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Abstract 

Recent studies have used whole-genome sequencing to estimate subclonal populations in 

tumours and have linked this heterogeneity to clinical outcomes. Many algorithms have been 

developed to perform subclonal reconstruction but their variability and consistency is largely 

unknown. To address this issue, we evaluated six pipelines to reconstruct the evolutionary 

histories of 293 localized prostate cancers from single samples and 10 tumours with multi-region 

sampling to probe the heterogeneity of subclonal reconstruction. We identify extensive variance 

across pipelines in the subclonal architectures they predict and in their assignments of CNAs and 

SNVs to different parts of the evolutionary tree. Further, pipelines showed consistent types of 

bias, with those using SomaticSniper and Battenberg preferentially predicting homogenous 

cancer cell populations while those using MuTect tending to predict multiple populations of 

cancer cells. Subclonal reconstructions using multi-region sampling showed that single-sample 

reconstructions systematically underestimate intra-tumoural heterogeneity, detecting on average 

fewer than half of the cancer cell populations identified by multi-region sequencing. These biases 

suggest caution in interpreting the specific architectures and subclonal variants identified, 

particularly from single-sample reconstructions. 
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Background 

Understanding tumour heterogeneity and subclonal architecture is important for the elucidation 

of the mutational and evolutionary processes underlying tumorigenesis and treatment resistance 

(1–4). Most studies of tumour heterogeneity have focused on small patient cohorts with multi-

region sequencing (5–11). Despite their small sample sizes, these studies have provided 

remarkable insight, demonstrating multiple subclones within a single tumour, clonal 

relationships between primary and metastatic tumours and evidence for multiple primary 

tumours within a single patient. 

More recently, several groups have begun applying these techniques to large cohorts of single-

sample tumour whole genomes. For example, we reconstructed the subclonal architectures of 

293 localized prostate cancers using whole-genome sequencing of a single-region of the index 

lesion (12). The larger sample sizes made feasible by single-region studies allow identification of 

specific mutational events that are biased to occur early during tumour development. Further, 

patients with less subclonal diversity (e.g. with only a single detectable population of cancer 

cells; termed monoclonal) tend to have superior clinical outcomes to those with more subclonal 

diversity (e.g. those with highly polyclonal tumours) (12). 

A variety of algorithms have been developed to reconstruct the subclonal architecture of cancers 

(13–18). These algorithms broadly attempt to infer the phylogenetic relationship between cancer 

cell populations based on cancer cell fractions (the fraction of cancer cells in which each variant 

is present) and several use Markov Chain Monte Carlo methods to cluster mutations, estimate the 

number of cancer cell populations and infer their relationship (14–16,19). However, there has not 

been a systematic comparison of the features and consistencies of their reconstructions on a large 

dataset. It is thus unclear to what extent these pipelines agree on large cohorts of real data, and 

whether specific pipelines are biased towards certain types of reconstructions. It is further 

unclear to what extent single-sample reconstructions differ from multi-region reconstructions, 

raising questions about the magnitude of underestimation present in large-cohort studies. 

To address these gaps in the field, we evaluated six pipelines comprised of well-established 

subclonal copy number alteration (CNA) and single nucleotide variant (SNV) detection tools, 

linked to three independent subclonal reconstruction algorithms. The pipelines were applied to a 
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set of 293 high-depth tumour-normal pairs (12,20) and 10 tumours with multi-region sequencing 

(8,21). We quantify differences in variant detection and predictions of clonality, and overall 

subclonal architecture, generating useful guidance for the community and a resource for 

improving existing methods and benchmarking new ones.  
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Results 
To investigate the inter- and intra-tumoural heterogeneity of subclonal reconstruction we 

reconstructed the subclonal architectures of 293 primary localized prostate tumours using six 

pipelines (Figure 1, Supplementary Table 1). Each patient had whole-genome sequencing of a 

region from the index lesion (see methods) that was macro-dissected to > 70% tumour cellularity 

(mean coverage ± standard deviation: 63.9 ± 16.7) and of matched blood reference tissue (mean 

coverage ± standard deviation: 41.2 ± 9.0), as reported previously (12). To quantify the roles of 

subclonal variant detection we called CNAs using Battenberg and TITAN (7,22) and SNVs using 

SomaticSniper and MuTect (23,24). We then used the CNA and SNV calls in different 

combinations as inputs for three widely used subclonal reconstruction algorithms: PhyloWGS 

(14), DPClust (15) and PyClone (16). We further quantify the heterogeneity that arises in 

subclonal reconstruction from spatially sampling the same tumour, examining 10 tumours with 

multi-region sequencing (8,21). For multi-region sequencing, subclonal reconstruction was 

performed both with all regions together and with each region individually using PhyloWGS, 

allowing estimation of the variability of single-region reconstruction. 

Subclonal reconstructions with PyClone were successfully completed for all samples for which 

reconstructions were attempted. Success rates were also high for reconstructions using DPClust 

(failure rate of 3.1%), except for instances where excessive computational memory was required 

(> 250 GB), samples for which mutation calling was unsuccessful and one instance for which the 

only tumour population found had greater than 100% cancer cell fraction, likely due to errors in 

purity estimation. Reconstructions with PhyloWGS were unsuccessful in a number of instances 

due to excessive runtime (> 3 months) or failure to produce non-polytumour (i.e., multiple 

independent primary tumours, see methods) phylogeny solutions after rerunning with 12 

different random number generator seeds. Additional reasons for reconstruction failure include 

producing solutions where the cellular prevalence of the only tumour cell population detected 

was below 10%, or lack of supporting CNAs and SNVs (below 5 for both CNAs and SNVs, see 

methods) for all cancer cell populations detected. The rate of reconstruction failure varied across 

the pipelines using PhyloWGS for single-region reconstructions (SomaticSniper-TITAN: 1.4%, 

SomaticSniper-Battenberg: 2.0%, MuTect-TITAN: 4.4%, MuTect-Battenberg: 9.6%, mean 

failure rate ± standard deviation: 4.4% ± 3.2%). Multi-region reconstructions with PhyloWGS 
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failed in one instance in the SomaticSniper-Battenberg-PhyloWGS pipeline due to a lack of 

shared SNVs and CNAs between samples from the same tumour. Overall, the failure rate of 9.6% 

for MuTect-Battenberg-PhyloWGS led to decreased power for all downstream analyses and use 

of this pipeline must be carefully considered for small-scale projects. 

Clonal and Subclonal CNAs 

We first assessed the clonal and subclonal copy number profiles of localized prostate cancers 

based on the four pipelines using PhyloWGS for reconstructions of the 293 samples with single-

region sequencing (Figure 2A-B, Supplementary Table 2). Previous work within this cohort 

using the SomaticSniper-TITAN-PhyloWGS pipeline identified four subtypes of patients with 

distinct clonal CNA profiles and three subtypes with distinct subclonal CNA profiles (12), so we 

first examined the average profiles within these subtypes. Hallmark prostate cancer copy number 

events such as deletions in 8p and gains in 8q are seen clonally across all pipelines, particularly 

in subtype C (Figure 2A). CNA profiles in subtype A appear to be quieter for pipelines using 

TITAN to call CNAs and the MuTect-TITAN pipeline seems to call a large number of small 

CNAs for patients in subtype D. Interestingly, the average subclonal copy number is almost 

always above two across the genome in subclonal subtype f in pipelines using TITAN to call 

CNAs, possibly reflecting a CNA caller bias. (Figure 2B). 

We next assessed the concordance of these four PhyloWGS-based pipelines in their 

identification of clonal and subclonal CNAs. We calculated the proportion of 1 Mbp genomic 

bins where one pipeline called a CNA and the other pipeline called either the opposite CNA (i.e., 

gain vs. loss) or neutral for the same sample in the same bin. We found significantly greater 

agreement for clonal CNA calls compared to subclonal CNA calls (all FDR < 2.0 × 10-8, Mann-

Whitney U-test; Figure 2C). Similarly, pipelines using the same CNA caller tended to agree, 

although even here divergence was common. For example, 87% of clonal CNA calls were 

concordant between SomaticSniper-TITAN-PhyloWGS and MuTect-TITAN-PhyloWGS 

pipelines as compared to 75% of subclonal calls. By contrast, when the CNA caller was changed, 

45% of clonal CNA calls were concordant between MuTect-Battenberg-PhyloWGS and MuTect-

TITAN-PhyloWGS pipelines as compared to 22% of subclonal CNA calls. Thus, we observe 

diversity in clonal CNA profiles across pipelines, but much larger diversity for subclonal CNA 

profiles. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Bhandari et al. 

 - Page 7 of 42 - 

Next, we evaluated whether estimates of the timing of specific CNAs as early (i.e., clonal) or late 

(i.e., subclonal) were affected by the subclonal reconstruction pipeline. The raw number of genes 

in which CNAs were identified as occurring statistically more frequently early or late (FDR < 

0.05, Fisher’s exact test) differed dramatically across PhyloWGS-linked pipelines, from a high of 

5,592 for MuTect-TITAN to a low of 295 for SomaticSniper-Battenberg. A consensus set of 270 

genes showed a bias in timing in all pipelines in a consistent direction (Figure 3A, 

Supplementary Table 3). As expected from the discordance in subclonal CNA calls across the 

pipelines, all of these 270 genes were preferentially altered early in tumour evolution, and were 

enriched in TP53-based regulation of death receptors, TRAIL signaling and natural killer cell 

mediated cytotoxicity (FDR < 0.05; Figure 3B, Supplementary Table 4). These data suggest 

that execution of multiple pipelines may be a valuable way to identify a low false-positive set of 

core predictions. 

Clonal and Subclonal SNVs 

We next evaluated the influence of pipelines on clonal and subclonal SNV detection and 

classification. All four PhyloWGS-linked pipelines identified similar numbers of clonal SNVs 

(SomaticSniper-TITAN: 1007 ± 751, SomaticSniper-Battenberg: 1018 ± 724, MuTect-TITAN: 

1782 ± 1214, MuTect-Battenberg: 1972 ± 1130; mean ± standard deviation). By contrast, 

pipelines using MuTect detected an order of magnitude more subclonal SNVs than those using 

SomaticSniper (SomaticSniper-TITAN: 118 ± 206, SomaticSniper-Battenberg: 29 ± 110, 

MuTect-TITAN: 2123 ± 1341, MuTect-Battenberg: 1763 ± 1197; mean ± standard deviation; 

Figure 4A). This suggests that pipelines employing MuTect are more likely to detect subclonal 

SNVs, likely detecting more false positives and fewer false negatives. 

For each pair of PhyloWGS-linked pipelines, we calculated the proportion of genes where one 

pipeline called a SNV in a gene while the other called the gene wildtype (Figure 4B, 

Supplementary Table 5). Calls for clonal SNVs were in high agreement across pipelines (mean 

concordance ± standard deviation: 76.9 ± 1.0%) but subclonal SNV calls were much more 

discordant (mean concordance ± standard deviation: 39.0 ± 37.8%), particularly between 

pipelines using different SNV callers. For example, 91% of subclonal SNV calls by 

SomaticSniper-Battenberg and SomaticSniper-TITAN were identified in both pipelines. By 

contrast, 91% of subclonal SNVs from SomaticSniper-Battenberg and MuTect-Battenberg were 
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identified by only one of the pipelines. These data match the trends seen with CNAs above: there 

are substantial discrepancies in the subclonal mutational landscape across pipelines, but clonal 

landscapes are generally consistent. 

To understand the influence of these differences on the identification of specific driver genes, we 

examined the clonality of mutations in five genes known to be driven by recurrent somatic SNVs 

and eight known to be driven by recurrent somatic CNAs in prostate cancer (12,20). The driver 

SNVs we examined were ATM, FOXA1, MED12, SPOP and TP53 (Figure 5A), and the driver 

CNAs were CDH1, CDKN1B, CHD1, MYC, NKX3-1, PTEN, RB1 and TP53 (Figure 5B). These 

driver events were overwhelmingly detected early during tumour evolution (i.e., in the clonal 

population) with 89.7 ± 11.4 % (mean across all pipelines ± standard deviation) of all driver 

alterations detected clonally across the PhyloWGS-linked pipelines. There was also broad 

consensus in these calls (e.g., all four pipelines calling a clonal mutation in a driver gene in the 

same sample). For example, of the samples where a clonal gain of MYC was called by any of the 

pipelines, all four pipelines called the alteration in 74% of cases (Supplementary Figure 1). 

One outlier where calls were divergent was MED12, where there was disagreement across the 

same SNV callers. This was likely because MED12 is located on the X chromosome, which did 

not have CNA calls from Battenberg, and was subsequently not considered by PhyloWGS, again 

highlighting how the choice of algorithms may obscure downstream results.  

Subclonal Architecture Reconstructions from Single Samples 

Given these significant differences in the attribution of individual mutations to different stages of 

tumour evolution, we sought to understand whether the underlying subclonal architectures were 

being predicted consistently across pipelines. We therefore first examined the number of 

subclones detected in each sample across the pipelines using PhyloWGS (Figure 6A). 

Reconstructions with SomaticSniper-Battenberg-PhyloWGS predominantly detected monoclonal 

tumours: only one population of cancer cells was detected in 81.5% of the samples. By contrast, 

the two pipelines using MuTect-based SNV calls identified <16% of samples as monoclonal. The 

SomaticSniper-TITAN-PhyloWGS analyses were intermediate to these two extremes, predicting 

monoclonal architecture for 41.2% of samples. These data can be further broken down by the 

tree structure (Figure 6B) where we observe the SomaticSniper-TITAN-PhyloWGS and 
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MuTect-Battenberg-PhyloWGS pipelines detecting many bi-clonal samples, and the MuTect-

TITAN-PhyloWGS pipeline predicting more complex tree structures. 

We next directly compared the subclonal architectures predicted for each sample across the four 

PhyloWGS-linked pipelines. Overall, we observed considerable variance in the predicted 

subclonal architectures. Consistent with the large number of monoclonal structures predicted by 

SomaticSniper-Battenberg-PhyloWGS, their predictions were highly discordant with other 

pipelines (Supplementary Figure 2A-C). Predictions of subclonal architecture between the two 

pipelines using MuTect for SNV calls were highly concordant with clonality predictions (i.e., 

monoclonal vs polyclonal) in agreement for 226/265 tumours (Supplementary Figure 2D). 

However, of these 226 tumours the specific phylogeny of the evolutionary tree matched for only 

84 due to the diversity of structures observed in polyclonal reconstructions. The concordance 

was also low between pipelines using MuTect to call SNVs and the SomaticSniper-TITAN-

PhyloWGS pipeline, where pipelines using MuTect called substantially more samples as 

polyclonal (Supplementary Figure 2E-F). Overall, the aforementioned differences in mutation 

calling are highly visible in downstream subclonal reconstructions. 

Considering the importance of clonality for predicting prognosis in prostate cancer (12), we 

evaluated clonality predictions using two other pipelines where reconstructions were performed 

using DPClust or PyClone. Reconstructions using DPClust showed strong agreement with 

reconstructions linked to PhyloWGS with inputs from the same CNA and SNV callers 

(Battenberg and MuTect, respectively): both algorithms predicted the same number of subclones 

for 62.2% of samples and predictions were within one subclone for 97.3% of samples (Figure 

6C). Predictions of clonality (i.e., monoclonal or polyclonal) were also in agreement for 94.3% 

of samples. Clonality calls from PyClone showed lower agreement with PhyloWGS while using 

inputs from the same CNA and SNV callers (TITAN and SomaticSniper, respectively), with both 

algorithms predicting the same number of subclones for only 45.7% of samples (Figure 6D). 

This was driven by the large number of monoclonal calls from PyClone and predictions for 

subclone number were still within one for 92.4% of samples. Overall, these data suggest that 

reconstructions from PhyloWGS and DPClust converge towards similar evolutionary histories 

while PyClone tends to estimate fewer populations of cancer cells in single sample 

reconstructions. 
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Given these differences, we also evaluated subclonal architectures predicted by PhyloWGS-

linked pipelines using the union and intersection of mutation calls as inputs. As expected, 

MuTect had substantially more unique SNV calls compared to SomaticSniper (p < 2.2 x 10-16, 

Mann-Whitney U-test, medianUnique calls, MuTect = 5,330, medianUnique calls, SomaticSniper = 627, 

Supplementary Figure 3A). Unique CNA calls by TITAN and Battenberg were also 

substantially imbalanced, with a median of 50.2% and 1.2% of the covered genome having 

unique CNA calls across samples, respectively (p < 2.2 x 10-16 Mann-Whitney U-test; 

Supplementary Figure 3B). Compared to the PhyloWGS-linked pipeline with inputs from 

SomaticSniper and TITAN, the pipeline using the union of CNA calls and union of SNV calls 

linked to PhyloWGS predicted many more polyclonal trees (146/249 vs. 231/249, respectively; 

Supplementary Figure 3C) with clonality agreement for 59% (148/249) of samples. This was 

not surprising since a higher number of input mutations with ranging variant allele frequencies 

(VAFs) can lead to predictions of higher numbers of cancer cell populations (14). The pipeline 

using the intersect of CNA calls and intersect of SNV calls had more balanced clonality 

predictions (42% monoclonal vs. 59% polyclonal; Supplementary Figure 3D) and these 

predictions agreed with the SomaticSniper-TITAN-PhyloWGS predictions for 61% (140/229) of 

samples. Interestingly, the PhyloWGS-linked pipeline using the union of SNV calls and the 

intersect of CNA calls (Supplementary Figure 3E) predicted clonality with similar skew to the 

pipeline using the union of calls for both SNVs and CNAs (8.9% and 91.1% vs. 5.9% and 94.0%; 

monoclonal and polyclonal). Similarly, the pipeline using the intersect of SNV calls and union of 

CNA calls (Supplementary Figure 3F) predicted clonality with similar balance to the pipeline 

using the intersect of calls for both SNVs and CNAs (30.3% and 69.7% vs. 39.7% and 60.3%; 

monoclonal and polyclonal). This suggests that PhyloWGS-based predictions of complex 

polyclonal phylogenies are primarily driven by large numbers of SNV calls from MuTect, and 

complexity in copy number aberrations has a smaller influence on the delineation of cancer cell 

populations. 

Subclonal Reconstruction from Single and Multi-Region Samples 

Our analyses of a large cohort of single-sample reconstructions highlight large inter-pipeline 

differences in the identification and clonal assignment of CNAs and SNVs, and in the 

reconstruction of phylogenetic trees. To better understand how these results compare to ground-

truth, we next focused on a set of ten localized prostate cancers where tumour samples from 
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multiple regions of the tumour were available (30 genomes in total, ranging from 2-4 genomes 

per tumour). These data allowed us to directly compare single-region reconstructions to multi-

region reconstructions using PhyloWGS, providing an estimate of the extent to which the former 

underestimates true clonal complexity. 

Assignments of SNVs as clonal or subclonal showed substantial deviation between single-region 

and multi-region reconstructions (Figure 7A). For example, only 19.9 ± 11.2% of SNV 

assignments agreed between single- and multi-region reconstructions for the MuTect-TITAN-

PhyloWGS pipeline. The strongest agreement for SNV assignments between single- and multi-

region reconstructions were observed for the SomaticSniper-Battenberg-PhyloWGS pipeline, 

although considerable inter-tumoural variance was observed (41.5 ± 30.5% of SNV assignments 

matched; mean ± standard deviation). This high rate of agreement is likely at least in part the 

result of the preference of this pipeline towards monoclonal reconstructions (i.e., the 

reconstruction only predicted a single population of cancer cells and all SNVs were assigned to 

that population). In the mismatches between single-region and multi-region reconstructions, 

SNVs tend to be classified as clonal in single-region reconstructions while subclonal in multi-

region reconstructions. Consistent with simulations (25), this suggests that multi-region 

reconstructions are able to better define subclonal populations of cells, and subclonal 

reconstruction on single-regions alone is prone to overlooking such complexities. 

We also examined the agreement between single-region and multi-region reconstructions in 

defining the clonality of CNAs (Supplementary Figure 4). Agreements between single- and 

multi-region CNA assignments were also highly variable, with only 40.1 ± 32.6% and 26.1 ± 

28.2% (mean ± standard deviation) of CNAs matching in assignment between the single- and 

multi-region reconstructions for MuTect-TITAN-PhyloWGS and SomaticSniper-Battenberg-

PhyloWGS pipelines, respectively. One reason for the low rate of agreement for SomaticSniper-

Battenberg-PhyloWGS may be again be the high rate of monoclonal calls in single-region 

assessments as compared to the scarcity of monoclonal multi-region reconstructions. However, 

extensive variance was again observed in CNA assignments between single-region and multi-

region reconstructions, as indicated by the standard deviations of agreements above. 

Finally, we quantified the differences in the number of subclones that were detected from single-

region and multi-region reconstructions of the 10 tumours using all four pipelines linked to 

PhyloWGS (Figure 7B, Supplementary Table 6). Across the pipelines, multi-region 
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reconstructions detected more subclones than single-region reconstructions: 4.5 ± 2.4 subclones 

were detected with multi-region reconstructions while 2.0 ± 0.85 subclones were detected with 

single-region reconstructions (mean ± standard deviation). Thus the typical single-sample 

reconstruction identified somewhat less than half of the subclones present in the full tumour. 

Indeed, multi-sample reconstructions detect significantly more subclones even within the index 

lesion sample compared to the single-sample reconstruction of the index lesion (p = 2.50 × 10-3, 

Mann-Whitney U-Test, median number of subclonesIndex lesion, single-sample reconstruction = 2, median 

number of subconesIndex lesion, multi-sample reconstruction = 3; Supplementary Figure 5), due to the 

ability to better distinguish subclonal populations by pooling evidence from other samples. 

However, multi-region reconstructions did not always detect more subclones. For example, 

pipelines using SomaticSniper detected more subclones in single-region samples for CPCG100 

compared to multi-region reconstructions for the same tumour. This was also the case for two 

reconstructions from the MuTect-Battenberg-PhyloWGS pipeline. This was likely due to 

PhyloWGS only considering regions with shared copy number status across all samples of the 

tumour for the multi-region reconstruction. Accordingly, while multi-region reconstructions can 

reveal more of the true intra-tumoural heterogeneity in tumours, the underestimation of subclonal 

diversity from single-region reconstructions may be larger than currently appreciated. Overall, 

these data suggest that multi-region reconstructions tend to find more subclones compared to 

reconstructions from single-regions and can more precisely define the mutational landscape of 

the clonal population. 
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Discussion 
It is difficult to benchmark the accuracy of subclonal methodologies since a gold-standard 

experimental dataset is not yet available. Simulation frameworks are of great value, but may not 

fully recapitulate the error-profiles and signal-biases of real data. Here, to complement ongoing 

efforts to benchmark subclonal reconstruction using simulated data (26), we systematically 

estimated the subclonal architectures of 293 tumours using six pipelines. These data provide the 

first experimental lower-bound on the algorithmic variability of tumour subclonal reconstruction 

in a large high-depth whole-genome sequencing cohort. We complement these data by assessing 

the intra-tumoural heterogeneity of subclonal reconstruction pipelines across a set of 10 multi-

region tumours, providing an estimate of the degree to which single-sample reconstructions 

underestimate clonal complexity. 

The two subclonal CNA detection algorithms used differed modestly in their ability to define 

subclonal architectures, while large differences were driven by changing the SNV detection 

approach. Differences between these mutation callers led to major divergences in subclonal 

reconstruction, where pipelines using MuTect found extensive subclonal diversity. Indeed one 

pipeline combination, SomaticSniper-Battenberg-PhyloWGS, led to the detection of only a 

single population of cancer cells in the vast majority of reconstructions. Additional differences 

arose when the same mutational inputs were used with different reconstruction algorithms. While 

PhyloWGS and DPClust converged towards similar numbers of subclones, reconstructions from 

PyClone predicted many more monoclonal phylogenies. Future studies may benefit from 

applying at least one of DPClust or PhyloWGS along with PyClone when evaluating subclonal 

architectures, and these may provide upper- and lower-bounds on the number of cancer cell 

populations in single samples, respectively. The clinical impact of these differences is 

considerable, given findings that tumours with polyclonal architectures are at elevated risk for 

both relapse and distant metastasis after primary treatment (12). Future studies also need to 

carefully consider the failure-rates of different reconstruction algorithms. Reconstructions 

relying on PyClone were successfully completed for all samples while PhyloWGS and DPClust 

had similar failure rates (4.4% vs. 3.1%, respectively). Though with the higher rates of success 

using MuTect and Battenberg with DPClust compared to with PhyloWGS, DPClust may be 

useful for those with preference for this mutation caller combination. With the size of whole-
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genome sequencing datasets rapidly growing, these failures should not drastically affect 

statistical power in large datasets. However, these failures may be problematic for smaller 

studies and are likely to disproportionately affect reconstructions of tumours with a high 

mutational burden (e.g. due to excessive computational requirements). 

Our evaluation of subclonal reconstruction using data from spatially distinct regions of tumours 

found that reconstructions relying on a single sample systematically underestimated the number 

of subclones in a tumour: multi-region reconstructions found twice as many subclones as single-

region reconstructions, as a lower-bound estimation. This agrees with previous work showing the 

distinct mutational profiles of prostate cancer samples from spatially distinct regions of the same 

tumour (8) and reinforces the hypothesis that sufficient sampling will uncover multiple subclones 

in nearly all prostate cancers. This may also suggest that mutation callers that are considered 

highly sensitive still cannot fully overcome the inherent spatial heterogeneity in tumours. 

Larger datasets are necessary to better evaluate the performance of subclonal reconstruction 

methodologies. Efforts towards this are ongoing via crowd-sourced benchmarking efforts with 

simulated data, such as the DREAM SMC-Het benchmarking challenge (26). One can anticipate 

that large single-cell sequencing datasets will arrive to further push the boundaries of accuracy 

for subclonal reconstruction algorithms. In the meantime, this work involving a large clinical 

cohort will aid in refining subclonal reconstruction methods and provide guidance for evaluating 

the subclonal architecture of cancer samples. 

Conclusions 
We present a systematic assessment of the variability across six subclonal reconstruction 

pipelines for a large, well-characterized dataset. We observe considerable inter-tumoural 

heterogeneity in reconstruction solutions for tumours with single-region sequencing, reflecting 

the choice of SNV and CNA callers and reconstruction algorithm in downstream solutions. 

Further, we show that subclonal reconstructions relying on a single-sample systematically 

underestimate the intra-tumoural heterogeneity of tumours irrespective of the mutational callers 

utilized. This work sets the stage for future systematic assessments of subclonal reconstruction 

algorithms and their development to better reconstruct the histories of cancers. 
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Methods 

Patient Cohort 

We aggregated a retrospective cohort of localized prostate tumours with patient consent and 

Research Ethics Board approval from published datasets, with whole-genome sequencing of 

tumour samples and matched blood-based normal samples (12,20,21,27–30). The cohort includes 

293 patients with tumour samples from the index lesion and 10 patients with multiple samples 

from intraductal carcinoma and juxtaposed adjacent invasive carcinoma. For patients receiving 

radiotherapy, the index tumour was identified on transrectal ultrasound and sampled by needle 

biopsies (TRUS-Bx) and was deemed the largest focus of disease that was confirmed 

pathologically. A fresh-frozen needle core ultrasound-guided biopsy to this index lesion was 

obtained for macro-dissection. For patients receiving surgery, the index tumour was identified 

macroscopically by a GU expert pathologist at the point of surgery and later sampled and 

biobanked. A fresh-frozen tissue specimen from the index lesion was then obtained from macro-

dissection. Details of the patient cohort have been described previously (12,21). 

We focused on patients with clinical intermediate-risk disease as defined by NCCN, with 

intermediate risk factors (T2b or T2c disease, ISUP Grade Group 2 or 3 or pre-treatment prostate 

specific antigen (PSA) serum levels between 10-20 ng/mL). All patients received either precision 

image-guided radiotherapy or radical prostatectomy with no randomization or classification and 

were hormone naive at time of therapy. Four patients in the multi-region sequencing cohort 

carried germline BRCA2 mutations and had formalin-fixed paraffin-embedded tissues instead of 

fresh-frozen. Sample regions suitable for micro-dissection (tumour cellularity > 70%) were 

marked by genitourinary pathologists and manually macro-dissected, followed by DNA 

extraction and sequencing. 

Whole-genome sequencing data analysis 

Protocols for whole-genome sequencing data generation and processing have been previously 

described (12,20,21). Briefly, raw sequencing reads from the tumour and normal samples were 

aligned against human reference genome build hg19 using bwa-aln (v0.5.7) (31). Lane-level 

BAMs from the same library were merged and duplicates were marked using picard (v1.92). 

Local realignment and base quality recalibration were performed together for tumour/normal 

pairs using GATK (v.2.4.9) (32). Tumour and normal sample-level BAMs were extracted 
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separately, had headers corrected with SAMtools (v0.1.9) (33) and were indexed with picard 

(v1.107). ContEst (v1.0.24530) (34) was used to estimate lane-level and sample-level sample 

mix-up and lane-level cross-individual contamination on all sequences, with no significant 

contaminated detected. 

Tumour Somatic Mutation Assessment 

We identified subclonal copy number aberrations from whole-genome sequencing data using 

Battenberg (v2.2.6) (7) and TITAN (v1.11.0) (22). First, Battenberg (v2.2.6) was installed with 

underlying ASCAT (v2.5) (35) using the installation and running wrapper cgpBattenberg 

(v3.1.0). Required reference files were downloaded as instructed in https://github.com/Wedge-

Oxford/battenberg and further required data files were generated as instructed in 

https://github.com/cancerit/cgpBattenberg. An ignore file was created for the genome assembly 

hg19 to exclude all chromosomes not in 1-22 and X. Battenberg (v2.2.6) was run with -gender of 

xy for male patients and -t of 14 to run using 14 threads, and otherwise default parameters. The 

resulting primary solution was subjected to manual refitting in situations meeting the following 

criteria: 1) the solution involved a high copy number segment with high BAF and low logR, 

indicating an unrecognized homozygous loss event, 2) nearly all copy number segments were 

subclonal, 3) there were unreasonably high copy numbers up to infinity. Refitting was performed 

until the concerns for refitting were resolved or for three attempts after which the original 

solution was accepted. The CNAs obtained from the primary solution, along with tumour 

cellularity and ploidy were used for further analysis. We have described subclonal copy number 

analysis using TITAN (v1.11.0) previously in detail (12). Briefly, TITAN (v1.11.0) was run 

through the Kronos (v1.12.0) (36) pipeline for whole-genome sequence preprocessing and 

subclonal copy number assessment. GC and mappability files for bias correction were prepared 

using HMMcopy (v.0.1.1) (37)and bowtie (v2.2.6) (38) on the hg19 reference genome. 

Heterogeneous positions in the sequence data were identified by MutationSeq (v4.3.7) (39) using 

known dbSNP sites from GATK (v2.4.9). For each whole-genome sequence, TITAN (v1.11.0) 

made predictions of the existence of one to five subclones based on the given input -numClusters 

and the solution with the lowest S_Dbw validity index (22) was used to obtain the cellularity, 

ploidy and subclonal CNAs for downstream analysis. 
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We used MuTect (v1.1.4) (24) and SomaticSniper (v1.0.2) (23) for the identification of somatic 

single nucleotide variants from whole-genome sequencing data. MuTect was run to obtain 

candidate SNVs with dbSNP138 (40), COSMIC (v66) (41) and default parameters except the -

tumor_lod option (tumor limit of detection). The -tumor_lod option was set to 10 to increase the 

stringency of detection. Outputs that contained REJECT were filtered out and the remaining 

SNV calls were used for downstream analysis. Details for SomaticSniper (v1.0.2) variant calling 

have been described previously (20). In short, SomaticSniper (v1.0.2) was used to identify 

candidate SNVs with default parameters except the -q option (mapping quality threshold), which 

was set to 1 as per developer recommendation. Candidate SNVs were filtered through standard 

and LOH filtering using a pileup indel file generated on the sequence data using SAMtools 

(v0.1.6) (33), bam-readcount filtering and false positive filtering. Only high confidence somatic 

SNVs obtained from the high confidence filter using default parameters were used for further 

analysis. We performed annotation and filtering on all SNVs, with full details given previously 

(12). In brief, SNVs obtained by MuTect (v1.1.4) and SomaticSniper (v1.0.2) were annotated 

with associated genes and functions by ANNOVAR (v2015-06-17) (42) using RefGene, 

subjected to blacklist filtering to remove known germline contaminants and sequencing artifacts 

and whitelist filtering through COSMIC (v70) (41). This was done before downstream subclonal 

reconstruction. 

Subclonal Reconstruction of Tumours using PhyloWGS 

We used the cnv-int branch of PhyloWGS (https://github.com/morrislab/phylowgs/tree/cnvint, 

commit: 3b75ba9c40cfb27ef38013b08f9e089fa4efa0c0) (14) for the reconstruction of tumour 

phylogenies, as described previously (12). Briefly, subclonal CNA segments and cellularities 

predicted by Battenberg (v2.2.6) and TITAN (v1.11.0) were parsed using the provided 

parse_cnvs.py script and were filtered to remove any segments shorter than 10 Kbp. Somatic 

SNVs obtained using MuTect (v1.1.4) and SomaticSniper (v1.0.2) were also subjected to 

filtering to remove mutations not at callable bases (where callable bases are those with ≥ 17x 

coverage for the tumour and ≥ 10x coverage for the normal). We then used the 

create_phylowgs_inputs.py script to generate four sets of PhyloWGS (3b75ba9) inputs for each 

sequence sample, by combining TITAN-SomaticSniper, TITAN-MuTect, Battenberg-

SomaticSniper and Battenberg-MuTect as CNA-SNV mutation caller pairs. All default 

parameters were used, including limiting the number of SNVs considered to 5,000 for the 
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interest of runtime. The PhyloWGS (3b75ba9) script evolve.py reconstructed phylogenies using 

default parameters for each input set. Thus, four pipelines by combination of CNA and SNV 

mutation callers followed by PhyloWGS (3b75ba9) were used to perform subclonal 

reconstruction (SomaticSniper-TITAN-PhyloWGS, TSP; MuTect-TITAN-PhyloWGS, TMP; 

SomaticSniper-Battenberg-PhyloWGS, BSP; MuTect-Battenberg-PhyloWGS, BMP). 

The best tree structure for each input set and the CNAs and SNVs associated with each subclone 

in that structure were determined by parsing the output JSON files for the consensus tree with the 

largest log likelihood value. Since subclones in PhyloWGS (3b75ba9) trees are numbered based 

on cellular prevalence instead of evolutionary relationship, trees were transformed to consistent 

representations to allow comparison across cohorts following two rules: 1) trees are left-heavy, 

2) all nodes at a particular tree depth must have numbers greater than that of nodes at lower tree 

depths, with the root node (normal cell population) starting at 0. Further, pruning of nodes was 

performed following the heuristic that each node must have at least 5 SNVs or 5 CNAs, and at 

least a cellular prevalence of 2% if it is a subclonal node or a cellular prevalence of 10% if it is 

the clonal node, creating a subclonal diversity lower bound for each tumour (12). A pruned node 

was merged with its sibling if a sibling was present, merged with its parent node if a sibling node 

was not present or eliminated if it was the only direct child of the normal node, with its children 

becoming the direct children of the normal node. In situations where PhyloWGS produced a 

polytumour solution for the best consensus tree, the algorithm was re-run up to 12 times with 

different random number generator seeds after which the final polytumour solution was 

accepted. The seeds were applied in the following order: 12345, 123456, 1234567, 12345678, 

123456789, 246810, 493620, 987240, 1974480, 3948960, 7897920 and 15795840. In the event 

where PhyloWGS failed to produce a solution due to reconstruction failures or excessive runtime 

(> 3 months), the sample was excluded from analysis for that pipeline. 

Subclonal reconstruction was run on the cohort of 293 tumours with index lesion sequencing for 

single-region subclonal reconstruction analysis. Single-region analysis provided data for the 

downstream analysis of inter-tumoural heterogeneity in subclonal reconstruction. For the 10 

tumours with multi-region sequencing, each individual sequencing sample was first subjected to 

single-region subclonal reconstruction as outlined above. Further, multi-region subclonal 

reconstruction was performed using PhyloWGS (3b75ba9), by providing all regions belonging to 
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the same tumour as input for the reconstruction. The procedure was otherwise identical to the 

single-region reconstructions, including the usage of four combinations of CNA and SNV calls 

as inputs to PhyloWGS (3b75ba9). The single- and multi-region reconstructions from these 10 

tumours provided data for the downstream analysis of intra-tumoural heterogeneity in subclonal 

reconstruction. 

Union and Intersection of Mutation Calling Algorithms 

We obtained the union and intersection of raw SNV calls by SomaticSniper (v1.0.2) and MuTect 

(v1.1.4) for each tumour sample using vcf-isec of vcftools (v0.1.15). The union and intersection 

sets of SNVs were then annotated and filtered with the same method as described above before 

being used in subsequent analysis.  

We determined the union and intersection of CNAs called by TITAN (v1.11.0) and Battenberg 

(v2.2.6), first parsed using parse_cnvs.py script of PhyloWGS (3b75ba9) for consistent 

formatting, on a per base-pair basis. The intersection of CNAs, based on genomic coordinates 

and major and minor copy number, was determined using the GenomicRanges (v1.28.6) package 

in R (v3.2.5). Regions with disagreeing copy number were identified using bedtools (v2.27.1) 

and bedr (v.1.0.6). A region is defined to have an algorithm-unique CNA if one algorithm 

identified a copy number aberration for the region while the other identified it as copy number 

neutral (major and minor copy number of 1). Regions were both algorithms identified different 

copy number aberrations were classified as disagreements. The union set of CNAs thus 

contained the intersection of CNAs and CNAs unique to either TITAN (v1.11.0) or Battenberg 

(v2.2.6), and disagreement regions were excluded as there was no obvious way to resolve the 

discrepancies. In the case of Battenberg (v2.2.6) producing a clonal and subclonal copy number 

for the same genomic region and copy number aberration only appeared subclonally, the regions 

were determined as Battenberg-unique for its clear delineation of subclonal CNAs, but the 

TITAN (v.1.11.0) copy number aberration result for the region (if any) is used in the union of 

CNAs to avoid conflicting CNA calls to the same region. The union and intersection sets of 

CNAs were further filtered to remove any segments under 10 Kbp. These were used in the 

create_phylowgs_inputs.py script to generate inputs for PhyloWGS (3b75ba9) in different 

combinations of CNA and SNV mutation sets for subsequent subclonal reconstruction. 

Subclonal Reconstruction of Tumours using PyClone and DPClust 
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We used PyClone (v0.12.9) (16) for the subclonal reconstruction of 293 tumours with single 

samples, using somatic SNVs obtained from SomaticSniper (v.1.0.2) and CNAs obtained from 

TITAN (v1.11.0), processed as described above. A mutation input file was created for each 

sample by obtaining the tumour reference and variant read counts for each SNV detected in the 

VCF and annotating them with the TITAN-determined (v1.11.0) major and minor copy number 

for the position. SNVs in regions without copy number information were discarded, and the 

normal copy number was set to 2 for autosomes and 1 for chromosomes X and Y. The mutation 

input file, along with tumour content as predicted by TITAN (v1.11.0) were used as inputs for 

the run_analysis_pipeline to launch PyClone (v0.12.9) (16), using 12345 as the seed and 

otherwise default parameters. PyClone (v0.12.9) identified subclonal populations were pruned 

using the same heuristic as that for PhyloWGS (3b75ba9). Specifically, for each tumour sample, 

a mutation cluster was pruned if it had fewer than five supporting SNVs or a cancer cell fraction 

below 0.02, unless it was the only mutation cluster detected. Pruned clusters were merged with 

their nearest neighbors in cancer cell fraction. Moreover, two clusters were merged if they 

differed in cancer cell fraction by less than 0.02. 

Similarly, we used DPClust (v2.2.5) (15) for subclonal reconstruction, using somatic SNVs 

obtained from MuTect (v1.1.4) and CNAs obtained from Battenberg (v2.2.6), processed as 

described above. DPClust (v2.2.5) was run using the dpc.R pipeline available via the DPClust 

SMC-HET Docker (https://github.com/Wedge-Oxford/dpclust_smchet_docker, commit 

a1ef254), using also dpclust3p (v1.0.6). The inputs for each tumour sample were the MuTect 

(v1.1.4) VCF, subclonal copy number, and cellularity, ploidy, and psi as predicted by Battenberg 

(v2.2.6), using 12345 as the seed and otherwise default parameters. The results in the 

subchallenge1C.txt output file were taken as the mutation clustering solution to obtain the 

number of subclones predicted by DPClust (v2.2.5) (15). 

Phylogenetic Tree Classification 

We classified the best consensus trees as monoclonal or polyclonal based on the number of 

subclones they encompass. Trees where only one subclone was detected were termed 

monoclonal. In monoclonal trees, the only subclone detected is then termed the clonal node or 

the trunk. Trees where more than one subclone was detected were termed polyclonal. In 

polyclonal trees, the subclone that was the only direct child of the normal root node was clonal 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/418780doi: bioRxiv preprint 

https://doi.org/10.1101/418780
http://creativecommons.org/licenses/by-nc/4.0/


Bhandari et al. 

 - Page 21 of 42 - 

(or trunk), and all of its descendants were subclonal (or branch). In situations where the normal 

root node had more than one direct child, the tree was termed polytumour, suggestive of multiple 

independent primary tumours. These were excluded from downstream analysis because the 

reconstruction of these phylogenies, especially from single sequencing samples, is challenging 

(12). 

Mutation Classification 

CNA and SNV mutations were classified as clonal or subclonal based on their node assignment 

in the best PhyloWGS (3b75ba9) consensus tree. The mutations that occurred between the root 

node (normal) and its first child node were classified as clonal (or trunk) mutations, while all 

others were classified as subclonal (or branch) mutations. 

Subclonal Analysis of Copy Number Aberrations 

We further filtered the CNAs identified by PhyloWGS using OncoScan data for samples with the 

data available, removing the TITAN (v1.11.0) or Battenberg (v2.2.6) predicted CNAs that did 

not overlap any OncoScan CNAs. For samples without OncoScan data, CNAs outputted by 

PhyloWGS were filtered to retain only those across genomic locations with recurrence of CNAs 

in previously mentioned samples, with 10 being the established empirical recurrence threshold 

(12). We used bins of 1Mbp across the genome to characterize the copy number profiles for each 

sample and created a separate profile for CNAs obtained from each of the four PhyloWGS-based 

pipelines. Genomic bins were assigned the copy number of overlapping genomic segments, 

either neutral or aberrated, produced by PhyloWGS. Regions not considered by PhyloWGS due 

to lack of information were assumed to have the normal copy number of two. Profiles were also 

created separately for clonal and subclonal CNAs, where clonal profiles only included 

PhyloWGS CNAs that were assigned to the clonal node and subclonal profiles only included 

subclonal CNAs. We further used previously identified clonal and subclonal subtypes to cluster 

samples (12). Average clonal and subclonal CNA profiles were generated within each subtype, 

for clonal or subclonal CNAs, respectively. Samples that were assigned a “branch” (subclonal) 

subtype in the SomaticSniper-TITAN pipeline (12) but were monoclonal for another pipeline 

were excluded from the subclonal subtype sets of that pipeline. Samples that were monoclonal in 

the SomaticSniper-TITAN pipeline and hence with no “branch” (subclonal) subtype but were 

polyclonal for another pipeline were not considered for any subclonal subtypes in that pipeline. 
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For each pipeline, we used the copy number profiles of all samples with available data to 

generate average subtype-specific clonal and subclonal CNA profiles of localized prostate 

cancer, with standard deviation. 

We compared the CNA profiles generated from the four PhyloWGS-based pipelines by assessing 

the difference in clonal and subclonal CNA calls between pipeline pairs. CNA profiles generated 

by each pipeline were compared to profiles from other pipelines within each 1Mbp bin for each 

sample. For each sample, a discordance was noted if one pipeline in the pair called a CNA while 

the other produced a neutral or opposite call (i.e. gain vs. loss) in the same bin. The number of 

discordances were summed for each sample and divided by the total number of bins covered by 

CNAs called by both callers in that sample to assess the proportion of 1Mbp bins where the 

pipelines were discordant. Clonal and subclonal CNAs were compared separately for each 

pipeline pair, for all samples with CNA data from both pipelines in the pair. The concordance 

was calculated as 1 – discordance, and error bars show one standard deviation of the mean 

proportion of concordance between all samples compared in a pipeline pair. 

We identified CNAs that were differentially altered clonally and subclonally. Using 1Mbp bins 

across the genome, we aggregated the number of samples with and without a CNA overlapping 

each 1Mbp stretch. Clonal and subclonal CNAs were annotated separately, and only samples 

with polyclonal phylogenies were considered, since they have both clonal and subclonal 

components. Pearson’s χ2 test was used with multiple testing correction (FDR ≤ 0.05) to define 

the bins that were significantly enriched for clonal or subclonal CNAs. CNAs in these bins were 

thus considered significantly differentially altered, with a predisposition to occur clonally or 

subclonally based on their observed frequencies. The analysis was performed separately for 

CNAs obtained from the four PhyloWGS-based pipelines. Genes affected by differentially 

altered CNAs were annotated using RefSeq, and the lists of genes considered to have CNA 

biases by the four pipelines were compared for overlap. 

We performed pathway enrichment analysis on the genes that were identified by all four 

PhyloWGS-based pipelines as biased to have a CNA clonally or subclonally. Using all default 

parameters of gprofileR (v0.6.1) in R (v3.2.5) (43), statistically significant pathways were 

obtained from the data sources Gene Ontology (Biological Process, Molecular Function and 

Cellular Component), KEGG and Reactome. We discarded pathways that involved > 500 or < 3 
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genes (44). Cytoscape (v3.4.0) was used to visualize significant pathways (45). Since all genes 

identified as significantly differentially altered were biased to be altered clonally, we defined 

these pathways as differentially altered clonally. 

Subclonal Analysis of Single Nucleotide Variants 

We defined functional SNVs as those that are nonsynonymous, stop-loss, stop-gain or splice-site, 

based on RefGene annotations. For each gene with a functional SNV mutation in a sample, the 

cancer cell fraction of the SNV was recorded. In the event that a gene was mutated multiple 

times in a sequence sample, the SNV with the highest functional priority was used for such 

annotation. 

We compared the four PhyloWGS-based pipelines for their inference of clonal and subclonal 

SNVs. In each pairwise comparison, for each sample we noted the number of times one pipeline 

called a functional SNV in a gene while the other did not call a mutation in that gene. The 

number of discordances was divided by the total number of functional SNVs called by both 

pipelines as annotated at the gene level in each sample to obtain the proportion of discordance. 

Concordance was further calculated as 1 – discordance, and the error bars show one standard 

deviation from the mean of all sample concordances in a pipeline pair. The analysis was 

performed separately for clonal and subclonal mutations. Instances where one caller called a 

clonal mutation for a gene while the other caller called a subclonal mutation were not counted as 

disagreements towards either analysis. 

Driver Mutation Analysis 

We gathered a list of known prostate cancer driver genes based on previous large sequencing 

studies (12,20). The known CNA-affected driver genes considered were MYC, TP53, NKX3-1, 

RB1, CDKN1B, CHD1, PTEN and CDH1. The known SNV-affected driver genes considered 

were ATM, MED12, FOXA1, SPOP and TP53. PhyloWGS inferred CNAs overlapping regions of 

CNA-affected driver genes and annotated SNVs that occurred in SNV-affected driver genes were 

defined to be driver CNAs and driver SNVs, respectively. A sample was considered to have a 

consensus driver mutation if the mutation was called with the same clonality by all four 

PhyloWGS-based pipelines. 
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Driver SNVs and CNAs of each sample were categorized by the number of PhyloWGS-based 

pipelines they were called in. Since four PhyloWGS-based pipelines were used, in each sample 

driver SNVs and CNAs could be called in all four pipelines, three pipelines, two pipelines or one 

pipeline. Proportions of each category were calculated by dividing the number of samples in that 

category by the sum of samples assigned to all categories for the driver SNV or CNA. The 

analysis was done separately for clonal and subclonal calls, such that the category of the driver 

SNVs or CNAs in a sample was defined by the most frequent call of the clonality. For example, 

if a driver SNV in a sample was called clonal by two pipelines, subclonal by one pipeline and 

wildtype by the last pipeline, it would be counted in both category two for the clonal analysis and 

in category one for the subclonal analysis. 

Multi-region Subclonal Reconstruction Analysis 

For each of the 10 patients with multi-region sequencing data available, we compared the 

subclonal reconstruction solutions from each single-region with the solutions obtained from 

subclonal reconstruction using all tumour regions based on PhyloWGS. Further, we compared 

the reconstructions of each index lesion from only its own single-region reconstruction and its 

reconstruction as part of the corresponding multi-region reconstruction. More specifically, the 

number of subclones assigned to the index lesion from the multi-region reconstruction was 

compared to the number of subclones detected in the index lesion single-region reconstruction. 

In addition to number of subclones detected, we compared SNV and CNA clonality assignments 

between single- and multi-region reconstructions. For all SNVs that were detected in a single-

region and its corresponding multi-region reconstruction, we calculated the proportion of SNVs 

in each of the following categories: 

1. Match in multi- and single-region: clonality of SNV is the same in single- and 

multi-region reconstructions. 

2. Clonal in multi-region: SNV was detected in both single- and multi-region 

reconstructions, but the clonality of the SNV was assigned to be clonal in the multi-

region reconstruction, and subclonal in the single-region reconstruction. 

3. Subclonal in multi-region: SNV was detected in both single- and multi-region 

reconstructions, but the clonality of the SNV was assigned to be subclonal in the multi-

region reconstruction, and clonal in the single-region reconstruction. 
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4. Unique in single-region: SNV was only present in the single-region 

reconstruction. 

5. Unique in multi-region: SNV was only present in the multi-region reconstruction. 

Similarly, all CNAs that were detected in a single-region reconstruction and its matching multi-

region reconstruction were assigned to categories defined in a similar fashion. Additional 

separation was added for CNAs defined to have the same clonality in the single-region and 

multi-region reconstructions, distinguishing between clonal and subclonal assignments. The 

distinction was also made for CNAs unique to single-region or multi-region reconstructions, 

separating the two categories further into clonal and subclonal as well. 

Data Visualization and Reporting 

Data was visualized using the R statistical environment (v3.2.5), and performed using the lattice 

(v0.20-34), latticeExtra (v0.6-28), VennDiagram (v1.6.21) (46) and BPG (v5.3.4) (47) packages. 

Figures were compiled using Inkscape (v0.91). Standard deviation of the population mean was 

reported for point estimates for the mean. All statistical tests were two-sided. Additional File 1 

shows the visualization of all phylogenies. 

List of abbreviations 

CNAs - Copy Number Aberrations 

SNVs - Single Nucleotide Variants 

TSP - phylogenetic reconstruction pipeline TITAN-SomaticSniper-PhyloWGS 

TMP - phylogenetic reconstruction pipeline TITAN-MuTect-PhyloWGS 

BSP - phylogenetic reconstruction pipeline Battenberg-SomaticSniper-PhyloWGS 

BMP - phylogenetic reconstruction pipeline Battenberg-MuTect-PhyloWGS  
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Figure Legends 
Figure 1 – Reconstruction Workflow and Experimental Design 

Raw sequencing data from the tumour and normal samples were aligned against the hg19 build 

of the human genome using bwa-aln (v0.5.7) and GATK (v2.4.9). Somatic SNVs were called 

using SomaticSniper (v1.0.2) and MuTect (v1.1.4) and annotated for function. Somatic CNAs 

were called using TITAN (v1.11.0) and Battenberg (v2.2.6) and filtered. All single-region 

tumour samples had their subclonal architectures reconstructed using PyClone, DPClust and four 

pipelines linked to PhyloWGS, each with different combinations of SNVs and CNAs. For 

tumours with samples from multiple regions, reconstructions of subclonal architectures were 

performed by considering samples from all regions using each of the four PhyloWGS-linked 

pipelines. Further downstream analyses compared clonality, CNAs and SNVs for each single-

region sample across the pipelines, and between single-region and multi-region reconstructions 

of the same tumour, to elucidate the inter- and intra-tumoural heterogeneity of subclonal 

reconstruction. 

Figure 2 – Clonal and Subclonal CNAs 

We assessed the average clonal and subclonal CNA profiles of localized prostate cancers based 

on four different subclonal reconstruction pipelines linked to PhyloWGS. a-b) Chromosomes are 

shown along the x-axis and copy number on the y-axis, while each horizontal panel represents 

the average clonal and subclonal CNA profiles from one pipeline, based on previously identified 

clonal and subclonal subtypes (12). Clonal CNA subtype average profiles are shown in a) and 

subclonal CNA subtypes are shown in b). Red indicates that the average is above the neutral 

copy number of two while blue indicates that the average is below two. The shaded regions 

indicate the standard deviation. Characteristic prostate cancer CNAs such as losses in 8p and 

gains in 8q are seen clonally across callers, prominently in clonal subtypes B and C. Average 

subclonal copy number is almost always above two across the genome in subtype g. Subclonal 

CNA subtype profiles show little concordance across callers except for those that use the same 

CNA caller. c) Each marker represents the comparison between a pair of callers. Clonal and 

subclonal disagreement represents the proportion of 1 Mbp genomic bins where one pipeline 

called a CNA and for the same bin in the same sample the other pipeline called either neutral or 

the opposite CNA type (i.e. gain vs. loss). Overall, there is greater agreement for clonal CNA 

calls (all disagreement ≤ 62%) and calls between algorithms that use the same CNA caller. TSP, 
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TITAN-SomaticSniper-PhyloWGS; TMP, TITAN-MuTect-PhyloWGS; BSP, Battenberg-

SomaticSniper-PhyloWGS; BMP, Battenberg-MuTect-PhyloWGS. 

Figure 3 – Differentially Altered CNAs 

a) Venn diagram of the genes with CNAs that are significantly biased to be altered clonally (i.e., 

early during tumour evolution) or subclonally (i.e., late during tumour evolution) during tumour 

evolution based on reconstructions from four pipelines linked to PhyloWGS. Numbers in 

overlapping areas correspond to the genes with biased timing based on multiple pipelines with 

the same directionality (i.e., consistent bias for the same gene towards early or late alterations). 

CNAs in a core set of 270 genes show bias timing based on all four pipelines. All 270 of these 

genes are enriched for alterations early during tumour evolution. b) A pathway enrichment map 

based on the 270 genes that are consistently considered to be differentially altered clonally. 

Genes that are preferentially altered by CNAs early during tumour development are significantly 

(FDR < 0.05) associated with TP53-based regulation of death receptors, TRAIL signaling, and 

natural killer cell mediated cytotoxicity. 

Figure 4 – Clonal and Subclonal SNVs 

We assessed the clonal and subclonal SNV landscape of localized prostate cancers using four 

different pipelines linked to PhyloWGS. a) The total number of clonal and subclonal SNVs 

based on four pipelines. Each stacked bar represents one tumour and tumours are ordered based 

on the total number of SNVs called by the SomaticSniper-TITAN-PhyloWGS pipeline. Pipelines 

that use MuTect detected vastly more subclonal SNVs compared to pipelines that use 

SomaticSniper. b) The proportion of disagreement for SNV calls in genes, where one pipeline 

called a SNV in a gene while the other called the gene wildtype, was assessed for clonal and 

subclonal SNVs. Each marker represents a pipeline pair that is compared, and the x- and y- axis 

show proportion of subclonal and clonal disagreements, respectively. Clonal SNVs generally 

show strong agreement between different pipelines while subclonal SNVs show less agreement 

between pipelines that use different SNV callers. TSP, TITAN-SomaticSniper-PhyloWGS; TMP, 

TITAN-MuTect-PhyloWGS; BSP, Battenberg-SomaticSniper-PhyloWGS; BMP, Battenberg-

MuTect-PhyloWGS. 

Figure 5 – Driver CNAs and SNVs in Localized Prostate Cancer 
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The clonal and subclonal distribution of localized prostate cancer driver mutations based on four 

pipelines linked to PhyloWGS and a consensus. a) Sub-panels show data for five genes known to 

be recurrently altered by SNVs in localized prostate cancer. Each column within each sub-panel 

represent one tumour sample and clonal and subclonal SNVs detected by each pipeline are 

indicated. b) Sub-panels show data for eight genes known to be recurrently altered by CNAs in 

localized prostate cancer. Clonal and subclonal CNAs identified by each pipeline are shown 

along with a consensus. SNVs (a) and CNAs (b) in known prostate cancer driver genes were 

typically detected clonally. The consensus for clonal driver CNA and SNV calls (i.e., cases 

where all four pipelines called a clonal mutation in a driver gene) was high while there was less 

agreement for subclonal driver mutations. 

Figure 6 – Comparing Subclonal Architecture between Pipelines 

We assessed the subclonal architecture of localized prostate cancers using four pipelines linked 

to PhyloWGS, one linked to DPClust and one linked to PyClone a-b) The proportion of samples 

identified to be monoclonal or polyclonal by each of the four pipelines linked to PhyloWGS (a) 

and the breakdown of samples into tree structures (b). The SomaticSniper-Battenberg pipeline 

linked to PhyloWGS called drastically more monoclonal phylogenies than the other PhyloWGS-

linked pipelines. PhyloWGS-linked pipelines with MuTect as the SNV caller reconstructed more 

complex phylogenies with up to five subclones. c) Comparisons of the number of predicted 

subclones by PhyloWGS and DPClust using SNV inputs from MuTect and CNA inputs from 

Battenberg. d) Comparisons of the number of predicted subclones by PhyloWGS and PyClone 

using SNV inputs from SomaticSniper and CNA inputs from TITAN. For c-d, each marker 

shows the number of subclones called for one sample. Background shading highlights samples 

where the two reconstructions predicted different numbers of subclones.  

Figure 7 - Subclonal Reconstruction from Single- and Multi-Region Samples 

Subclonal reconstruction concordance between solutions based on a single-region or multiple 

regions from the same tumour using PhyloWGS. a) Clonality of SNVs identified in both single-

region and multi-region reconstructions. Variants were compared at position level. Each single-

region reconstruction is compared to the multi-region reconstruction of the same tumour. The 

SomaticSniper-Battenberg-PhyloWGS pipeline achieved the highest proportion of clonality 

assignment concordance. In the mismatches between single-region and multi-region 
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reconstructions, SNVs tend to be classified to be subclonal in multi-region reconstructions while 

being classified as clonal in single-region reconstructions. b) Comparison of the number of 

subclones in the reconstructed phylogenies for each tumour. Multi-region reconstructions 

typically result in phylogenies with higher numbers of subclones compared to reconstruction 

from single-regions. Reconstructions of only the single index lesion typically capture half of the 

complexity that is uncovered by the multi-region reconstructions. Zero subclones indicate a 

failed reconstruction. 
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Supplementary Figures 
Supplementary Figure 1 – Comparing the Divergence of Callers for Driver CNAs 
and SNVs 

a-b) The four PhyloWGS-linked pipelines showed broad agreement in calling driver CNAs and 

SNVs. Of all the samples where any pipeline called a clonal CNA in MYC, all four pipelines 

called a clonal CNA in 74% of cases. This is not surprising considering the hallmark gain of 

chromosome 8q in prostate cancer. SNV calls in MED12 were an outlier, where the four 

pipelines never called a clonal SNV in the same sample, because the X chromosome was not 

considered by pipelines using Battenberg. 

Supplementary Figure 2 – Comparing Clonality Between Pipelines Linked to 
PhyloWGS 

a-f) Between pipeline pairs, the concordance of clonality for shared samples are compared. The 

highest disagreement is observed for pipeline pairs with the same SNV caller but different CNA 

callers. 

Supplementary Figure 3 – Comparing Clonality Between Pipelines with the Union 
and Intersection of Mutational Calls linked to PhyloWGS 

a) Unique and intersecting SNV calls by MuTect and SomaticSniper. MuTect calls substantially 

more unique SNVs compared to SomaticSniper. b) Unique and intersecting CNA calls by 

TITAN and Battenberg. c-f) Comparing predictions of clonality from the SomaticSniper-TITAN 

pipeline linked to PhyloWGS to other PhyloWGS-linked pipelines that had SNV and CNA 

inputs based on the union or intersection of mutational calls. PhyloWGS-based pipelines using 

the union of SNV calls tend to have clonality predictions skewed towards polyclonal 

reconstructions. 

Supplementary Figure 4 – Discrepancies Between Single-Region and Multi-
Region CNA Assignments 

The disagreement in clonal and subclonal CNA assignments between single- and multi-region 

subclonal reconstructions based on PhyloWGS. CNAs are compared by 1Mbp genomic bins 

between single-region reconstructions and their corresponding multi-region reconstructions. The 

SomaticSniper-Battenberg-PhyloWGS pipeline achieved the lowest proportion of clonality 

assignment concordance and mismatches were typically due to unique subclonal CNAs assigned 

to the multi-region reconstruction and unique clonal CNAs assigned to the single-region 

reconstructions. 
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Supplementary Figure 5 – Index Lesion Clonality in Single-Region and Multi-
Region Reconstructions 

We assessed the number of subclones detected specifically in the index lesion in the single-

region and multi-region reconstructions based on PhyloWGS. Single-region reconstructions 

indicate the number of subclones detected in the index lesion using only the sample from the 

index lesion. Multi-region reconstructions indicate the number of subclones detected in the index 

lesion through multi-region reconstruction. Overall, multi-region reconstructions detect more 

subclones within the index lesion sample compared to the single-region reconstruction of the 

index lesion.  
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Supplementary Tables 
Supplementary Table 1 – Single-Region Subclonal Reconstruction Data 

Subclonal reconstruction results for 293 tumours with single-region sequencing based on 

PhyloWGS. Information is displayed separately for all four pipelines used for analysis. 

Phylogenetic tree variables include tree type, tree lineage type, number of subclones, tumour 

cellular prevalence, tree root width, tree depth, clonality and Shannon index score for subclonal 

diversity. Mutational variables include proportion of clonal SNVs, proportion of clonal CNAs, 

number of SNVs, number of CNAs, overall percent genome altered (PGA) and PGA due to 

clonal CNAs. Additional information includes the random number generator seed used for 

PhyloWGS reconstruction, coverage of sequencing sample, cellular prevalence obtained from the 

CNA caller used and CNA subtype assignment. 

Supplementary Table 2 – CNA Data 

CNA data for 293 patients in 1 Mbp genomic bins. Each number represents the copy number of 

the CNA overlapping the genomic bin. Positive indicates gain while negative indicates loss. 

Tables are separated for clonal and subclonal CNAs and for each of the four pipelines. 

Supplementary Table 3 – Differentially Altered Genes 

Genes tested for bias towards clonal or subclonal CNAs. All genes are ordered by genomic 

position and the number of samples affected by clonal and subclonal CNAs are recorded. 

Pearson’s χ2 test was used to test for bias, with p-values adjusted using FDR. Information is 

presented separately for each pipeline. 

Supplementary Table 4 – Pathway Analysis 

Pathways significantly (FDR < 0.05) associated with the 270 genes where CNAs are biased to 

occur clonally based on all four pipelines. 

Supplementary Table 5 – SNV Data 

SNV-affected gene by patient matrix for 293 patients. Each number represents the cancer cell 

fraction of the subclone to which the mutation was assigned. SNVs with a cancer cell fraction of 

1 are clonal and all others with an absolute value of cancer cell fraction below 1 are subclonal. 

Information is presented separately for the four pipelines. 

Supplementary Table 6 - Multi-Region Subclonal Reconstruction Data 
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Subclonal reconstruction results for 10 patients with multi-region sequencing. Results are 

included for reconstructions of each individual region and results from the multi-region 

reconstructions. Information is displayed separately for all four pipelines. Phylogenetic tree 

variables include tree type, tree lineage type, number of subclones, tumour cellular prevalence, 

tree root width and clonality. Mutational variables include proportion of clonal SNVs, proportion 

of clonal CNAs, number of SNVs, number of CNAs, overall percent genome altered (PGA) and 

PGA due to clonal CNAs. Additional information includes the random number generator seed 

used for PhyloWGS reconstruction. 
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Additional Files 
Additional File 1 – Per-Sample Subclonal Architecture Reports 

Subclonal reconstruction solutions from four pipelines linked to PhyloWGS for 293 samples 

with single-region sequencing, followed by 10 samples with multi-region sequencing. The first 

page contains a legend explaining the components of single- and multi-region subclonal 

reconstruction figures. Subsequent pages have details for all single-region samples followed by 

details for single- and multi-region reconstructions for all multi-region samples.  
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