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Abstract

Cortico-basal-ganglia-thalamic (CBGT) networks are critical for adaptive
decision-making, yet how changes to circuit-level properties impact cognitive algorithms
remains unclear. Here we explore how dopaminergic plasticity at corticostriatal synapses
alters competition between striatal pathways, impacting the evidence accumulation
process during decision-making. Spike-timing dependent plasticity simulations showed
that dopaminergic feedback based on rewards modified the ratio of direct and indirect
corticostriatal weights within opposing action channels. Using the learned weight ratios
in a full spiking CBGT network model, we simulated neural dynamics and decision
outcomes in a reward-driven decision task and fit them with a drift-diffusion model.
Fits revealed that the rate of evidence accumulation varied with inter-channel
differences in direct pathway activity while boundary height varied with overall indirect
pathway activity. This multi-level modeling approach demonstrates how complementary
learning and decision computations emerge from corticostriatal plasticity.

Author summary

Cognitive process models like reinforcement learning (RL) and the drift-diffusion
model (DDM) have helped to elucidate the basic information algorithms underlying
error-corrective learning and the evaluation of accumulating decision evidence leading
up to a choice. While these relatively abstract models help to guide experimental and
theoretical probes into associated phenomena, they remain uninformative about the
actual physical mechanics by which learning and decision algorithms are carried out in a
neurobiological substrate during adaptive choice behavior. Here, we present an
“upwards mapping” approach to bridging neural and cognitive models of value-based
decision making, showing how dopaminergic feedback alters the network-level dynamics
of cortico-basal-ganglia-thalamic (CBGT) pathways during learning to bias behavioral
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choice towards more rewarding actions. By mapping “up” the levels of analysis, this
approach yields specific predictions about aspects of neuronal activity that map to the
quantities appearing in the cognitive decision-making framework.

1 Introduction 1

The flexibility of mammalian behavior showcases the dynamic range over which 2

neural circuits can be modified by experience and the robustness of the emergent 3

cognitive algorithms that guide goal-directed actions. Decades of research in cognitive 4

science has independently detailed the algorithms of decision-making (e.g., 5

accumulation-to-bound models, [1]) and reinforcement learning (RL; [2, 3]), providing 6

foundational insights into the computational principles of adaptive decision-making. In 7

parallel, research in neuroscience has shown how the selection of actions, and the use of 8

feedback to modify selection processes, both rely on a common neural substrate: 9

cortico-basal ganglia-thalamic (CBGT) circuits [4–8]. 10

Understanding how the cognitive algorithms for adaptive decision-making emerge 11

from the circuit-level dynamics of CBGT pathways requires a careful mapping across 12

levels of analysis [9], from circuits to algorithm (see also [10,11]). Previous simulation 13

studies have demonstrated how the specific circuit-level computations of CBGT 14

pathways map onto sub-components of the multiple sequential probability ratio test 15

(MSPRT; [5, 12]), a simple algorithm of information integration that selects single 16

actions from a competing set of alternatives based on differences in input 17

evidence [13,14]. Allowing a simplified form of RL to modify corticostriatal synpatic 18

weights results in an adaptive variant of the MSPRT that approximates the optimal 19

solution to the action selection process based on both sensory signals and feedback 20

learning [15,16]. Previous attempts at multi-level modeling have largely adopted a 21

“downwards mapping” approach, whereby the stepwise operations prescribed by 22

computational or algorithmic models are intuitively mapped onto plausible neural 23

substrates. Recently, Frank [17] proposed an alternative “upwards mapping” approach 24

for bridging levels of analysis, where biologically detailed models are used to simulate 25

behavior that can be fit to a particular cognitive algorithm. Rather than ascribing 26

different neural components with explicit computational roles, this variant of multi-level 27

modeling examines how cognitive mechanisms are influenced by changes in the 28

functional dynamics or connectivity of those components. A key assumption of the 29

upwards mapping approach is that variability in the configuration of CBGT pathways 30

should drive systematic changes in specific sub-components of the decision process, 31

expressed by the parameters of the drift-diffusion model (DDM; [1]). Indeed, by fitting 32

the DDM to synthetic choice and response time data generated by a rate-based CBGT 33

network, Ratcliff and Frank [18] showed how variation in the height of the decision 34

threshold tracked with changes in the strength of subthalamic nulceus (STN) activity. 35

Thus, this example shows how simulations that map up the levels of analysis can be 36

used to investigate the emergent changes in information processing that result from 37

targeted modulation of the underlying neural circuitry. 38

Motivated by the predictions of a recently proposed Believer-Skeptic hypothesis of 39

CBGT pathway function [7], we utilize the upwards mapping approach to modeling 40

adaptive choice behavior across neural and cognitive levels of analysis (Figure 1). The 41

Believer-Skeptic hypothesis posits that competition between the direct (Believer) and 42

indirect (Skeptic) pathways within an action channel encodes the degree of uncertainty 43

for that action. This competition is reflected in the drift rate of an 44

accumulation-to-bound process (see [19]). Over time, dopaminergic (DA) feedback 45

signals can sculpt the Believer-Skeptic competition to bias decisions towards the 46

behaviorally optimal target [15]. To explicitly test this prediction, we first modeled how 47
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Fig 1. Multi-level modeling design. Left: An STDP model of DA effects on Ctx-dMSN
and Ctx-iMSN synapses is used to determine how phasic DA signals affect the balance
of these synapses. Middle: A spiking model of the CBGT pathways simulates
behavioral responses, under different conditions of Ctx-MSN efficacy based on the
STDP simulations. Right: The simulated behavioral responses from the full CBGT
network model are then fit to a DDM of two-alternative choice behavior. Notation:
j −Ctx - cortical population, j − dMSN - direct pathway striatal neurons, j − iMSN -
indirect pathway striatal neurons (j ∈ {L,R}); DA - dopamine signal; STR - striatum;
GPe - globus pallidus external segment; STN - subthalamic nucleus; GPi - globus
pallidus internal segment; FSI - fast spiking interneuron; RT - reaction time; v - DDM
drift rate; a - separation between boundaries in DDM; z - bias in starting height of
DDM; tr - time after which evidence accumulation begins in DDM.

phasic DA feedback signals [20] can modulate the relative balance of corticostriatal 48

synapses via spike-timing dependent plasticity (STDP; [21,22]), thereby promoting or 49

deterring action selection. The effects of learning on the synaptic weights were 50

subsequently implemented in a spiking model of the full CBGT network meant to 51

accurately capture the known physiological properties and connectivity patterns of the 52

constituent neurons in these circuits [23]. The performance (i.e., accuracy and response 53

times) of the CBGT simulations were then fit using a hierarchical DDM [24]. This 54

progression from synapses to networks to behavior, allows us to explicitly test the 55

mechanistic predictions of the Believer-Skeptic hypothesis by mapping how specific 56

features of striatal activity that result from reward-driven changes in corticostriatal 57

synaptic weights could underlie parameters of the fundamental cognitive algorithms of 58

decision-making. 59

2 Results 60

2.1 STDP network results 61

To evaluate how dopaminergic plasticity impacts the efficacy of corticostriatal 62

synapses, we modeled learning using a spike-timing dependent plasticity (STDP) 63

paradigm in a simulation of corticostriatal networks implementing a simple two artificial 64

forced choice task. In this scenario, one of two available actions, which we call left (L) 65

and right (R), was selected by the spiking of model striatal medium spiny neurons 66

(MSNs; Subsection 4.1.3). These model MSNs were grouped into action channels 67

receiving inputs from distinct cortical sources (Figure 1, left). Every time an action was 68

selected, dopamine was released, after a short delay, at an intensity proportional to a 69

reward prediction error (equations 9 and 10). All neurons in the network experienced 70

this non-targeted increase in dopamine, emulating striatal release of dopamine by 71

substantia nigra pars compacta neurons, leading to plasticity of corticostriatal synapses 72

(equation 8; see Figure 10). 73
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The model network was initialized so that it did not a priori distinguish between L 74

and R actions. We first performed simulations in which a fixed reward level was 75

associated with each action, to assist in parameter tuning and verify effective model 76

operation. In this scenario, where the rewards for each action did not change over time 77

(i.e., one action always elicited a larger reward than the other), a gradual change in 78

corticostriatal synaptic weights occurred (Supp. Figure 1A) in parallel with the learning 79

of the actions’ values (Supp. Figure 1B). These changes in synaptic weights induced 80

altered MSN firing rates (Supp. Figure 1C,D), reflecting changes in the sensitivity of 81

the MSNs to cortical inputs in a way that allowed the network to learn over time to 82

select the more highly rewarded action (Supp. Figure 2A). That is, firing rates in the 83

direct pathway MSNs (dMSNs; DL and DR) associated with the more highly rewarded 84

action increased, lead to a more frequent selection of that action. On the other hand, 85

firing rates of the indirect pathway MSNs (iMSNs; IL and IR) remained quite similar 86

(Supp. Figure 1C,D). This similarity is consistent with recent experimental results [25], 87

while the finding that dMSNs and iMSNs associated with a selected action are both 88

active has also been reported in several experimental works [26–28]. 89

In this model, indirect pathway activity counters action selection by cancelling direct 90

pathway spiking (Subsection 4.1.3). This serves as a proxy in this simplified framework 91

for indirect pathway competition with the direct pathway in the full network 92

simulations (see Subsection 2.2). Based on the cancellation framework, the ratio of 93

direct pathway weights to indirect pathway weights provides a reasonable representation 94

of the extent to which each action is favored or disfavored. In our simulations, after a 95

long period of gradual evolution of weights and action values, the direct pathway versus 96

indirect pathway weight ratio of the channel for the less favored action started to drop 97

more rapidly, indicating the emergence of certainty about action values and a clearer 98

separation between frequencies with which the two actions were selected (Figure 2). 99

A B

Fig 2. Constant reward task. A: Frequency of performance of L (black) and R (red)
actions over time (discretized each 50ms) when the rewards are held constant
(rL = 0.7, rR = 0.1). Both traces are averaged across 7 different realizations. The
transparent regions depict standard deviations. B: Estimates of the value of L (QL, left
panel) and R (QR, right panel) versus the ratio of the corticostriatal weights to those
dMSN neurons that facilitate the action and those iMSN that interfere with the action.
Each trajectory is colored to show the progression of time. Even without full
convergence of the action values QR and QL to their respective actual reward levels (B),
a clear separation of action selection rates emerges (A).

To show that the network remained flexible after learning a specific action value 100

relation, we ran additional simulations using a variety of reward schedules in which the 101

reward values associated with the two actions were swapped after the performance of a 102
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Fig 3. Corticostriatal synaptic weights when the reward traces are probabilistic. First
column: pL = 0.65; second column: pL = 0.75; third column: pL = 0.85 case. A, B, and
C: Averaged weights over each of four specific populations of neurons, which are dMSN
neurons selecting action L (solid black); dMSN neurons selecting action R (solid red);
iMSN neurons countering action L (dashed black); iMSN neurons countering action R
(dashed red). D, E, and F: Evolution of the estimates of the value L (QL, left panel)
and R (QR, right panel) versus the ratio of the corticostriatal weights to those dMSN
neurons that facilitate the action versus the weights to those iMSN that interfere with
the action. Both the weights and the ratios have been averaged over 8 different
realizations.

certain number of actions. Once values switched, the network was always able to learn 103

the new values. Specifically, QL and QR began evolving toward the new reward levels, 104

switching their relative magnitudes along the way; the weights of corticostriatal 105

synapses to L-dMSN (R-dMSN) weakened (strengthened) (e.g., Supp. Figure 2), and 106

the relative performance frequencies of the two actions also reversed. Thus the network 107

was able to adaptively learn immediate reward contingencies, without being restricted 108

by previously learned contingencies. 109

While these simulations show that applying a dopaminergic plasticity rule to 110

corticostriatal synapses allows for a simple network to learn action values linked to 111

reward magnitude, many reinforcement learning tasks rely on estimating reward 112

probability (e.g., two armed bandit tasks). To evaluate the network’s capacity to learn 113

from probabilistic rewards, we simulated a variant of a probabilistic reward task and 114

compared the network performance to previous experimental results on action selection 115

with probabilistic rewards in human subjects [29]. For consistency with experiments, we 116

always used pL + pR = 1, where pL and pR were the probabilities of delivery of a reward 117

of size ri = 1 when actions L and R were performed, respectively. Moreover, as in the 118

earlier work, we considered the three cases pL = 0.65 (high conflict), pL = 0.75 (medium 119

conflict) and pL = 0.85 (low conflict). 120

As in the constant reward case, the corticostriatal synaptic weights onto the two 121

dMSN populations clearly separated out over time (Figure 3). The separation emerged 122

earlier and became more drastic as the conflict between the rewards associated with the 123

two actions diminished, i.e., as reward probabilities became less similar. Interestingly, 124

for relatively high conflict, corresponding to relatively low pL, the weights to both 125

dMSN populations rose initially before those onto the less rewarded population 126
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A B C

D E F

Fig 4. Firing rates when the reward traces are probabilistic. First column: pL = 0.65;
second column: pL = 0.75; third column: pL = 0.85 case. A, B and C: Time courses of
firing rates of the dMSNs selecting the L (black) and R (red) actions (50ms time
discretization). D, E, and F: Time courses of firing rates of the iMSNs countering the L
(black) and R (red) actions (50ms time discretization). In all cases, we depict the mean
averaged across 8 different realizations, and the transparent regions represent standard
deviations.

eventually diminished. This initial increase likely arises because both actions yielded a 127

reward of 1, leading to a significant dopamine increase, on at least some trials. The 128

weights onto the two iMSN populations remained much more similar. One general trend 129

was that the weights onto the L-iMSN neurons decreased, contributing to the bias 130

toward action L over action R. 131

In all three cases, the distinction in synaptic weights translated into differences 132

across the dMSNs’ firing rates (Figure 4, first row), with L-dMSN firing rates (DL) 133

increasing over time and R-dMSN firing rates (DR) decreasing, resulting in a greater 134

difference that emerged earlier when pL was larger and hence the conflict between 135

rewards was weaker. Notice that the DL firing rate reached almost the same value for 136

all three probabilities. In contrast, the DR firing rate tended to smaller values as the 137

conflict decreased. As expected based on the changes in corticostriatal synaptic weights, 138

the iMSN population firing rates remained similar for both action channels, although 139

the rates were slightly lower for the population corresponding to the action that was 140

more likely to yield a reward (Figure 4F). 141

Similar trends across conflict levels arose in the respective frequencies of selection of 142

action L. Over time, as weights to L-dMSN neurons grew and their firing rates 143

increased, action L was selected more often, becoming gradually more frequent than 144

action R. Not surprisingly, a significant difference between frequencies emerged earlier, 145

and the magnitude of the difference became greater, for larger pL (Figure 5). 146

To show that this feedback learning captured experimental observations, we 147

performed additional probabilistic reward simulations to compare with behavioral data 148

in forced-choice experiments with human subjects [29]. Each of these simulations 149

represented an experimental subject, and each action selection was considered as the 150

outcome of one trial performed by that subject. After each trial, a time period of 50ms 151

was imposed during which no cortical inputs were sent to striatal neurons such that no 152

actions would be selected, and then the full simulation resumed. For these simulations, 153
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A B C

Fig 5. Action frequencies when reward delivery is probabilistic. All panels represent
the number of L (black) and R (red) actions performed across time (discretized each
50ms) when action selection is rewarded with probability pL = 0.65 (A), pL = 0.75 (B),
or pL = 0.85 (C) with pL + pR = 1. Traces represent the means over 8 different
realizations, while the transparent regions depict standard deviations.

we considered the evolution of the value estimates for the two actions either separately 154

for each subject (Figure 6A) or averaged over all subjects experiencing the same reward 155

probabilities (Figure 6B), as well as the probability of selection of action L averaged over 156

subjects (Figure 6C). The mean in the difference between the action values gradually 157

tended toward the difference between the reward probabilities for all conflict levels. 158

Although convergence to these differences was generally incomplete over the number of 159

trials we simulated (matched to the experiment duration), these differences were close 160

to the actual values for many individual subjects as well as in mean (Figure 6A,B). 161

These results agree quite well with the behavioral data in [29] obtained from 15 human 162

subjects, as well as with observations from similar experiments with rats [30]. 163

Also as in the experiments, the probability of selection of the more rewarded action 164

grew across trials for all three reward probabilities, with less separation in action 165

selection probability than in action values across different reward probability regimes 166

(Figure 6C). Although our actual values for the probabilities of selection of higher value 167

actions did not reach the levels seen experimentally, this likely reflected the 168

non-biological action selection rule in our STDP model (see Subsection 4.1.3), whereas 169

the agreement of our model performance with experimental time courses of value 170

estimation (Figure 6A,B) and our model’s general success in learning to select more 171

valuable actions (Supp. Figure 1C and Figure 5) justify the incorporation of our results 172

on corticostriatal synaptic weights into a spiking network with a more biologically-based 173

decision-making mechanism, which we next discuss. 174

2.2 CBGT Dynamics and Choice Behavior 175

A key observation from our STDP model is that differences in rewards associated 176

with different actions lead to differences in the ratios of corticostriatal synaptic weights 177

to dMSN and iMSNs across action channels. Using weight ratios adapted from the 178

STDP model, obtained by varying weights to dMSNs with fixed weights to iMSNs 179

(Figure 3), we next performed simulations with a full spiking CBGT network to study 180

the effects of this corticostriatal imbalance on the emergent neural dynamics and choice 181

behavior following feedback-dependent learning in the context of low, medium, and high 182

probability reward schedules (2500 trials/condition; see Subsection 4.2.1 for details). In 183

each simulation, cortical inputs featuring gradually increasing firing rates were supplied 184

to both action channels, with identical statistical properties of inputs to both channels. 185

These inputs led to evolving firing rates in nuclei throughout the basal ganglia, also 186

partitioned into action channels, with an eventual action selection triggered by the 187

thalamic firing rate in one channel reaching 30Hz (Figure 1, center and Figure 7). We 188
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Fig 6. Relative action value estimates and action selection probabilities over simulated
action selection trials with probabilistic reward schedules, with pL = 0.65 (dark blue),
pL = 0.75 (cyan), pL = 0.85 (yellow) and pL + pR = 1. A: Difference in action value
estimates over trials in a collection of individual simulations. B: Means and standard
deviations of difference in action value estimates across 8 simulations. C: Percent of
trials on which the L action with higher reward probability was selected.

found that both dMSN and iMSN firing rates gradually increased in response to cortical 189

inputs. Consistent with our STDP simulations (Figure 4), dMSN firing rates became 190

higher in the channel for the selected action. Interestingly, iMSN firing rates also 191

became higher in the selected channel, consistent with recent experiments (see [31], 192

among others). Similar to the activity patterns observed in the striatum, higher firing 193

rates were also observed in the selected channel’s STN and thalamic populations, 194

whereas GPe and GPi firing rates were higher in the unselected channel (Figure 7). 195

More generally across all weight ratio conditions, dMSNs and iMSNs exhibited a 196

gradual ramping in population firing rates [32] that eventually saturated around the 197

average RT in each condition (Figure 8A). To characterize the relevant dimensions of 198

striatal activity that contributed to the network’s behavior, we extracted several 199

summary measures of dMSN and iMSN activity, shown in Figure 8B-C. Summary 200

measures of dMSN and iMSN activity in the L and R channels were calculated by 201

estimating the area under the curve (AUC) of the population firing rate between the 202

time of stimulus onset (200ms) and the RT on each trial. Trialwise AUC estimates 203

were then normalized between values of 0 and 1, including estimates from all trials in all 204

conditions in the normalization. As expected, increasing the disparity of left and right 205

Ctx-dMSN weights led to greater differences in direct pathway activation between the 206

two channels (i.e., DL > DR; Figure 8B). The increase in DL −DR reflects a form of 207

competition between action channels, where larger values indicate stronger dMSN 208

activation in the optimal channel and/or a weakening of dMSN activity in the 209
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Fig 7. Single trial example of CBGT dynamics. Population firing rates of CBGT nuclei,
computed as the average of individual unit firing rates within each nucleus in L (black)
and R (red) action channels are shown for a single representative trial in the high
reward probability condition. The selected action (L) and corresponding RT (324ms)
are determined by the first action channel to raise its thalamic firing rate to 30Hz.

suboptimal channel. Similarly, increasing the weight of Ctx-dMSN connections caused a 210

shift in the competition between dMSN and iMSN populations within the left action 211

channel (i.e., DL > IL). Thus, manipulating the weight of Ctx-dMSN connections to 212

match those predicted by the STDP model led to both between- and within-channel 213

biases favoring firing of the direct pathway of the optimal action channel in proportion 214

to its expected reward value. 215

Interestingly, although the weights of Ctx-iMSN connections were kept constant 216

across conditions, iMSN populations showed reliable differences in activation between 217

channels (Figure 8C). Similar to the observed effects on direct pathway activation, 218

higher reward conditions were associated with progressively greater differences in the 219

AUC of L and R indirect pathway firing rates (IL− IR). At first glance, greater indirect 220

pathway activation in higher compared to lower valued action channels differs from the 221

similarity of activation levels of both indirect pathway channels that we obtained in the 222

STDP model and also appears to be at odds with canonical theories of the roles of the 223

direct and indirect pathways in RL and decision-making. This finding can be explained, 224

however, based on a certain feature represented in the connections within the CBGT 225

network but not within the STDP network, namely thalamo-striatal feedback between 226

channels. That is, the strengthening and weakening of Ctx-dMSN weights in the L and 227

R channels, respectively, translated into relatively greater downstream disinhibition of 228

the thalamus in the L channel, which increased excitatory feedback to L-dMSNs and 229

L-iMSNs while reducing thalamo-striatal feedback to R-MSNs in both pathways. 230

Finally, we examined the effects of reward probability on the AUC of all iMSN firing 231

rates (Iall; combining across action channels). Observed differences in Iall across reward 232

conditions were notably more subtle than those observed for other summary measures of 233

striatal activity, with greatest activity in the medium reward condition, followed by the 234

high and low reward conditions, respectively. 235

In addition to analyzing the effects of altered Ctx-dMSN connectivity strength on 236

the functional dynamics of the CBGT network, we also studied how the decision-making 237

behavior of the CBGT network was influenced by this manipulation. Consistent with 238

previous studies of value-based decision-making in humans [33–37], we observed a 239

positive effect of reward probability on both the frequency and speed of correct (e.g., 240

leftward, associated with higher reward probability) choices (Figure 8D). Bootstrap 241

sampling (10,000 samples) was performed to estimate 95% confidence intervals (CI95) 242
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Fig 8. Striatal pathway dynamics and behavioral effects of reward probability in full
CBGT network. A: Time courses show the average population firing rates for L (black)
and R (red) dMSNs (top) and iMSNs (bottom) over the the trial window. Shaded areas
reflect 95% CI. Colored vertical lines depict the average RT in the low (blue), medium
(cyan), and high (yellow) reward conditions. B and C: Summary statistics of dMSN and
iMSN population firing rates were extracted on each trial and later included as trial-wise
regressors on parameters of the DDM, allowing specific hypotheses to be tested about
the mapping between neural and cognitive mechanisms. In B, lighter colored bars show
the difference between dMSN firing rates in the L and R action channels whereas darker
colored bars show the difference between dMSN and iMSN firing rates in the L action
channel, both computed by summing the average firing rate of each population between
trial onset and the RT on each trial. In C, lighter colored bars show the difference
between iMSN firing rates in the L and R action channels and darker colored bars show
the average iMSN firing rate (combined across left and right channels). Error bars show
the bootstrapped 95% CI. D: Average accuracy (probability of choosing L) and RT (L
choices only) of CBGT choices across levels of reward probability. E: RT distributions
for correct choices across levels of reward probability; note that higher reward yields
more correct trials. Error bars in B-D show the bootstrapped 95% CI.

around RT and accuracy means (µ) in each condition, and to assess the statistical 243

significance of pairwise comparisons between conditions. Choice accuracy increased 244

across low (µ = 64%,CI95 = [62, 65]), medium (µ = 85%,CI95 = [84, 86]), and high 245

(µ = 100%,CI95 = [100, 100]) reward probabilities. Pairwise comparisons revealed that 246

the increase in accuracy observed between low and medium conditions, as well as that 247

observed between medium and high conditions, reached statistical significance (both 248

p < 0.0001). Along with the increase in accuracy across conditions, we observed a 249

concurrent decrease in the RT of correct (L) choices in the low 250

(µ = 477ms,CI95 = [472, 483]), medium (µ = 467ms,CI95 = [462, 471]), and high 251

(µ = 460ms,CI95 = [456, 464]) reward probability conditions. Notably, our manipulation 252

of Ctx-dMSN weights across conditions manifested in stronger effects on accuracy (i.e., 253

probability of choosing the more valuable action), with subtler effects on RT. 254
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Specifically, the decrease in RT observed between the low and medium conditions 255

reached statistical significance (p < .0001); however, the RT decrease observed between 256

the medium and high conditions did not (p = .13). 257

We also examined the distribution of RTs for L responses across reward conditions 258

(Figure 8E). All conditions showed a rightward skew in the distribution of RTs, an 259

empirical hallmark of simple choice behavior and a useful check of the suitability of 260

accumulation-to-bound models like the DDM for modeling a particular behavioral data 261

set. Moreover, the degree of skew in the RT distributions for L responses became more 262

pronounced with increasing reward probability, suggesting that the observed decrease in 263

the mean RT at higher levels of reward was driven by a change in the shape of the 264

distribution, and not, for instance, a temporal shift in its location. 265

2.3 CBGT-DDM Mapping 266

We performed fits of a normative DDM to the CBGT network’s decision-making 267

performance (i.e., accuracy and RT data) to understand the effects of corticostriatal 268

plasticity on emergent changes in decision behavior. This process was implemented in 269

three stages. First, we compared models in which only one free DDM parameter was 270

allowed to vary across levels of reward probability (single parameter DDMs). Next, a 271

second round of fits was performed in which a second free DDM parameter was included 272

in the best-fitting single parameter model identified in the previous stage (dual 273

parameter DDMs). Finally, the two best-fitting dual parameter models were submitted 274

to a third and final round of fits with the inclusion of trialwise measures of striatal 275

activity (see Figure 8B-C) as regressors on designated parameters of the DDM. 276

All models were evaluated according to their relative improvement in performance 277

compared to a null model in which all parameters were fixed across conditions. To 278

identify which single parameter of the DDM best captured the behavioral effects of 279

alterations in reward probability as represented by Ctx-dMSN connectivity strength, we 280

compared the deviance information criterion (DIC) of models in which either the 281

boundary height (a), the onset delay (tr), the drift rate (v), or the starting-point bias (z) 282

was allowed to vary across conditions. Figure 9A shows the difference between the DIC 283

score of each model (DICM ) and that of the null model (∆DIC = DICM −DICnull), 284

with lower values indicating a better fit to the data (see Table 1 for additional fit 285

statistics). Conventionally, a DIC difference (∆DIC) of magnitude 10 or more is 286

regarded as strong evidence in favor of the model with the lower DIC value [38]. 287

Compared to the null model as well as alternative single parameter models, allowing the 288

drift rate v to vary across conditions afforded a significantly better fit to the data 289

(∆DIC = −960.79). Examination of posterior distributions of v in the best-fitting single 290

parameter model revealed a significant increase in v with successively higher levels of 291

reward probability (vLow = .35 ; vMed = 1.61 ; vHigh = 2.71), capturing the observed 292

increase in speed and accuracy across conditions by increasing the rate of evidence 293

accumulation toward the upper (L) decision threshold. 294

To investigate potential interactions between the drift rate and other parameters of 295

the DDM, we performed another round of fits in which a second free parameter (either a, 296

tr, or z), in addition to v, was allowed to vary across conditions (Figure 9A). Compared 297

to alternative dual-parameter models, the combined effect of allowing v and a to vary 298

across conditions (Figure 8B,C) provided the greatest improvement in model fit over the 299

null model (∆DIC = −1174.07), as well as over the best-fitting single parameter model 300

(DICv,a −DICv = −213.27). While the dual v and a model significantly outperformed 301

both alternatives (DICv,a −DICv,t = −205.89; DICv,a −DICv,z = −184.05), the second 302

best-fitting dual parameter model, in which v and z were left free across conditions, also 303

afforded a significant improvement over the drift-only model (DICv,z −DICv = −29.23). 304

Thus, both v, a and v, z dual parameter models were considered in a third and final 305
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Fig 9. DDM fits to CBGT-simulated behavior reveals pathway-specific effects on drift
rate and threshold mechanisms. A: ∆DIC scores, showing the relative goodness-of-fit of
all single- and dual-parameter DDMs considered (top) and all DDM regression models
considered (bottom) compared to that of the null model (all parameters held constant
across conditions; see Table 2). The ∆DIC score of the best-fitting model at each stage
is plotted in green. The best overall fit was provided by DDM regression model III. B:
DDM schematic showing the change in v and a across low (blue), medium (cyan), and
high (yellow) reward conditions, with the threshold for L and R represented as the
upper and lower boundaries, respectively. C: Posterior distributions showing the
estimated weights for neural regressors on a, which was estimated on each trial as a
function of the average iMSN firing rate across left and right action channels (see Iall in
Figure 8C), and v, which was estimated on each trial as a function of the the difference
between dMSN firing rates in the left and right channels (see DL −DR in Figure 8B).
D: Histograms and kernel density estimates showing the CBGT-simulated and
DDM-predicted RT distributions, respectively. E: Point plots showing the CBGT
network’s average accuracy and RT across reward conditions overlaid on bars showing
the DDM-predicted averages.

round of fits. The third round was motivated by the fact that, while behavioral fits can 306

yield reliable and informative insights about the cognitive mechanisms engaged by a 307

given experimental manipulation, recent studies have effectively combined behavioral 308

observations with coincident measures of neural activity to test more precise hypotheses 309

about the neural dynamics involved in regulating different cognitive 310

mechanisms [29,39,40]. To this end, we refit the v, a and v, z models to the same 311

simulated behavioral dataset (i.e., accuracy and RTs produced by the CBGT network) 312

as in the previous rounds, with the addition of different trialwise measures of striatal 313

activity included as regressors on one of the two free parameters in the DDM. 314

For each regression DDM (N=24 models, corresponding to 24 ways to map 2 of 6 315

striatal activity measures to the v, a and v, z models), one of the summary measures 316

shown in Figure 8B-C was regressed on v, and another regressed on either a or z, with 317

separate regression weights estimated for each level of reward probability. Model fit 318

statistics are shown for each of the 24 regression models in Table 2, along with 319

information about the neural regressors included in each model and their respective 320
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parameter dependencies. The relative goodness-of-fit afforded by all 24 regression 321

models is visualized in Figure 9A (lower panel), identifying what we have labelled as 322

model III as the clear winner with an overall DIC = −18860.37 and with 323

∆DIC = −9716.17 compared to the null model. In model III, the drift rate v on each 324

action selection trial depended on the relative strength of direct pathway activation in L 325

and R action channels (e.g., DL −DR), whereas the boundary height a on that trial 326

was computed as a function of the overall strength of indirect pathway activation across 327

both channels (e.g., Iall). To determine how these parameter dependencies influenced 328

levels of v and a across levels of reward probability, the following equations were used to 329

transform intercept and regression coefficient posteriors into posterior estimates of v 330

and a for each condition j: 331

vj = βv
0 + βv

j ∆Dj , (1)

aj = βa
0 + βa

j Ij , (2)

where ∆Dj and Ij are the mean values of DL −DR and Iall in condition j (see 332

Figure 8B-C), βv
0 and βa

0 are posterior distributions for v and a intercept terms, and βv
j 333

and βa
j are the posterior distributions estimated for the linear weights relating DL −DR 334

and Iall to v and a, respectively. The observed effects of reward probability on v and a, 335

as mediated by trialwise changes in DL −DR and Iall, are schematized in Figure 9B, 336

with conditional posteriors for each parameter plotted in Figure 9C. Consistent with 337

best-fitting single and dual parameter models (e.g., without striatal regressors included), 338

the weighted effect of DL −DR on v in model III led to a significant increase in v across 339

low (µvLow
= 1.43, σvLow

= .063), medium (µvMed
= 3.62, σvMed

= .078), and high 340

(µvHigh
= 5.10, σvHigh

= .086) conditions. Thus, increasing the disparity of dMSN 341

activation between L and R action channels led to faster and more frequent leftward 342

actions by increasing the rate of evidence accumulation towards the correct decision 343

boundary. Also consistent with parameter estimates from the best-fitting dual 344

parameter model (i.e., v, a), inclusion of trialwise values of Iall led to an increase in the 345

boundary height in the medium (µaMed
= 1.025, σaMed

= .009) and high 346

(µaHigh
= 1.020, σaHigh

= .011) conditions compared to estimates in the low condition 347

(µaLow
= 0.93, σaLow

= .008). However, in contrast with boundary height estimates 348

derived from behavioral data alone (not shown), a estimates in model III showed no 349

significant difference between medium and high levels of reward probability. 350

Next, we evaluated the extent to which the best-fitting regression model (i.e., model 351

III) was able to account for the qualitative behavioral patterns exhibited by the CBGT 352

network in each condition. To this end, we simulated 20,000 trials in each reward 353

condition (each trial producing a response and RT given a parameter set sampled from 354

the model posteriors) and compared the resulting RT distributions, along with mean 355

speed and accuracy measures, with those produced by the CBGT model (Figure 9D,E). 356

Parameter estimates from the best-fitting model captured both the increasing rightward 357

skew of RT distributions, as well as the concurrent increase in mean decision speed and 358

accuracy with increasing reward probability. 359

In summary, by leveraging trialwise measures of simulated striatal MSN 360

subpopulation dynamics to supplement RT and choice data generated by the CBGT 361

network, we were able to 1) substantially improve the quality of DDM fits to the 362

network’s behavior across levels of reward probability compared to models without 363

access to neural observations and 2) identify dissociable neural signals underlying 364

observed changes in v and a across varying levels of reward probability associated with 365

available choices. 366
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Table 1. Single- and dual-parameter DDM goodness-of-fit statistics. DIC is a
complexity-penalized measure of model fit, DIC = D(θ) + pD, where D(θ) is the
deviance of model fit under the optimized parameter set θ and pD is the effective
number of parameters. ∆DIC is the difference between each model’s DIC and that of
the null model for which all parameters are fixed across conditions. Asterisks denote
models providing best fits within the single-parameter group (*) and across both groups
(**).

DIC ∆DIC

Null -9144.21 0.0
Bound (a) -9177.03 -32.83
Onset (tr) -9175.54 -31.34
Drift (v)

∗
-10105.0 -960.79

Bias (z) -9447.5 -303.29

v, a∗∗ -10318.27 -1174.07
v, tr -10113.38 -969.17
v, z -10134.22 -990.02

Table 2. DDM regression models and goodness-of-fit statistics. Asterisk denotes best
performing model.

DL −DR DL − IL IL − IR Iall DIC ∆DIC

I v a – – -13567.84 -4423.64
II v – a – -13828.38 -4684.17

∗III v – – a -18860.37 -9716.16
IV – v a – -10636.70 -1492.50
V – v – a -16982.35 -7838.14
VI a v – – -10702.48 -1558.27
VII – – v a -16547.47 -7403.27
VIII a – v – -10979.51 -1835.31
IX – a v – -11082.55 -1938.34
X a – – v -12546.90 -3402.70
XI – a – v -12719.92 -3575.72
XII – – a v -12486.66 -3342.46
XIII v z – – -13361.52 -4217.32
XIV v – z – -13719.36 -4575.16
XV v – – z -13634.12 -4489.92
XVI – v z – -10774.88 -1630.67
XVII – v – z -11340.47 -2196.26
XVIII z v – – -11074.84 -1930.64
XIX – – v z -11418.76 -2274.56
XX z – v – -11213.79 -2069.59
XXI – z v – -11090.96 -1946.75
XXII z – – v -12279.57 -3135.36
XXIII – z – v -12171.17 -3026.96
XXIV – – z v -12144.98 -3000.77

3 Discussion 367

Reinforcement learning in mammals alters the mapping from sensory evidence to 368

action decisions. Here we set out to understand how this adaptive decision-making 369
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process emerges from underlying neural circuits using a modeling approach that bridges 370

across levels of analysis, from plasticity at corticostriatal synapses to CBGT network 371

function to quantifiable behavioral parameters [11,12,15,18]. We show how a simple, 372

DA-mediated STDP rule can modulate the sensitivity of both dMSN and iMSN 373

populations to cortical inputs. This learning allows for the network to discover which 374

target in a two-alternative forced-choice task is more likely to deliver a reward by 375

modifying the ratio of direct and indirect pathway corticostriatal weights within each 376

action channel. With this result in hand, we simulated the network-level dynamics of 377

CBGT circuits, as well as behavioral responses, under different levels of conflict in 378

reward probabilities, by extrapolating from the learned corticostriatal weights from the 379

STDP simulations. As reward probability for the optimal target increased, the 380

asymmetry of dMSN firing rates between action channels grew, as did the overall 381

activity of iMSNs across both action channels. By fitting the DDM to the simulated 382

decision behavior of the CBGT network, we found that changes in the rate of evidence 383

accumulation tracked with the difference in dMSN population firing rates across action 384

channels, while the the level of evidence required to trigger a decision tracked with the 385

overall iMSN population activity. These findings show how, at least within this specific 386

framework, plasticity at corticostriatal synapses induced by phasic changes in DA can 387

have a multifaceted effect on cognitive decision processes. 388

A critical assumption of our theoretical experiments is that the CBGT pathways 389

accumulate sensory evidence for competing actions in order to identify the most 390

contextually appropriate response. This assumption is supported by a growing body of 391

empirical and theoretical evidence. For example, Yartsev et al. [32] recently showed 392

that, in rodents performing an auditory discrimination task, the anterior dorsolateral 393

striatum satisfied three fundamental criteria for establishing causality in the evidence 394

accumulation process: (1) inactivation of the striatum ablated the animal’s 395

discrimination performance on the task, (2) perturbation of striatal neurons during the 396

temporal window of evidence accumulation had predictable and reliable effects on 397

trial-wise behavioral reports, and (3) gradual ramping, proportional to the strength of 398

evidence, was observed in both single unit and population firing rates of the striatum 399

(however, see also [41]). Consistent with these empirical findings, Caballero et al. [16] 400

recently proposed a novel computational framework, capturing perceptual evidence 401

accumulation as an emergent effect of recurrent activation of competing action channels. 402

This modeling work builds on previous studies showing how the architecture of CBGT 403

loops is ideal for implementing a variant of the sequential probability ratio test [5, 12]. 404

Taken together, these converging lines of evidence point to CBGT pathways as being 405

causally involved in the accumulation of evidence for decision-making. 406

The idea that an accumulation of evidence algorithm can be implemented via 407

network-level dynamics within looped circuit architectures stands in sharp contrast to 408

cortical models of decision-making that presume a more direct isomorphism between 409

accumulators and neural activity (for review see [42]). Early experimental work showed 410

how population-level firing rates in area LIP displayed the same ramp-to-threshold 411

dynamics as predicted by an evidence accumulation process [43–45]. This simple 412

relation between algorithm and implementation has now come into question. Follow-up 413

electrophysiological experiments showed how this population-level accumulation may, in 414

fact, reflect the aggregation of step-functions across neurons that resemble an 415

accumulator when summed together yet lack accumulation properties at the level of 416

individual units [46]. In addition, recent results from intervention studies are 417

inconsistent with the causal role of cortical areas in the accumulation of evidence. For 418

instance, Katz et al. [47] found that inactivation of area LIP in macaques had no effect 419

on the ability of monkeys to discriminate the direction of motion stimuli in a standard 420

random dot motion task. In contrast to the presumed centrality of LIP in sensory 421
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evidence accumulation, these findings and supporting reports from [48] and [49] suggest 422

that cortical areas like LIP provide a useful proxy for the deliberation process but are 423

unlikely to have a causal role in the decision itself. 424

The recent experimental [32] and theoretical [16] revelations of CBGT involvement 425

in decision-making are particularly exciting, not only for the purposes of identifying a 426

likely neural substrate of perceptual choice, but also for their implications for 427

integrating accumulation-to-bound models (e.g., action selection mechanisms) with 428

theories of RL (e.g., feedback-dependent learning of action values). We previously 429

proposed a Believer-Skeptic framework [7] to capture the complementary roles played by 430

the direct and indirect pathways in the feedback-dependent learning and the 431

moment-to-moment evidence accumulation leading up to action selection. This 432

competition between opposing control pathways can be characterized as a debate 433

between a Believer (direct pathway) and a Skeptic (indirect pathway), reflecting the 434

instantaneous probability ratio of evidence in favor of executing and suppressing a given 435

action respectively. Because the default state of the basal ganglia pathways is 436

motor-suppressing (e.g., [50, 51]), the burden of proof falls on the Believer to present 437

sufficient evidence for selecting a particular action. In accumulation-to-bound models 438

like the DDM, this sequential sampling of evidence is parameterized by the drift rate. 439

Therefore, the Believer-Skeptic model specifically predicts that this competition should 440

be reflected, at least in part, in the rate of evidence accumulation. As for the role of 441

learning in the Believer-Skeptic competition, multiple lines of evidence suggest that 442

dopaminergic feedback during learning systematically biases the direct-indirect 443

competition in a manner consistent with increasing the drift rate for more rewarding 444

actions [7, 29,33,35,52,53]. Indeed, the STDP simulations in the current study showed 445

opposing effects of dopaminergic feedback on corticostriatal synapses in the direct 446

pathway for both the optimal and suboptimal action channels, with the post-learning 447

difference between the direct pathway synaptic weights in the two channels proportional 448

to the difference in expected action values. This provides testable predictions at 449

multiple levels for how feedback learning should influence the decision process over time. 450

In support of the biological assumptions underlying the CBGT network, several 451

important empirical properties naturally emerged from our simulations. First, both 452

dMSN and iMSN striatal populations were concurrently activated on each trial 453

(see [25, 54, 55]) and exhibited gradually ramping firing rates that often saturated before 454

the response on each trial [32, 41]. Second, in contrast with the relatively early onset of 455

ramping activity in the striatum, recipient populations in the GPi sustained high tonic 456

firing rates throughout most of the trial, with activity in the selected channel showing a 457

precipitous decline near the recorded RT [23,56,57]. This delayed change in GPi 458

activation is caused by the opposing influence of concurrently active dMSN and iMSN 459

populations in each channel, such that the influence of the direct pathway on the GPi is 460

temporarily balanced out by activation of the indirect pathway (see [23]). To represent 461

low, medium, and high levels of reward probability conflict, we manipulated the weights 462

of cortical input to dMSNs in each channel (see Table 4), increasing and decreasing the 463

ratio of direct pathway weights to indirect pathway weights for L and R actions, 464

respectively. As expected, increasing the difference in the associated reward for L and R 465

actions led to stronger firing in L-dMSNs and weaker firing of R-dMSNs. Consistent 466

with recently reported electrophysiological findings [25, 55], we also observed an increase 467

in the firing of iMSNs in the L action channel, which in our simulations may arise from 468

channel-specific feedback from the L component of the thalamus. Behaviorally, the 469

choices of the CBGT network became both faster and more accurate (e.g., higher 470

percentage of L responses) at higher levels of reward, suggesting that the observed 471

increase in L-iMSN firing did not serve to delay or suppress L selections. These changes 472

in neural dynamics also produced consequent changes in value-based decision behavior 473
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consistent with previous studies linking parameters of the DDM with experiential 474

feedback. 475

One of the critical outcomes of the current set of experiments is the mechanistic 476

prediction of how variation in specific neural parameters relates to changes in 477

parameters of the DDM. Consistent with past work (see [7, 29]), the DDM fits to the 478

CBGT-simulated behavior showed an increase in drift rate toward the higher valued 479

decision boundary with increasing expected reward. Additionally, we found that greater 480

disparity in the expected values of alternative actions led to an increase in the boundary 481

height. Indeed, the co-modulation of drift rate and boundary parameters observed here 482

has also been found in human and animal experimental studies of value-based 483

choice [29,33,35]. For example, experiments with human subjects in a value-based 484

learning task showed that selection and response speed patterns were best described by 485

an increase in the rate of evidence for more valued targets, coupled with an upwards 486

shift in the boundary height for all targets [33]. Moreover, in healthy human subjects, 487

but not Parkinson’s disease patients, reward feedback was found to drive increases in 488

both rate and boundary height parameters, effectively breaking the speed-accuracy 489

tradeoff [33]. To identify more precise links between the relevant neural dynamics 490

underlying the observed drift rate and boundary height effects we performed another 491

round of model fits with striatal summary measures included as regressors to describe 492

trial-by-trial variability. Behavioral fits were substantially improved by estimating 493

trialwise values of drift rate as a function of the difference between L- and R-dMSN 494

activation and trialwise values of boundary height as a function of the iMSN activation 495

across both channels. These relationships stand both as novel predictions arising from 496

the current study and as refinements to the Believer-Skeptic framework, implying that 497

the Believer component relies on a competition between action channels while the 498

Skeptic involves a cooperative aspect. 499

While our present findings provide key insights into the links between 500

implementation mechanisms and cognitive algorithms during adaptive decision-making, 501

they are constrained by the nature of the multi-level modeling approach itself. Our goal 502

was to evaluate a specific hypothesis under the Believer-Skeptic framework about the 503

combined role of corticostriatal pathways in learning and decision making, and our 504

simulations demonstrate that strengthening corticostriatal synapses is one way that the 505

brain can adjust striatal firing to shape the drift rate and accumulation threshold, 506

promoting faster and more frequent selection of actions with a higher expected value. 507

We do not presume, however, that the impacts of dopaminergic plasticity at 508

corticostriatal synapses on striatal activity are singularly responsible for setting the drift 509

rate during value-based decision-making. Indeed, because the CBGT network has many 510

more parameters than the DDM, many different properties of the CBGT network, aside 511

from corticostriatial weights and measures of striatal activity, could potentially be 512

manipulated to cause analogous behavioral patterns and inferred effects on the drift 513

rate and boundary height parameters in the DDM. For instance, in contrast to the 514

striatal iMSN modulation of boundary height observed in the current study, Ratcliff 515

and Frank [18] found that simulated changes STN firing were also capable of describing 516

a change in the boundary height, raising the threshold in the context of high decision 517

conflict. In fact, experimental evidence suggests the existence of both striatal [58–60] 518

and subthalamic [39,60,61] mechanisms for adjusting the boundary height. It remains 519

for future work to study how multiple mechanisms such as these work together to 520

impact decision behavior as well as to consider more complex decision-making tasks 521

that may help to expose distinct roles for these aspects of CBGT activity. Another open 522

direction is to generalize our approach to include more detailed representations of 523

neurons in CBGT populations, such as Hodgkin-Huxley-type models, and additional 524

detail about BG neuronal subpopulations and pathways, such as distinct representations 525
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of arkypallidal and prototypical GPe neurons and the GPe projection to the striatum. 526

Our simulations make several novel predictions for future experiments. The STDP 527

simulations described in Section2.1 suggest that feedback-dependent reward learning 528

should drive more salient changes in cortical synaptic weights to dMSN populations 529

than to iMSN populations. At the same time, while the learning-related changes in L 530

and R direct pathway corticostriatal weights were mirrored by the relative firing rates of 531

L- and R-dMSNs in the CBGT network, iMSN firing rates are also predicted to show 532

channel-specific differences, despite constancy in their corticostriatal weights across 533

conditions. The observed increase in iMSN firing disparity between the L and R 534

channels in our simulations emerged due to the thalamostriatal feedback assumed in the 535

CBGT network, where dMSN activation leads to disinhibition of the thalamus, thereby 536

increasing excitatory feedback to both MSN subtypes within a given channel. This 537

represents another novel model prediction that can be tested empirically. Since it is 538

currently unclear whether these feedback connections actually adhere to a 539

channel-specific (e.g., focal) topology, we hope that our work will motivate future 540

experiments to explore the topology of thalamostriatal inputs. Finally, our study 541

predicts that the difference in dMSN activity across action channels modulates the rate 542

of value-based evidence accumulation. This could be directly tested by applying 543

different magnitudes of optogenetic stimulation to dMSNs in L- and R-lateralized 544

dorsolateral striatum to effectively manipulate the strength of evidence for L and R 545

lever presses. According to our simulations, increasing the relative magnitude of dMSN 546

stimulation in the R, compared to L, dorsolateral striatum should speed and facilitate 547

the selection of contralateral lever presses. Choice and RT data could then be fit with 548

the DDM to determine if the behavioral effects of laterally-biased dMSN stimulation 549

were best described by a change in the drift rate. Analogous experiments targeting 550

iMSNs but without channel specificity could be used similarly to evaluate our prediction 551

that overall iMSN activity level modulates DDM boundary height. 552

3.1 Conclusion 553

Here we characterize the effects of dopaminergic feedback on the competition 554

between direct and indirect CBGT pathways and how this plasticity impacts the 555

evaluation of evidence for alternative actions during value-based choice. Using simulated 556

neural dynamics to generate behavioral data for fitting by the DDM and determining 557

how measures of striatal activity influence this fit, we show how the rate of evidence 558

accumulation and the decision boundary height are modulated by the direct and 559

indirect pathways, respectively. This multi-level modeling approach affords a unique 560

combination of biological plausibility and mechanistic interpretability, providing a rich 561

set of testable predictions for guiding future experimental work at multiple levels of 562

analysis. 563

4 Methods 564

Our work involves three distinct model systems, a spike-timing dependent plasticity 565

(STDP) network consisting of striatal neurons and their cortical inputs, with 566

corticostriatal synaptic plasticity driven by phasic reward signals resulting from 567

simulated actions and their consequent dopamine release; a spiking cortico-basal 568

ganglia-thalamic (CBGT) network, comprising neurons and synaptic connections from 569

the key cortical and subcortical areas within the CBGT computational loops that take 570

sensory evidence from cortex and make a decision to select one of two available 571

responses; and the drift diffusion model (DDM), a cognitive model of decision-making 572
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that describes the accumulation-to-bound dynamics underlying the speed and accuracy 573

of simple choice behavior [1]. 574

In this section, we present the details of each of these models along with some 575

computational approaches that we use in simulating and analyzing them. The three 576

models are simulated separately, but outputs of specific models are critical for the 577

tuning of other models, as we shall describe. 578

4.1 STDP network 579

4.1.1 Neural model 580

We consider a computational model of the striatum consisting of two different 581

populations that receive different inputs from the cortex (see Figure 1, left). Although 582

they do not interact directly, they compete with each other to be the first to select a 583

corresponding action. 584

Each population contains two different types of units: (i) dMSNs, which facilitate 585

action selection, and (ii) iMSNs, which suppress action selection. Each of these neurons 586

is represented with the exponential integrate-and-fire model [62], such that each neural 587

membrane potential obeys the differential equation 588

C
dV

dt
= −gL(V − VL) + gL∆T e

(V−VT )/∆T − Isyn(t) (3)

where gL is the leak conductance and VL the leak reversal potential. In terms of a 589

neural I − V curve, VT denotes the voltage that corresponds to the largest input current 590

to which the neuron does not spike in the absence of synaptic input, while ∆T stands 591

for the spike slope factor, related to the sharpness of spike initialization. Isyn(t) is the 592

synaptic current, given by Isyn(t) = gsyn(t)(V (t)− Vsyn), where the synaptic 593

conductance gsyn(t) changes via a learning procedure (see Subsection 4.1.2 ). A reset 594

mechanism is imposed that represents the repolarization of the membrane potential 595

after each spike. Hence, when the neuron reaches a boundary value Vb, the membrane 596

potential is reset to Vr. 597

The inputs from the cortex to each MSN neuron within a population are generated 598

using a collection of oscillatory Poisson processes with rate ν and pairwise correlation c. 599

Each of these cortical spike trains, which we refer to as daughters, is generated from a 600

baseline oscillatory Poisson process {X(tn)}n, the mother train, which has intensity 601

function λ(1 +A sin(2πθt)) such that the spike probability at time point tn is 602

P (X(tn) = 1) ∝
∫ tn

tn−1

λ(1 +A sin(2πθt))dt,

where A and θ are the amplitude and the frequency of the underlying oscillation, 603

respectively; tn+1 − tn =: δt is the time step; and λ is the mother train rate. After the 604

mother train is computed, each mother spike is transferred to each daughter with 605

probability p, checked independently for each daughter. To fix the daughters’ rates and 606

the correlation between the daughter trains, the mother train’s rate is given by 607

λ = ν/(p ∗ δt) where 608

p = ν + c(1− ν). (4)

In the STDP network (see Figure 1, left) we consider two different mother trains to 609

generate the cortical daughter spike trains for the two different MSN populations. Each 610

dMSN neuron or iMSN neuron receives input from a distinct daughter train, with the 611

corresponding transfer probabilities pD and pI , respectively. As shown in [63], the cortex 612

to iMSN release probability exceeds that of cortex to dMSN. Hence, we set pD < pI . 613
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Striatal neuron parameters. We set the exponential integrate-and-fire model 614

parameter values as C = 1µF/cm2, gL = 0.1µS/cm2, VL = −65mV , VT = −59.9mV , 615

and ∆T = 3.48mV (see [62]). The reset parameter values are Vb = −40mV and 616

Vr = −75mV . The synaptic current derives entirely from excitatory inputs from the 617

cortex, so Vsyn = 0mV . For these specific parameters, synaptic inputs are required for 618

MSN spiking to occur. 619

Cortical neuron parameters. To compute p, we set the daughter Poisson process 620

parameter values as ν = 0.002 and c = 0.5 and apply equation 4. Once the mother 621

trains are created using these values, we set the iMSN transfer probability to pI = p and 622

the dMSN transfer probability to pD = 2/3 pI . In most simulations, we set A = 0 to 623

consider non-oscillatory cortical activity. We have also tested the learning rule when 624

A = 0.06 and θ = 25Hz and obtained similar results. 625

The network has been integrated computationally by using the Runge-Kutta (4,5) 626

method in Matlab (ode45) with time step δt = 0.01ms. Different realizations lasting 627

15 s were computed to simulate variability across different subjects in a learning 628

scenario. 629

Every time that an action is performed (see Subsections 4.1.3 and 4.1.4 ), all 630

populations stop receiving inputs from the cortex until all neurons in the network are in 631

the resting state for at least 50ms. During these silent periods, no MSN spikes occur 632

and hence no new actions are performed (i.e., they are action refractory periods). After 633

these 50ms, the network starts receiving synaptic inputs again and we consider a new 634

trial to be underway. 635

4.1.2 Learning rule 636

During the learning process, the corticostriatal connections are strengthened or 637

weakened according to previous experiences. In this subsection, we will present 638

equations for a variety of quantities, many of which appear multiple times in the model. 639

Specifically, there are variables gsyn, w for each corticostriatal synapse, APRE for each 640

daughter train, APOST and E for each MSN. For all of these, to avoid clutter, we omit 641

subscripts that would indicate explicitly that there are many instances of these variables 642

in the model. 643

We suppose that the conductance for each corticostriatal synapse onto each MSN 644

neuron, gsyn(t), obeys the differential equation 645

dgsyn
dt

= Σjw(tj)δ(t− tj)− gsyn/τg, (5)

where tj denotes the time of the jth spike in the cortical daughter spike train 646

pre-synaptic to the neuron, δ(t) is the Dirac delta function, τg stands for the decay time 647

constant of the conductance, and w(t) is a weight associated with that train at time t. 648

The weight is updated by dopamine release and by the neuron’s role in action selection 649

based on a similar formulation to one proposed previously [22], which descends from 650

earlier work [64]. The idea of this plasticity scheme is that an eligibility trace E (cf. [65]) 651

represents a neuron’s recent spiking history and hence its eligibility to have its synapses 652

modified, with changes in eligibility following a spike timing-dependent plasticity 653

(STDP) rule that depends on both the pre- and the post-synaptic firing times. Plasticity 654

of corticostriatal synaptic weights depends on this eligibility together with dopamine 655

levels, which in turn depend on the reward consequences that follow neuronal spiking. 656

To describe the evolution of neuronal eligibility, we first define APRE and APOST to 657

represent a record of pre- and post-synaptic spiking, respectively. Every time that a 658

spike from the corresponding cell occurs, the associated variable increases by a fixed 659
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amount, and otherwise, it decays exponentially. That is, 660

dAPRE

dt
= (∆PREXPRE (t)−APRE(t)) /τPRE ,

dAPOST

dt
= (∆POSTXPOST (t)−APOST (t)) /τPOST ,

(6)

where XPRE(t) and XPOST (t) are functions set to 1 at times t when, respectively, a 661

neuron that is pre-synaptic to the post-synaptic neuron, or the post-synaptic neuron 662

itself, fires a spike, and are zero otherwise, while ∆PRE and ∆POST are the fixed 663

increments to APRE and APOST due to this firing. The additional parameters 664

τPRE , τPOST denote the decay time constants for APRE , APOST , respectively. 665

The spike time indicators XPRE , XPOST and the variables APRE , APOST are used 666

to implement an STDP-based evolution equation for the eligibility trace, which takes 667

the form 668

dE

dt
= (XPOST (t)APRE(t)−XPRE (t)APOST (t)− E) /τE (7)

implying that if a pre-synaptic neuron spikes and then its post-synaptic target follows, 669

such that APRE > 0 and XPOST becomes 1, the eligibility E increases, while if a 670

post-synaptic spike occurs followed by a pre-synaptic spike, such that APOST > 0 and 671

XPRE becomes 1, then E decreases; at times without spikes, the eligibility decays 672

exponentially with rate τE . 673

In contrast to previous work [22], we propose an update scheme for the synaptic 674

weight w(t) that depends on the type of MSN neuron involved in the synapse. It has 675

been observed [66–69] that dMSNs tend to have less activity than iMSNs at resting 676

states, consistent with our assumption that pD < pI , and are more responsive to phasic 677

changes in dopamine than iMSNs. In contrast, iMSNs are largely saturated by tonic 678

dopamine. In both cases, we assume that the eligibility trace modulates the extent to 679

which a synapse can be modified by the dopamine level relative to a tonic baseline 680

(which we without loss of generality take to be 0), consistent with previous models. 681

Hence, we take w(t) to change according to the equation 682

dw

dt
= αwEf(KDA)(wX

max − w), (8)

where the function 683

f(KDA) =


KDA, if the target neuron is a dMSN,

KDA

c+ |KDA|
, if the target neuron is an iMSN

represents sensitivity to phasic dopamine, αw refers to the learning rate, KDA denotes 684

the level of dopamine available at the synapses, wX
max is an upper bound for the weight 685

w that depends on whether the postsynaptic neuron is a dMSN (X = D) or an iMSN 686

(X = I), c controls the saturation of weights to iMSNs, and | · | denotes the absolute 687

value function. The dopamine level KDA itself evolves as 688

dKDA

dt
= Σi(DAinc(ti)−KDA)δ(ti)−KDA/τDOP , (9)

where the sum is taken over the times {ti} when actions are performed, leading to a 689

change in KDA that we treat as instantaneous, and τDOP is the dopamine decay 690

constant. The DA update value DAinc(ti) depends on the performed action as follows: 691

DAinc(t) = ri(t)−maxi {Qi(t)} ,
Qi(t+ 1) = Qi(t) + α (ri(t)−Qi(t)) ,

(10)
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where ri(t) is the reward associated to action i at time t, Qi(t) is an estimate of the 692

value of action i at time t such that ri(t)−Qi(t) is the subtractive reward prediction 693

error [70], and α ∈ [0, 1] is the value learning rate. This rule for action value updates 694

and dopamine release resembles past work [71] but uses a neurally tractable 695

maximization operation (see [72,73] and references therein) to take into account that 696

reward expectations may be measured relative to optimal past rewards obtained in 697

similar scenarios [74,75]. The evolution of these variables is illustrated in Figure 10, 698

which is discussed in more detail in Subsection 4.1.4. 699
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Fig 10. Evolution of the learning rule variables for particular dMSNs, one promoting
the L action (black, actual reward value 0.7) and one promoting the R action (red,
actual reward value 0.1). Each panel represents corresponding variables for both
neurons except KDA(t), which is common across all neurons. For each example neuron,
the top panel shows its membrane potential (dark trace) and the cortical spike trains it
receives (light trace with many spikes). This panel also represents the action onset
times: green and orange dots if actions L and R occur, respectively. Different example
cases labeled with letters (A,B,C,D,E,F) are described in the text in Subsection 4.1.4.

4.1.3 Actions and rewards 700

Actions Each dMSN facilitates performance of a specific action. We specify that an 701

action occurs, and so a decision is made by the model, when at least three different 702

dMSNs of the same population spike in a small time window of duration ∆DA. When 703

this condition occurs, a reward is delivered and the dopamine level is updated 704

correspondingly, impacting all neurons in the network, depending on eligibility. Then, 705

the spike counting and the initial window time are reset, and cortical spikes to all 706

neurons are turned off over the next 50ms before resuming again as usual. 707
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We assume that iMSN activity within a population counters the performance of the 708

action associated with that population [76]. We implement this effect by specifying that 709

when an iMSN in a population fires, the most recent spike fired by a dMSN in that 710

population is suppressed. Note that this rule need not contradict observed activation of 711

both dMSNs and iMSNs preceding a decision [26], see Subsection 2.1. We also 712

implemented a version of the network in which each iMSN spike cancels the previous 713

spike from both MSN populations. Preliminary simulations of this variant gave similar 714

results to our primary version but with slower convergence (data not shown). 715

For convenience, we refer to the action implemented by one population of neurons as 716

“left” or L and the action selected by the other population as “right” or R. 717

Rewards In our simulations, to test the learning rule, we present results from 718

different reward scenarios. In one case, we use constant rewards, with rL = 0.7 and 719

rR = 0.1. In another case, we implement probabilistic rewards: every time that an 720

action occurs, the reward ri is set to be 1 with probability pi or 0 otherwise, i ∈ {L,R}. 721

For this case, we consider three different probabilities such that pL + pR = 1 and 722

pL > pR, keeping the action L as the preferred one. Specifically, we take pL = 0.85, 723

pL = 0.75, and pL = 0.65 to allow comparison with previous results [29]. In tuning the 724

model, we also considered a regime with reward switches: reward values were as in the 725

constant reward case but after a certain number of actions occurred, the reward-action 726

associations were exchanged. Although the model gave sensible results, we did not 727

explore this case thoroughly, and we simply show one example in the Supplementary 728

Information. 729

4.1.4 Example implementation 730

The algorithm for the learning rule simulations is as follows: 731

First, compute cortical mother spike trains and extract daughter trains to be used as 732

inputs to each MSN from the mother trains. 733

Next, while t < tend, 734

1. use RK45, with step size dt = 0.01ms, to compute the voltages of the MSNs in 735

the network at the current time t from equations 3 and 5, 736

2. for each MSN, set the corresponding XPOST (t) equal to 1 if a spike is performed 737

or 0 otherwise and set the corresponding XPRE(t) to 1 if an input spike arrives or 738

0 otherwise, 739

3. update the action condition by checking sequentially for the following two events: 740

• if any iMSN neuron in population i ∈ {L,R} spikes, then the most recent 741

spike performed by any of the dMSNs of population i is cancelled; 742

• for each i ∈ {L,R}, count the number of spikes of the dMSNs in the ith 743

population inside a time window consisting of the last ∆DAms; if at least 744

nact spikes have occurred in this window, then action i has occurred and we 745

update DAinc and Qi according to equation 10, 746

4. use RK45, with step size dt = 0.01ms, to solve equations 6-8 for each synapse, 747

along with equation 9, yielding an update of DA and synaptic weight levels, for 748

neurons that have XPRE(t) = 1, update synaptic conductance using 749

g(t) = g(t) + w(t), 750

5. set t = t+ dt. 751
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Figure 10 illustrates the evolution of all of the learning rule variables over a brief 752

time window. Cortical spikes (thin straight light lines, top panel) can drive voltage 753

spikes of dMSNs (dark curves, top panel), which in turn may or may not contribute to 754

action selection (green – for L – and orange – for R – dots, top panel). Each time a 755

dMSN fires, its eligibility trace will deviate from baseline according to the STDP rule in 756

equation 7. In this example, the rewards are rL = 0.7 and rR = 0.1, such that every 757

performance of L leads to an appreciable surge in KDA, with an associated rise in QL, 758

but performances of R do not cause such large increases in KDA and QR. 759

Various time points are labeled in the top panel of Figure 10. At time A, R is 760

selected. The illustrated R-dMSN fires just before this time and hence its eligibility 761

increases. There is a small increase in KDA leading to a small increase in the w for this 762

dMSN. At time B, L is selected. Although it is difficult to detect at this resolution, the 763

illustrated L-dMSN fires just after the action, such that its E becomes negative and the 764

resulting large surge in KDA causes a sizeable drop in wL. At time C, R is selected 765

again. This time, the R-dMSN fired well before time C, so its eligibility is small, and 766

this combines with the small KDA increase to lead to a negligible increase in wR. At 767

time D, action L is selected but the firing of the L-dMSN is sufficiently late after this 768

that no change in wL results. At time E, L is selected again. This time, the L-dMSN 769

fires just before the action leading to a large eligilibity and corresponding increase in 770

wL. Finally, at time F, L is selected. In this instance, the R-dMSN fired just before 771

selection and hence is eligible, causing wR to increase when KDA goes up. Although 772

this weight change does not reflect correct learning, it is completely reasonable, since 773

the physiological synaptic machinery has no way to know that firing of the R-dMSN did 774

not contribute to the selected action L. 775

4.1.5 Learning rule parameters 776

The learning rule parameters have been chosen to capture various experimental 777

observations, including some differences between dMSN and iMSNs. First, it has been 778

shown that cortical inputs to dMSNs yield more prolonged responses with more action 779

potentials than what results from cortical inputs to iMSNs [77]. Moreover, dMSNs spike 780

more than iMSNs when both types receive similar cortical inputs [78]. Hence, the 781

effective weights of cortical inputs to dMSNs should be able to become stronger than 782

those to iMSNs, which we encode by selecting wD
max > wI

max. This choice is also 783

consistent with the observation that dMSNs are more sensitive to phasic dopamine than 784

are iMSNs [66–69]. On the other hand, the baseline firing rates of iMSNs exceed the 785

baseline of dMSNs [79], and hence we take the initial condition for w(t) for the iMSNs 786

greater than that for the dMSNs. 787

The relative values of other parameters are largely based on past computational 788

work [22], albeit with different magnitudes to allow shorter simulation times. The 789

learning rate αw for the dMSNs is chosen to be positive and larger than the absolute 790

value of the negative rate value for the iMSNs. The parameters ∆PRE , ∆POST , τE , 791

τPRE , and τPOST have been assigned the same values for both types of neurons, 792

keeping the relations ∆PRE > ∆POST and τPRE > τPOST . Finally, the rest of the 793

parameters have been adjusted to give reasonable learning outcomes. 794

Parameter values We use the following parameter values in all of our simulations: 795

τDOP = 2ms, ∆DA = 6ms, τg = 3ms, α = 0.05 and c = 2.5. For both dMSNs and 796

iMSNs, we set ∆PRE = 10 (instead of ∆PRE = 0.1; [22]), ∆POST = 6 (instead of 797

∆POST = 0.006; [22]), τE = 3 (instead of τE = 150; [22]), τPRE = 9 (instead of 798

τPRE = 3; [22]), and τPOST = 1.2 (instead of τPOST = 3; [22]). Finally, 799

αw = {80, −55} (instead of αw = {12, −11}; [22]) and wmax = {0.1, 0.03} (instead of 800

wmax = {0.00045, 0}; [22]), where the first value refers to dMSNs and the second to 801
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iMSNs. Note that different reward values, ri, were used in different types of simulations, 802

as explained in the associated text. 803

Learning rule initial conditions The initial conditions used to numerically 804

integrate the system are w = 0.015 for weights of synapses to dMSNs and w = 0.018 for 805

iMSNs, with the rest of the variables relating to value estimation and dopamine 806

modulation initialized to 0. 807

4.2 CBGT network 808

The spiking CBGT network is adapted from previous work [23]. Like the STDP 809

model described above, the CBGT network simulation is designed to decide between 810

two actions, a left or right choice, based on incoming sensory signals (Figure 1). The 811

full CBGT network was comprised of six interconnected brain regions (see Table 3), 812

including populations of neurons in the cortex, striatum (STR), external segment of the 813

globus pallidus (GPe), internal segment of the globus pallidus (GPi), subthalamic 814

nucleus (STN), and thalamus. Because the goal of the full spiking network simulations 815

was to probe the consequential effects of corticostriatal plasticity on the functional 816

dynamics and emergent choice behavior of CBGT networks after learning has already 817

occurred, CBGT simulations were conducted in the absence of any trial-to-trial 818

plasticity, and did not include dopaminergic projections from the subtantia nigra pars 819

compacta. Rather, corticostriatal weights were manipulated to capture the outcomes of 820

STDP learning as simulated with the learning network (Subsection 4.1) under three 821

different probabilistic feedback schedules (see Table 4), each maintained across all trials 822

for that condition (N=2500 trials each). 823

4.2.1 Neural dynamics 824

To build on previous work on a two-alternative decision-making task with a similar 825

CBGT network and to endow neurons in some BG populations with bursting 826

capabilities, all neural units in the CBGT network were simulated using the 827

integrate-and-fire-or-burst model [80]. Each neuron’s membrane dynamics were 828

determined by: 829

C
dV

dt
= −gL(V − VL)− gThH(V − Vh)(V − VT )− Isyn (11)

In equation 11, parameter values are C = 0.5nF , gL = 25nS, VL = −70mV , 830

Vh = −0.60mV , and VT = 120mV . When the membrane potential reaches a boundary 831

Vb, it is reset to Vr. We take Vb = −50mV and Vr = −55mV . 832

The middle term in the right hand side of equation 11 represents a depolarizing, 833

low-threshold T-type calcium current that becomes available when h grows and when V 834

is depolarized above a level Vh, since H(V ) is the Heaviside step function. For neurons 835

in the cortex, striatum (both MSNs and FSIs), GPi, and thalamus, we set gT = 0, thus 836

reducing the dynamics to the simple leaky integrate-and-fire model. For bursting units 837

in the GPe and STN, rebound burst firing is possible, with gT set to 0.06nS for both 838

nuclei. The inactivation variable, h, adapts over time, decaying when V is depolarized 839

and rising when V is hyperpolarized according to the following equations: 840

dh

dt
=
−h
τ−h

,when V ≥ Vh (12)

and 841
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dh

dt
=

1− h
τ+
h

,when V < Vh (13)

with τ−h = −20ms and τ+
h = 100ms for both GPe and STN. 842

For all units in the model, the synaptic current Isyn, reflects both the synaptic 843

inputs from other explicitly modeled populations of neurons within the CBGT network, 844

as well as additional background inputs from sources that are not explicitly included in 845

the model. This current is computed using the equation 846

Isyn = g1s1(V − VE) +
g2s2(V − VE)

1 + e−0.062V/3.57
+ g3s3(V − VI), (14)

The reversal potentials are set to VE = 0mV and VI = −70mV . The synaptic 847

current components correspond to AMPA (g1), NMDA (g2), and GABAA (g3) synapses. 848

The gating variables si for AMPA and GABAA receptor-mediated currents satisfy: 849

dsi
dt

=
∑
j

δ(t− tj)−
si
τ

(15)

while NMDA receptor-mediated current gating obeys: 850

ds3

dt
= α(1− s3)

∑
j

δ(t− tj)−
s3

τ
(16)

In equations 15 and 16, tj is the time of the jth spike and α= 0.63. The decay constant, 851

τ , was 2ms for AMPA, 5ms for GABA A, and 100ms for NMDA-mediated currents. 852

A time delay of 0.2ms was used for synaptic transmission. 853

4.2.2 Network architecture 854

The CBGT network includes six of the nodes shown in Figure 1, excluding the 855

dopaminergic projections from the substantia nigra pars compacta that are simulated in 856

the STDP model. The membrane dynamics, projection probabilities, and synaptic 857

weights of the network (see Table 3) were adjusted to reflect empirical knowledge about 858

local and distal connectivity associated with different populations, as well as resting and 859

task-related firing patterns [23,57]. 860

The cortex included separate populations of neurons representing sensory 861

information for L (N=270) and R (N=270) actions that approximate the processing in 862

the intraparietal cortex or frontal eye fields. On each trial, L and R cortical populations 863

received excitatory inputs from an external source, sampled from a truncated normal 864

distribution with a mean and standard deviation of 2.5Hz and 0.06, respectively, with 865

lower and upper limits of 2.4Hz and 2.6Hz. Critically, L and R cortical populations 866

received the same strength of external stimulation on each trial to ensure that any 867

observed behavioral effects across conditions were not the result of biased cortical input. 868

Excitatory cortical neurons also formed lateral connections with other cortical neurons 869

with a diffuse topology, or a non-zero probability of projecting to recipient neurons 870

within and between action channels (see Table 3 for details). The cortex also included a 871

single population of inhibitory interneurons (CtxI; N=250 total) that formed reciprocal 872

connections with left and right sensory populations. Along with external inputs, cortical 873

populations received diffuse ascending excitatory inputs from the thalamus (Th; N=100 874

per input channel). 875

L and R cortical populations projected to dMSN (N=100/channel) and iMSN 876

(N=100/channel) populations in the corresponding action channel; that is, cortical 877

signals for a L action projected to dMSN and iMSN cells selective for L actions. Both 878
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cortical populations also targeted a generic population of FSI (N=100 total) providing 879

widespread but asymmetric inhibition to MSNs, with stronger FSI-dMSN connections 880

than FSI-iMSN connections [81]. Within each channel, dMSN and iMSN populations 881

also formed recurrent and lateral inhibitory connections, with stronger inhibitory 882

connections from iMSN to dMSN populations [81]. Striatal MSN populations also 883

received channel-specific excitatory feedback from corresponding populations in the 884

thalamus. Inhibitory efferent projections from the iMSNs terminated on populations of 885

cells in the GPe, while the inhibitory efferent connections from the dMSNs projected 886

directly to the GPi. 887

In addition to the descending inputs from the iMSNs, the GPe neurons 888

(N=1000/channel) received excitatory inputs from the STN. GPe cells also formed 889

recurrent, within channel inhibitory connections that supported stability of activity. 890

Inhibitory efferents from the GPe terminated on corresponding populations in the the 891

STN (i.e., long indirect pathway) and GPi (i.e., short indirect pathway). We did not 892

include arkypalldal projections (i.e., feedback projections from GPe to the 893

striatum; [82]) as it is not currently well understood how this pathway contributes to 894

basic choice behavior. 895

Similar to the GPe, STN populations were composed of bursing neurons 896

(N=1000/channel) with channel-specific inhibitory inputs from the GPe as well as 897

excitatory inputs from cortex (the hyperdirect pathway). The since no cancellation 898

signals were modeled in the experiments (see Subsection 4.2.3), the hyperdirect pathway 899

was simplified to background input to the STN. Unlike the striatal MSNs and the GPe, 900

the STN did not feature recurrent connections. Excitatory feedback from the STN to 901

the GPe was assumed to be sparse but channel-specific, whereas projections from the 902

STN to the GPi were channel-generic and caused diffuse excitation in both L- and 903

R-encoding populations. 904

Populations of cells in the GPi (N=100/channel) received inputs from three primary 905

sources: channel-specific inhibitory afferents from dMSNs in the striatum (i.e., direct 906

pathway) and the corresponding population in the GPe (i.e., short indirect pathway), as 907

well as excitatory projections from the STN shared across channels (i.e., long indirect 908

and hyperdirect pathways; see Table 3). The GPi did not include recurrent feedback 909

connections. All efferents from the GPi consisted of inhibitory projections to the motor 910

thalamus. The efferent projections were segregated strictly into pathways for L and R 911

actions. 912

Finally, L- and R-encoding populations in the thalamus were driven by two primary 913

sources of input, integrating channel-specific inhibitory inputs from the GPi and diffuse 914

(i.e., channel-spanning) excitatory inputs from cortex. Outputs from the thalamus 915

delivered channel-specific excitatory feedback to corresponding dMSN and iMSN 916

populations in the striatum as well as diffuse excitatory feedback to cortex. 917

4.2.3 Simulations of experimental scenarios 918

Because the STDP simulations did not reveal strong differences in Ctx-iMSN 919

weights across reward conditions, only Ctx-dMSN weights were manipulated across 920

conditions in the full CBGT network simulations. In all conditions the Ctx-dMSN 921

weights were higher in the left (higher/optimal reward) than in the right 922

(lower/suboptimal reward) action channel (see Table 4). On each trial, external input 923

was applied to L- and R-encoding cortical populations, each projecting to corresponding 924

populations of dMSNs and iMSNs in the striatum, as well as to a generic population of 925

FSIs. Critically, all MSNs also received input from the thalamus, which was reciprocally 926

connected with cortex. Due to the suppressive effects of FSI activity on MSNs, 927

sustained input from both cortex and thalamus was required to raise the firing rates of 928

striatal projection neurons to levels sufficient to produce an action output. Due to the 929
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Table 3. Synaptic efficacy (g) and probability (P ) of connections between populations
in the CBGT network, as well as postsynaptic receptor types (AMPA, NMDA, and
GABA). The topology of each connection is labeled as either diffuse, to denote
connections with a P > 0 of projecting to left and right action channels, or focal, to
denote connections that were restricted to within each channel.

Connection P g (nS) Topology Receptor(s)

Ctx-Ctx 0.325 0.0127 diffuse AMPA
Ctx-Ctx 0.325 0.15 diffuse NMDA
Ctx-CtxI 0.181 0.013 diffuse AMPA
Ctx-CtxI 0.181 0.125 diffuse NMDA
Ctx-FSI 1.00 0.18 diffuse AMPA
Ctx-dMSN 1.00 0.225 focal NMDA, AMPA
Ctx-iMSN 1.00 0.225 focal NMDA, AMPA
Ctx-Th 0.87 0.0335 diffuse NMDA, AMPA

CtxI-CtxI 1.00 2.3125 diffuse GABA
CtxI-Ctx 1.00 1.3125 diffuse GABA

dMSN-dMSN 0.34 0.28 focal GABA
dMSN-iMSN 0.34 0.28 focal GABA
dMSN-GPi 1.00 1.44 focal GABA
iMSN-iMSN 0.34 0.28 focal GABA
iMSN-dMSN 0.38 0.28 focal GABA
iMSN-GPe 1.00 3.05 focal GABA

FSI-FSI 1.00 2.45 diffuse GABA
FSI-dMSN 1.00 1.95 diffuse GABA
FSI-iMSN 1.00 1.85 diffuse GABA

GPe-GPe 0.05 1.50 diffuse GABA
GPe-STN 0.05 0.40 focal GABA
GPe-GPi 1.00 0.03 focal GABA

STN-GPe 0.12 0.07 focal AMPA
STN-GPe 0.12 4.00 focal NMDA
STN-GPi 1.00 0.078 diffuse NMDA

GPi-Th 1.00 0.142 focal GABA

Th-Ctx 0.625 0.015 diffuse NMDA
Th-CtxI 0.625 0.015 diffuse NMDA
Th-dMSN 1.00 0.337 focal AMPA
Th-iMSN 1.00 0.337 focal AMPA
Th-FSI 0.625 0.30 diffuse AMPA

convergence of dMSN and iMSN inputs in the GPi, and their opposing influence over 930

BG output, co-activation of these populations within a single action channel served to 931

delay action output until activity within the direct pathway sufficiently exceeded the 932

opposing effects of the indirect pathway [23]. The behavioral choice, as well as the time 933

of that decision (i.e., the RT) were determined by a winner-take-all rule with the first 934

action channel to cause the average firing rate of its thalamic population to rise above a 935

threshold of 30Hz being selected. 936

PLOS 28/37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/418756doi: bioRxiv preprint 

https://doi.org/10.1101/418756
http://creativecommons.org/licenses/by/4.0/


Table 4. Corticostriatal weights in the CBGT network across levels of reward
probability. Values of w were used to scale the synaptic efficacy of corticostriatal inputs
(gCtx-MSN) to the direct (D) and indirect (I) pathways within the left (L) and right (R)
action channels.

wD,L wI,L wD,R wI,R

P(rew | Left)
Low 1.01 1.00 0.99 1.00
Med. 1.02 1.00 0.97 1.00
High 1.035 1.00 0.945 1.00

4.3 Drift Diffusion Model 937

To understand how altered corticostriatal weights influence decision-making 938

behavior, we fit the simulated behavioral data from the CBGT network with a 939

DDM [1,83] and compared alternative models in which different parameters were 940

allowed to vary across reward probability conditions. The DDM is an established model 941

of simple two-alternative choice behavior, providing a parsimonious account of both the 942

speed and accuracy of decision-making in humans and animal subjects across a wide 943

variety of binary choice tasks [83]. It assumes that input is stochastically accumulated 944

as the log-likelihood ratio of evidence for two alternative choices until reaching one of 945

two decision thresholds, representing the criterion evidence for committing to a choice. 946

Importantly, this accumulation-to-bound process affords predictions about the average 947

accuracy, as well as the distribution of response times, under a given set of model 948

parameters. The core parameters of the DDM include the rate of evidence 949

accumulation, or drift rate (v), the distance between decision boundaries, also referred 950

to as the threshold (a), the bias in the starting-point between boundaries for evidence 951

accumulation (z), and a non-decision time parameter that determines when 952

accumulation of evidence begins (tr), accounting for sensory and motor delays. 953

To narrow the subset of possible DDM models considered, DDM fits to the CBGT 954

model behavior were conducted in three stages using a forward stepwise selection 955

process. First, we compared models in which a single parameter in the DDM was free to 956

vary across reward conditions. For these simulations all the DDM parameters were 957

tested. Next, additional model fits were performed with the best-fitting model from the 958

previous stage, but with the addition of a second free parameter. Finally, the two best 959

fitting dual parameter models were submitted to a final round of fits in which trial-wise 960

measures of striatal activity (see Figure 8B-C) were included as regressors on the two 961

designated parameters of the DDM. All CBGT regressors were normalized between 962

values of 0 and 1. Each regression model included one regression coefficient capturing 963

the linear effect of a given measure of neural activity on one of the free parameters (e.g., 964

a, v, or z), as well as an intercept term for that parameter, resulting in a total of four 965

free parameters per selected DDM parameter or 8 free parameters altogether. For 966

example, in a model where drift rate is estimated as function of the difference between 967

dMSN firing rates in the left and right action channels, the drift rate on trial t is given 968

by vj(t) = βv
0 + βv

j ·Xj(t), where βv
0 is the drift rate intercept, βv

j is the beta coefficient 969

for reward condition j, and Xj(t) is the observed difference in dMSN firing rates 970

between action channels on trial t in condition j. A total of 24 separate regression 971

models were fit, testing all possible combinations between the two best-fitting dual 972

parameter models and the four measures of striatal activity summarized in Figure 8B-C. 973

Fits of the DDM were performed using HDDM (see [84] for details), an open source 974

Python package for Bayesian estimation of DDM parameters. Each model was fit by 975

drawing 2000 Markov Chain Monte-Carlo (MCMC) samples from the joint posterior 976

probability distribution over all parameters, with acceptance based on the likelihood 977
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(see [85]) of the observed accuracy and RT data given each parameter set. A burn-in 978

period of 1200 samples was implemented to ensure that model selection was not 979

influenced by samples drawn prior to convergence. Sampling chains were also visually 980

inspected for signs of convergence failure; however, parameters in all models showed 981

normally distributed posterior distributions with little autocorrelation between samples 982

suggesting that sampling parameters were sufficient for convergence. The prior 983

distributions used to initialize all DDM parameters included in the fits can be found 984

in [84]. 985
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Supp. Figure 1. Time courses of corticostriatal synapse weights and firing rates when
the rewards are constant in time (rL(t) = 0.7 and rR(t) = 0.1). A: Averaged weights
over 7 different realizations and over each of the four specific populations of neurons,
which are dMSN selecting action L (solid black); dMSN selecting action R (solid red);
iMSN countering action L (dashed black); iMSN countering action R (dashed red). B:
Averaged evolution of the action values QL (black trace) and QR (red trace) over 7
different realizations. C: Firing rates of the dMSN populations selecting actions L
(black) and R (red) over time. D: Firing rates of the iMSN populations countering
actions L (black) and R (red) over time. Data in C,D was discretized into 50ms bins.
The transparent regions depict standard deviations.

Results with step changes in action values 1232

In Supp. Figure 2 we show the results of a simulation experiment with the STDP 1233

model in which the rewards associated with the L and R actions are switched after 5 1234

sec. During the L-action consolidation period (from second 2 to 5), the firing rate for 1235

the L-dMSNs (DL) becomes higher than that for the R-dMSNs (DR). After 5 s, 20 L 1236

actions have been performened and the learning is almost consolidated, with QL(t) and 1237

QR(t) near rL = 0.7 and rL = 0.1 respectively (see first panel). 1238

After the switch, there is a period of confusion where, even though L action is no 1239

longer the most rewarded, the network still shows a preference for L over R. 1240

Subsequently, the network learns that the R action is now more valuable than the L 1241

action, and the DR grows while DL decreases, such that eventually DR > DL. After 1242

10.5 seconds or so, the rate of seleciton of R consistently that for L, showing the 1243

network’s capacity for adjusting to reward changes. 1244
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Supp. Figure 2. STDP results when the rewards associated with L and R actions are
exchanged after learning is underway. The first three panels represent, from top to
bottom, the action values (Q(t)), the firing rates of dMSN neurons for each action (L,
black; R, red), and the action frequency for the dMSN population of neurons that
produces the L action (black) and the R action (red). The bottom panel represents the
actual reward values for L (black) and R (red). The reward values switch when 20 L
actions have occurred.

Definitions of quantities computed from the STDP model 1245

Averaged population firing rate We compute the firing rate of a neuron by 1246

adding up the number of spikes the neuron fires within a time window and dividing by 1247

the duration of that window. The averaged population firing rate is compute as the 1248

average of all neurons’ firing rates over a population, given by 1249〈∑
i si

∆t

〉
n

where ∆t is the time window in ms, si is the spike train corresponding to neuron i, and 1250

〈·〉n denotes the mean over the n neurons in the population, The time course of the 1251

population firing rate is computed this way, using a disjoint sequence of time windows 1252

with ∆t = 500ms. 1253

Action frequency We compute the rate of a specific action i in a small window of 1254

∆ = 500ms as the number of occurrences of action i within that window divided by ∆. 1255

Mean behavioral learning curves across subjects The behavioral learning 1256

curves indicate, as functions of trial number, the fraction of trials on which the more 1257

highly rewarded action is selected. Within a realization, using a sliding trial count 1258

window of 5 trials, we computed fraction of preferred actions selected (number of 1259

preferred actions divided by the total number of actions). Then we averaged over N 1260

realizations. 1261

Evolution of the mean (across subjects) difference in model-estimated 1262

action values Using N different realizations (simulating subjects in a behavioral 1263

experiment), we computed the difference of the expected reward of action L and the 1264

expected reward of action R at the time of each action selection (that is, 1265

QL(t∗)−QR(t∗), where t∗ is the time of action selection). Notice that Qi(t
∗), for 1266

i ∈ {L,R}, only changes when an action occurs. Moreover, to average across 1267

realizations, we only considered the action number rather than the action onset time. 1268
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