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¶Universitá della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of

Computational Science - Center for Computational Medicine in Cardiology, Via G. Buffi

13, CH-6900 Lugano, Switzerland

§Department of Pharmacy, University of Naples ”Federico II”, via D. Montesano 49,

I-80131 Naples, Italy

‖ Instituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

E-mail: vittorio.limongelli@usi.ch; parrinello@phys.chem.ethz.ch

Abstract

Elucidation of the ligand/protein binding interaction is of paramount relevance

in pharmacology to increase the success rate of drug design. To this end a number of

computational methods have been proposed, however all of them suffer from limitations

since the ligand binding/unbinding transitions to the molecular target involve many

slow degrees of freedom that hamper a full characterization of the binding process.
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Being able to express this transition in simple and general slow degrees of freedom,

would give a distinctive advantage, since it would require minimal knowledge of the

system under study, while in turn it would elucidate its physics and accelerate the

convergence speed of enhanced sampling methods relying on collective variables. In

this study we pursuit this goal by combining for the first time Variation Approach

to Conformational dynamics with Funnel-Metadynamics. In so doing, we predict for

the benzamidine/trypsin system the ligand binding mode, and we accurately compute

the absolute protein-ligand binding free energy and unbinding rate at unprecedented

low computational cost. Finally, our simulation protocol reveals the energetics and

structural details of the ligand binding mechanism and shows that water and binding

pocket solvation/desolvation are the dominant slow degrees of freedom.

1 Introduction

Elucidating the way a drug interacts with its molecular target is of paramount relevance

for drug design. The development of reliable models of ligand-protein interaction has lead

to the discovery of new compounds .1,2 In this context, a plethora of methods aimed at

identifying the ligand binding mode and estimating the protein-ligand binding free energy

has been reported, see for instance recent reviews at Refs.1,2 From a technical point of

view, we can group the available methodologies into three categories: i) molecular docking

;3–5 ii) end-point methods such as linear interaction energy,6 Poisson–Boltzmann surface

area,7 Generalized Born Surface Area;8 and iii) free energy pathway methods such as Free

Energy Perturbation,9 Thermodynamic Integration,10 Transition Path Sampling,11 Umbrella

Sampling,12 Steered-MD,13 and Funnel-Metadynamics (FM).14

Although docking methods are very fast in screening and ranking ligand bound poses,

they suffer from inefficient sampling and scoring function inaccuracy. One of the major

limitations of docking is the lack of solvation and protein flexibility dynamics. In order to

obtain accurate binding free-energy, one might use either end-point methods or free energy-
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pathway methods. Despite the robustness of these methods, most of them require a priori

knowledge of the ligand binding mode and assume that the ligand studied have similar

proprieties (e.g., Free Energy Perturbation), thus hampering general applicability.

At variance with the other methods, FM does not need any preliminary information on

the ligand binding mode. Once the approximate location of the binding pocket is defined,

the user is able to capture the whole ligand binding mechanism from the fully solvated state

to its final binding mode. The calculation of a well-characterized binding free-energy surface

(BFES) allows identifying the lowest energy state (i.e., ligand binding mode) and other

energetically relevant minima, which might represent important alternative binding poses.

Furthermore, the absolute protein-ligand binding free energy is accurately computed from

the free-energy difference between the ligand bound and unbound free energy minima. FM

has been successfully used in a wide number of studies to investigate ligand binding to both

proteins and DNA.14–16

Like in standard metadynamics, in FM a history dependent bias is added to the system

Hamiltonian as a function of a set of Collective Variables (CVs), thereby enhancing the

fluctuations along those CVs that mediate the rare transitions. The choice of CVs is critical.

Bad CVs lead to to hysteresis and poorly converged calculations.17,18 Unfortunately, the

simulation time required to converge the free energy increases exponentially with the number

of CVs, thus limiting the choice of the system’s degrees of freedom that can be included.

This scenario poses first the need to discover the slow degrees of freedom to bias, and then

develop CVs able to describe these modes. Here, we have pursued this goal by combining

two enhanced sampling techniques: the Variation Approach to Conformational dynamics

Metadynamics (VAC-MetaD)19 with the Funnel-Metadynamics. The first, allows capturing

the details of the intermolecular interactions during binding while the second ensures an

exhaustive exploration of the bound and unbound state and a faster convergence.

The benzamidine/trypsin system has been widely studied with different computational

techniques.14,20–23 Its solvent exposed binding site makes it an ideal system for testing new
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ligand-protein binding methods. Therefore we choose benzamidine-trypsin complex as case

study 14,20,23 using a basis set that includes general descriptors of the protein-ligand binding

process. The combination of the two methods allows describing the binding mechanism of

benzamidine to trypsin. We demonstrate the ability of FM using VAC-MetaD optimized CVs

to reproduce the known ligand binding mode and to provide an accurate estimation of the

absolute protein-ligand binding free energy, reducing the convergence time. Furthermore,

this simulation provides a high resolution free-energy surface that highlights the key role

played by the water molecules in the different energy minima visited by the ligand during

its binding path. We also show that using these optimized CVs with infrequent deposition

of the bias as reported in,23 leads to an accurate estimate of the ligand unbinding rate koff.

The flexibility of the method permits to include in one CV a number of molecular descriptors

of the protein-ligand binding process such as the number of protein-ligand contacts, ligand

solvation, pocket solvation and ligand orientation. The analysis of the results indicates which

degrees of freedom play a major role during ligand binding. In our case, we have found that

the slowest degrees of freedom are the desolvation of the binding site and of the ligand rather

than the formation of direct protein-ligand contacts.

2 Methods

2.1 Metadynamics

Metadynamics (MetaD) is an established enhanced sampling method used to study rare

events.17,24,25 MetaD accelerates the sampling by adding a history-dependent bias in the

form of Gaussian kernels on selected system’s degrees of freedom, also known as collective

variables (CVs).

In well tempered Metadynamics26 this scope is achieved by periodically adding a bias

that is updated according to the iterative procedure
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Vn(s) = Vn−1(s) +G(s, sn) exp

(
− 1

γ − 1
Vn−1(sn)

)
(1)

where Vn(s) is the total bias deposited at iteration n and is obtained by adding at the

previous bias Vn−1 a contribution that results from the product between a Gaussian kernel

G(s, sn) and a multiplicative factor exp
(
− 1
γ−1Vn−1(sn)

)
that makes the height of the added

Gaussian diminished with time. The bias factor γ > 1 determines the rate with which the

added bias decreases and regulates the amplitude of the s fluctuations. Thanks to the MetaD

potential, the system explores the FES escaping the free-energy minima and crossing large

energy barriers in a reasonable computational time.

An additional advantage of well tempered MetaD is that after a transient period the

simulation reaches a quasi-stationary limit in which one can estimate the expectation value

of any observable 〈O(R)〉,27 as an average over the simulation time according to:

〈O(R)〉 = lim
T→∞

∫ T
0
O(Rt)e

β(V (s(Rt))−c(t))dt∫ T
0
eβ(V (s(Rt))−c(t))dt

(2)

Here, Rt are atomic positions at time t, β is the inverse of the temperature multiplied by

the Boltzmann constant kB and the time dependent offset c(t) is defined as:

c(t) = − 1

β
log

∫
e−β(F (s)+V (s,t)ds∫
e−β(F (s)ds

(3)

where F(s) is the free energy as a function of the CV. Following this procedure, one can

reweight to Boltzmann averages of any variable even if they are not included in the biased

CV.

2.2 Funnel-Metadynamics

The binding process between a ligand and its molecular target is typically represented as

chemical reaction with the equilibrium constant Kb (Fig. 1A). The latter is the ratio between
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Figure 1: A) A cartoon representation of a ligand (L) binding to a protein (P) . B) The funnel
restraining potential illustrated in blue, along with its parameters. More specifically Z is the exit
binding path axis, Zcc is the distance along the axis Z, where the cone restraining potential turns
into a cylindrical shape, and Rcyl is the radius of the cylinder, and α is the angle defining the cones
amplitude.

the concentration of the system in the bound state and that in the unbound state. In

thermodynamics, Kb is related to the the absolute protein-ligand binding free energy G0
b ,

which is the free-energy difference between the unbound and the bound state, through the

formula:

∆G0
b = − 1

β
ln
(
C0Kb

)
(4)

where C 0=1/1660 Å−3 is the standard concentration. However, calculating the free energy

along a binding transition is difficult. In particular, in the case of protein/ligand binding an

additional complication arises from the fact that once the ligand leaves the protein, it has

to explore a large conformational space. A remedy to this problem has been suggested in

Refs.14,28,29 with the imposition of a restraint potential in the binding site. In this study,

we will use the Funnel-Metadynamics method, where the restraining potential has in the

shape of a funnel as illustrated in Fig. 1B. The design of the funnel is such that the restraint

does not act on the ligand when in the binding site while confines the ligand to a cylindrical
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region once outside. One can also look at this procedure as having imposed an entropic

restraint. The net effect of the cylindrical restraint can be accounted for, leading to the

following formula:

Kb = πR2
cyl

∫
site

dz exp(−β(W (z)−W (ref)) (5)

where W(z) and its value in the unbound state W(ref) can be derived from the Potential of

Mean Force (PMF) along the funnel axis Z, while Rcyl is the radius of the cylindrical part

of the funnel potential and πR2
cyl accounts for the restraining potential in the unbound state

(see Ref.14 for details). Finally, one can calculate the absolute protein-ligand binding free

energy ∆G0
b combining Eq. 4 and Eq. 5. Due to the funnel restraint, several forth-and-back

events between the bound and the unbound state are observed during the simulation leading

to the free-energy convergence of the calculation in a shorter computational time.14,15,30–33

2.3 Variational Approach to Conformational dynamics Metady-

namics

As already discussed, in MetaD calculations the number of CVs should be kept as small as

possible, since the cost of reconstructing the free energy grows exponentially with the number

of CVs used. This limitation is particularly severe in protein systems where a slow process

often involves several degrees of freedom. Recently Mc Carty and Parrinello developed a

Variational Approach to Conformational dynamics in Metadynamics (VAC-MetaD)19 that

allows combining several degrees of freedom into a number of CVs that are a combination of

many descriptors. So far this has lead to a better understanding of chemical reactions and

folding of small peptides.34,35

Here we briefly review the steps needed to apply this procedure. First one identifies a set

of N descriptors dk(R) that one thinks are important for the phenomenon under investiga-

tion. Then one searches for the best CV si(R) that can be expressed as a weighted linear
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combination of dk(R), with corresponding coefficients bik:

si(R) =
N∑
k

bikdk(R) (6)

This is obtained by a variant of Time-lagged Independent Conformational Analysis

(TICA) developed in Noe’s group.36,37 In this setting, one computes the time-lagged co-

variance matrix C (τ) defined as:

Cmn = 〈rm(0)rn(τ)〉 (7)

where rk(τ)=dk(τ)-〈dk(τ)〉. We then determine the bik coefficients by solving the generalized

eigenvalue equation:

C(τ)bi = C(0)λibi (8)

where λi is the ith eigenvalues, C(τ) is the time lagged covariance matrix, C(0) is the

covariance matrix at time zero. In the variant of TICA proposed by Noe’s group.,36,37 they

assume a long trajectory which spontaneously transits between metastable states. Mc Carty

and Parrinello19 noticed that a similar procedure can be applied from a MetaD trajectory,

provided that the MetaD timescale is properly rescaled, as follows:

dτ = eβ(V (s(Rt))−c(t))dt (9)

For the purpose of studying a ligand unbinding transition, the eigenvectors of the eigenvalue

equation obtained from a MetaD trajectory, correspond to the slowest decaying modes, and

can be used as CVs in the production MetaD simulation.19,38
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2.4 Ligand unbinding rate koff from Infrequent Metadynamics

Inspired by Voter39 and Grubmüller,40 in a recent study Tiwary and Parrinello41 introduced

the Infrequent Metadynamics (InMetaD) framework illustrating how MetaD could be used

to calculate transition rates of activated processes. The assumptions of this method are that

i) there is no bias deposited in the transition state ensemble (TSE) region and ii) that the

biased CVs are able to distinguish between relevant metastable states. This goal can be

achieved by using an infrequent bias deposition which reduces the probability to add bias to

the short transition time where the system is in the TSE region.41 Metadynamics accelerates

the dynamics by a factor α, given by a running average obtained through MetaD as:

α = 〈eβV (s,tM )〉V , (10)

where tM is the Metadynamics escape time, s is the biased collective variable at time tM , β

is the inverse of kBT and V(s,tM) is the bias deposited at time tM . The real time t can be

related to tM via Eq. 11.

t = tMα (11)

A rigorous quantitative way to assess the method’s assumption is to perform a Kolmogorov-

Smirnov statistical test.42,43 This effectively measures if the M observed escape times follow

a Poisson distribution, as expected in a rare event scenario.

2.5 Protocol

In this section we present a schematic description of our protocol. The protein and water

are modeled using the Amber-14SB and TIP3P classical forcefields, while the ligand using

the Amber GAFF library .44,45 At variance with our previous studies,14,23 here we use a new

benzamidine force-field parametrization based on quantum mechanics calculations. These

calculations show that in the ground state of the isolated benzamidine the amidine group

has a non planar torsion angle with respect to the benzene ring. Similar results have been
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Figure 2: a) Eigenvalues decay as a function of lag time and b) coefficients of the basis set
for the two eigenvectors associated with the two first slowest decaying eigenvalues (red and green
respectively).

found in a previous study by Pophristic et al 46 and through X-ray diffraction by Liebschner

et al.47 All of our simulations start from a solvated and equilibrated configuration of the

benzamidine-trypsin X-ray crystral structure (PDB ID: 2oxs). Initially, we define a simple

CV, namely the distance between the ligand C7 carbon and the D189 Cγ of the pocket. Then,

we run a 500 ns FM simulation which enhances the fluctuations of the binding transition.

Using this FM trajectory we perform the VAC-MetaD optimization procedure implemented

in the PLUMED software48 to generate the CVs biased in a 280 ns VAC-FM production

run. Both simulations are performed at room temperature and atmospheric pressure. For

more information about the system preparation we refer the interested reader to the SI. For

the sake of clarity, we describe below the VAC-MetaD procedure in the following steps.

Made wise by the many studies showing that direct ligand/protein contacts, as well

as the solvation and the orientation of the ligand are involved in the stability of the in-

termediate states,14,18,23,49 we define a basis set of descriptors for ligand/protein binding

(Npr/lig,Wpock,αβ(θ),Wlig). In particular, Npr/lig corresponds to the protein-ligand contacts,

Wpock, corresponds to the number of water molecules in the pocket, αβ(θ) is a transformation

of the torsion angle describing the rotation of the ligand relative to the protein binding site,
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and Wlig is the number of contacts between water molecules and the ligand. For more details

see Table S1. After defining the basis set we perform a VAC-MetaD optimization on the

first 120 ns of the preliminary FM simulation to identify the eigenvectors and eigenvalues

associated with the slowest modes of the system.

We select the first two eigenvectors associated with the slowest decaying eigenvalues

(see Fig. 2a,b), and use them as CVs. Since reaching convergence using one CV proves

difficult (see Fig. S1) it does seem natural then to include the second eigenvector as CV,

given the fact that its associated eigenvalue time decay, while faster than of the first one’s

is slower than the others. Furthermore, the eigenvalues of the first two eigenvectors decay

more slowly than of the other (see Fig. 2a). The two optimal CVs obtained from the VAC-

MetaD analysis described above are, s1=-0.38 Npr/lig+ 0.78Wpock -0.19αβ(θ) +0.45 Wlig and

s2=0.01Npr/lig -0.85Wpock -0.30αβ(θ) +0.44 Wlig. The most striking feature of this two CVs

is the dominant role played by water both in pocket hydration dehydration and in ligand

solvation/desolvation.

3 Results

In the following paragraphs we address the binding mechanism of benzamidine/trypsin com-

plex, the convergence speed obtained using FM with VAC-MetaD optimized CV and finally

the unbinding rate.

3.1 Free energy

First, we perform a production run of 280 ns FM simulation, biasing two CVs s1 and s2

obtained earlier. Using these two CVs we computed the corresponding free energy surface

(see Fig. 3a). Three stable bound states are found, A, P and B. The first corresponds to the

crystal structure, the second to a presolvated state, the third to a rotated presolvated still

bound state. A detailed description of the stable bound states follows.
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Figure 3: a) Free energy surface as a function of the two biased eigenvectors s1 and s2. where in
white the stable states and b) a detailed description of the bound poses.

Minimum A. Minimum A corresponds to the crystal structure. In this minimum the

ligand’s diamino group forms direct hydrogen bonds with the hydrogen bond accepting

groups of the negatively charged D189, polar S190 and G219. Moreover, this minimum is

stabilized by a hydrogen bond network formed by a structural water, bridging the interactions

of Y228, D189 and S190. Finally, the ligand’s aromatic ring, forms hydrophobic contacts with

V213, C191 and W215. These interactions are in agreement with previous studies.14,20,23,50,51

Minimum P. This minimum corresponds to a presolvated state. In P, the ligand is

rotated compared to state A, with its diamino group exposed to solution. The phenyl ring

of the ligand is sandwiched between the Cα of W215 and C191. It forms direct hydrogen

bond with G216 while at the vicinity of the triad G216, S217, G219. Minimum P has been

also discussed in Ref.,23 where is also called P, and it is the same as state P2 of Ref.50
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Figure 4: BFES as a function of the position of a) the ligand’s center of mass along the Z axis of
the funnel and the torsion Θ, where in white the stable bound states, in black the unstable binding
poses. b) The Z axis obtained from the VAC-MetaD optimized CVs FM simulation.

Minimum B. This minimum corresponds to a rotated presolvated bound state. In

B, the ligand is rotated compared to minimum A and sits just outside the pocket. The

ligand’s diamino group forms direct H-bond with the negatively charged D102, and S214.

The ligand is sandwiched between W215 and H23 forming π-stacking interactions.52 Finally,

a water forms a hydrogen bond network between the diamino group of the ligand, Y94 and

D102. This mimimum, is very similar to state P12 and/or TS2 in ref.50 The combination

of these interactions is allowed only by a rotated torsion, and can be captured by the new

parametrization of the ligand.

Binding Free Energy Surface (BFES). The representation of the BFES shown

in Fig. 3 does not clearly describe the position of these states relatively to the unbound

state region. Thus we represent the free energy landscape as a function of the same two

variables used in our previous study.14 One, Z, gives the ligand’s center of mass position

projected along the funnel axis. The other, Θ, is the orientation of the ligand relative to

the binding site (see Table S1). In this BFES representation ( Fig. 4a), A, B and P can

also be clearly identified. Here, it is possible to distinguish two additional local minima A

and AP in which most of the ligand/protein interactions are mediated by water molecules.
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These minima represent transient and preliminary binding poses that easily evolve to the

energetically most stable states A and P within 20 ns of unbiased MD calculations. The

interested reader can find more information about these minima in the SI.

The role of water. It is known that explicit protein/water/ligand H-bond bridging

interactions can increase the stability of the bound pose by several kcals/mol.18 In the

benzamidine system it is known14 and verified here that state A is stabilized by a hydrogen

bond network formed by a structural water bridging the interactions of Y228, D189 and

S190. Given such a positively charged pocket ,53 it makes sense that upon breakage of some

protein-ligand interactions of minimum A, they will be replaced by water mediated H-bonds

between the ligand and the protein, thus forming nearby minima A’ and AP (see Fig. S3).

Here, the stability of state P reflects this balance of solvation and direct protein-ligand forces.

Importantly, at all stages of binding, water is involved in the process, be it from a ligand

desolvation point of view, or from a structural water inside the pocket point of view.

3.2 Fast prediction of the binding fee energy

From the projection of the BFES on the Z axis of the funnel (see Fig. 4b) we can compute

the absolute protein-ligand binding free energy ∆G0
b (-6.7 ± 0.4 Kcal/mol), whose value after

the correction in Eq. 5 gives the value in embarrassing agreement with the experimentally

reported value of 6.4 to 7.3 kcal/mol.54,55 It must be also underlined that the VAC-MetaD

optimized CVs simulation converges smoothly to this value, while the FM with suboptimal

CVs after 500 ns still exhibits relative large fluctuation (see Fig. S2). Regarding the technical

aspects of this calculation we refer the interested reader to the SI.

Finally, a remarkable finding is that the the main features of the BFES as the local

minima of the bound state, are already captured from the first 60 ns of the VAC-MetaD

optimized CVs FM simulation (see Fig. S8d), posing a great improvement compared to the

FM with suboptimal CVs where one would have to simulate at least 240 ns (see Fig. S8b)

to obtain a ∆G0
b value in the right ball park.
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3.3 Unbinding rate

Using 20 simulations initiated in state A, we perform Metadynamics with infrequent depo-

sition of the bias (see SI) and stop the simulation once the trajectories reach the unbound

state (Z > 2 nm). The associated k off found is 4176 ± 324 s−1, which given the uncertain-

ties intrinsic to these type of calculations, can be considered as a good agreement with the

experiment k expoff of 600 ± 300.56 Note that the p-value of the KS test performed was 0.77,

indicating the quality of the optimized CVs (see Fig. S9). The different result compared

to Ref.23 can be explained by the new ligands torsion potential used in this study, which

allows a much easier rotation of the ligands diamino group. In so doing, the benzamidine

can disentangle itself from the interactions formed at the lowest minimum A and reach the

solvated state more rapidly.

4 Discussion

In this study we combined for the first time Variation Approach to Conformational dynam-

ics with Funnel-Metadynamics, in order to accurately predict the binding energy, binding

mechanism, and unbinding rate of the benzamidine-trypsin complex. In this way we find

ligand and pocket solvation/desolvation to be the slow degrees of freedom by looking at the

slowly decaying eigenvectors of the VAC-MetaD, which when biased significantly accelerate

the convergence of the bound state and the overall BFES, compared to FM with suboptimal

CVs. The estimated absolute binding free energy of FM using optimized CVs is in excel-

lent agreement with experiments. In addition it gives a better resolved BFES -including

more resolved water rich local minima A’ and AP- compared to the FM simulation of sub-

optimal CVs. Moreover, when VAC-MetaD optimized CVs are used with the Infrequent

Metadynamics scheme, it predicts the unbinding rate in good agreement with the experi-

ment, thus providing a relatively cheap, rigorous and accurate calculation with respect to

already existing methods.56

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/417915doi: bioRxiv preprint 

https://doi.org/10.1101/417915
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 Acknowledgements

Z. F. B. and M. P. acknowledge VARMET European Union Grant ERC−2014−ADG−670227

for funding. V. L. acknowledges the support from the Swiss National Science Foundation

(Project N. 200021 163281) and the COST action CA15135 (Multi-target paradigm for in-

novative ligand identification in the drug discovery process MuTaLig). All the authors ac-

knowledge the Swiss National Supercomputing Centre (CSS) for providing the computational

resources.

References

(1) Jorgensen, W. L. The Many Roles of Computation in Drug Discovery. Science 2004,

303, 1813–1819.

(2) Gilson, M. K.; Zhou, H.-x. Calculation of Protein-Ligand Binding. Annu. Rev. Biophys.

Biomol. Struct. 2007, 36, 21–42.

(3) Goodsell, D. S.; Olson, A. J. Automated Docking of Substrates to Proteins by Simulated

Annealing. Proteins Struct. Funct. Bioinforma. 1990, 8, 195–202.

(4) Meng, E. C.; Shoichet, B. K.; Kuntz, I. D. Automated Docking with Grid-Based Energy

Evaluation. J. Comput. Chem. 1992, 13, 505–524.

(5) Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM A New Method for Protein Modeling and

Design: Applications to Docking and Structure Prediction from the Distorted Native

Conformation. J. Comput. Chem. 1994, 15, 488–506.
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