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ABSTRACT 

Identification of transcription factor binding sites (TFBSs) and cis-regulatory motifs (motifs for 

short) from genomics datasets, provides a powerful view of the rules governing the interactions 

between TFs and DNA. Existing motif prediction methods however, are limited by high false 

positive rates in TFBSs identification, contributions from non-sequence-specific binding, and 

complex and indirect binding mechanisms. High throughput next-generation sequencing data 

provides unprecedented opportunities to overcome these difficulties, as it provides multiple 

whole-genome scale measurements of TF binding information. Uncovering this information 

brings new computational and modeling challenges in high-dimensional data mining and 

heterogeneous data integration. To improve TFBS identification and novel motifs prediction 

accuracy in the human genome, we developed an advanced computational technique based on 

deep learning (DL) and high-performance computing, named DESSO. DESSO utilizes deep 

neural network and binomial distribution to optimize the motif prediction. Our results showed 

that DESSO outperformed existing tools in predicting distinct motifs from the 690 in vivo 

ENCODE ChIP-Sequencing (ChIP-Seq) datasets for 161 human TFs in 91 cell lines. We also 

found that protein-protein interactions (PPIs) are prevalent among human TFs, and a total of 61 

potential tethering binding were identified among the 100 TFs in the K562 cell line. To further 
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expand DESSO’s deep-learning capabilities, we included DNA shape features and found that (i) 

shape information has a strong predictive power for TF-DNA binding specificity; and (ii) it aided 

in identification of the shape motifs recognized by human TFs which in turn contributed to the 

interpretation of TF-DNA binding in the absence of sequence recognition. DESSO and the 

analyses it enabled will continue to improve our understanding of how gene expression is 

controlled by TFs and the complexities of DNA binding. The source code and the predicted 

motifs and TFBSs from the 690 ENCODE TF ChIP-Seq datasets are freely available at the 

DESSO web server: http://bmbl.sdstate.edu/DESSO.  
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INTRODUCTION 

Gene regulation is essential for the versatility and adaptability of an organism’s cellular and 

biochemical pathways to meet the demands of its environment. Gene expression is regulated by 

a set of transcriptional regulatory signals, including TFs, microRNAs, long non-coding RNA, and 

epigenomic regulators  [1, 2]. TFs control gene expression by binding to specific DNA 

sequences, i.e., TFBSs [3], and the aligned profiles of TFBSs are referred to as cis-regulatory 

motifs [4, 5]. The binding or releasing of TFs promote or suppress transcription to guarantee the 

target genes are expressed at the proper time and in the appropriate amount according to 

particular cell states and circumstance [6, 7]. Substantial efforts have been invested in the 

studies of TF binding specificities and motif prediction, resulting in the development of 

numerous algorithms and computational tools and databases [8-17]. However, the 

understanding of TF-DNA binding mechanism is still fragmented, and its computational 

elucidation is still a considerable challenge in systems biology [18-21].  

 

Beyond the sequence level, recent studies have highlighted the essential role of DNA structure 

in quantitatively influencing TF-DNA binding specificity both in vitro and in vivo across diverse 

TF families [22-25]. Owing to the advances in DNA structure elucidation, four distinct DNA 

shape features (i.e., Minor Groove Width (MGW), Propeller Twist (ProT), Helix Twist (HelT), and 

Roll) can be computationally derived from DNA sequences by Monte Carlo simulation [26]. 

These features, if experimentally validated, can be considered as shape motifs and thereby an 

extension of traditional regulatory sequence motifs. This idea is corroborated by the fact that the 

flanking regions of TFBSs can contribute to the binding specificity indirectly by influencing the 
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DNA shape of the target sequences. Thus, features in DNA sequences in combination with 

shapes determine the TF binding in a more sophisticated way than was originally thought [27-

30]. 

 

ChIP-Seq provides the genome-wide interactions between DNA and DNA-associated proteins 

and large-scale ChIP-Seq efforts enable new insights into gene regulation analyses. A 

considerable amount of ChIP-Seq data has been generated in the public domain, including 

approximately 6,000 datasets of human from the ENCODE database [31]. These datasets 

provide an unprecedented opportunity to predict motifs, identify TFBSs, and capture more 

features affecting TF binding [32]. ChIP-Seq data mining and modeling have many challenges in 

computation, facing high-dimensional and heterogeneous data properties, and a variety of 

popular methods have been developed [33-38]. However, computational challenges remain for 

the accurate and exhaustive identification of motifs [38]. 

 

Deep Learning (DL) has achieved unprecedented performance, among the big data methods, 

for capturing motif patterns and elucidating complex regulatory mechanisms [39, 40]. 

Specifically, DL methods enable extraction of more complex patterns than rational models 

owing to their multi-layer network architecture. Importantly, the intrinsic overfitting issue in multi-

layer DL networks can be overcome by the large scale of the available datasets [41-44]. For 

example, the convolutional neural network (CNN) in DL improved the state-of-the-art 

performance in TF-DNA binding specificity prediction through optimizing the position weight 

matrix (PWM)-like motif detectors [45]; and the motif patterns predicted by DeepBind have been 

well mapped to documented motifs by Alipanahi et al. based on available human TFBS 

databases [41]. However, these methods focused on predicting TF-DNA binding specificity and 

failed to identify motifs accurately, giving rise to high false positive and false negative issues 

(26). 

 

Identifying where a TF binds is very important for gene regulation-related studies, including but 

not limited to the occurrence and development of complex diseases and cell proliferation and 

differentiation. Furthermore, studies about why the TF binds to specific sites (sometimes not 

conserved in sequence level) are essential for elucidating the underlying mechanisms of 

regulation [3]. Hence, the demand for the following data analysis and interpretation is significant: 

(i) how to improve the performance of capturing sequence-specific TFBSs; and (ii) how the non-

sequence-specific TFBSs contribute to TF-DNA binding in alternative ways. DNA shape 
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features can be integrated into DL models to explore how these features quantitatively 

contribute to TF-DNA binding, even though conserved shape patterns (or shape motifs) 

encoded in the human genome are still not well modeled (34,35). Furthermore, in-depth 

analysis of novel identified motif patterns containing both sequence and shape factors, will 

facilitate new insight into hypothetical mechanism regulating TF binding that can be 

experimentally validated. 

 

In this study, we proposed a novel DL framework, named DESSO (DEep Sequence and Shape 

mOtif), using the CNN model to predict motifs and identify TFBSs in both base pair and regional 

DNA shape features. The identified motifs are evaluated using documented motifs in JASPAR 

[16] and TRANSFAC [15], compared with DeepBind [41], Basset [43], MEME-ChIP [35], and 

gkm-SVM [46]. Further analyses were conducted by integrating multiple biological information 

including TF binding domain types, chromatin accessibility, phylogenetic conservation, PPI, etc. 

For the first time, rather than determine motif instances (i.e., TFBSs) using a subjective cutoff as 

previously reported [41-43], we integrated the binomial distribution into DESSO to optimize the 

motif instances identification based on identified motif patterns [47]. DESSO was evaluated 

using 690 in vivo ENCODE ChIP-Seq datasets [48], and the results demonstrated that the 

motifs generated by DESSO captured the binding specificity of TFs more accurately than the 

other four tools. Meanwhile, 61 indirect binding activities were identified based on these motifs, 

some of which were confirmed as known tethering binding activities and PPI. The combination 

of four DNA shape features was used in DESSO to investigate their contribution in predicting 

TF-DNA binding specificity. The shape information provided an additional dimension to explain 

TF binding even without sequence specificity, and the identified shape motifs uncovered that 

functionality conserved shape patterns are common in the human genome.  

 

RESULTS 
DESSO (DEep Sequence and Shape mOtif) pipeline for motif prediction 
DESSO contains a CNN model for motif patterns learning and a novel statistical model for motif 

instances identification. It enables extraction of more complex motif patterns comparing with 

existing motif prediction methods owing to its multi-layer network architecture. We designed a 

first-of-its-kind binomial-based model in DESSO to identify all the significant motif instances, 

under the statistical hypothesis that the number of random sequence segments which contain 

the motif of interest in the human genome is binomially distributed [47].  
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The first layer of the CNN model is a convolutional layer which contains multiple convolutional 

filters (Fig. 1A). These filters were used to identify low-level features from given input (i.e., 

ChIP-Seq peaks). Subsequent max pooling layer and two fully connected layers were used to 

extract high-level abstractive features based on the output from the convolutional layer [49]. 

Specifically, the CNN model takes DNA sequences centered on the peaks from ChIP-Seq as 

input query sequences and learns motif patterns using convolutional filters (denoted as motif 

detectors) [39, 50]. Then, a large set of background sequences were selected from the human 

genome based on the genomically equivalent negative regions (GENRE) tool, considering 

selective sequence features, i.e. GC content and CpG frequency, and genomic features, i.e. 

promoter and repeat overlaps, to eliminate biases induced by these features [51]. Both the 

query and background sequences were then aligned as sequence matrix, where each row 

represents a distinct sequence. For each optimized motif detector, two motif signal matrices 

were derived by sliding the detector along the query sequence matrix and background 

sequence matrix, respectively (Fig. 1B). Each element of a signal matrix represents the 

occurrence probability of the corresponding motif detector on a sequence segment in the 

corresponding sequence matrix. These two motif signal matrices were then used to generate 

motif candidates by varying a motif instance signal cutoff in a predefined interval. For each 

value of the motif signal cutoff, the motif instance candidates in the query sequence matrix and 

background sequence matrix were obtained, and then used to calculate a p-value according to 

the binomial distribution (Fig. 1C).  

 

The optimal motif instances for a motif detector were finally defined as the motif instance 

candidates in the query sequence matrix that corresponds to the minimum p-value (see details 

in the METHODS section). The results showed that DESSO significantly improved the motif 

prediction performance on 690 ENCODE TF ChIP-Seq datasets, which cover 161 TFs in 91 cell 

lines, in terms of the number of distinctly predicted motifs and the similarity to annotated motifs 

in various databases (see details in the following section). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/417378doi: bioRxiv preprint 

https://doi.org/10.1101/417378


 6

 

Figure 1. Schematic overview of DESSO framework. (A) The CNN model for optimizing motif 

detectors. (B) Determination of optimal motif instances recognized by each motif detector. Both 

the query data (�) from the corresponding ChIP-Seq dataset and the background data (�) were 

fed into the convolutional layer in the trained model. For each motif detector, two motif signal 

matrices �
�

′

 and �
�

′

 representing the probability of motif occurrence at each position in � and � 

were derived, respectively. (C) Construction of the optimized motif profile. �
�

′

 and �
�

′

 were then 

used to determine motif instance sets Ω��, ��� and Ω��, ��� in � and � by varying the cutoff 

� � �0, 1�. For each ��, a p-value was approximated by the binomial distribution based on the 

number of motif instances in Ω��, ��� and Ω��, ���. The motif instances Ω��, ��� corresponding 

to the minimum p-value were used to generate the motif logo. 

 

DESSO accurately predicts motifs from ChIP-Seq data 

To test DESSO’s accuracy similarity comparisons between predicted and experimentally 

validated Homo sapiens motifs in the JASPAR [16] and TRANSFAC [15] databases was 

conducted using TOMTOM [52]; and we compared four widely used methods with DESSO, i.e., 
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DeepBind [41], Basset [43], MEME-ChIP [35], and gkm-SVM [46] (see details in the METHODS 

section).  

The numbers of distinctly validated motifs in the JASPAR and TRANSFAC covered by each of 

the above five methods were compared. The results showcased that DESSO achieved the best 

performance with 274 validated motifs covered in total, relative to 269, 269, 270, and 220 

validated motifs covered by DeepBind, Basset, MEME-ChIP, and gkm-SVM, respectively (Fig. 

2A). It is noteworthy that the number of validated motifs covered by MEME-ChIP is almost the 

same as the other three DL-based methods (DESSO, DeepBind, and Basset). This 

performance may be attributed to the fact that MEME-ChIP considered not only motifs 

recognized by single TF and TF complexes but also very short motifs (up to 8 bps) that 

preferred by most eukaryotic monomeric TFs. Five validated motifs were exclusively covered by 

DESSO, which are recognized by NR3C2, FOS::JUN (var. 2), RFX3, HIC2, and DUXA, 

respectively (Fig. 2B). Specifically, NR3C2 plays an essential role in mediating ion and waster 

transport [53], and DUXA is closely associated with Facioscapulohumeral Muscular Dystrophy 1. 

FOS::JUN (var. 2) is one of the JUN-FOS heterodimers [54], which was first discovered by the 

selective microfluidics-based ligand enrichment followed by sequencing [55].  

 

To investigate the accuracy of the sequence motifs identified by DESSO, TOMTOM was used to 

compare the statistical significance (i.e., E-value, p-value, and q-value) across JASPAR and 

TRANSFAC for motifs that were predicted by all methods. These statistical measurements 

quantify the similarity of query motifs against validated motifs in a motif database. The ����2(E-

value) of DESSO was significantly larger than other methods (all achieving Wilcoxon test p-

values < 1x10-3, shown in Fig. 2C). Similar phenomena were observed for ����2(p-value) and 

����2 (q-value) (Fig. 2C). DeepBind, Basset, and MEME-ChIP achieved comparable 

performance across the three measurements and significant performance over gkm-SVM. Thus, 

DL frameworks were able to learn motif patterns from DNA sequences more accurately than the 

combination of expectation maximization algorithm and regular expression, and support vector 

machine. Most importantly, these results highlight the advantage DESSO’s binomial model over 

strategies used by DeepBind and Basset and demonstrate that DESSO reduces both false 

positive and false negative rates. 

 

To explore the sequence motifs identified by DESSO, clustering according to their similarity 

score from TOMTOM give rise to 683 clusters (Fig. 2D). The most significant motif in terms of 

the binomial p-value in each cluster was defined as the representative sequence motif. Among 
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the 683 representative sequence motifs, 435 of them were known motifs, found in the JASPAR 

or TRANSFAC, while 248 of them were novel motifs, not previously validated (Fig. 2D and see 

details in Methods) and retained for additional analysis owing to their statistical significance.  

 

 

Figure 2. A performance comparison of sequence motif identification accuracy. (A) Venn 

diagram of the validated motifs in the JASPAR and TRANSFAC identified by the five tools. (B) 

The five validated motifs that were uniquely identified by DESSO. (C) The – ���2(E-value), 

– ���2(p-value), and – ���2 (q-value) derived from TOMTOM for all methods. The Wilcoxon 

test p-values of the above three scores between DESSO and other four methods. (D) A total of 

435 motifs (known motifs) from DESSO can be matched to the JASPAR or TRANSFAC, and 

248 motifs (novel motifs) do not have any matches (pie chart). For these known motifs, 388 of 

them are in the JASPAR and 283 of which are in the TRANSFAC (bar plot).  

Analysis of 683 representative sequence motifs identified by DESSO 

The structural classes of human TFs or TF complexes that recognize the 435 known motifs 

identified by DESSO were analyzed with TFClass [56]. Twenty-six structure classes, including 

five dimerization structures and 21 monomer structures were represented in the identified motifs 
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(Fig. 3A). The C2H2 zinc finger (C2H2) was the most prevalent structural class, representing 89 

of the 435 known motifs, consistent with the fact that C2H2 represents one of the most common 

TF domains in humans [57]. A total of 88 representative motifs that were frequently observed in 

the 690 ChIP-Seq datasets, were derived from these 435 known motifs [58] based on the motif 

comparison tool, TOMTOM, and the hierarchical clustering (Fig. 3B, see details in METHODS).  

 

Various functional analyses have been carried out for the 88 motifs, aiming to illustrate the 

overall quality of the motifs in ChIP-Seq data that DESSO identified (see details in DESSO 

website). Among the 88 motifs, the CTCF motif, that plays an important role in modulating 

chromatin structure [61], was the most enriched as it is the ChIP-ed TF for approximately 15% 

ChIP-Seq datasets in our study [59, 60]. Thus, we selected CTCF as the example for the 

following functional analyses. The DNase I Digital Genomic Footprinting [62] and evolutionary 

conservation (phastCons scores [63]) of CTCF’s TFBSs within A549 cell line were collected. 

CTCF’s TFBSs were more susceptible to DNase I enzyme (Fig. 3C) revealing that the binding 

preference of CTCF to accessible chromatin and showed significant evolutionary conservation 

compared to the flanking regions (Fig. 3D), illustrating a strong phylogenetic conservation of the 

identified CTCF motif. To investigate the occurrence of CTCF motif in the corresponding ChIP-

Seq peaks which are ranked by peak signal, its enrichment score was calculated using GSEA 

(Gene Set Enrichment Analysis software) [64] (Fig. 3E). The enrichment score curve clearly 

showed the dramatic left-skewed trend, indicating that the DESSO identified CTCF motif was 

more enriched in top-ranked peaks. This is consistent with the fact that peaks with higher peak 

signal also have a higher probability to be bound by the ChIP-ed TF. In addition, another well-

known TF, MAX, also demonstrated strong functionality conservation and left-skewed 

enrichment in K562 cell line (Supplementary Fig. S1A-C).  

 

An extended investigation of the 248 novel motifs showed that they are very likely to be cis-

regulatory elements (Fig. S2) but have not been experimentally validated and demonstrated 

having similar functionalities as known motifs. Seventy-eight distinctly enriched motifs were 

collected from the 248 motifs based on similar clustering analyses as above (See 

Supplementary Fig. S2A and details in Methods) [65]. The functionality and enrichment analysis 

of these motifs also demonstrated strong DNase footprint patterns and evolutionary 

conservation, revealing the potential role of this motif in transcriptional regulation 

(Supplementary Fig. S2B-D). These results strongly supported the functionality conservation of 
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both known motifs and novel motifs identified by DESSO and proved the distinguished ability of 

DESSO in identifying regulatory code in the human genome.  

 

 

Figure 3. Detailed view of identified sequence motifs. (A) The number of know motifs identified 

by DESSO and the number of TFs in 690 ChIP-Seq datasets represented by the 26 structural 

classes in the TFClass system. (B) The phylogram tree of 88 enriched sequence motifs 

according to their similarity derived from TOMTOM. The inner circle indicates the TFs and their 

structural classes (background color is the same as A) of the corresponding validated motifs 

either in the JASPAR or TRANSFAC. The outer circle represents the motif logo of each 

enriched sequence motif, including CTCF (red star) and MYCN (green star). (C) The heat map 

of per-nucleotide DNase I cleavage and the corresponding mean value; (D) The heat map of 
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per-nucleotide vertebrate conservation and the corresponding mean value of CTCF’s TFBSs as 

well as �50 bps flanking regions within the A549 cell line. Each row in the heat map represents 

a motif instance. (E) Red curve indicates the enrichment score of CTCF on its corresponding 

ChIP-Seq peaks. Vertical black lines indicate the presence of ChIP-Seq peaks that contain at 

least one TFBS of CTCF. The motif logo of CTCF identified by DESSO is shown at the below. 

 

DESSO infers indirect binding mechanisms from the 100 TFs expressed in the K562 cell 

line 

Increasing evidence indicates that direct TF-DNA interaction is not the only way for TFs to 

interact with DNA [66]. Thus, sequence motifs identified by DESSO in each of the 690 datasets 

may also contain motifs that were bound by other TFs that may have been associated with the 

motif via partner, rather than a direct interaction via the ChIP-ed TFs. To investigate this 

phenomenon for human TFs, the 100 TFs in the K562 cell line were examined by analyzing 

their corresponding sequence motifs identified by DESSO (Supplementary Table S1). Among 

the 100 TFs, 75 of them are DNA-binding proteins involved in RNA polymerase II transcription 

[67], which were referred to as the sequence-specific TFs. The remaining 25 TFs are non-

sequence-specific and are thought to interact with DNA by other ways including protein-protein 

interactions with other DNA-binding proteins. Sixty-seven of the 75 sequence-specific TFs have 

known/annotated canonical motifs, which represent sequence patterns that are specifically 

recognized by their DNA-binding domains [68]. For each of their corresponding ChIP-Seq 

datasets, the peaks containing the canonical motif of the ChIP-ed TF were defined as direct-

binding peaks (	) and the others were defined as indirect-binding peaks (
). Fifty-three of the 75 

TFs have their canonical motifs been discovered, indicating DESSO was able to identify 80% of 

the canonical motifs. Approximately 48% of the ChIP-Seq peaks for these 53 TFs belong to � on 

average, and this proportion (72% average) was observed across all the 100 TFs (blue bars in 

the outer ring of Fig. 4 [65]).  

 

A likely reason for this observation is that rather than bind to DNA sequence directly, some 

sequence-specific TFs can also tether to DNA by interacting with other DNA-binding proteins 

[69]. Such indirect binding is abundant in human TFs, e.g., the estrogen receptor � is enabled to 

regulate gene expression by interacting with Runx1 in breast cancer cells [70] and interact with 

c-Fos/c-Jun heterodimers at TFBSs of AP-1 in ER/AP-1-dependent transcription [71]. To further 

investigate DESSO’s ability to predict tethering and pairwise binding among these 100 TFs, we 

calculate the proportion of 
 peaks in one TF’s that are consistent with the 	 peaks of another 
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TF (see Supplementary Table S2 and details in the METHODS section). A total of 61 tethering 

binding associations were discovered (the links in the inner ring of Fig. 4). These included two 

known tethering binding mechanisms (i.e., ATF3-USF1 [68] and NFE2-MAX [62]) and some 

potential interactions which have been observed in recent studies, such as USF2-MAX and 

SP2-NFYB [62] (in the four corners of Fig. 4). 

 

Notably, our results reported that 45 TFs have tethering interactions with MAX, of which, 30 

belonged to TFs that had sequence-specific motifs and the remaining 15 were non-sequence-

specific TFs (Supplementary Table S1). Out of these 45 tethering interactions, 7 (15.6%) of 

them were validated interactors with MAX by the PPIs in the BIOGRID database and were 

documented MAX-associated binders [72]. As a basic helix-loop-helix zipper (bHLHZ) TF, the 

biological function of MAX [73] can only be activated by forming dimers/complexes with other 

proteins. Importantly, MAX was always the DNA binder reinforcing the idea that it serves as the 

tethering sites for many other TFs. The most well-known MAX-associated complex is the 

MYC/MAX/MAD network, including MYC-MAX and MAD-MAX heterodimers which are widely 

recognized to play an important role in cell proliferation, differentiation, and neoplastic disease 

[74, 75]. Our observation revealed that not only specifically dimerizing with proteins in MYC 

family [73], MAX also extensively interact with other sequence-specific and non-sequence-

specific TFs from diverse protein families.   

 

For each ChIP-Seq dataset of the 100 TFs, the peaks in 
 that do not involve in any tethering 

binding interactions were classified as indecipherable peaks (), indicating the peaks that 

cannot be deciphered based on direct DNA binding and tethering binding mechanisms. These 

peaks composed about 49% of all ChIP-Seq peaks in these 100 datasets (red bars in the outer 

ring of Fig. 4). Furthermore, even no any statistically significant sequence motifs were identified 

by DESSO in a total of 51 of the 690 ChIP-Seq datasets. Taken together, these analyses 

implied that sequence motifs still have considerable limitations in elucidating TF-DNA 

recognition in human, so advanced mechanisms which may occur even beyond sequence-level 

TF-DNA interactions should be considered. An emerging feature for elucidating the advanced 

mechanisms is DNA shape, which will be detailed analyzed in the following two sections. 
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Figure 4. Indirect binding of the 100 TFs analyzed in the K562 cell line. The names of the 100 

TFs are indicated around the inner circle, and a ribbon connects two TFs which have predicted 

tethering binding association. The thickness of the ribbon is proportional to the ratio of peaks in 

the wide-sided TF’s � (indirect) that are consistent with the narrow-sided TF’s �(direct). The blue 

bar and red bar in the outer circle indicate the ratio of � and the ratio of  (indecipherable - 

cannot be resolved as tethering/binding) in each TF’s ChIP-Seq dataset, respectively. Four 

examples of tethering binding association are showcased around the outer circle, each of which 

indicates that one TF (lavender ball) interacts with DNA by binding to another DNA-binding TF 

(orange ball). 

 

DESSO recognized DNA shape features as contributors to TF-DNA binding specificity 

To investigate the importance of DNA structure in human TF-DNA recognition, DESSO was 

used to infer the power of DNA shape in predicting TF-DNA binding specificity across the 690 

ChIP-Seq datasets. For each dataset, the 101-bp sequences centered at their peak summits 

were defined as positive sequences [41]. Additionally, the corresponding negative sequences 
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were selected from the human genome provided they do not have any overlaps with peaks in 

that dataset and they have the same GC-content as the positive sequences. The HelT, MGW, 

ProT, and Roll of each positive and negative sequence were then generated by DNAshapeR [76] 

and used to train DESSO.  

 

DESSO was then applied to HelT, MGW, ProT, Roll, and the combination of these four shape 

features (referred to as DNA shape combination) to classify the positive and negative 

sequences in each dataset (Fig. 5A and Supplementary Fig. S3). For the five kinds of inputs, 

their performance was evaluated using the area under the receiver operating characteristic 

curve (AUC). Specifically, HelT, MGW, ProT, and Roll achieved an average AUC of 0.72, 0.66, 

0.69, and 0.75, respectively (Fig. 5B). It is clear that HelT and Roll substantially surpassed the 

classification performance of MGW and ProT, which may stem from the fact that HelT and Roll 

were calculated by the two central bp steps within a sliding-pentamer window (secondary 

structure information), while MGW and ProT were calculated by only the central bp [26]. Hence 

DESSO predicts that DNA shape factors HelT and Roll have significant predictive power in 

identifying TFBS. 

 

Compared to individual DNA shape features, the performance of DNA shape combination was 

significantly improved (AUC of 0.81 average) (Fig. 5B), indicating the complementary role of 

HelT, MGW, ProT, and Roll in predicting TF-DNA binding specificity. To evaluate to what extent 

each DNA shape feature quantitatively contribute to such remarkable performance, the fraction 

of the average motif signal from the max pooling layer for each kind of shape feature was 

calculated for the 690 datasets. The results reported that HelT, MGW, ProT, and Roll 

contributed 32%, 9%, 22%, and 37%, respectively (Fig. 5C). Thus, the prediction from the 

DESSO analysis indicated that the shape factors HelT, ProT and Roll frequently contribute 

simultaneously to TF binding. To assess the common occurrences of DNA shape factors across 

individuals from the 690 datasets (with DNA binding domain information of the ChIP-ed TF 

available), we analyzed the DESSO results and clustered them (Fig. 5D). These results 

indicated that HelT and Roll were the most important contributors and that ProT appeared 

predicative within only for a small clave of samples. Thus, DNA shape factors tended to have 

dominant roles in different datasets (Fig. 5D). Surprisingly, the ChIP-ed TFs had no apparent 

predictive power on the dominant shape factor suggesting that there may be more rules or 

additional shape factor information to be uncovered.  
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Overall, these results demonstrated the remarkable predictive performance of DNA shape 

features in TF-DNA binding specificity prediction, implying that the underlying conserved DNA 

shape patterns (or shape motif) are also encoded in the human genome and may involve in TF-

shape readouts recognition. More details of the shape motifs analyses can be found in the 

following section. 

 

 

Figure 5. The performance of DNA shape in predicting TF-DNA binding specificity. (A) DESSO 

was applied to five different inputs, i.e., HelT, MGW, ProT, Roll, and DNA shape combination. 

(B) The average AUC of the five inputs based on the 690 ChIP-Seq datasets. (C) The 

contribution of HelT (32%), MGW (9%), ProT (22%), and Roll (37%) in DNA shape combination 

in predicting TF-DNA binding specificity. (D) The heat map is a more detailed analysis of 

diagram C, indicating the contribution of each DNA shape feature on the 690 datasets, where 

each column represents a dataset. Those columns were organized by hierarchical clustering 

based on Pearson correlation and complete linkage. The structure class of ChIP-ed TF in each 

dataset was showcased at the bottom. 

 

DESSO predicts novel DNA shape motifs 

We applied DESSO to determine if the human genome contained regions of evolutionarily 

conserved shape motifs. Specifically, we sought to have DESSO discover shape motifs based 

on the same strategy that was used to discover sequence motifs (similar to Fig. 1). This 

approach added HelT, MGW, ProT, Roll or their combinations to discover four kinds of shape 

motifs within the 690 datasets from ENCODE (named HelT motif, MGW motif, ProT motif, and 
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Roll motif). DESSO identified 1,257 HelT motifs, 84 MGW motifs, 885 ProT motifs, and 478 Roll 

motifs, with 598 out of the 690 datasets having at least one shape motif. A shape motif can be 

represented by a vector of shape features describing the mean of the corresponding motif 

instances. Using the same strategy as in figure 5D, and counting the shape motifs belonging to 

each dataset, we found that the distribution of shape motifs across the datasets were enriched 

for HelT motifs and ProT motifs (Fig. 6A). It was surprising that given the large fraction of Roll 

shape factors and low abundance of ProT shape factors (Fig. 5C and 5D), that a larger number 

of shape motifs was identified for ProT (Fig 6A). Overall, these results indicate that DESSO was 

able to identify shape motifs across a large range of datasets indicating that shape motifs are 

abundant in the human genome.  

 

Given that the shape features were derived from conserved DNA sequences, we predicted that 

the newly identified shape motifs should have a high probability of coinciding with shape 

features within the sequence motifs in their respective datasets. To examine this hypothesis, the 

underlying DNA sequences of each shape motif were aligned as a sequence motif profile which 

we defined as a shape-sequence-motif. The information content (IC) of each shape motif class 

was then computed across the shape-sequence-motifs (Fig. 6B). Compared with the sequence 

motifs identified by DESSO (Fig. 1), shape-sequence-motifs have significantly lower IC (Fig. 

6B). We also measured the similarity between each shape-sequence-motif and validated motifs 

in JASPAR and TRANSFAC using TOMTOM. Only 66% of shape-sequence-motifs can be 

matched to the JASPAR or TRANSFAC. Taken together, these two results indicate that shape 

motifs are less conserved at the sequence level and are largely independent from sequence 

motifs. 

 

To investigate the enrichment of shape motifs and whether they are cell-line-specific or DNA-

binding-domain-specific, the fraction of peaks that were covered by each kind of shape motifs of 

the 51 TFs within GM12878, K562, and HepG2 cell line were analyzed. The majority of peaks in 

ZNF274's datasets can be accounted for by its shape motifs (Fig. 6C), even though no peaks 

were explained by direct TF-DNA binding and tethering (Fig. 4). CTCF coherently recognizes 

HelT and ProT motifs among the three aforementioned cell lines, while SP1 is dominated 

explicitly by ProT motifs within the HepG2 cell line. Also, the Roll motif is prevalent in TFs which 

have basic helix-loop-helix (bHLH) structure, implying that Roll is recognized explicitly by such a 

DNA binding domain (Fig. 6C). To explore the occurrence of shape motifs in their 

corresponding ChIP-Seq peaks, enrichment analysis of Max’s Roll motif in the K562 cell line 
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was performed. Opposed to its sequence motif, Max’s Roll motif is more enriched in the low-

ranked peaks which is consistent with the recent observation that TFs bind to peaks with low 

peak signal by recognizing their preferred shape profiles [24] (Fig. 6D). We then examined 

whether Max’s Roll motif is functionally conserved by analyzing DNase I Digital Genomic 

Footprinting and 12 histone marks surrounding its TFBSs [77] and found that Max’s Roll motif 

also prefers histone-depletion regions like its sequence motifs (Fig. 6E-F).   

 

Considering ChIP-Seq peaks covered by shape motifs, the average ratio of  of the 100 TFs 

within the K562 cell line (Fig. 4) was decreased to 31% (Fig. 6G). This result suggested that 

human TFs are capable of recognizing shape motifs in the genome, which contributes to 

explaining the ChIP-Seq peaks that cannot be interpreted by direct TF-DNA interaction and 

tethering binding. 
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Figure 6. A comprehensive analysis of the identified shape motifs. (A) The number of datasets 

in the 690 ENCODE ChIP-Seq datasets that were covered by shape motifs of HelT (446), MGW 

(43), ProT (392), and Roll (141). (B) IC of underlying sequences of the identified sequence 

motifs and shape motifs. (C) Each entry in the heatmap indicates the ratio of peaks covered by 

the four kinds of shape motifs which were identified in the 51 TFs within GM12878, K562, and 

HepG2 cell lines, while the black entries represent missing values. Four representative shape 

motif logos were listed at the left side, where each of them represents the shape motif profile 

and �50 bps flanking regions using a bold orange curve. The two boundary curves of the blue 
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region represent upper and lower bounds of shape features in the corresponding motif 

instances. The logo of shape-sequence-motif is showcased at the lower-left corner of each 

shape motif logo. (D) The enrichment score of MAX’s Roll motif in its corresponding ChIP-Seq 

peaks in the K562 cell line. Black ticks indicate the occurrence of ChIP-Seq peaks that contain 

at least one instances of MAX’s Roll motif. The logo of MAX’s Roll motif is shown at the below. 

(E) The heat map of per-nucleotide DNase I cleavage of TFBSs of MAX’s Roll as well as �50 

bps flanking regions, where each row represents a motif instance. The orange curve represents 

mean DNase I cleavage. (F) Twelve histone marks of �1000 bps around the summits of Max’s 

Roll motif. (G) The average ratio (31%) of ChIP-Seq peaks that cannot be explained of the 100 

TFs within K562 cell line. 

 

DESSO web server 

To broadly facilitate motif-related analysis in this field, we also provide an integrated web server 

for DESSO, which is freely available at http://bmbl.sdstate.edu/DESSO. In addition to showing 

identified sequence and shape motifs from the 690 ENCODE ChIP-Seq datasets, functionally 

conserved analyses of each motif were also provided on this web server. Furthermore, DESSO 

enables motif scan and other comprehensive analyses based on user-provided DNA sequences. 

The source code of DESSO and a detailed tutorial can be found at 

https://github.com/viyjy/DESSO. 

 

CONCLUSION AND DISCUSSION 
We developed a DL-based motif finding framework, DESSO, combed with a new statistical 

method for motif profile construction, followed by its application on the 690 human ChIP-Seq 

datasets within ENCODE. This work lead to a first ever, comprehensive analyses of identified 

sequence and shape motifs. DESSO improved the state-of-the-art performance of cis-regulatory 

motif prediction and TFBSs identification and showcased the potential of a DL framework for 

identification and rationalization of results. Our results demonstrate that DESSO was able to 

identify a number of previously unidentified motifs and shape factors that contribute to TF-DNA 

binding mechanisms and can infer the indirect regulation mechanisms through tethering binding 

activities and co-factor motifs predictions. These predictions now await experimental validation. 

Overall, the implementation and application of the framework provide a solid foundation for the 

construction of gene regulatory network and the elucidation of TF-DNA binding mechanism in 

the human genome. 
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An important area in this filed is how motif flanking regions influence TF-DNA binding [78-80]. 

Although most existing studies focused on proximal flanking regions around core motifs, it is still 

not clear whether more remote flanking regions will facilitate TF-DNA binding. Further 

investigations were carried out in this study using the 181 ChIP-Seq datasets with predicted 

AUC values of less than 0.9 in DeepBind. The results showcased that the test AUC increases 

with increasing peak length (Figure 7A). Specifically, increasing peak length to 1,001 bps 

results in an AUC of 0.98 on average. This implies that the flanking regions of ChIP-Seq peaks 

contain useful information in TF binding, and hence, using flanking regions as negative 

sequences is inappropriate [47, 81, 82]. 

 

Although CNN enables more complex motif pattern extraction owing to its multi-layer 

architecture, it is limited in the ability to capture the long-range dependencies among motifs. 

Inspired by the recurrent neural network (RNN), which can capture the unbounded context in 

natural language, the models combining CNN and RNN (CNN-RNN) have significantly improved 

prediction of TF-DNA binding specificity [44, 83]. The downside of RNN is its inability to 

parallelize over sequential inputs, resulting in substantial processing steps as the length of the 

input increases. Alternatively, the gated convolutional neural network (GCNN) has been 

proposed recently and performed competitively on benchmarks [84]. It allows parallelization by 

stacking convolutions but still has the capability in capturing long-range dependencies of inputs. 

We proposed a GCNN-based model for long DNA sequences (1,001bp) in TF-DNA binding 

specificity prediction (Figure 7B). This model contains a convolutional layer, a recurrent 

convolution-gating block (CGB), and two fully connected layers. Concretely, the convolutional 

layer aims to detect motifs, the CGB captures long-term dependencies among identified motifs, 

and the fully connected layers account for TF-DNA binding specificity prediction. Among the 181 

datasets mentioned above, our GCNN model achieved higher AUC than CNN on 169 of them 

(Figure 7C). This remarkable performance benefits from its ability in capturing long-term 

dependencies among identified motifs (not necessary the cis-regulatory motifs). With a 

competitive performance compared with CNN-RNN, GCNN is more efficient in the application 

on genome-scale, because it allows parallelization by stacking convolutions thus enhanced the 

ability to process high throughput data set. 

 

Indeed, further investigations are needed to elucidate other obscure intrinsic features in gene 

regulation and TF binding. Specifically, in this study, 31% of the peaks in ChIP-Seq data remain 

unexplained by sequence and shape motifs. Gene expression is controlled by multiple 
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underlying transcriptional regulatory signals, which is a complicated process requiring the 

coordination of histone modifications, TF binding, and other chromatin remodeling activities. The 

epigenetic information as measured by histone modifications, DNase-seq, ATAC-seq, and even 

gene expression data have been used to predict the binding of DNA regulatory elements [85, 

86]. Recently, the matched expression data and access data across diverse cellular contexts 

were integrated into a model to predict the missing parts, including TF binding location, 

chromatin accessibility, and gene expression [87]. A potential improvement lies in the evaluation 

of TF-DNA binding relationship, which usually conducted by calculating the significance of 

candidate sites based on motif occurrence frequency models including PWM. However, the 

frequent occurrence of motif patterns does not naturally mean high binding strength and high 

regulation affection. 

 

The DL-based models provide a promising opportunity to describe the relationships between 

motifs and expression accurately. We believe that the accuracy of predicted motifs, deep 

analysis on both sequence and shape motifs and followed future studies on this research line 

will facilitate inference of gene regulatory relations, and accurate modeling of the complex 

regulatory system in the human genome. Advanced mathematics and computational tools will 

permit the building of integrated models of gene regulatory systems and enable deliverable 

strategies to prevent or treat disease. 
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Figure 7. The application of GCNN in TF-DNA binding specificity prediction. (A) As peak length 

increases, the predictive performance of CNN on the 181 ChIP-Seq datasets was improved 

monotonically. (B) The workflow of GCNN with DNA sequence as input. (C) The AUC of GCNN 

and CNN on the 181 datasets based on the peaks with 101 bps length (orange points) and 

1,001 bps length (blue points). 

 

METHODS 

Data acquisition 

The 690 ChIP-Seq datasets of uniform TFBS based on March 2012 ENCODE data freeze were 

downloaded from the ENCODE Analysis Database at UCSC 

(https://genome.ucsc.edu/ENCODE/downloads.html). These datasets contained 161 TFs and 

cover 91 human cell types [48]. Each dataset contained a number of peaks (ranging from 101 to 

92,358), ranked in the decreasing order of their signal scores. These peaks were derived from 

the SPP peak caller [88] and de-noised by the Irreproducible Discovery Rate [89] based on 
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signal reproducibility among biological replicates. The average length of the de-noised peaks is 

300 bps. 

 

A total of 53 DNase I Digital Genomic Footprinting (DNase-DGF) datasets were downloaded 

from the NCBI Gene Expression Omnibus (GEO) data repository (GSE26328) [62]. They 

provide the footprint landscape of human genome for different cell lines using the deep 

sequencing technique, which is based on the fact that unbound regions of regulatory factors in 

nucleosome-depleted chromatin are more sensitive to cleavage of DNase I.  

 

The Vertebrate Multiz Alignment & Conservation (100 Species) by PhastCons was downloaded 

from UCSC (http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons100way) [63]. This 

dataset measures evolutionary conservation of 100 vertebrate species using PhastCons based 

on a probabilistic model. 

 

DNA shape feature generation  

DNA shape features (i.e., HelT, MGW, ProT, and Roll) provide three-dimensional structure 

information of the corresponding DNA sequences and play an essential role in TF-DNA 

recognition [19]. Such features were obtained by the Monte Carlo simulation and can be applied 

to any given nucleotide sequences by a sliding-window method [26]. A recent method designed 

for DNA shape analysis and its R implementation, DNAshapeR, was used to generate DNA 

shape features of each of the query/positive and background/negative sequences [76, 90]. All 

the resulting feature vectors were normalized to [0, 1].  

 

Overall design of DESSO  

The DESSO framework is composed of (i) a CNN model for extracting motif patterns from given 

ChIP-Seq peaks, and (ii) a statistical model based on the binomial distribution for optimizing 

motif instances identification. This framework can accept both DNA sequences and DNA shape 

feature as input to identify sequence and shape motifs, respectively. 

 

CNN model construction 

The CNN model contains a convolutional layer, a max pooling layer, and two fully connected 

layers. As this model requires binary vectors as input, each input DNA sequence was first 

converted to a � � 4 matrix � in one-hot format with A = [1, 0, 0, 0], T = [0, 1, 0, 0], G = [0, 0, 1, 

0], and C = [0, 0, 0, 1], where � � 101 [41]. This was sufficient for the convolution filters to 
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operate on sequence (S) alone. To incorporate DNA shape into DESSO, shape matrices of 

each DNA sequence were generated and represented by � (HelT), � (MGW), � (ProT), and � 

(Roll). The input of this CNN model could be (i) �, (ii) �, (iii) �, (iv) �, (v) �, and (vi) ��, �, �, ��. 
Each input was first fed into the convolutional layer to get the activation score of each 

convolutional filter: 

��� � ����  !��"���#$%& , '(�)� + � 1, … , 16, $ . /�, �, �, �, �0. 
Here, the !��"�#1%  represents convolution between �  and 1 , +  indicates the number of 

convolutional filters, and $ indicates different input format. 2��  represents convolutional filters 

corresponding to �, each of which is an � � 4 weight matrix with � � 24. 2��, 2��, 2��, and 2	� 

indicate convolutional filters corresponding to �, �, �, and �, respectively, each of which is an 

� � 1 weight matrix. The ����#3% indicates rectified linear unit, which is a widely-used activation 

function in DL.  

 

The max pooling layer was then used to downsample the activation score vectors by selecting 

the maximum value in each ��� for + � 1, … , 16 and $ . /�, �, �, �, �0. The concatenation of the 

output from the max pooling layer was represented by 4 and finally fed into two fully connected 

layers. Each layer has 32 hidden neurons and used the ���� activation function as above. The 

output layer containing only one neuron was used to predict the TF-DNA binding specificity 

which ranges from 0 to 1: 

56 � 78�9�8:#'
�����;'
�4 < =
�> < =
�% 

where '
� and '
� represent the weights, while =
� and =
� indicate the bias units in the fully 

connected layers. The 78�9�8:#3% is a sigmoid function, where 78�9�8:#3% � �

����
. 

 

CNN model training 

The same strategy in DeepBind [41] was used to split the peaks in each ChIP-Seq dataset into 

training data and test data in this study. Specifically, for a ChIP-Seq dataset, the 101-bp-long 

sequences centered on each peak summit was defined as positive sequences, each of which 

has a label of “1”. To overcome overfitting problems in the model training, for those datasets 

with less than 10,000 peaks, we generated complementary random peaks until having 10,000 

sequences. Unlike previous studies that used dinucleotide-preserving shuffled sequences [41], 

regions near the transcription start sites (TSSs) [47], or flanking regions of ChIP-Seq peaks [81, 

82], we picked the same number of 101-bp-long genomic sequences with same GC content 
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from the GENCODE to generate negative sequences [91]. These negative sequences have 

matched GC-content to positive sequences and did not have overlap with any peaks in that 

dataset. Each negative sequence was labeled as “0”, which have less chance to be bound by 

the target TF. 

 

For each dataset, its training data was then used to train the CNN model by minimizing the 

following loss function: 

1
? @ ?��#56��� , 5���%

�

���

< AB'B� 

where ? is the size of the sample set from training data (i.e., the number of sequences in the 

training set), ?��#56��� , 5���% is negative log-likelihood between prediction 56��� and target 5���, A is 

a regularization parameter to leverage the trade-off between the goal of fitting and the goal of 

the generalizability of the trained model, and B. B� indicates the �� norm.  

 

The loss function was optimized by mini-batch gradient descent with momentum, using a 

comparatively small batch size 64 to avoid the generalization drop of the trained models 

compared to larger batch size [92]. The backpropagation algorithm was used for gradient 

calculating [93], and exponential decay was applied to the learning rate with a decay rate equals 

0.95. The learning rate, dropout rate, momentum, regularization parameter, and the standard 

deviation of the initial weights in the neural network were randomly selected from pre-prepared 

intervals [94]. These hyper-parameters were sampled ten times, and three-fold cross-validation 

was performed on the training data to select the best hyper-parameter set which corresponds to 

the highest average AUC. The optimal hyper-parameter set was then applied to the whole 

training data for the final model training. Each model mentioned above was trained for 30 

epochs maximally, and an early-stopping strategy was applied to prevent overfitting. The 

training process was implemented based on TensorFlow which is the most widely used DL 

framework in public domain [95]. 

 

Sequence motif prediction 

Without loss of generality, the above CNN models, trained using DNA sequences, were used as 

an example to illustrate how to predict motifs based on our statistical model. Let � represents 

the 101-bp-long sequences from top- 9  peaks in each dataset, where each sequence is 

centered at its corresponding peak summit and 9 � min #500, G(� G�GH� �I9=�) �J K�H+7% . 
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Define the motif signal matrix ��
� as the activation values between a motif detector :� (each has 

length �=24) and � by feeding � into the convolutional layer in its corresponding trained model, 

and �� the maximum value in ��
�. A sequence segment (L bps) in each sequence is defined as 

an activation segment if its activation score is larger than an activation cutoff L. A motif instance 

set, denoted as Ω#�, A%, is all activation segments with L � A · �� in �, where A is a parameter 

ranging from 0 to 1. The value of A could be determined by a p-value strategy based on the 

assumption that the number of activation segment containing sequences using random 

selection with replacement in the human genome follows a binomial distribution. To estimate the 

“success” probability K of each random selection, the human genome was divided into non-

overlapping bins with length 101bp, and � � 500,000  bins were randomly selected as a 

background sequence set �.  

 

Let O be a random variable representing the number of activation segment containing bins with 

L � A · ��  in � , J#3% � �#O � 3%  be the probability function, and P#G% � �#O Q G%  be the 

cumulative distribution function. It is assumed that J#3% can be approximated by a binomial 

distribution O~S8��98H�#�, K%, where K � �

�
 is a maximum likelihood estimate. Therefore, the p-

value of Ω#�, A% is given by: 

P T|Ω#�, A%|V � �#O Q |Ω#�, A%|% 

 

For each motif detector :�, the optimal motif instance Ω#�, A%� � H)�98������P T|Ω#�, A%|V and 

the corresponding p-value can be obtained. Only Ω#�, A%� with the p-value less than 1 � 10��, 

WΩ#�, A%W X 5, and with at least three positions having information content larger than 1 were 

retained in our study, which assumes that motif should be conserved and observed more 

frequently in �. The derived motif instances were aligned as motif profiles and visualized using 

WebLogo 2.8.2 [96].  

 

Four widely used sequence motif finding tools 

DeepBind [41] and Basset [43] are designed based on the same CNN model as DESSO and 

used the same motif detectors, query sequences, and the corresponding motif signal matrices 

from DESSO to learn motif patterns using motif detectors. However, they fail to optimize motif 

signal cutoffs for motif instance identification. For each motif detector, sequence fragments 
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which have maximum activation score in each query sequence were aligned to obtain motifs in 

DeepBind, while Basset aligned sequence fragments were having activation score larger than 

half of �� as motifs. As a highly cited web service in this field, MEME-ChIP identifies motifs from 

ChIP-Seq peaks by integrating two complementary motif discovery algorithms, i.e., MEME [10] 

and DREME [34]. Gkm-SVM was selected in the comparison as it significantly outperforms 

traditional kmer-SVM methods by using gapped k-mers for accurately and efficiently identifying 

longer motifs which are hard to model as k-mers. Specifically, The C++ implementation, gkm-

SVM-2.0, was used in this study [46]. DESSO, DeepBind, and Basset were evaluated on all 

peaks in each ChIP-Seq dataset. Limited by the computational complexity [35], only the top 500 

and top 10,000 peaks were used in MEME-ChIP and gkm-SVM, respectively, and the 

corresponding negative sequences used in DESSO were applied to generate sequence motifs. 

Besides the maximum motif length and the maximum number of output motifs were set to 24 

and 16, respectively, default parameters in MEME-ChIP and gkm-SVM were used. 

 

Sequence motif analyses 

For each of the sequence motifs identified by DESSO, it was retained for the following analysis, 

only if it (i) is more enriched in positive sequences, (ii) has at least five motif instances, and (iii) 

has a p-value less than 1� � 4.  

 

All the sequence motifs, identified by DESSO, DeepBind, Basset, MEME-ChIP, and gkm-SVM, 

were compared with the documented Homo sapiens motifs in the JASPAR (537 motifs) [16], 

TRANSFAC (208 motifs) [15], and HOCOMOCO (641 motifs) [97], using TOMTOM [52] with the 

significance threshold FDR Y  0.05. Each query motif may have multiple matched target motifs 

in the above databases, along with multiple comparisons provided by TOMTOM, which were 

listed in descending order by the similarity between the query motif and target motif. In this case, 

only the first comparison was used in our study. Meanwhile, the TOMTOM program generated 

three statistical significances for each comparison, i.e., E-value, p-value, and q-value.  

 

Specifically, a total of 274 experimentally validated motifs in the JASPAR and TRANSFAC were 

covered by DESSO (with a TOMTOM E-value < 0.01), while 269, 269, 270, and 220 motifs were 

covered by DeepBind, Basset, MEME-ChIP, and gkm-SVM, respectively. To rule out the 

influence of motif detectors that are more enriched in background sequences, here, only the 

motif detectors complying with the above three requirements were used for motif generation in 

DeepBind and Basset. Furthermore, we compared the ����2#E-value), ����2#q-value), and 
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����2#p-value) of DESSO with the other four tools based on the motifs identified by all the five 

tools (TOMTOM q-value < 0.01).  

 

Totally, 2,786 sequence motifs were predicted by DESSO (with at least three nucleotides having 

information content larger than 1), among which 2,263 motifs can be matched with the 

documented motifs in JASPAR or TRANSFAC and 523 motifs do not have any matches in 

these two databases. For the 2,263 motifs, 435 clusters were identified based on TOMTOM and 

the hierarchical clustering. For each cluster, the most significant motif was selected according to 

its p-value, giving rise to 435 motifs (http://bmbl.sdstate.edu/DESSO/knownMotif.php), where 88 

of them corresponds to clusters that have greater than and equal to 3 motifs. The same 

procedure generated 248 clusters from the 523 motifs, in which 78 clusters have more than one 

motif and 178 clusters have only one motif. For each cluster, the most significant motif was 

selected based on its p-value, giving rise to 248 motifs 

(http://bmbl.sdstate.edu/DESSO/novelMotif.php). 

 

DNase I cleavage, vertebrate conservation, and enrichment analysis of identified motifs 

For each identified motif, all its motif instances in the corresponding ChIP-Seq peaks were 

ranked by their activation score. After that, the DNase I cleavage of each motif instance along 

with �50 bps flanking regions was collected from DNase-DGF [62] if the corresponding cell line 

is available. The evolutionary conservation of each motif instance was measured by PhastCons 

[63]. GSEA was used to generate the enrichment plot of each motif on the corresponding 

ranked peaks [64]. 

 

Motif scan 
Similar to the strategy mentioned in the Sequence motif prediction section, we also offer a 

TFBS identification method to scan the presence of identified motifs in their corresponding 

ChIP-Seq peaks. The major difference is that � was replaced by all peaks in that particular 

ChIP-Seq dataset and 9 � |�|. The background data � was generated by the dinucleotide-

preserving shuffle strategy. Another difference is that J#3% was approximated by a Poisson 

distribution which has been proved in our previous work [13]. 

 

Direct and indirect TF binding in K562 cell line 

Among the 690 ChIP-Seq datasets, 150 of them were generated within the K562 cell line, 

covering 100 TFs. For these 100 ChIP-ed TFs, their canonical motifs were first collected from 
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literature and publicly available databases [67, 68] (Supplementary Table S1). A total of 100 

datasets corresponding to the 100 TFs within the K562 cell line were selected from 

https://genome.ucsc.edu/ENCODE/downloads.html, based on the “first appear, first selected” 

strategy. All datasets used in this section refer to these 100 datasets. 

 

The peaks in each dataset were then split into the direct-binding (	) and the indirect-binding (
) 

peaks, where 	 represents the peaks containing the canonical motif of the corresponding ChIP-

ed TF, and  
 represents peaks that do not have its canonical motif. The average ratio of 
 

among the 100 datasets is 72% (Fig. 4). 

 

A pair of peaks is so-called co-binding peaks if they have at least one nucleotide overlap in our 

study. For each pair of TFs, e.g., GJ� and GJ�, we defined that GJ� tether to GJ� if and only if 

Z�,� � |[�,�|
|��| X 0.5 

where �� indicates the indirect binding peaks of GJ�, [�,� indicates the co-binding peaks of �� and 

��, and �� represents the direct binding peaks of GJ�. A total of 61 tethering binding interactions 

were observed, and 45 of them are MAX-related interactions (Fig. 4).  

 

Shape motif prediction 

The prediction of shape motifs followed similar same strategy as above, except that � and � 

should be replaced by the corresponding DNA shape features. The mean of shape motif 

instances was used to generate the shape motif logo, which is represented by a curve. To 

highlight the difference between shape motif and its background context, its flanking regions (50 

bps) were also showcased. A sequence motif logo of underlying sequences of shape motif 

instances was shown at the lower-left corner of shape motif logo.  

 

Applied GCNN model to TF-DNA binding specificity prediction 

Similar to the CNN model construction above, each input DNA sequence was converted to a 

� � 4 matrix � in one-hot format, where � indicates the length of the input sequence. The � 

was then fed into the convolutional layer with multiple convolutional filters 2� for + � 1, … , 16, 

where each kernel is an � � 4 weight matrix. The activation score of each filter on � is given by, 

�� � ����#!��"��#�%% 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/417378doi: bioRxiv preprint 

https://doi.org/10.1101/417378


 30

After that, �� was downsampled by the max pooling layer which has pooling window size ( � 1 

and step size ( � 10, giving rise to �� . \��� , where : � ]����
 

^. The � was reshaped to a 

: � + � 1 matrix indicated by O, which was then fed into the hidden layers ��  for 8 � 0, … , �, 

where � � 3. The ��  was obtained by: 

�� � !��"!#O% ` a#!��""#O%% 

where b  and c  are convolutional filters, a  indicates the sigmoid function, and ` is used to 

calculate the element-wise product. The first two hidden layers have a bottleneck architecture 

[98] and the output from the last hidden layer was downsampled by a max pooling layer, giving 

rise to d. The  d was then fed into two fully connected layers: 

 56 � 78�9�8:#'
�����;'
�  d < =
�> < =
�% 

where '
� and '
� represent the weights, while =
� and =
� indicate the bias units. 
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