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Abstract— RNA-binding proteins (RBPs) play critical roles
in regulating gene expression by modulating splicing, RNA
stability, and protein translation and are frequently the targets
of signal transduction pathways that control RBP function
through post-translational modifications such as phosphoryla-
tion. In response to various stimuli, alterations in RBP function
contribute to global changes in gene expression, but identifying
which specific RNA-binding protein(s) are responsible for the
observed changes in gene expression patterns remains an unmet
need. Here, we present Transite – a computational approach to
systematically infer RBPs influencing gene expression changes
through alterations in RNA stability and degradation. Specif-
ically, our approach builds on pre-existing differential gene
expression data and performs sequence-based enrichment anal-
ysis. By matching the enriched sequences to a compendium of
RBP-binding motifs, we can identify potential RBPs responsible
for the observed gene expression changes. As an example, we
applied Transite to examine RBPs potentially involved in the
response of human patients with non-small cell lung cancer to
platinum-based chemotherapy, since RBPs have been recently
identified as one of the primary classes of proteins influencing
the DNA damage response. Transite implicated known RBP
regulators of the DNA damage response and identified hnRNPC
as a new modulator of chemotherapeutic resistance, which was
subsequently validated experimentally. These data show that
Transite is a generalizable framework for the identification
of RBPs responsible for gene expression changes driving cell-
state transitions and adds value to the vast wealth of publicly-
available gene expression data. To ensure that Transite is
available to a broad range of scientists for routine differential
gene expression analysis workflows we have built a user-friendly
web interface that is accessible at https://transite.mit.edu.

I. INTRODUCTION

RNA-binding proteins are major modulators of gene ex-
pression at the post-transcriptional level, where they control
RNA splicing, stability, localization, degradation, and trans-
lation [1,2]. For mRNAs, the role of RBPs in modulating
global changes in gene expression at both the RNA and
protein level becomes particularly important under conditions
where new gene transcription is repressed, such as during
inflammation, cell stress, and in response to genomic dam-
age [3–5]. In addition, mutations affecting the expression of

specific RBPs, or their function, have been implicated in a
variety of diseases, including cancer [5–8].

RBPs appear to play an especially critical role in or-
chestrating the DNA damage response (DDR) by regulating
mRNA expression changes that control the onset and dura-
tion of cell cycle checkpoints and drive DNA repair [9–11].
Recent large-scale screening efforts have converged on RBPs
as one of the most enriched classes of proteins modulating
the DDR, even more so than annotated DNA damage repair
proteins [12–16]. In addition, emerging evidence from our
lab and others has identified RBPs as critical targets of DDR
kinases, including both upstream responder kinases such as
ATM, ATR and DNA-PK, and downstream effector kinases
such as Chk1 and MK2 [12,13,17–19]. The discovery
of RBPs as integration points of the cellular response to
genomic damage has important clinical applications, since
the efficacy of many commonly used chemotherapeutic drugs
is dependent on the integrity (or lack thereof) of the DNA
damage response (DDR) [20,21]. For example, we found that
a key target of the DNA damage-activated MK2 pathway was
the RBP hnRNPA0, which was required for maintenance of
the G1/S and G2/M checkpoints following cisplatin treat-
ment [22,23]. Furthermore, this finding dictated the response
of non-small cell lung cancers (NSCLCs) to chemotherapy in
both mouse models and human patients, where the expression
levels of two critical hnRNPA0 target RNAs, Gadd45α and
p27, predicted the clinical response of mouse and human
tumors to platinum therapy. Despite these types of data,
and the recent surge of interest in the roles of RBPs in
cancer chemosensitivity and resistance [5,9,24], methods for
systematic prioritization of RBPs that influence the response
to therapy in diverse clinically relevant data sets are lacking.

Motivated by our long standing interest in the DNA
damage response, protein kinase signaling and the centrality
of RBPs in dictating cell death decisions in response to
chemotherapy, we developed Transite. Transite is a computa-
tional method that leverages the wealth of publicly available
gene expression data to infer RBPs influencing mRNA
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1: CCAGCAUCGAUCAUGAC...
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6: CACCCCCCCUUCGUUCA...
7: GGUUCACACCGGGUUAC...
8: AAAAGCAAAUCCAUUCC...
n: CAGGCAAUGGGGCACAA...

Fig. 1. Schematic of the Transite analysis pipeline: The initial steps of the canonical Transite data analysis workflow include preprocessing and differential
expression analysis of gene expression profiles, which are usually obtained from NCBI and EMBL-EBI repositories such as GEO, SRA, and ENA. Differential
expression analysis is used to either identify groups of upregulated and downregulated genes (for Transcript Set Motif Analysis) or establish a ranked list
of genes from most upregulated to most downregulated (for Spectrum Motif Analysis). Transite then collects the sequences of all genes in the data set and
identifies RBPs whose targets concordantly change their expression level.

expression changes through modulation of mRNA stability.
Specifically, our method performs motif enrichment analysis
on a user-specified region of the mRNA, e.g., the 3′-UTR.
By identifying RBPs whose targets are overrepresented in
differentially-expressed genes, Transite nominates potential
RBP drivers of the observed gene expression changes, a
workflow that has been effective in the study of the kinases
associated with a particular biological stimulus [25]. A
schematic overview of the Transite pipeline is shown in
figure 1.

Application of Transite to a NSCLC patient data set of
chemoresistant tumors identified hnRNPC as a top putative
driver of increased mRNA levels in resistant patients. An
orthogonal analysis of hnRNPC-target mRNAs derived from
CLIP-Seq data confirmed upregulation of hnRNPC-target
mRNAs identified by our in silico approach. We then exper-
imentally validated that knock-down of hnRNPC enhanced
cisplatin-induced cell death in vitro, while hnRNPC over-
expression reduced cisplatin induced cell death. Furthermore,
high levels of hnRNPC expression were associated with
failure to respond to adjuvant platinum-based chemotherapy
in an independent NSCLC patient cohort.

Since the data input requirements for using Transite are
very general, the approach is not limited to DNA damage
or cancer chemotherapy responses, but instead Transite can
take advantage of the plethora of publicly available gene
expression data sets for any perturbation, and can be used to
investigate the effects of RBPs on gene expression using the
result of any experiment measuring the expression levels of
large numbers of genes simultaneously. Most prominently,
these include RNA-Seq, ribosome profiling and microarray
experiments. Transite is a versatile tool for inferring the
RBPs modulating gene expression and as such, should be
a valuable resource for the entire RNA community.

II. MATERIALS AND METHODS

A. Differential gene expression analysis

The analysis was done with the R/Bioconductor package
limma [26]. The design matrix for this analysis contains
two sample groups, untreated adenocarcinoma (10 microar-
ray samples) and recurrent adenocarcinoma (15 microarray
samples). A linear model was fit to each row of the log2-
transformed expression value matrix, where rows correspond
to transcripts and columns correspond to samples. The
coefficients of the fitted models describe the differences
between the untreated adenocarcinoma and recurrent adeno-
carcinoma groups. An empirical Bayes method was used to
obtain the significance and the strength of the log fold change
between sample groups for each transcript [27], resulting in
an estimate of the fold-change analysis between groups and
the significance of the change. Raw p-values were adjusted
using the Benjamini-Hochberg procedure [28].

B. Motif databases

Transite incorporates sequence motifs of RBP binding
sites from two databases: CIS-BP, the Catalog of Inferred
Sequence Binding Preferences [29], and RBPDB, a database
of RNA-binding specificities [30]. Together these contribute
174 sequence motifs of varying lengths (between six and
18 nucleotides). All motifs were obtained using in vitro
techniques for determining RNA targets. The majority of
motifs was determined by either systematic evolution of
ligands by exponential enrichment (SELEX) [31] or RNA-
compete [32]. The RNA binding specificities of two further
RBPs were obtained by electrophoretic mobility shift assays
(EMSA) [33].

C. Motif representations

Motif descriptions provided from the databases described
above were converted from count matrices to position weight

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2018. ; https://doi.org/10.1101/416743doi: bioRxiv preprint 

https://doi.org/10.1101/416743
http://creativecommons.org/licenses/by/4.0/


matrices (PWMs), obtained by normalizing each nucleotide’s
probability at each position by the mean probability of each
nucleotide, 25%.

For k-mer-based analyses, PWMs were converted to hex-
amers and heptamers by generating all k-mers for which each
position has a probability higher than a certain threshold. In
the work presented here, we used a threshold probability of
0.215, which is a stringency level that works well empirically
with the motifs from the motif databases.

Laplace smoothing (also known as additive smoothing) is
applied to avoid zeros in count matrices before conversion
to PWMs. Zeros might occur if the number of sequences on
which the PSSM is based, is too small to contain at least
one occurrence of each nucleotide per position. In this case,
pseudocounts are introduced [34].

D. CLIP-seq data analysis

The BED files (output from Piranha analysis) for
all CLIP-Seq data sets were downloaded from CLIPdb
(http://lulab.life.tsinghua.edu.cn/clipdb/). Read counts were
mapped to RefSeq identifiers using a UCSC table with
either just 3′-UTR sequences or the entire mature mRNA of
all human mRNAs in Hg19 coordinates. RefSeq identifiers
were then summarized to gene symbols. For gene symbols
with multiple RefSeq identifiers, the one with the maximum
counts was taken, as it was assumed this indicated the
most highly expressed transcript. This analysis created two
gene lists, one where there was binding in the 3′-UTR (3′-
UTR targets) or where there was binding in any region of
the mRNA (entire mature mRNA targets). These gene lists
were then merged with fold change lists from GEO gene
expression data set GSE7880. To generate the non-targets
list, the entire mature mRNA list was subtracted from the
GSE7880 list.

E. Package and web development

R package development and documentation was stream-
lined with devtools and roxygen2, respectively. Core algo-
rithms were implemented in C++. ggplot2 [35] was used for
data visualization.

The website was developed in R with the reactive web
application framework shiny from RStudio. The components
of the graphical user interface were provided by shiny and
shinyBS, which serves as an R wrapper for the Twitter
Bootstrap HTML/CSS/JavaScript components.

F. Cell culture and colony formation assays

T6a (mouse lung adenocarcinoma) cells were grown in
RPMI-1640 medium supplemented with 10 % fetal bovine
serum at 37 ◦C in a humidified incubator supplied with
5 % CO2. Colony formation assays were performed as
previously described [22]. Briefly, 48 hours after transfection
with siRNAs or pcDNA vectors, cells were treated with
either 4 or 8 μM cisplatin or vehicle for 4 hours. Cells
were then re-plated in 6-well plates using 1000 mock-treated
or 10,000 cisplatin-treated cells per well. In overexpression
assays, 500 μg/ml G418 was added to the media to select

for cells transfected with pcDNA vectors. After 10 to 14
days, cells were fixed with 4 % formaldehyde and stained
with either SYTO 60 (Thermo Fisher Scientific) or modified
Wright-stain (Sigma-Aldrich). Colonies were scanned and
counted using Odyssey R© CLx Imaging System (LI-COR
Biosciences).

G. siRNA transfection

Silencer select siRNAs (Ambion) transfection was per-
formed using RNAiMax following manufacturer instructions
(Life Technologies) with a final concentration of 5 nM. Cells
were then treated as described in the previous section.

H. Overexpression of hnRNPC

pcDNA3.1 vectors expressing FLAG-tagged mouse
hnRNPC were generated as follows. First, total RNA was
prepared from KP7B (mouse lung carcinoma) cells using
RNeasy purification kit (Qiagen) and was used to synthesize
cDNAs using Superscript cDNA Synthesis System (Life
Technologies). cDNAs were used as templates in PCR
reactions using PfuUltra II HF DNA polymerase (Agilent)
and the following primers: 5′-GCCCATAAGCTTATG-
GACTACAAAGACGATGACGACAAGGCTAGCAAT-
GTTACCAACAAGACAGATCCTCGG-3′ (forward) and
5′-GCCCATTCTAGATTATTAAGAGTCATCCTCCCCA-
TTGGCGCTGTCTCTG-3′ (reverse). Restriction sites for
HindIII (in forward primer) and XbaI (in reverse primer)
are in bold. Sequences encoding FLAG are underlined.
The PCR products were cleaved with the indicated
restriction enzymes (New England BioLabs Inc), purified
(QIAquick PCR Purification Kit, Qiagen) and sub-cloned
into pcDNA3.1 vectors. The integrity of the plasmids were
confirmed by sequencing (Eton Bioscience Inc).

I. Immunoblotting

Cells were harvested 24 (siRNA transfected) or 48
(pcDNA vectors transfected) hours after cisplatin treatment
and re-plating. Cells were then lysed in RIPA buffer and
subjected to standard SDS/PAGE electrophoresis and trans-
ferred to nitrocellulose membranes. The membranes were
immunoblotted with hnRNPC (ab10294, Abcam Inc., Cam-
bridge, MA) and γ-tubulin (Sigma-Aldrich) following man-
ufacturers instructions.

III. RESULTS

RNA-binding proteins (RBPs) influence all stages of the
mRNA life cycle through specific interactions involving
short linear sequence motifs containing 6 - 8 nucleotides
within their target RNAs [36]. The identity of these RBP-
binding motifs has been determined for a subset of all
known RBPs using various in vitro based oligonucleotide
selection methods such as SELEX [31], RNAcompete [32]
and Bind-n-Seq [37], and directly confirmed for a smaller
set of RBPs through experimental analysis of RBP-RNA
interactions using CLIP-Seq and various extensions thereof.
These latter techniques are laborious and costly to perform,
and the direct experimental identification of the complete set
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of RNA targets for most RBPs is therefore not yet known.
Furthermore, identification of these RNA targets are likely
to differ depending upon the experimental situation under
which CLIP-Seq was performed. This has limited our ability
to understand which RBPs are critical mediators of changes
in RNA levels in pre-existing gene expression datasets like
those contained in the gene expression omnibus (GEO),
including cancer-relevant datasets that describe treatment
responses.

In order to systematically mine these existing data sets
for RBPs that may influence gene expression changes, with
a focus of patient response to therapy, we have developed
Transite. Transite takes either a discrete set of differentially
expressed genes, or a continuous list of genes, and searches
for enriched short linear oligonucleotide motifs within spe-
cific regions of the transcripts they encode, and then matches
these motifs to the likely RBP that binds them using a com-
pendium of RBP motifs. By default, Transite uses 3′-UTR
sequences, as our major focus is mRNA stability and motifs
that determine mRNA stability are known to generally reside
within the 3′-UTR. Gene sets used for Transite analysis can
be defined in either a discrete or a continuous fashion. For
discrete sets of genes we implement Transcript Set Motif
Analysis, which takes the predefined sets of transcripts such
as upregulated and downregulated transcripts and performs
motif analysis based on systematic differences between these
sets and the total gene expression data. For continuous
collections of genes we developed Spectrum Motif Analysis,
which uses a continuous quantity to establish an ordered
ranking of transcripts and analyzes motif enrichment along
that ordered list of transcripts, similar to the approach taken
by Gene Set Enrichment Analysis [38]. For this continuous
quantity, a measure of differential expression is commonly
used, such as fold change or signal-to-noise ratio, thus
exploiting information across the entire spectrum of changes
rather than limiting analysis to the up- and down-regulated
extremes.

A. Transcript Set Motif Analysis identifies RBPs with sub-
strate sites enriched or depleted among differentially ex-
pressed genes

Transcript Set Motif Analysis (TSMA) can identify the
overrepresentation or underrepresentation of putative binding
sites of 174 RNA-binding proteins in a set (or sets) of
transcripts, i.e., the foreground set, relative to the entire
population of transcripts measured in an experiment. The
latter is called background set, and is a proper superset of
the foreground sets.

Foreground sets are proper subsets of the background set
and their definition depends on the desired motif analysis
approach. In any case, foreground and background sets define
the groups of transcripts wherein the overrepresentation
and underrepresentation of putative RBP binding sites is
investigated.

When gene expression data is used, the two foreground
sets for TSMA are usually the statistically significantly
upregulated and downregulated transcripts. (Figure 2A). Var-

ious deviations of this canonical use of foreground sets are
possible. Upregulated and downregulated sets can be defined
in various ways, depending on the method of differential
expression analysis [39]. It is not even necessary to use
gene expression data to define foreground and background
transcripts. For example, all human or all murine genes as-
sociated with a certain Gene Ontology (GO) [40] term could
be compared to all genes of human or mouse, respectively,
which are annotated with at least one GO term, to identify
RBPs associated with particular ontological terms.

Two different methods are used to assign transcript targets
to specific RBPs, k-mer-based TSMA and matrix-based
TSMA.

B. k-mer-based TSMA

In the k-mer based approach of TSMA the sequence motifs
recognized by each RBP are specified by lists of RBP-
specific hexamers or heptamers, collated from current motif
databases [29,30].

After foreground and background sets are defined and the
preferred sequence region is selected (3′-UTR, 5′-UTR, or
complete mature mRNA including the coding region), the
sequences of both sets are broken down into overlapping
hexamers (i.e., k-mers of length 6) (Figure 2B, left column),
and for each k-mer its frequency in the foreground set
and background set is determined. While Transite supports
both hexamer- and heptamer-matching, hexamers are recom-
mended, since run-time increases exponentially with k and
the results for heptamers mirror those for hexamers in our
experience.

1) k-mer enrichment values: The enrichment value of k-
mer i, ei, is calculated as follows:

ei =
fi/nF
bi/nB

,

where fi and bi are the absolute counts of k-mer i in
foreground and background set and nF and nB are the
total counts of k-mers in the foreground and background,
respectively.

2) Significance of k-mer enrichment values: The statisti-
cal significance of the enrichment for all possible k-mers is
then determined. First, a contingency table Ci for k-mer i is
defined as

Ci =

(
fi (nF − fi)
bi (nB − bi)

)
.

Then, the p-value pi for Ci is approximated with Pearson’s
χ2 test. If pi < 5α, pi is replaced by the p-value obtained by
Fisher’s exact test for Ci. This step-wise procedure reduces
computation time dramatically (approximately 50-fold), be-
cause the computationally expensive Fisher’s exact test is
only used in cases where the approximate p-value from the
computationally inexpensive χ2 test is close to the decision
boundary (α) and is avoided in cases where a precise p-value
is unnecessary. Furthermore, Fisher’s exact test is always
used if at least one of the expected counts is less than five,
because this constitutes a violation of the assumptions of the
approximate test. The p-values are subsequently adjusted for
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AGUCCUGAAAGCGGUAUACAUGGAUCAGCAGUCUGAUCAUCGACGGUACUGCAGUGGAAAC...
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    CUGAAA CGGUAU CAUGGA CAGCAG CUGAUC UCGACG UACUGC GUGGAA
     UGAAAG GGUAUA AUGGAU AGCAGU UGAUCA CGACGG ACUGCA UGGAAA
      GAAAGC GUAUAC UGGAUC GCAGUC GAUCAU GACGGU CUGCAG GGAAAC

2. Calculate k-mer enrichment between foreground and
background sets and visualize with volcano plots:

1. Score whole transcript region (e.g., 3’ UTR) of all 
foreground and background transcripts with PSSM and
count putative binding sites (hits):

AGUCCUGAAAGCGGUAUACAUGGAUCAGCAGUCUGAUCAUCGACGGUACUGCAGUGGAAAC...
→

PWM

2. Calculate enrichment of putative binding sites
between each foreground set and the background set.

AGUCCUGAAAGCGGUAUACAUGGAUCAGCAGUCUGAUCAUCGACGGUACUGCAGUGGAAAC...
→

hit PWM

AGUCCUGAAAGCGGUAUACAUGGAUCAGCAGUCUGAUCAUCGACGGUACUGCAGUGGAAAC...
→

PWM
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p-value by Monte Carlo sampling:
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Fig. 2. Schematic figure of Transcript Set Motif Analysis. (A) The foreground sets in TSMA are usually defined by differential gene expression analysis
of RNA-seq or microarray data. In this case, the foreground sets are most naturally defined as statistically significantly upregulated and downregulated
genes, whereas the background set is all genes of the microarray platform or all measured genes in RNA-seq. In the heatmap of the gene expression profile
in panel A, the two rows (Condition 1, Condition 2) are the mean gene expression values of the replicates of the respective groups (e.g., Condition 1 could
be treated with drug A and Condition 2 untreated). The columns of the heatmap correspond to the genes, and the superimposed gray curve is the log fold
change between Condition 1 and Condition 2. (B) TSMA then estimates the enrichment or depletion of putative binding sites between each foreground set
and the background set. There are two ways to describe putative binding sites of RNA-binding proteins (i.e., the motif). The column on the left depicts
k-mer-based TSMA, which uses a list of k-mers to describe putative binding sites. The column on the right is matrix-based TSMA, which instead uses
Position Weight Matrices (PWMs).
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multiple hypothesis testing. The available p-value adjustment
methods are described in section 5 of the supplement.

3) k-mer volcano plots: Volcano plots are then used to vi-
sualize the enrichment values (x-coordinate, log transformed)
and associated p-values (y-coordinate, log transformed and
multiplied by -1) for all 4k k-mers in a Transite TSMA run
(Figure 2B, left column, step 2). The black dots represent k-
mers without significant enrichment or depletion, while blue
dots denote significantly depleted and red dots significantly
enriched k-mers. Yellow k-mers are part of the RBP motif.

4) RBP assignment by average of k-mer enrichment val-
ues: As a way to quantify the overrepresentation (or under-
representation, respectively) of putative binding sites for a
particular RBP, the geometric mean of the enrichment values
of all k-mers associated with that RBP is used. Monte Carlo
tests (permutation tests) are used to obtain an estimate of
their significance (see section 2 in the supplement for details
on Monte Carlo sampling). In step 3 of figure 2, panel B, an
example histogram is shown, which depicts the empirical null
distribution of mean enrichment values associated with an
RBP’s k-mers after repeated random selection of foregrounds
from the background. The dashed red line denotes the mean
enrichment value of motif-associated hexamers (which are
the yellow dots in the volcano plot in step 2) which were
actually observed in the true, unpermuted foreground.

C. Matrix-based TSMA

In the matrix-based TSMA approach, the sequence motifs
of 174 RBPs are represented as PWMs. Next, all sequence
positions in all transcripts in foreground and background
gene sets are scored by these PWMs, as shown in step 1 of
the right column of panel B, figure 2. The PWM slides along
the sequence, assigns a score to each position, and scores
above a certain threshold are considered putative binding
sites (hits). These hits are tallied in both the foreground and
the background set and enrichment values and associated
p-values are calculated analogously to the k-mer-based ap-
proach. Again, all p-values are multiple testing corrected.

A disadvantage of the matrix-based TSMA method relative
to the k-mer-based approach is that a PWM assumes inde-
pendence among positions, making it impossible to construct
a PWM that assigns high scores to AAAAAA and CCCCCC,
but a low score to ACACAC.

An advantage of our matrix-based approach is the possibil-
ity of detecting clusters of putative binding sites. This can be
done by counting regions with many hits using positional hit
information or by simply applying a hit count threshold per
sequence, e.g., only sequences with more than some number
of hits are considered. Homotypic clusters of RBP binding
sites may play a similar role as clusters of transcription
factors [41].

D. Spectrum Motif Analysis identifies RBPs with nonrandom
arrangement of substrate sites in a ranked list of transcripts.

A limitation of the TSMA method described above is that
it will only capture those RBPs for which putative substrate
sequences are statistically significantly enriched among a

foreground defined using a collection of either the most or
least differentially-regulated genes. As an alternative method,
we present Spectrum Motif Analysis (SPMA), which is an
effort to more broadly and generally identify non-random
distributions of RBP substrate sequences in an ordered list
of genes without having to pre-define a specific foreground
set (compare Figures 2A and 3A).

Instead of using an arbitrary threshold (e.g., p-value less
than or equal to 0.05) to assign transcripts to a single
foreground set, SPMA subdivides the entire list of rank-
ordered transcripts into a number of foreground sets (bins)
of equal width, calculates enrichment scores for k-mers or
PWM motifs in each bin as described above, and then
searches for non-random bin-wise assortment of k-mer or
matrix hit frequencies associated with individual RBPs.

SPMA thereby helps to illuminate the relationship between
RBP binding evidence (putative binding site enrichment) and
the transcript sorting criterion (e.g., fold change between
treatment and control samples). Figure 3A illustrates how
the sorted list of transcripts is divided into bins.

1) Spectrum plots: The results of SPMA are displayed
as spectrum plots, compact graphical representations of the
distribution of putative binding sites for a single RBP, across
a range of transcripts (which are sorted in a meaningful way).
A spectrum plot visualizes putative binding site enrichment
or depletion, and associated p-values, for an RBP motif
across the spectrum of transcripts. Spectrum plots are one-
dimensional heatmaps, where red-blue coloring encodes the
putative binding site enrichment values and the columns
are the individual bins of transcripts. Significance levels are
indicated by one, two, or three asterisks (p-value less than
or equal to 0.05, 0.01, and 0.001, respectively). Examples of
spectrum plots are shown in panels B and C of figure 3.

2) Spectrum plot classification: SPMA generates one
spectrum plot for each RBP motif in the motif database. With
174 motifs currently available, it is imperative to provide a
means to aid in the identification of biologically meaningful
spectrum plots that exhibit non-random patterns. A typical
non-random pattern is shown in the first spectrum plot in
figure 3C, where the enrichment values are observed to
positively correlate with the sorting criterion. This type of
positive linear relationship between RBP motif enrichment
values and sorting criterion might arise in a situation where
transcripts are sorted according to their fold change between
treatment and control groups and the target transcripts of
the RBP are collectively upregulated in the treatment group,
perhaps via stabilization by the RBP itself. Transite further
aids the user in the process of identifying spectrum plots
with a meaningful pattern—one that might be indicative
of an underlying biological process—by separating them
from spectrum plots with more random distributions of motif
enrichment, which are more likely to occur by chance. Each
spectrum plot is automatically labeled either non-random or
random, based on three criteria. (1) the adjusted R2 of a poly-
nomial model fit, (2) the local consistency score, and (3) the
number of bins with a significant enrichment or depletion of
putative binding sites. For (1), polynomial regression models
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Fig. 3. Schematic figure of Spectrum Motif Analysis. (A) Similar to TSMA, in SPMA the input data usually comes from differential gene expression
analysis. Transcripts are sorted by some measure of differential expression (e.g., fold change or signal-to-noise ratio) and then the entire spectrum of
transcripts is subdivided into a number of foreground ”bins”. (B) The motif enrichment step is identical to TSMA. SPMA results are visualized as spectrum
plots, which are one-dimensional heatmaps of motif enrichment values, where the columns correspond to the bins and the color encodes the enrichment
value (strong depletion in dark blue to strong enrichment in dark red) of a particular k-mer or PWM. (C) The distribution of putative binding sites (as
visualized by spectrum plots) is deemed random or non-random (i.e., putative binding sites are distributed in a way that suggest biological relevance),
based on a number of criteria described in section Spectrum plot classification. A polynomial model is fit to the enrichment values of the foreground sets
to characterize the relationship between the sorting criterion (e.g., fold change) and the enrichment values.
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A B C

D

Fig. 4. The Transite website analysis submission forms for TSMA and SPMA make the Transite functionality accessible to scientists outside the R
community. (A) Users of the website can submit TSMA and SPMA jobs in five simple steps, which include the specification of foreground and background
sets and additional optional parameters. (B) For SPMA, users are asked to upload a file that contains two columns, an identifier column that holds RefSeq
identifiers or gene symbols, and a value column, which is used to sort the transcripts (e.g., by fold change). Shown here is the configuration panel for
SPMA. (C) Part of the k-mer-based TSMA submission form, where sequence region, k-mer length, and other parameters can be specified. (D) The website
supports analysis runs with the Transite motif database as well as with user-defined motifs, where both PWMs and lists of hexamers and heptamers are
supported.

of various degrees are fitted to the spectrum of enrichment
values, and the model that best reflects the true nature of
the data is selected by means of the F-test. Models with
positive and negative coefficients of the linear term (depicting
increasing and decreasing linear relationships) are illustrated
in the first two examples of figure 3C, respectively (see
section 6.2 of the supplement for details on the polynomial
model approach). With approach (2), a local consistency
score quantifies the local noise of the spectrum by calculating
the deviance between the linear interpolation of the scores
of two bins separated by exactly one other, and the observed
score of the middle bin, for each position in the spectrum.
The lower the score, the more consistent the trend in the
spectrum plot (see section 6.1 of the supplement for a formal
definition of the local consistency score and section 2 for
details on the Monte Carlo sampling procedure of the null
distribution of the score). Spectrum plots are classified as
non-random if (1) the adjusted R2 of the polynomial fit is
greater than or equal to 0.4, and (2) the p-value associated
with the local consistency score is less than or equal to
5 ∗ 10−6, and (3) at least 10% of the bins have significant
(α = 0.05) enrichment or depletion of putative binding sites.

E. Transite R package and website

To make gene expression dataset analysis for assigning pu-
tative RBPs widely available to the scientific community, the
Transite analysis platform is hosted at https://transite.mit.edu.
Both Transcript Set Motif Analysis and Spectrum Motif
Analysis are available with customizable user-friendly forms
and familiarity with the R programming language is not
required (Figure 4). The full functionality of Transite is
also provided as an R/Bioconductor package to ensure a
seamless integration into existing bioinformatics workflows.
The source code of the Transite package is hosted on GitHub.
Both website and R package support motif enrichment anal-
ysis with user-defined motifs, in addition to the 174 motifs
provided by the Transite motif database, enabling users to
search for enrichment of any motif in a discrete set of genes
or a rank ordered list.

F. Transite identifies RBPs known to be involved in the DNA
damage response

As an application of Transite-based RBP scoring, we
analyzed a data set of non-small cell lung cancer (NSCLC)
patients at diagnosis or at recurrence after cisplatin-based
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Fig. 5. SPMA identifies ELAVL1 and TIA1 motifs as highly enriched in recurrent NSCLC patients. (A) Differential gene expression analysis was performed
on samples of patients with untreated NSCLC tumors and patients with recurrent tumors. (B) Transite was used to identify RBPs whose targets were
overrepresented among upregulated genes in samples of recurrent tumors. Shown is a table of k-mer-based SPMA showing RBPs with highly non-random
motif enrichment pattern. Among the top hits are ELAVL1, TIA1, and hnRNPC. (C) Spectrum plot from SPMA depicting the distribution of putative
ELAVL1 binding sites across all transcripts. The transcripts are sorted by ascending signal-to-noise ratio. Transcripts downregulated in resistant samples
relative to untreated samples are on the left, and those upregulated are on the right of the spectrum. Putative binding sites of ELAVL1 are highly enriched
in transcripts upregulated in resistant cells (shown in red) and highly depleted in transcripts downregulated in resistant cells (shown in blue). (D) Spectrum
plot of putative TIA1 binding sites using same transcript order as in panel C. (E) Enrichment of ELAVL1 targets in resistant NSCLC cells is recapitulated
in an independent HITS-CLIP experiment (publicly available data). The distribution of fold changes of transcripts that have ELAVL1 binding sites is shifted
in the positive direction, even more so when the binding sites are in the 3′-UTR. The p-values were calculated with the one-sided Kolmogorov-Smirnov
test. (F) As in panel E, transcripts with TIA1 binding sites are upregulated in resistant cells according to an iCLIP experimenmt, confirming results from
SPMA.
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chemotherapy (GEO Series accession GSE7880) in order to
prioritize RBPs that may influence the response of these
patients to chemotherapy. We ranked the gene expression
changes between pre-treatment and recurrent patients based
on signal-to-noise ratio where transcripts present in higher
quantities in recurrent patients had positive values and
those upregulated in naive patients had negative values (see
Figure 5A for schematic). The results of k-mer-based and
matrix-based TSMA and SPMA (including all 174 motifs)
are available as sample output on the Transite website,
About page, Example output section. Ranking the Transite
output of both SPMA runs by adjusted R squared (ARS)
revealed ELAVL1 and TIA1 to be among the top RBPs
predicted to be associated with the 3′-UTRs of transcripts
upregulated in recurrent patients relative to untreated patients
(Figure 5B shows top 10 RBPs in k-mer-based SPMA).
Individual spectrum plots for ELAVL1 (Figure 5C) or TIA1
(Figure 5D) demonstrated consistent behavior of these motifs
across the gene expression continuum, being enriched in
3′-UTRs of genes that are up in recurrent patients and
depleted in 3′-UTRs of genes that are up in naive patients.
Importantly, upregulation of ELAVL1 and TIA1-target mR-
NAs was further validated by analyzing the distribution of
known CLIP-Seq identified targets [42,43] for these two
RBPs (Figure 5E and 5F). Moreover, both ELAVL1 [44]
and TIA1 [45] are known to be involved in the DNA damage
response. The fact that two well-known players in the DNA
damage response are among the top hits of the motif analysis
provides confidence that Transite’s predictions are likely to
reflect bona fide regulators of the DNA damage response
and drivers of chemoresistance. Although CLIP-Seq-defined
target mRNAs remain the gold standard for known RBP
targets, there are very few RBPs that have been subjected
to extensive CLIP-Seq analysis. In the absence of this data,
Transite currently utilizes information about putative binding
sites from 174 motifs, covering 142 distinct RBPs. Therefore,
Transite presents the possibility of identifying RBPs whose
true targets as identified by CLIP-Seq and related methods
are currently unknown, thus nominating novel RBPs as
putative modulators of chemoresistance or other biological
processes, in order to prioritize those RBPs for further
analysis by CLIP.

G. Motif analysis of the non-small cell lung cancer response
to cisplatin treatment identfies hnRNPC as a potential mod-
ulator of resistance to chemotherapy

The data in Figure 5 shows that Transite analysis can
identify known RBPs involved in the DNA damage response.
We were particularly interested in using Transite as a tool
to discover new biology related to the DDR in data from
human clinical trials. We therefore focused on hnRNPC,
one of the highest-scoring RBPs that emerged from our
analysis of chemoresistant NSCLC patients, and has not
to our knowledge been strongly implicated in the response
to chemotherapy-induced DNA damage [46]. As shown in
Figure 6A, the spectrum plot of the distribution of putative
hnRNPC binding sites shows a strong enrichment of mRNAs

with hnRNPC motifs in their 3′-UTRs in patients with tumor
recurrence after platinum therapy. This Transite prediction
was independently confirmed by analysis of iCLIP-defined
target mRNAs [47], which also showed an overrepresentation
of hnRNPC targets in upregulated transcripts in recurrent
patients (Figure 6B), with those with binding in the 3′-UTR
showing the strongest enrichment.

H. hnRNPC modulates sensitivity to cisplatin

To experimentally validate these Transite results, we ex-
amined the effect of knockdown or over-expression of hn-
RNPC on sensitivity to cisplatin treatment in T6a murine
lung carcinoma cells. Colony formation assays in T6a cells
demonstrated that hnRNPC over-expression promoted re-
sistance to cisplatin as evidenced by a 1.6 fold increase
in the number of surviving colonies (Figure 6C, red bar).
Conversely, siRNA-downregulation of hnRNPC significantly
enhanced T6a cell sensitivity to cisplatin as evidenced by a
5-fold decrease in the number of colonies formed by cells
treated with hnRNPC siRNA compared to those of control
siRNA-treated cells after cisplatin treatment (Figure 6C, blue
bar). These data indicate that hnRNPC is a key player in
mediating resistance of NSCLC cells to chemotherapy, and
demonstrate that our computational approach can identify
new RBPs influencing the DDR. To independently vali-
date the importance of hnRNPC in mediating chemother-
apy response in patients, we took advantage of a unique
adjuvant chemotherapy trial, JBR.10 (Figure 6D). In this
trial, early stage NSCLC patients had their tumors surgi-
cally resected and subjected to gene expression profiling.
Patients were then randomized to receive cisplatin / vi-
norelbine doublet chemotherapy or observation and palliative
care [48](GSE14814), allowing us to specifically assess
the role of hnRNPC in the response to chemotherapy. We
focused our analysis on stage 2 patients, as their benefit from
adjuvant chemotherapy is most pronounced. Separation of
patients based on hnRNPC expression revealed that patients
whose tumors display low expression of hnRNPC benefited
significantly from chemotherapy in terms of survival (Fig-
ure 6D, right panel, p = 0.019) while patients whose tumors
have high hnRNPC expression did not benefit (Figure 6D,
left panel, p = 0.68). Together these data define hnRNPC
as an important new RBP involved in the chemotherapeutic
response in NSCLC and suggest that Transite is a highly
effective tool to pinpoint novel RBPs that drive chemoresis-
tance in human cancer patients.

IV. DISCUSSION

Despite their crucial role in post-transcriptional regulation
of gene expression, the majority of RNA-binding proteins
(RBPs) have unknown functions. To help understand the
influence of RBPs on their target transcripts, we developed
Transite, a novel computational method for the analysis of
the regulatory role of RBPs in various cellular processes
for which differential gene expression data, or other rele-
vant gene sets are available. Our analysis is based on the
fact that most RBPs recognize short linear oligonucleotide
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Fig. 6. hnRNPC modulates sensitivity to cisplatin. (A) Spectrum plot from k-mer-based SPMA depicting the distribution of putative hnRNPC binding
sites across all transcripts. The transcripts are sorted by ascending signal-to-noise ratio from lowest to highest abundance in resistant relative to untreated
samples. Putative hnRNPC binding sites are highly enriched in the upregulated fraction of transcripts. (B) Enrichment of hnRNPC binding sites in
upregulated transcripts is independently confirmed by CLIP experiments. The p-values were calculated with the one-sided Kolmogorov-Smirnov test. (C)
siRNA-mediated reduction in hnRNPC levels significantly impairs long-term survival of T6a cells in response to cisplatin (blue bar). Overexpression of
hnRNPC (red bar) protects against cisplatin-induced cell death of T6a cells in colony formation assays. Bar graphs represent percent number of colonies
formed, normalized to untreated control cells. White bars represent control cells transfected with control vehicles (control siRNA or empty pcDNA). Error
bars represent standard deviation among 3 replicates. (D) High expression of hnRNPC impedes the efficacy of platinum-based chemotherapy in patients
with stage 2 disease from the JBR.10 lung cancer adjuvant chemotherapy trial (GSE14814). The p-value was calculated with the log-rank test (HR is
Hazard Ratio). hnRNPC low group = patients with hnRNPC expression Z-scores of less than or equal to −0.2, and hnRNPC high group = patients with
hnRNPC expression Z-scores greater than or equal to 0.2.

sequences whose over-representation can be computed from
gene expression data, and that a large collection pre-existing
motif data for RBPs has been compiled in publicly available
databases [29,30].

It is important to note that not all RBPs have strong motif
preferences, and that there may be considerable redundancy
in motif recognition by multiple RBPs. Furthermore, their in
vitro-derived motifs may not always reflect motifs derived
from in vivo binding analysis. These caveats have raised
questions about the ability of consensus motifs and PWMs
to accurately predict RBP targets a priori on a genome-wide
scale, and have led to the development of more sophisticated

approaches for predicting specific RBP RNA targets [49,50].
In contrast, Transite does not make any specific RBP RNA
target predictions, and instead simply looks at the statistical
distribution of RBP motif representation in sets of expressed
genes to infer putative roles for specific RBPs in some
biological process.

By using two approaches to identify non-random distri-
butions of RBP-binding motifs, followed by back-mapping
of those motifs onto those of 174 known RBPs, Transite
identified 3 RBPs involved in the human DDR which we
could further validate based on independent CLIP-Seq data
of their known mRNA targets in cells, rather than using mo-
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tifs derived from in vitro sequence libraries. These findings
suggest that, although there are limitations to utilizing in
vitro-derived motifs, Transite serves as an excellent discovery
tool for new biology. Moreover, since users can define their
own motifs in addition to those from the database, users are
able to upload motifs from CLIP-Seq data of their favorite
RBP and use that as a means to analyze enrichment in
preexisting data sets.

To further demonstrate the utility of Transite, we per-
formed an analysis of human NSCLC patient data we were
able to recover previously-known biology and also identify
novel sources of chemoresistance. Well-known players in the
DNA damage response such as ELAVL1 and TIA1 were
among the top hits in the tumor resistance gene expression
data set, showing that our approach is consistent with previ-
ous DNA damage response literature. Transite was also able
to identify hnRNPC as a new potential modulator of cisplatin
sensitivity in NSCLC patients. Experimental validation of the
in silico prediction further provides independent support for
a critical role for hnRNPC in mediating resistance of NSCLC
cells to chemotherapy, which was independently validated in
an additional NSCLC patients data set.

Transite is a versatile tool that can be used with any type
of gene expression data, the only requirements being a list
of gene identifiers and some means to separate foreground
and background sets or rank the gene list. Examples of types
of data users may utilize Transite to analyze are: (1) search-
ing for RBP motif enrichment in 5′ or 3′-UTRs of genes
whose translational efficiency changes in response to some
stimulus as measured by ribosome or polysome profiling.
(2) searching for enrichment of RBP motifs in mRNAs that
are localized to specific sub-cellular compartments. (3) de
novo motif analysis in the entire mRNA of gene expression
changes upon knockdown of a nuclease of unknown function.
These are just a few examples of the versatility of Transite.
The Transite website (https://transite.mit.edu) makes this tool
accessible to a broad group of scientists and provides insight
as to how key post-transcriptional regulators contribute to
the concerted regulation and function of specific cellular
processes. With Transite, the large body of gene expression
data from microarray and RNA sequencing experiments can
be further leveraged to identify changes in mRNA expression
associated with specific RBPs. In this way, hypotheses can
be generated regarding which RBPs interact preferentially
with mRNAs that are specific to a particular condition.

AVAILABILITY

The Transite website is available at https://transite.mit.edu.
For workflow integration and advanced analysis, the Transite
functionality is also offered as an R/Bioconductor package
at https://www.bioconductor.org. The Transite source code is
hosted on GitHub (https://github.com/kkrismer/transite).
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