

engagement	to	be	non-significant	predictors	in	both	tasks,	and	task	engagement	

alone	also	failed	to	significantly	predict	precuneus-LFPN	connectivity	during	task	

(all	predictor	ps	>	0.05).	Thus,	precuneus	connectivity	to	the	LFPN	task-based	

network	neither	varied	by	age	nor	by	task	nor	by	task	engagement.		

	 There	was,	however,	a	significant	linear	effect	of	age	during	rest	(bLinearAge	=	-

0.57,	p	<	0.001	for	Task	A	subgroup;	bLinearAge	=	-0.50,	p	=	0.0020	for	Task	B	

subgroup),	such	that	increasing	age	was	associated	with	reduced	connectivity	

between	precuneus	and	LFPN	at	rest	(Figure	3C;	we	reiterate	here	that	the	Task	A	
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and	Task	B	subgroups	represent	overlapping	but	non-identical	samples	drawn	from	

the	full	participant	set	and	submitted	to	separate	dual	regression	analyses).	For	

both	subgroups,	adding	a	linear	age	term	significantly	improved	model	fit	over	the	

intercept-only	model	(c2(1)	=	12.12,	p	<	0.001	for	Task	A	subgroup;	c2(1)	=	9.86,	p	=	

0.0017	for	Task	B	subgroup).	Additional	quadratic	age	regressors	were	non-

significant	in	the	models	with	linear	and	quadratic	age	(bQuadraticAge	=	0.014,	p	=	0.67	

for	Task	A	subgroup;	bQuadraticAge	=	-0.0086,	p	=	0.78	for	Task	B	subgroup).		

In	the	Task	A	subgroup,	the	model	with	linear,	quadratic,	and	cubic	age	

regressors	resulted	in	a	non-significant	effect	of	linear	age	(bLinearAge	=	-0.030,	p	=	

0.91)	and	significant	effects	of	quadratic	(bQuadraticAge	=	0.085,	p	=	0.045)	and	cubic	

(bCubicAge	=	-0.017,	p	=	0.0089)	age.	This	cubic	age	model	fit	significantly	better	than	

the	linear	age	model	for	the	Task	A	subgroup	(c2(2)	=	7.16,	p	=	0.028).	In	the	Task	B	

subgroup,	however,	the	cubic	age	model	resulted	in	non-significant	regressors	for	

linear,	quadratic,	and	cubic	age	(bLinearAge	=	-0.11,	p	=	0.68,	bQuadraticAge		=	0.034,	p	=	

0.40,	and	bCubicAge	=	-0.011,	p	=	0.087,	respectively),	and	the	cubic	age	model	did	not	

fit	significantly	better	than	the	linear	age	model	(c2(2)	=3.07,	p	=	0.22).	These	

results	suggest	that	linear	age	may	be	a	more	consistently	parsimonious	predictor	of	

developmental	changes	in	precuneus-LFPN	connectivity	at	rest.		

	

Discussion	

	 In	this	study,	we	investigated	the	state-dependent	functional	connectivity	of	

the	precuneus	across	development	in	a	large	cross-sectional	and	longitudinal	

sample	of	participants	between	the	ages	of	8	and	26.	Previous	work	has	shown	that	
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the	precuneus	serves	as	a	unique	hub	distinguishing	between	task	and	rest	states	in	

the	adult	brain	(Utevsky	et	al.,	2014),	yet	little	has	been	known	about	the	role	of	

precuneus	in	the	developing	brain.	Using	dual	regression	analyses	to	track	network-

based	functional	connectivity	across	the	sample,	we	show	that	the	precuneus	

exhibits	both	greater	functional	connectivity	with	two	task-based	networks	(RFPN	

and	LFPN)	during	task	compared	to	rest,	as	well	as	greater	functional	connectivity	

with	the	rest-based	DMN	during	rest	compared	to	task.	This	result	replicated	across	

two	different	tasks	and	at	two	longitudinal	timepoints.	Thus,	the	role	of	precuneus	

in	mediating	between	task	and	rest	states	is	evident	throughout	development	from	

childhood	through	early	adulthood.		

	 We	next	examined	whether	the	mediating	function	of	the	precuneus	

strengthens	or	matures	over	development	by	searching	for	age-related	changes	in	

state-dependent	functional	connectivity	between	precuneus	and	LFPN,	RFPN,	and	

DMN.	Across	two	distinct	tasks,	we	found	a	significant	linear	age-related	increase	in	

state-dependent	functional	connectivity	between	precuneus	and	LFPN,	such	that	

task>rest	connectivity	between	precuneus	and	LFPN	significantly	linearly	increased	

with	age	from	childhood	to	adulthood.	We	determined	that	the	relationship	between	

age	and	task>rest	precuneus-LFPN	connectivity	was	driven	by	an	age-related	

decrease	in	precuneus-LFPN	connectivity	during	rest.	Such	age-related	increasing	

segregation	between	LFPN	and	a	region	of	DMN	during	rest	is	consistent	with	prior	

work	showing	age-related	increases	in	network	segregation	in	both	structural	

(Baum	et	al.,	2017)	and	resting	state	data	(Fair	et	al.,	2007,	2008;	Sherman	et	al.,	

2014;	Uddin	et	al.,	2011).	We	note	that	our	developmental	findings	are	strengthened	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 17, 2018. ; https://doi.org/10.1101/419028doi: bioRxiv preprint 

https://doi.org/10.1101/419028


	 26	

by	BrainTime’s	accelerated	longitudinal	design,	in	which	both	cross-sectional	and	

longitudinal	effects	can	be	captured.		

	 In	contrast	to	the	observed	developmental	connectivity	changes	during	rest,	

task-related	connectivity	between	precuneus	and	LFPN	was	continuously	high	

across	ages	and	showed	no	developmental	changes.	This	suggests	that	age-related	

increases	in	network	segregation	shown	during	rest	(Fair	et	al.,	2007,	2008;	

Sherman	et	al.,	2014;	Uddin	et	al.,	2011)	may	not	occur	during	task	and/or	do	not	

apply	to	precuneus-LFPN	connectivity.	Finally,	we	found	that	precuneus’s	state-

dependent	connectivity	with	DMN	(rest>task)	and	RFPN	(task>rest)	remained	

developmentally	stable,	with	no	significant	effect	of	linear,	quadratic,	and/or	cubic	

age.	

Notably,	we	did	not	find	task	performance	or	engagement	to	significantly	

predict	task>rest	precuneus-LFPN	connectivity	after	accounting	for	the	effect	of	age.	

Furthermore,	we	found	no	significant	relationship	between	individuals’	task	

performance	or	engagement	and	their	precuneus-LFPN	connectivity	during	task.	

This	is	surprising,	given	that	prior	work	has	shown	that	different	tasks	differentially	

affect	segregation	and	integration	between	neural	networks	(Cohen	&	D’Esposito,	

2016;	Khambhati,	Medaglia,	Karuza,	Thompson-Schill,	&	Bassett,	2018),	and	that	

task	performance	affects	the	FPN’s	overall	activation	and	functional	connectivity	

throughout	the	brain	(Cole	et	al.,	2013;	Dwyer	et	al.,	2014;	Satterthwaite	et	al.,	

2013).	Thus,	our	findings	highlight	the	unique	role	of	the	precuneus,	which	tracks	

whether	the	brain	is	engaged	in	a	task	state	generally,	with	no	observed	differences	

between	the	two	tasks	in	the	BrainTime	dataset.	Future	work	could	investigate	
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whether	precuneus-LFPN	connectivity	is	moderated	by	task	engagement	for	more	

variably	engaging/demanding	tasks	(e.g.	N-back	tasks	with	varying	N	as	in	Cohen	&	

D’Esposito,	2016;	Satterthwaite	et	al.,	2013).	Application	of	network-based	

psychophysiological	interaction	approaches	(Utevsky,	Smith,	Young,	&	Huettel,	

2017)	can	also	be	used	to	determine	whether	the	timecourse	of	precuneus-LFPN	

connectivity	is	modulated	by	moment-to-moment	changes	in	task	demands	(e.g.	

precuneus-LFPN	connectivity	for	high	demand	>	low	demand	blocks	within	the	

same	run).		

We	note	that	the	present	study	replicates	the	previous	findings	of	Utevsky	

and	colleagues’	(2014)	study	of	adult	neural	data,	and	extends	them	in	three	

significant	ways.	First,	we	extend	the	findings	to	a	large	cross-sectional	and	

longitudinal	developmental	sample,	which	allowed	us	to	show	that	the	role	of	

precuneus	as	a	functional	core	of	the	DMN	is	in	place	in	childhood.	The	

developmental	trajectory	of	task>rest	precuneus-LFPN	connectivity	suggests,	

however,	that	younger	populations	than	those	in	our	sample	(e.g.,	children	younger	

than	8	years)	may	exhibit	no	differences	in	precuneus-LFPN	connectivity	for	task	

versus	rest	states.	Thus,	future	work	could	examine	precuneus	connectivity	in	even	

younger	participants	in	order	to	determine	if	this	is,	in	fact,	the	case.	Second,	our	

work	further	extends	the	precuneus	connectivity	finding	to	two	tasks	different	from	

those	used	in	the	adult	study	(Utevsky	et	al.,	2014).	This	strengthens	the	hypothesis	

that	precuneus	mediates	between	rest	and	task	generally,	regardless	of	the	specific	

task.	Third,	our	study	complements	prior	work:	While	the	previous	adult	study	

collected	the	resting-state	scan	last,	after	the	completion	of	the	three	tasks	(Utevsky	
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et	al.,	2014),	our	study	collected	the	resting-state	scan	first,	prior	to	the	task	runs.	

This	avoids	the	concern	that	recent	exposure	to	a	task	may	alter	subsequent	resting-

state	connectivity	(Stevens,	Buckner,	&	Schacter,	2010;	Tung	et	al.,	2013;	Waites,	

Stanislavsky,	Abbott,	&	Jackson,	2005).	Thus,	the	two	studies	together	suggest	that	

the	precuneus’s	unique	role	in	mediating	between	task	and	rest	states	holds,	

regardless	of	task	versus	rest	order.		

Prior	 studies	 investigating	 developmental	 changes	 in	 whole-brain	

connectivity	 patterns	 have	 often	 used	 graph-theoretic	 approaches	 that	 examine	

connectivity	strength	between	distributed	nodes	(Fair	et	al.,	2007,	2008;	see	Ernst,	

Torrisi,	Balderston,	Grillon,	&	Hale,	2015;	Power,	Fair,	Schlaggar,	&	Petersen,	2010;	

M.	 C.	 Stevens,	 2016	 for	 review).	 Such	 developmental	 work,	 however,	 generally	

investigates	connectivity	during	rest	rather	than	during	task	(but	see	Joseph	et	al.,	

2012)	 and	 do	 not	 directly	 compare	 across	 task	 and	 rest	 states,	 as	 in	 the	 present	

study.	Given	that	resting	state	graph	theory	analyses	have	also	implicated	precuneus	

as	 a	 key	 functional	hub	 (Tomasi	&	Volkow,	2010),	 combining	dual-regression	and	

task-versus-rest	 analyses	with	 graph	 theory	 approaches	 could	 be	 complementary	

and	yield	further	insight	as	to	how	neural	hubs	affect	processing	state.		 	

Additional	future	studies	could	also	use	structural	neuroimaging	techniques,	

such	as	diffusion	tensor	imaging,	to	determine	whether	developmental	changes	in	

precuneus-LFPN	functional	connectivity	are	reflected	in	structural	changes	in	the	

developing	brain.	Converging	evidence	from	non-human	primate	anatomical	tracing	

studies	(Leichnetz,	2001)	and	resting-state	functional	connectivity	work	in	humans	

and	non-human	primates	(Margulies	et	al.,	2009)	suggest	that	there	are	cortical	
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projections	between	precuneus	and	regions	of	the	LFPN,	including	lateral	prefrontal	

cortex	and	lateral	parietal	cortex	(Cavanna	&	Trimble,	2006).	Future	work	should	

examine	whether	and	how	such	structural	connections	between	precuneus	and	

LFPN	underlie	state-dependent	differences	in	functional	connectivity,	and	how	they	

may	change	across	development.		 	

It	is	important	to	understand	developmental	changes	in	task	and	rest	state	

connectivity,	as	altered	connectivity	has	been	reported	for	numerous	psychological	

disorders	(see	Cohen,	2017;	Greicius,	2008	for	review).	For	example,	a	maturational	

lag	in	DMN	to	FPN	connectivity	has	been	associated	with	attention-

deficit/hyperactivity	disorder	(Sripada,	Kessler,	&	Angstadt,	2014),	and	abnormal	

resting-state	functional	connectivity	between	DMN	and	FPN	has	been	found	in	

patients	with	obsessive	compulsive	disorder	(Stern,	Fitzgerald,	Welsh,	Abelson,	&	

Taylor,	2012)	and	with	impaired	consciousness	(Long	et	al.,	2016).	Future	work	

could	investigate	whether	precuneus’s	task-	and	rest-based	connectivity	is	altered	

in	atypical	development,	and	whether	any	such	deviations	from	typical	connectivity	

development	correspond	to	behavioral	or	psychological	impairments.		

	 In	this	study,	we	demonstrate	that	precuneus	plays	a	key	role	in	mediating	

between	task	and	rest	states	via	connectivity	with	DMN	and	FPNs	across	typical	

development.	These	results	underscore	the	unique	nature	of	an	enigmatic	brain	

region	that	has	been	implicated	in	processes	as	varied	as	memory,	self-processing,	

decision-making,	and	even	consciousness	(Cavanna	&	Trimble,	2006),	while	also	

pointing	to	future	targets	for	understanding	changes	in	neural	connectivity	in	

typical	and	atypical	development.		
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