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SUMMARY 

Algorithms that accurately predict gene structure from primary sequence alone were           

transformative for annotating the human genome. Can we also predict the ​expression levels of              

genes based solely on genome sequence? Here we sought to apply deep convolutional neural              

networks towards this goal. Surprisingly, a model that includes only promoter sequences and             

features associated with mRNA stability explains 59% and 71% of variation in steady-state             

mRNA levels in human and mouse, respectively. This model, which we call Xpresso, more than               

doubles the accuracy of alternative sequence-based models, and isolates rules as predictive as             

models relying on ChIP-seq data. Xpresso recapitulates genome-wide patterns of transcriptional           

activity and predicts the influence of enhancers, heterochromatic domains, and microRNAs.           

Model interpretation reveals that promoter-proximal CpG dinucleotides strongly predict         

transcriptional activity. Looking forward, we propose the accurate prediction of cell type-specific            

gene expression based solely on primary sequence as a grand challenge for the field. 
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INTRODUCTION 

Cellular function is governed in large part by the repertoire of proteins present and their relative                

abundances. Initial attempts to model the gene regulatory forces specifying the mammalian            

proteome posited a major role for translational regulation, implying that mRNA levels might be              

more poorly predictive of protein abundance than is often assumed ​(Schwanhausser et al., 2011) ​.              

However, subsequent reanalyses of those data have shown that as much as 84% of variation in                

protein levels can be explained by mRNA levels, with transcription rates contributing 73%, and              

mRNA degradation rates contributing 11% ​(Li et al., 2014) ​. This work reinforces that view that               

steady-state protein abundances are highly predictable as a function of mRNA levels ​(Vogel et              

al., 2010)​. 

 

Although quantitative models that predict protein levels from mRNA levels are available ​(Edfors             

et al., 2016) ​, we lack models that can accurately predict mRNA levels. Steady-state mRNA              

abundance is governed by the rates of transcription and mRNA decay. For each gene, a multitude                

of regulatory mechanisms are carefully integrated to tune these rates and thus specify the              

concentrations of the corresponding mRNAs that cells of each type will produce. Key             

mechanisms include: i) the recruitment of an assortment of transcription factors (TFs) to a gene’s               

promoter region, ii) epigenetic silencing, as frequently demarcated by Polycomb-repressed          

domains associated with H3K27me3 histone marks ​(Cao et al., 2002) ​, iii) the activation of genes               

by enhancers, stretch enhancers ​(Parker et al., 2013) ​, and super-enhancers ​(Whyte et al., 2013) ​,              

frequently associated with H3K27ac histone marks and the Mediator complex, iv) the            

degradation of mRNA through microRNA-mediated targeting ​(Agarwal et al., 2015) and PUF            
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family proteins ​(Wickens et al., 2002) ​, and v) the stabilization of mRNA through the recruitment               

of HuR ​(Brennan and Steitz, 2001) ​. Jointly modeling these diverse aspects of gene regulation              

within a quantitative framework has the potential to shed light on their relative importance, to               

elucidate their mechanistic underpinnings, and to uncover new modes of gene regulation. 

 

Previous attempts to model transcription and/or mRNA decay can be broadly split into those              

based on correlative biochemical measurements and those based on primary sequence. In the             

former category, there have been several attempts to model the relationship between TF binding,              

histone marks, and/or chromatin accessibility and gene expression ( ​e.g. ​predicting the expression            

levels of genes based on ChIP-seq and/or DNase I hypersensitivity data) ​(Cheng et al., 2011,               

2012; Dong et al., 2012; Karlic et al., 2010; McLeay et al., 2012; Ouyang et al., 2009; Schmidt et                   

al., 2017) ​. While such models can clarify the relationships between heterogeneous,           

experimentally-derived biochemical marks and transcription rates, their ability to deliver          

mechanistic insights is limited. For example, for models relying on histone marks, the temporal              

deposition of such marks might follow, rather than precede, the events initiating transcription, in              

which case the histone marks reinforce or maintain, rather than specify, a transcriptional             

program. For models relying on measurements of TF binding, a substantial fraction of ChIP-seq              

peaks lack the expected DNA binding motif, and potentially reflect artifactual binding signals             

originating from the predisposition of ChIP to pull down highly transcribed regions or regions of               

open chromatin ​(Jain et al., 2015; Krebs et al., 2014; Teytelman et al., 2013)​. 
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In the latter category, there have also been a few attempts to model transcript levels or mRNA                 

decay rates based solely on primary sequence. For example, a model of the spatial positioning of                

in silico ​predicted TF binding sites relative to transcriptional start sites (TSSs) was able to               

explain 8-28% of variability in gene expression ​(McLeay et al., 2012) ​. Models based on simple               

features including the GC content and lengths of different functional regions (e.g., the 5′ UTR,               

ORF, introns, and 3′ UTR) and ORF exon junction density ​(Sharova et al., 2009; Spies et al.,                 

2013) explain as much as 40% of the variability in mRNA half-lives, which are in turn estimated                 

to explain 6-15% of the variability in steady-state mRNA levels in mammalian cells ​(Li et al.,                

2014; Schwanhausser et al., 2011; Spies et al., 2013) ​. However, the vast majority of variation in                

in steady-state mRNA levels has yet to be explained by sequence-based models. 

 

To what extent is gene expression predictable directly from genome sequence? Relevant to this              

question, a recent study relying on a massively parallel reporter assay (MPRA) demonstrated that              

the transcriptional activities associated with isolated promoters can explain a majority (~54%) of             

endogenous promoter activity ​(van Arensbergen et al., 2016) ​. This result establishes a clear             

mechanistic link between the primary sequence of promoters and variability in gene expression,             

one that operates upstream of epigenetic state and higher-order chromatin structure. This in turn              

implies that there may exist a mathematical function which, if properly parameterized, could             

accurately predict mRNA expression levels based upon nothing more than genomic sequence.            

However, it remains unknown whether such a function is “learnable” given limited training data              

and highly incomplete domain-specific knowledge of the parameters governing gene regulation           

[e.g., biochemical parameters describing the affinity of TFs to their cognate motifs (K ​d​),             
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constants describing the rates of TF binding and unbinding (K ​on ​and K ​off​, respectively), potential              

cooperative effects from the combinatorial binding of TFs (as measured by Hill coefficients), the              

distance dependencies between TF binding relative to the TSS and RNA Polymerase II             

recruitment, and competition for binding between TFs and histones ​(Segal and Widom, 2009) ​,             

etc.]. 

 

Methods based upon deep learning are providing unprecedented opportunities to automatically           

learn relationships among heterogeneous data types in the context of incomplete biological            

knowledge ​(Angermueller et al., 2016) ​. Such methods often employ deep neural networks, in             

which multiple layers are employed hierarchically to parametrize a model which transforms a             

given input into a specified output. For example, deep convolutional neural networks have been              

used to predict the binding preferences of RNA and DNA binding proteins ​(Alipanahi et al.,               

2015) ​, the impact of noncoding variants on the chromatin landscape ​(Zhou and Troyanskaya,             

2015) ​, the chromatin accessibility of a cell type from DNA sequence ​(Kelley et al., 2016) ​, and                

genome-wide epigenetic measurements of a cell type from DNA sequence ​(Kelley et al., 2018)​.  

 

The application of deep learning to model the various regulatory processes governing gene             

expression in a unified framework has great potential, and could enable the discovery of              

fundamental relationships between primary DNA sequence and steady-state mRNA levels that           

have heretofore remained elusive. To this end, we introduce Xpresso, a deep convolutional             

neural network that jointly models promoter sequences and features associated with mRNA            

stability in order to predict steady-state mRNA levels.  
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RESULTS 

An optimized deep learning model to predict mRNA expression levels 

We aspired to train a quantitative model utilizing nothing more than genomic sequence to predict               

mRNA expression levels. To simplify the prediction problem, we first evaluated the correlation             

structure of 56 human cell types in which mRNA expression levels had been collected and               

normalized by the Epigenomics Roadmap Consortium ​(Roadmap Epigenomics, Consortium et          

al., 2015) ​. An evaluation of the pairwise Spearman correlations of mRNA expression levels             

among cell types revealed that most cell types were highly correlated, exhibiting an average              

correlation of ~0.78 between any pair of cell types ( ​Figure S1 ​). This suggests that the relative                

abundances of mRNA species are largely consistent among all cell types, justifying the initial              

development of a cell type-agnostic model for predicting median mRNA expression levels. We             

observed that median mRNA levels for chrY genes were highly variable due to the sex               

chromosome differences among cell types. Histone mRNAs were also undersampled and           

measured inaccurately because of the dependency of the underlying RNA-seq protocols on            

poly(A)-tails, which histones lack. We therefore excluded chrY and histone genes from our             

analyses. 

 

Given the lack of deep neural networks available in this prediction context, we sought to perform                

a search of hyperparameters defining the architecture of a neural network that could more              

optimally predict gene expression levels while jointly modeling both promoter sequences and            

sequence-based features correlated with mRNA decay ( ​Figure 1A ​). During this search, we            
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varied several key hyperparameters defining the deep neural network, including the sequence            

window of the promoter to consider, the batch size for training, the number of convolutional and                

max pooling layers in which to feed the promoter sequence, and the number of densely               

connected layers preceding the final output neuron ( ​Table 1​). The mRNA decay features, which              

included the GC content and lengths of different functional regions (e.g., the 5′ UTR, ORF,               

introns, and 3′ UTR) and ORF exon junction density ​(Sharova et al., 2009; Spies et al., 2013) ​,                 

were not varied. 

 

We applied two strategies which have shown promise in the context of hyperparameter searches:              

the simulated annealing (SA) and the Tree of Parzen estimators (TPE) ​(Bergstra et al., 2011) ​,               

optimization strategies that iteratively randomly sample sets of hyperparameters before          

converging on a set that minimizes the error rate on a validation set. We compared the                

performance of these methods to the best deep learning architecture defined manually, which             

was guided by prior knowledge that information governing transcription rate is most likely             

localized to sequence elements within ±1500bp promoter around a TSS, and further inspired by a               

deep learning architecture previously used to predict regions of chromatin accessibility from            

DNA sequence ( ​Table 1​) ​(Kelley et al., 2016) ​. We observed that each optimization strategy              

progressively discovered better sets of hyperparameters, with the most of the improvements            

occurring within 200 iterations ( ​Figure 1B​). The TPE method outperformed the SA strategy,             

identifying a model whose validation mean squared error (MSE) was 0.401, substantially better             

than the MSE of 0.479 derived from the best manually defined model. 
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Given the stochastic nature of training deep learning models, which depend on both the initial               

parameter configurations and trajectory of the optimization procedure’s search, we devised a            

strategy to train ten independent trials using the best deep learning architecture specified by the               

hyperparameters discovered using TPE method. Measuring the validation MSE as a function of             

the training epoch for these ten trials, we observed one trial that did not converge and nine that                  

converged to similar MSE values ( ​Figure 1C ​). For our final model, we selected the parameters               

derived from the specific trial and epoch that minimized the validation MSE. All following              

results of this study report the performance derived from the best of ten trained models.  

 

Our final model, which considered the region 7Kb upstream of the TSS to 3.5Kb downstream of                

the TSS, was comprised of two sequential convolutional and max pooling layers followed by two               

sequential fully connected layers preceding the output neuron ( ​Table 1​, ​Figure 1D ​, and ​Figure              

S2A ​), and consisted of 112,485 parameters in total ( ​Figure S2A ​). While this large 10.5Kb              

sequence window was the best discovered, an evaluation of suboptimal hyperparameters           

suggested this expansive upstream region was not critical for good performance, as an alternative              

model spanning the region 1.5Kb upstream to 7.5Kb downstream of the TSS obtained a similar               

validation MSE ( ​Figure S2B ​). Furthermore, our manually defined architecture, spanning the           

region 1.5Kb upstream to 1.5Kb downstream of the TSS achieved an r ​2 of 0.53, only 6% worse                 

than the model discovered by TPE, indicating that a highly localized region around the core               

promoter region captured the majority of learnable information, with only a modest additional             

contribution gained from the consideration of surrounding regions. 
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To evaluate the relationship between the size of the training set and the performance of the                

model, we subsampled the training set and evaluated the MSE and r ​2 ​on the validation and test                 

set, respectively. We found that the greatest gain in performance occurred between 4,000 and              

6,000 training examples, with performance on the validation and test sets apparently plateauing             

around 12,000 training examples ( ​Figure 2A ​). The best model trained on the full training set               

achieved an r​2​ of 0.59. 

 

Performance of predictive models in human and mouse 

We next sought to compare the generality and performance of our method across mammalian              

species. We focused on 18,377 and 21,856 genes in human and mouse, respectively, for which               

we could match promoter sequences and gene expression levels, and held out 1,000 genes in               

each species as a test set. ​With the aforementioned model architecture, we trained and tested a                

model for predicting the median mRNA expression levels of mouse genes based on mouse              

genomic sequence, achieving an r ​2 of 0.71, substantially higher than the r ​2 of 0.59 achieved with                

the human model ( ​Figure 2B​). Interested in explaining this 12% discrepancy, we compared the              

distribution of median mRNA expression levels between species. While over 20% of mouse             

genes were non-expressed ( ​Figure 2C ​, displayed on the x-axis as -1 due to the addition of a                 

pseudocount of 0.1 prior to log-transforming the RPKM values), fewer than 10% of human genes               

were non-expressed. In contrast, evaluating the subset of 15,348 one-to-one orthologs in human             

and mouse revealed a similar proportion of non-expressed genes ( ​Figure 2C ​). These one-to-one             

orthologs showed strikingly concordant median expression levels ( ​Figure 2D ​), indicating that           
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gene expression levels of these two species have remained heavily conserved since their             

divergence of a common mammalian ancestor ~80 million years ago.  

 

Of note, a subset of genes did exhibit substantial differences in expression between mouse and               

human. We identified a cohort of 584 mRNAs enriched by at least 10-fold in one species; of                 

these, 176 were relatively up-regulated in the mouse and 408 in human ( ​Figure 2D ​). To what                

extent can these species-specific differences be explained on the basis of differences in promoter              

sequence? We next compared our mouse and human Xpresso models to evaluate how well these               

models could discriminate species-specific mRNAs. A binary classifier based upon the           

difference in predictions from each species could indeed correctly discriminate these           

species-specific mRNAs better than chance expectation (AUC = 0.78, ​Figure 2E​). This            

observation beckoned the question of whether the sequence–expression relationships learned in           

each species were of a similar nature.  

 

To test whether the regulatory rules learned by each model could generalize across species, we               

retrained human and mouse-specific models and tested the performance of these models on a              

held-out group of one-to-one orthologs in either the same species or the opposite species. While               

the best performing models were trained on the same species, each model performed only              

marginally worse when tested on the opposite species (i.e., within a 6% decrease in r ​2​) ( ​Figure                

2F​), suggesting that the regulatory principles learned by the deep learning model generalize             

across the mammalian phylogeny. The similar r ​2 values between human and mouse obtained             

when restricting the analyses to one-to-one orthologs implies that the greater r ​2 previously             
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observed in the mouse relative to human ( ​Figure 2B​) was due to the mouse model simply                

discriminating expressed genes from the mouse’s larger fraction of non-expressed genes. 

 

Cell type-specific models implicate a diversity of gene regulatory mechanisms 

Given the generality of our deep learning framework, we next sought to build cell type-specific               

models. With the same hyperparameters, we trained new models to predict the expression levels              

of all protein-coding genes for human myelogenous leukemia cells (K562), human           

lymphoblastoid cells (GM12878), and mouse embryonic stem cells (mESCs) ( ​Supplementary          

Table 1​), cell types for which abundant functional data is available. To avoid overfitting, we               

developed a 10-fold cross-validation-based procedure to ensure that the prediction for any given             

gene resulted from its being part of a held-out sample (i.e., it was not part of the training set from                    

which the model that predicted its expression level was built). From the residuals (i.e., the               

difference between actual expression levels and our predictions based solely on promoter            

sequence and mRNA decay rate features), we investigated whether we could observe the             

influence of additional gene regulatory mechanisms that were not initially considered, or            

incompletely accounted for, in the Xpresso model. 

 

We first evaluated K562 cells, finding that our cell type-specific predictions correlated with             

observed K562 expression levels with an r ​2 ​of 0.51 (​F​igure 3A ​). This ~8% decrease in               

performance relative to cell type-agnostic predictions ( ​Figure 2B​) suggested that the expression            

levels of tissue-specific genes may be harder to predict than those of housekeeping genes,              

because such genes might be under the control of gene regulatory mechanisms not considered by               
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our model. One obvious such mechanism involves enhancers, ​cis​-acting regulatory elements that            

may be located hundreds of kilobases away from a TSS. For example, in K562 cells, distal                

enhancers have been implicated as modulating the expression of most genes of the α-globin and               

β-globin loci, GATA1, MYC, and others ​(Fulco et al., 2016; Klann et al., 2017; Xie et al., 2017) ​.                  

Reasoning that such genes should be consistently underestimated by our predictions, we plotted             

the distribution of their residuals ( ​Figure 3A ​). Indeed, all of these genes were expressed much               

more highly than our predictions in K562 cells, reinforcing the notion that such genes are               

activated by regulatory mechanisms beyond promoters. Among the biggest outliers were the            

β-globin genes, which in some cases were expressed over four orders of magnitude more highly               

than predicted ( ​Figure 3A ​). Collectively, the residuals corresponding to all of these known             

enhancer-driven genes were heavily biased towards positive values relative to all other genes ( ​P              

< 10​-9​, one-sided Kolmogorov-Smirnov (K-S) test, ​Figure S3A ​), confirming that the model            

consistently under-predicted their expression levels. 

 

To more systematically identify genes activated or silenced by non-promoter mechanisms, we            

developed a method to predict them genome-wide. Given that enhancers are frequently            

associated with large domains of H3K27Ac activity, and that silenced genes are frequently             

associated with heterochromatic domains marked by H3K27me3, we examined genome-wide          

chromatin state annotations based upon diHMM, a method that annotates such domains            

genome-wide in K562 and GM12878 cells using histone marks ​(Marco et al., 2017) ​. Although a               

subset of H3K27Ac-associated domains were originally called “super-enhancers” ​(Marco et al.,           

2017) ​, we find it more appropriate to refer to them as “stretch enhancers”, which are more                
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loosely defined as clusters of enhancers spanning ≥3Kb ​(Parker et al., 2013) ​. In total, we               

identified 4,277 genes that overlap stretch enhancers, and 3,772 genes that overlap with             

H3K27me3-domains, ignoring those that happen to overlap with both. Consistent with our            

expectation, these collections of genes were significantly associated with predominantly positive           

and negative residuals, respectively, relative to the background distribution of other genes ( ​P ​<              

10​-200​, one-sided K-S test, ​Figure 3B​). The same was true for GM12878 cells ( ​Figure S3B ​),               

reinforcing the generality of this finding across cell types. 

 

We next examined whether our residuals could be further explained by post-transcriptional gene             

regulatory mechanisms. Highly reproducible mRNA half life estimates for 5,007 genes in K562             

cells were previously measured using TimeLapse-seq ​(Schofield et al., 2018) ​. We observed a             

positive correlation between mRNA half lives (which were log-transformed) and our residuals            

(Pearson correlation = 0.28; ​P < 10​-15​). We visualized this trend by splitting the half lives into                 

five equally-sized bins ( ​Figure 3C ​). These results show that although we included            

sequence-based features associated with mRNA decay rates in the model, these were insufficient             

to capture the full contribution of mRNA decay rates to steady-state mRNA levels.  

 

We next turned our attention to mouse ESCs. Key stem cell identity genes include Pou5f1 (also                

known as Oct4), Sox2, Nanog, and a host of others whose dependence upon enhancers and               

super-enhancers has been experimentally validated with CRISPR-deletion experiments ​(Moorthy         

et al., 2017; Whyte et al., 2013) ​. Similar to the other cell types, although a mESC-specific model                 

could strongly predict mRNA expression levels in mESCs (r ​2 = 0.59), key stem cell identity               
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genes harbored residuals that were strongly biased towards positive values ( ​Figure 3D ​, ​Figure             

S3C ​), confirming that their promoter sequences and mRNA sequence features could not            

adequately explain their high abundance. Extending this question more systematically to 180            

protein-coding genes thought to be governed by super-enhancers in mESCs ​(Whyte et al., 2013) ​,              

we observed a strong enrichment for highly positive residuals in these genes relative to all other                

genes (​P ​< 10​-33​, one-sided K-S test; ​Figure 3E​).  

 

In mESCs, genes associated with the Polycomb Repressive Complex (PRC), as delineated by             

binding to both PRC1 and PRC2 and frequently marked with H3K27me3, are thought to be               

associated with key developmental regulators, many of which are silenced but poised to be              

activated upon differentiation ​(Boyer et al., 2006) ​. We observed that this group of genes, in               

contrast to the super-enhancer-associated set, exhibited a strong enrichment in highly negative            

residuals relative to all other genes ( ​P ​< 10​-52​, one-sided K-S test; ​Figure 3E​), consistent with a                 

model in which PRC-targeted genes are actively silenced. 

 

Mirroring our analysis from human cells, we next evaluated the relationship between mRNA half              

lives in mESCs and our residuals. We obtained reproducible mRNA half life estimates for 6,266               

genes in mESCs measured using SLAM-seq ​(Herzog et al., 2017) ​. Similar to human cell types,               

residuals were positively correlated with mRNA half lives (Pearson correlation = 0.24; ​P < 10​-15​;               

Figure 3F​).  
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A distinguishing feature of mESCs relative to K562 cells is that more is known about the                

post-transcriptional regulatory mechanisms governing mRNA half life. In particular, microRNAs          

serve as strong candidates for further inquiry as they are guided by their sequence to bind and                 

repress dozens to hundreds of mRNAs, mediating transcript degradation and thereby shortening            

an mRNA’s half life. The miR-290-295 locus, essential for embryonic survival, encompasses the             

most highly abundant miRNAs in mESCs. Under the control of a super-enhancer, the members              

of this miRNA cluster are expressed in a highly cell type-specific manner and are thought to                

operate as key post-transcriptional regulators in ESCs ​(Whyte et al., 2013) ​. We asked whether              

we could use our residuals to infer the endogenous regulatory roles of abundant miRNAs in               

mESCs. Defining a miRNA family as any miRNA sharing an identical seed sequence [as              

indicated by positions 2-8 relative to the miRNA 5′ end ​(Agarwal et al., 2015) ​], we used existing                 

small RNA sequencing data from mESCs [GSE76288, ​(Denzler et al., 2016) ​] to quantify miRNA              

family abundances for the top 10 miRNA families. In addition to the miR-290-295 family, we               

detected other highly abundant families including miR-17/20/93/106, miR-19,        

miR-25/32/92/363/367, miR-15/16/195/332/497, and miR-130/301; these miRNA families       

collectively comprised over 75% of the total miRNA pool in mESCs (​Figure 3G​).  

 

For each of the 222 miRNA families conserved across the mammalian phylogeny, which             

includes 7 of the 10 top miRNA families in mESCs, we assessed whether the predicted               

repression of targets correlated to our residuals. We used the TargetScan7 Cumulative Weighted             

Context+ Score (CWCS) ​(Agarwal et al., 2015) to rank predicted conserved targets for the subset               

of mRNAs expressed in mESCs, assigning a CWCS of zero for non-targets. The miRNA family               
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with the most highly ranked Spearman correlation corresponded to that of the            

miR-291a-3p/294/295/302abd family ( ​Figure 3H​), which was also the most highly expressed           

miRNA family in ES cells. The sign of this correlation was consistent with expectation, as               

targets with more highly negative CWCSs (corresponding to predicted targets with greater            

confidence) had negatively shifted residual values. More generally, the 22 miRNA families            

comprising the highest 10% of Spearman correlations were strongly enriched for the 7 miRNA              

families highly abundant in mESCs ( ​P ​< 10​-5​, Fisher’s exact test; ​Figure 3H​). Our results thus                

reinforce the finding that highly abundant miRNAs mediate target suppression ​(Mullokandov et            

al., 2012) while providing an alternative, fully computational method to infer highly active             

endogenous miRNA families in specific cell types solely from primary sequence and gene             

expression data.  

 

Collectively, our results from K562, GM12878, and mESCs demonstrate how analyses of            

Xpresso’s residuals can be used to explore and quantify the influence of diversity gene              

regulatory mechanisms. The mRNAs with the most positive residuals are highly enriched in             

genes associated with the activity of enhancers and super-enhancers, while those associated with             

the most negative residuals are are highly enriched in genes associated with the activity of               

pathways involved in gene silencing, such as those targeted by Polycomb Repressive Complexes             

and microRNAs. We anticipate that cell type-specific quantitative models for any arbitrary cell             

type can serve as a useful hypothesis generation engine for the characterization of active              

regulatory regions in the genome and key regulators such as miRNAs, including for cell types in                

which histone ChIP and small RNA sequencing data is limited or unavailable. 
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Performance of cell type-specific Xpresso models 

To further characterize the ability of Xpresso to learn cell type-specific expression patterns, we              

evaluated the relative performance of cell type-agnostic and cell type-specific models in            

predicting cell type-specific mRNA levels. In all three cases considered, models trained on the              

cell type of origin out-performed those trained on median expression levels by about 3-5%              

( ​Figure 4A ​). We next compared our K562 and GM12878 Xpresso models to evaluate how well               

these models could discriminate cell type-specific mRNAs. We identified a cohort of 1,977             

mRNAs enriched by at least 10-fold in each cell type; of these, 890 were relatively up-regulated                

in K562 cells and 1,087 were up-regulated in GM12878 cells ( ​Figure 4B​). A binary classifier               

based upon the difference in predictions from each cell type could discriminate these cell              

type-specific mRNAs modestly better than chance expectation (AUC = 0.65, ​Figure 4C​).  

 

Next, we sought to estimate the maximum possible performance for predicting gene expression             

from promoter sequences alone. A recently developed genome-wide MPRA measuring          

autonomous promoter activity in K562 cells, called Survey of Regulatory Elements or SuRE,             

linked 200bp to 2Kb regions of the genome to an episomally-encoded reporter in order to               

measure the transcriptional potential of regulatory sequences ​(van Arensbergen et al., 2016) ​.            

SuRE therefore provides an orthogonal, empirical means of assessing the regulatory information            

held in promoters, independent of the influence of genomic context and distal regulatory             

elements. Indeed, we observed that SuRE activity in the ±500bp promoter region around a TSS               

was highly correlated to mRNA expression levels in K562 cells (r ​2 = 0.53, ​Figure 4D ​),               
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indicating that just over half of the variation in mRNA expression levels can be explained by                

regulatory sequences contained within promoters.  

 

The comparable r ​2 achieved by SuRE measurements and the K562-specific Xpresso model in             

predicting K562 expression levels (r ​2 = 0.53 and 0.51, respectively) provided a unique             

opportunity to evaluate how well our model captured the experimentally measurable information            

regarding a promoter’s transcriptional activity. To assess the level of information shared between             

SuRE measurements and Xpresso predictions, we built a joint model to predict K562 levels. This               

model achieved an r ​2 of 0.61, 8-10% better than either method alone, suggesting that while both                

methods captured largely redundant information, each also captured additional information not           

incorporated in the other (​Figure 4D​). 

 

Predictive models perform competitively with models utilizing experimental data 

We next evaluated the performance of Xpresso relative to an assortment of baseline and              

pre-existing models that attempted to predict mRNA levels. For the baseline models, we             

attempted to predict median expression level using simple ​k​-mer counts in the ±1500bp promoter              

region, the presence of predicted TF binding sites given known motifs available in the JASPAR               

database, or joint models considering both, either with and without the consideration of half life               

features ( ​Figure S4 ​). These models were trained using simple multiple linear regression and             

evaluated on the same test set as that utilized in ​Figure 2​. Varying the ​k ​-mer size from ​k ​= 1 to 6,                      

we found that performance plateaued at ​k ​= 4 and 5 for human and mouse, respectively, with the                  

greatest gain in performance occurring between ​k ​= 1 ​and 2 in both species. Consideration of                
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known TF binding sites in a joint model at best only marginally improved performance, though a                

model considering these binding sites alone performed as well as a model based on 2-mers.               

While these baseline models demonstrated that models built upon simple features could perform             

surprisingly well, our hyperparameter-tuned Xpresso model improved upon these models by           

11.2% and 11.7% in human and mouse, respectively (​Figure S4​).  

 

Next, we compared our best baseline and Xpresso models to existing models described in the               

literature, categorizing the types of features used as input in each model into five categories: i)                

those using nothing more than sequence features, which included our method and ​(McLeay et al.,               

2012) ​, ii) those using MPRAs to measure promoter activity ​(van Arensbergen et al., 2016;              

Cooper et al., 2006; Landolin et al., 2010; Nguyen et al., 2016) ​, iii) those utilizing the binding                 

signal of transcription factors (TFs) at promoter regions, as measured by ChIP ​(Cheng et al.,               

2011, 2012; McLeay et al., 2012; Ouyang et al., 2009) ​, iv) those utilizing the signal of histone                 

marks such as H3K4me1, H3K4me3, H3K9me3, H3K27Ac, H3K27me3, and H3K36me3 at           

promoters and gene bodies, as measured by ChIP ​(Cheng et al., 2011; Dong et al., 2012; Karlic                 

et al., 2010; McLeay et al., 2012; Schmidt et al., 2017) ​, and v) those utilizing DNase                

hypersensitivity signal at promoters ​(Dong et al., 2012; McLeay et al., 2012; Schmidt et al.,               

2017) ( ​Figure 4E​). Many of these models were trained and tested on cell lines such as K562,                 

GM12878, and mESCs, for which ChIP data is available for a multitude of histone marks and                

TFs. Thus, we were also able to compare the relative performance of our cell type-specific               

models for these same cell lines.  
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The only existing method which attempted to predict expression from sequence features alone             

(McLeay et al., 2012) achieved an r ​2 of 0.08 and 0.28 in GM12878 and mESCs, respectively. In                 

comparison, Xpresso models tested on the same cell types achieved an r ​2 of 0.43 and 0.59, more                 

than doubling the performance of sequence-only models in each ( ​Figure 4E​). MPRA-based            

models exhibited a wide diversity of r ​2 ​values, although the genome-wide MPRA performed in              

K562 cells ​(van Arensbergen et al., 2016) performed comparably to Xpresso. Among all models              

examined, those utilizing multiple forms of experimental data such as TF ChIP, histone ChIP,              

and DNase achieved the best r ​2 values of 0.62 ​(Dong et al., 2012) and 0.70 ​(McLeay et al., 2012)                   

in human and mouse, respectively, marginally better than the best Xpresso models in these              

species for matched cell types.  

 

Thus, we demonstrate that models utilizing nothing more than genomic sequence are capable of              

explaining mRNA expression levels with as much predictive power as—and often more            

than—analogous models trained on abundant experimental data. Our models have the advantage            

that they are simple to train on any arbitrary cell type, including those lacking experimental data                

such as ChIP and DNase. Furthermore, sequence-only models can further augment the            

performance of existing models that predict mRNA levels in cell types for which experimental              

data is already available (​Figure 4A​, ​Figure S4​). 

 

Xpresso predicts genome-wide patterns of transcriptional activity 

Convolutional neural networks have recently been used to successfully predict patterns of CAGE             

activity and histone ChIP signal throughout the genome ​(Kelley et al., 2018) ​. To accomplish this               
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feat, a deep convolutional neural network was trained on genome-wide information across entire             

chromosomes, using 131Kb windows that collectively encompassed ~60% of the human genome            

(Kelley et al., 2018) ​. This led us to ask whether it was possible to predict genome-wide CAGE                 

signal using our cell type-agnostic Xpresso model, which was trained, in contrast, on 10.5Kb              

windows comprising only ~5% of the human genome. Fixing the half life features to equal that                

of the average gene, we generated promoter activity predictions in 100bp increments along a              

randomly selected 800Kb region of the human genome that encompassed twenty genes, to             

visualize whether Xpresso could recapitulate the average pattern of CAGE activity across cell             

types ( ​Figure 5​). We observed that the Xpresso predictions faithfully reproduced the pattern of              

CAGE activity ​(Fantom Consortium et al., 2014; Lizio et al., 2015) ​in this region. Peaks of high                 

predicted transcriptional activity frequently corresponded to CpG islands ​(Gardiner-Garden and          

Frommer, 1987) and promoter regions across multiple cell types as predicted by ChromHMM             

(Ernst and Kellis, 2012) ​. Xpresso predicted similar expression signatures for both positive and             

negative DNA strands, revealing it could not distinguish the strandedness of CAGE signal.             

Confirming that our results generalize across species, consistent results were observed if Xpresso             

predictions were generated on the 700Kb syntenic locus of the mouse genome (​Figure S5​). 

 

Xpresso automatically identifies the expression level-determining region of the promoter  

Interested in ascertaining how our deep learning models could predict cell type-agnostic gene             

expression levels with high accuracy, we developed a procedure to interpret the dominant             

features learned and utilized by the mouse and human models. Specifically, we tested four              

strategies intended to map the regions of the input space of deep learning models with the                
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greatest contribution to the final prediction: i) Gradient * input, ii) Integrated gradients, iii)              

DeepLIFT (with Rescale rules), and iv) ε-LRP ​(Ancona et al., 2018) ​. Each of these methods               

computed “saliency scores”, which represent a decomposition of the final prediction values into             

their constituent individual feature importance scores for each nucleotide in the input promoter             

sequences. We partitioned genes into four groups, including those predicted to be approximately             

non-expressed and three additional terciles (predicted low, medium, or high expression). We            

computed mean saliency scores for each of these groups, and then computed the difference in               

mean scores relative to predicted non-expressed genes for each nucleotide position in the entire              

input window (i.e., 7Kb upstream of the TSS to 3.5Kb downstream). Averaging our results              

across our 10-fold cross-validated models, we discovered that the models had automatically            

learned to consistently rely upon local sequences from the 1Kb sequence centered upon the TSS               

to predict gene expression ( ​Figure 6A ​, ​Figure S6 ​). Sequences upstream of the TSS contributed              

more heavily to the predictions than those downstream, with those in the proximal promoter (i.e.               

within 100bp upstream of the TSS) best discerning genes predicted to have high expression from               

those predicted to have medium expression ( ​Figure 6A ​). Thus, from only genomic sequence and              

expression data, the model automatically learned spatial relationships and asymmetries in the            

relevance of genomic sequence that are consistent with experimental measurements ​(van           

Arensbergen et al., 2016)​.  

 

Of note, because we used Rectified Linear Units (ReLUs) in our networks, the ε-LRP method               

resulted in identical results as the Gradient * input method ​(Ancona et al., 2018) (Gradient *                

input: ​Figure S6A ​; ε-LRP: data not shown). We also observed that the DeepLIFT method led to                
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nearly identical results as the Integrated gradients technique (Integrated gradients: ​Figure S6B ​;            

DeepLIFT: data not shown), as observed previously in other contexts ​(Ancona et al., 2018) ​. The               

results in the 10-fold cross-validated mouse model also emulated those of the human ( ​Figure              

S6C-D ​), indicating that they generalize across species and do not depend upon the specific              

saliency scoring method used. 

 

CpG dinucleotides are the dominant signal explaining expression levels 

The ability of the model to automatically identify and heavily weight the proximal promoter in               

the expression prediction task naturally led to the question of which sequence motifs within this               

region were responsible for quantitatively defining expression level. We therefore devised a            

strategy to identify ​k​-mers enriched in the genes predicted to be highly expressed ( ​Figure 6B​).               

The distribution of predicted gene expression levels was largely bimodal, allowing the            

partitioning of genes broadly into genes predicted to have low expression (class A) and high               

expression (class B). We extracted sub-sequences from the promoters of class B whose saliency              

scores were higher than the 99th percentile of those observed at the same positions in the                

promoters of class A. To identify enriched ​k​-mers in this set of sub-sequences, we devised a                

equivalently sized negative set of sub-sequences by permuting the extracted positions in class B              

to control for positional sequence biases. We then used DREME ​(Bailey, 2011) to identify              

k ​-mers enriched in our positive set relative to our negative set. Evaluating the E-values of the top                 

five significantly enriched ​k ​-mers, we observed the dinucleotide CpG as enriched by orders of              

magnitude over the second best ​k​-mer in both human and mouse species ( ​Figure 6B​),              

implicating it as a dominant factor discriminating highly expressed genes from lowly expressed             
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ones. We repeated our procedure on genes in the top half of class B relative to its lower half, and                    

identified an even stronger enrichment of CpG dinucleotides (data not shown). These            

observations suggest that both the mouse and human models predominantly utilize the spatial             

distribution of CpG dinucleotides surrounding the proximal promoter to predict the entire            

continuum of gene expression levels. 

 

The model therefore arrives at a specific prediction: CpG dinucleotides are more enriched in the               

proximal promoters of highly expressed genes relative to lowly expressed genes. To test this              

hypothesis, we evaluated the positional enrichment of all 16 possible dinucleotides around the             

TSS of genes in different gene expression bins relative to chance expectation. While CpGs are               

globally depleted, genes in higher gene expression bins preserved a greater fraction of CpGs              

closer to the TSS ( ​Figure 6C ​). This property was true to a much lesser extent for other                 

dinucleotides, with only AA/TT, CA/TG, and CC/GG dinucleotides being able to discriminate            

between highly and lowly expressed genes in both human and mouse genomes ( ​Figure S7,              

Figure S8​). 

 

DISCUSSION 

In this study, we demonstrate that a substantial proportion of variability in mRNA expression              

levels is predictable from features derived solely from genomic sequence. In doing so, our work               

illustrates—as is the case for gene prediction—that the mathematical function linking genomic            

sequence to mRNA abundance is in a large part learnable ​without the use of additional sources of                 

experimental data such as those derived from DNase hypersensitivity, TF ChIP, histone ChIP, or              
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MPRAs. Consistent with dogma and recent experiments ​(van Arensbergen et al., 2016) ​, we find              

that the instructions governing transcriptional output are heavily enriched in a gene’s proximal             

promoter (more specifically, the ±500bp around the TSS). We establish Xpresso as an early              

initial attempt to confront the problem of gene expression prediction from genomic sequence             

alone, and anticipate that future algorithms can utilize our effort as a baseline model to improve                

upon at this prediction task. As deep learning approaches become increasingly sophisticated, we             

predict that new methods will be able to extract additional spatial relationships and long-range              

dependencies among motifs that are currently outside of the scope of those learnable by              

convolutional neural network architectures. 

 

Our study provides a theoretical framework to further understand the fundamental question of             

how different modes of gene regulation contribute to steady-state abundance of mRNA.            

Querying the performance of the model while considering subsets of features associated with             

various mechanisms of gene regulation (e.g., mRNA decay and transcription rate) helped dissect             

their relative contributions to steady-state mRNA levels. Based on the proportion of variance             

explained by our model thus far, we estimate that between 57-89% of variability can be               

explained by transcriptional regulation, with the remaining explained by regulation of mRNA            

stability. These estimates are generally consistent with those derived from experimental           

measurements in mammalian cells ​(Li et al., 2014; Spies et al., 2013) ​. Additionally, we estimate               

that promoter sequences alone explain ~50% of gene expression variability in humans, again             

surprisingly consistent with experimentally derived estimates ​(van Arensbergen et al., 2016) ​.           

Collectively, these results reveal that ​in silico strategies to estimate the relative influence of              
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various modes of gene regulation can approximate those more directly relying on experimental             

measurement. 

 

While our model makes substantial headway into predicting expression levels, between 40-60%            

of variability still remains unexplained, depending upon the cell type and species considered. We              

propose that the limitations of our model are also interesting in that they have the potential to                 

inform and resolve the many layers of gene regulation that the model fails to capture. A residual                 

analysis of highly expressed genes that the model under-predicts confirms that enhancers and             

super-enhancers play a measurably significant role in governing transcriptional programmes.          

Incorporation of the effects of enhancers in the model is complicated by the difficulty of               

predicting which promoter(s) any given enhancer influences, as these can be positioned hundreds             

of kilobases away and skip over genes, as well as the extent to which parameters such as distance                  

modulate the level of enhancer-mediated activation. Such long-range dependencies are poorly           

modeled by convolutional neural networks. Although the incorporation of distal enhancers into            

the model has proved to be evasively difficult, the model can be used as a hypothesis generation                 

engine to uncover additional gene regulatory mechanisms that further explain outliers. Our            

model provides a natural strategy to quantitatively rank candidate silenced and activated genes in              

different cell types in a way that prioritizes those that most heavily deviate from its predictions.                

We propose these rankings as a foundation to guide experimentalists interested in dissecting the              

layers of gene regulation that operate in their cell type of interest.  
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Scanning large regions of the genome with our pipeline revealed a striking association between              

regions of high predicted transcriptional activity and CpG islands. While CpG islands are a              

well-established feature of mammalian genomes that frequently demarcate promoter sequences          

(Gardiner-Garden and Frommer, 1987) ​, ​our results support the idea that the spatial positioning of              

CpGs around the proximal promoter is intimately associated with gene expression levels. Our             

data therefore reinforce the findings from MPRAs that promoter regions enriched with CpG             

dinucleotides are functionally associated with increased gene expression levels ​(van Arensbergen           

et al., 2016)​. 

 

Looking forward, we envision the delineation of set of mathematical functions for each cell type               

that can accurately predict their mRNA expression levels from genome sequence alone as a              

grand challenge for the field. As shown here, this framework will allow us to quantify and                

characterize the mechanisms of gene regulation of which we are aware, and may draw our               

attention to ones that have yet to be discovered. 
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METHODS 

Gene expression data collection and pre-processing 

We retreived a matrix of normalized expression values for protein-coding mRNAs across 56             

tissues and cell lines from RNA-seq data gathered and quantified by the Epigenomics Roadmap              

Consortium 

( ​http://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc.gz​) 

(Roadmap Epigenomics, Consortium et al., 2015)​. 

 

For mouse gene expression data, we gathered all ENCODE RNA-seq datasets satisfying the             

following constraints: i) datasets corresponded to “polyA-selected mRNA RNA-seq” or “total           

RNA-seq”, ii) reads were mapped to the ​Mus musculus ​mm10 genome assembly, iii) files were               

“tsv” files corresponding to gene-level quantifications, iv) biosamples were not treated with            

“DMS”, “LPS”, or “β-estradiol”, v) files were not derived from samples with “low replicate              

concordance”, “low read depth”, “insufficient read depth”, or “insufficient read length”. Only            

samples corresponding to the first replicate of each tissue or cell line were utilized. For cell                

type-specific questions in the mouse, we used gene expression data from mESCs that were              

computed previously ​(Ouyang et al., 2009)​. 

 

For each species, we computed the median expression level across all cell types for each gene,                

and transformed all gene expression values ​y ​such that: ​ŷ ← log​10​( ​y + 0.1) to reduce the right                  

skew of the data. Quantile normalizing the samples of the mouse gene expression matrix prior to                
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computing the median values resulted in nearly an identical set of median expression levels (i.e.,               

0.9996 correlation before and after quantile normalization), making this step optional. 

 

One-to-one human-to-mouse orthologs were acquired from the Ensembl v90 BioMart ​(Aken et            

al., 2016) by extracting the “Mouse gene stable ID” and “Mouse homology type” with respect to                

each human gene. 

 

Collecting promoter sequences and mRNA half life features 

Human and mouse promoter CAGE peak annotations were downloaded from the FANTOM5            

consortium’s UCSC data hub    

( ​http://fantom.gsc.riken.jp/5/datahub/hg38/peaks/hg38.cage_peak_phase1and2combined.bb​, 

hg38 genome build;   

http://fantom.gsc.riken.jp/5/datahub/mm10/peaks/mm10.cage_peak_phase1and2combined.bb​, 

mm10 genome build) ​(Fantom Consortium et al., 2014; Lizio et al., 2015) ​. The best peak               

corresponding to each promoter, labeled with the keyword “p1@”, was extracted. HUGO gene             

names or gene name synonyms were converted into Ensembl IDs using the Ensembl v90              

BioMart, HGNC ID tables ( ​https://www.genenames.org/cgi-bin/download ​), and Mouse Genome        

Informatics gene model tables    

( ​http://www.informatics.jax.org/downloads/reports/MGI_Gene_Model_Coord.rpt​). 

 

Gene annotations for protein coding genes were derived from Ensembl v90 (hg38 genome build)              

(Aken et al., 2016) ​. Only protein-coding genes were carried forward for analysis, with the              
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following genes filtered out as sources of bias: i) genes located on chrY, whose gene expression                

depended upon whether their cells of origin were male or female, ii) histone genes, whose               

expression was mis-quantified due to their mRNAs lacking poly(A) tails, therefore being            

undersampled in poly(A)-selected RNA-seq libraries. Out of all transcripts corresponding to each            

gene, the one with the longest ORF, followed by the longest 5′ UTR, followed by the longest 3′                  

UTR was chosen as the representative transcript for that gene. The G/C content and lengths of                

each of these functional regions (i.e., 5′ UTRs, ORFs, and 3′ UTRs), intron length, and exon                

density within the ORF were gathered as additional features associated with mRNA half life. All               

length-related features were transformed such that: ← log​10​( ​x + 0.1) to reduce the right skew,      x̂           

and along with gene expression levels were then z-score normalized by subtracting their             

respective mean values and dividing by their standard deviations. The starting coordinate of the              

first exon of the representative transcript was defined as that gene’s transcriptional start site              

(TSS). The vast majority of mRNAs possessed a dominant CAGE peak; if this was so, the TSS                 

was re-centered to the coordinates of the CAGE peak. The ±10 kilobase sequence centered at the                

TSS was extracted as the putative promoter region to consider. Intermediate steps such as              

extracting sequences from the genome or converting between bed formats were executed with             

BEDTools ​(Quinlan and Hall, 2010) ​. 

 

Hyperparameter optimization and model training 

Matching gene expression levels to promoter sequences resulted in a total of 18,377 and 21,856               

genes in human and mouse, respectively. All continuous variables were mean-centered and            

scaled to have unit variance, and promoter sequences were one-hot encoded into a boolean              
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matrix. For each species, genes were then randomly partitioned into training, validation, and test              

sets such that the validation and test sets were allotted 1,000 genes each. We defined the                

objective function as the minimum mean squared error achieved on the validation set across 10               

epochs of training. The following software packages were required for model training and             

testing: Keras 2.0.8 ​(Chollet, 2015) ​, TensorFlow 1.3.0 ​(Abadi et al., 2016) ​, CUDA 8.0.61,             

cuDNN 5.1.10, and the Anaconda2 distribution of Python. We initialized a hyperparameter            

search space to specify the model architecture ( ​Table 1​), and used Hyperopt ​(Bergstra et al.,               

2013) to search for an optimal set of hyperparameters. All models were trained on an NVIDIA                

Quadro P6000 GPU equipped with 24Gb of video RAM. 

 

Whole-transcriptome predictions 

To predict expression levels for all annotated genes, we implemented a 10-fold cross-validation             

procedure. Specifically, we partitioned the dataset into 10 equally sized bins. For each fold, we i)                

reserved 1/10 of the data as a test set, 1000 genes as a validation set, and the remaining genes as                    

a training set; ii) trained 10 independent models until convergence, iii) selected the model with               

the minimum validation mean squared error, and iv) generated a prediction on the test set. We                

then concatenated all of the predictions together that were derived from the best model from each                

of the ten folds of the data. 

 

SuRE MPRA data 

Pre-processed genome-wide, stranded SuRE MPRA data mapped to hg19 was acquired as            

bigwig files from GEO record GSE78709 ​(van Arensbergen et al., 2016) ​. To compute SuRE              
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activity at a specified promoter, we extracted the mean SuRE signal over covered bases on the                

correct strand as the gene, centered at 1000bp around the TSS, using utilities provided in the                

UCSC genome browser (“bigWigAverageOverBed -sampleAroundCenter=1000”) ​(Kent et al.,        

2002) ​. For the TSS annotations, we utilized our set of CAGE-corrected TSSs lifted over from               

hg38 to hg19 using liftOver ​(Kent et al., 2002) ​, supplemented with TSSs for genes annotated in                

Gencode release 27/Ensembl v90 for any missing IDs        

( ​https://www.gencodegenes.org/releases/27lift37.html​) ​(Harrow et al., 2012)​. 

 

Baseline models 

To train baseline models for comparison ( ​Figure S4 ​), we merged the training and validation sets               

used initially for hyperparameter optimization and model training. For each gene, we first             

extracted the ​±1500bp window centered each TSS and defined this as the promoter. For              

k ​-mer-based models, we counted the frequency of all ​k​-mers occuring occurring in the promoter              

region, varying ​k from 1 to 5 and 6 for human and mouse, respectively. To train                

transcription-factor-based models, we scanned promoters using FIMO ​(Grant et al., 2011) using            

positional weight matrices derived from the JASPAR 2016 Core Vertebrate set ​(Mathelier et al.,              

2015) ​. Default parameters were used for the search, except that the set of promoter sequences to                

compute a first order Markov background model for the search. For the transcription factors              

matched to the promoters, we populated a binary matrix with a 1 if a significant motif was                 

detected for the promoter, and 0 otherwise. We then trained multiple linear regression models              

explaining median mRNA expression levels as a function of i) the collection of ​k​-mer counts, ii)                
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the binary matrix of JASPAR matches, or iii) both of the former. These models were trained both                 

with and without half life features, with the r​2​ evaluated on the test set. 

 

Prediction on a genomic window 

We extracted 10.5Kb sequences tiling across the 600 Kb and 700 Kb regions of the human and                 

mouse genomes, respectively, in 100bp increments (Genome coordinates:        

chr1:109500000-110300000, hg19 ​genome build; chr3:107800000-108500000, mm10 genome       

build). The “bedtools makewindows” (parameters “-w 10500 -s 100”) was used to generate these              

windows, and “bedtools getfasta” to extract the sequences ​(Quinlan and Hall, 2010) ​. Predictions             

were then made using our cell type-agnostic Xpresso model trained upon median gene             

expression data, using zero values for all half life features (with zero corresponding to the mean                

values as these features had been z-score normalized).  
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FIGURES AND LEGENDS 

Figure 1. Overview of optimization strategy for deep learning-based model training           

scheme. 

A) ​Overview of a predictive model of mRNA steady state abundance that integrates information              

from sequences at the promoter region of a gene and annotation-based sequence features             

associated with mRNA decay. 

B) ​Validation error associated with the best model found at each iteration during the search for                

an optimal set of hyperparameters to predict median mRNA abundance across tissues. Compared             

are two strategies (i.e., Tree of Parzen estimators and Simulated annealing) against the             

performance of the best manually discovered deep learning architecture. 

C) ​Performance of ten independent trials given the optimal architecture discovered in (B). Nine              

of ten trials achieve convergence, with the vertical purple dashed line indicating the best model               

35 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/416685doi: bioRxiv preprint 

https://doi.org/10.1101/416685
http://creativecommons.org/licenses/by-nc/4.0/


 

achieved was at the twelfth epoch, and the horizontal dashed line indicating the best manually               

discovered model as shown in (B). 

D) ​Best deep learning architecture discovered during the hyperparameter search in (B)            

corresponds to an architecture with two sequential convolutional and max pooling layers            

followed by two sequential fully connected layers. 
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Figure 2. Predictive models explain variability in gene expression in the human and mouse. 

A) ​Impact of downsampling the training set size on the validation error and performance on the                

test set as measured by variance in mRNA expression levels explained (r ​2​). Shown is the               

performance for the best of ten models (as defined as the model with the minimal validation                

error) acquired for each training set size. 

B) ​Scatter plots indicating the performance of human (left panel) and mouse (right panel)              

models. Regions are colored according to the density of data from light blue (low density) to                

yellow (high density). 
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C) ​Cumulative distributions of median mRNA expression levels among tissues for all annotated             

human and mouse genes as well as those corresponding to the subset of one-to-one              

human-to-mouse orthologous genes. 

D) ​Scatter plot indicating the relationship between median mRNA expression levels in human             

and mouse for one-to-one orthologs. The dotted red lines correspond to the threshold utilized to               

call species-specific genes, corresponding to a 10-fold change in expression in one species             

relative to the other. The number of species-specific genes surpassing this threshold is indicated              

in parentheses. Regions are otherwise colored as in panel (B). 

E) ​Performance of a classifier that utilizes the difference between cross-validated           

species-specific predictions to distinguish mRNAs whose expression is strongly enriched in the            

mouse or human. Shown is a Receiver Operating Characteristic (ROC) curve showing the             

relationship between False Positive Rate and True Positive Rate at varying thresholds of the              

predicted expression difference between cell types, with the grey dotted line indicating the             

expected curve for a classifier performing at random chance. Also shown is the Area Under the                

Curve (AUC) to quantify performance of the classifier. 

F) ​Impact of training and testing model performance within and across mammalian species using              

a test set matched for the same set of one-to-one orthologs. Shown is the performance for the                 

best of ten models acquired for the full training set derived from each species. 
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Figure 3. A diversity of gene regulatory mechanisms are associated with the residuals of              

cell type-specific models. 

A) ​Relationship between predicted and actual mRNA expression levels in K562 cells. Regions             

are colored according to the density of data from light blue (low density) to dark blue (high                 
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density). Labeled in red are the globin genes alongside others implicated as genes activated by               

strong enhancers in K562 cells. Gene names were moved slightly to enhance readability. 

B) ​Cumulative distributions of residuals corresponding to all stretch-enhancer-associated genes,          

H3K27me3-domain-associated genes, and control genes not associated with either. Similarity of           

the distributions to that of the set of controls was tested (one-sided Kolmogorov–Smirnov [K–S]              

test, ​P ​ value); the number of mRNAs analyzed in each category is listed in parentheses. 

C) ​Boxplots showing the relationship between mRNA half life and residuals in K562 cells;              

indicated is the median residual value (bar), 25th and 75th percentiles (box), and the minimum of                

either 1.5 times the interquartile range or the most extreme data point (whiskers). Half life               

measurements were measured using TimeLapse-seq ​(Schofield et al., 2018) in K562 cells (n =              

5,007 genes), and partitioned into 5 equally-sized bins spanning the range of half life values. 

D) ​This panel mirrors that shown in (A), except that it highlights genes associated with known                

enhancers and super-enhancers in mouse embryonic stem cells (mESCs). 

E) ​This panel mirrors that shown in (B), except that it compares genes associated with               

super-enhancers and Polycomb-repressed domains in mESCs. 

F) This panel mirrors that shown in (C), except that half life measurements were measured using                

SLAM-seq ​(Herzog et al., 2017)​ in mESCs (n = 6,266 genes). 

G) ​Pie chart indicating the relative proportions of microRNA families expressed in mESCs.             

Colored are the top 10 most abundant miRNA families. 

H) ​Histogram of the Spearman correlation values between TargetScan7-predicted microRNA          

targeting efficacy ​(Agarwal et al., 2015) and residual expression level in mESCs, for 222              

40 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/416685doi: bioRxiv preprint 

https://paperpile.com/c/RlEVu0/PGyp
https://paperpile.com/c/RlEVu0/wRF4
https://paperpile.com/c/RlEVu0/PWfT
https://doi.org/10.1101/416685
http://creativecommons.org/licenses/by-nc/4.0/


 

miRNA families conserved among mammals. Highlighted are the subset of 7 highly abundant             

miRNA families colored in panel (G) that are also conserved among mammals. 

 

  

41 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/416685doi: bioRxiv preprint 

https://doi.org/10.1101/416685
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 4. Cell type-specific models are competitive with methods based upon experimental            

data. 

A) ​Bar plots comparing the variance explained in mRNA expression levels in each of three cell                

types (human K562 and GM12878 cells as well as mouse embryonic stem cells), using models               

trained on median expression levels (i.e., cell type-agnostic model) or on the matched cell type               

(i.e., cell type-specific model). The r ​2 shown is derived from the entire dataset, using the               

cross-validated predictions of each strategy. 

B) ​Relationship between mRNA expression levels in GM12878 and K562 cells. The dotted red              

lines correspond to the threshold utilized to call cell type-specific genes, corresponding to a              

10-fold change in expression in one cell type relative to the other. The number of cell                

type-specific genes surpassing this threshold is indicated in parentheses. Scatter plots are            

otherwise colored as in ​Figure 3A​.  
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C) ​Performance of a classifier that utilizes the difference between cell type-specific predictions             

to distinguish mRNAs whose expression is strongly enriched in either GM12878 or K562 cells.              

Shown is a ROC curve showing the relationship between False Positive Rate and True Positive               

Rate at varying thresholds of the predicted expression difference between cell types, with the              

grey dotted line indicating the expected curve for a classifier performing at random chance. Also               

shown is the AUC to quantify performance of the classifier. 

D) ​Shown in the left panel is the relationship between SuRE ​(van Arensbergen et al., 2016) ​, a                 

Massively Parallel Reporter Assay (MPRA) to measure autonomous promoter activity, and           

mRNA expression levels in K562 cells. Shown in the right panel is the relationship between a                

joint SuRE and Xpresso model and mRNA expression levels in K562 cells. Scatter plots are               

colored as in panel (B). 

E) ​Comparison of the r ​2 of our sequence-only models to those derived from alternative strategies               

reported in the literature, often trained using a variety of cell type-matched experimental datasets              

such as those based upon ChIP of transcription factors or specific histone marks, DNase              

hypersensitivity measurements, and MPRAs. Methods using nothing more than genomic          

sequence to predict expression are highlighted in purple, and results in human and mouse are               

shown in blue and red, respectively. 

 

  

43 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/416685doi: bioRxiv preprint 

https://paperpile.com/c/RlEVu0/7PhE
https://doi.org/10.1101/416685
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 5. Xpresso predictions recapitulate transcriptional activity across a 800Kb region of            

human chromosome 1. 

Shown are the predicted Xpresso-predicted expression levels in 100-nt increments from the plus             

and minus strands of genomic sequence of the human hg19 genome assembly. Also shown are               

gene annotations, CpG island calls, ChromHMM genomic state segmentation calls among two            

cell types (with predicted promoter hidden states colored in red), and genome-wide CAGE signal              

aggregated among many cell types (with red indicating signal from the positive strand and blue               

indicating signal from the negative strand). See also ​Figure S5 for predictions on the syntenic               

mouse locus. 
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Figure 6. ​The spatial distribution of CpG dinucleotides in the proximal promoter predicts gene              

expression levels. 

A) ​Mean saliency scores relative to predicted non-expressed genes for genes in three terciles of               

expression bins. Shown are saliency scores from the -2000 to +2000 regions of the input window                

surrounding the TSS for human promoters as computed using the “Gradient * input” approach.              

Data has been loess-smoothed at the resolution of 100bp. See also ​Figure S6 for the full input                 

region and results using multiple saliency scoring methods in the human and mouse. 

B) ​Strategy to ascertain enriched ​k ​-mers in genes predicted to be highly expressed. Shown are               

the top 5 significantly enriched ​k ​-mers retrieve from the human and mouse models. 

45 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2018. ; https://doi.org/10.1101/416685doi: bioRxiv preprint 

https://doi.org/10.1101/416685
http://creativecommons.org/licenses/by-nc/4.0/


 

C) ​Positional enrichment of CpG dinucleotides relative to chance expectation in human            

promoters for different gene expression level bins. The expected frequency of CpG dinucleotides             

is computed as the joint probability of the composite C and G co-occurring based upon their                

frequency in the corresponding position and gene expression bin. Data has been loess-smoothed             

at the resolution of 100bp. See also ​Figure S7 and ​Figure S8 ​for the results of all dinucleotides                  

in both human and mouse. 
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Figure S1. Most variation in gene expression is within, rather than between, cell types. 

Heatmap of the pairwise Spearman correlation values measured between mRNA expression           

levels derived from each pair of cell types from 56 cell types aggregated by the Epigenomics                

Roadmap Consortium ​(Roadmap Epigenomics, Consortium et al., 2015) ​, clustered using          

hierarchical clustering according to the indicated dendrogram. Labeled is the 4-letter           

Epigenomics Roadmap code alongside the corresponding cell type (e.g. E123 indicates K562            

cells). Overlayed in the color key is a histogram of all correlation values. 
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Figure S2. Properties of deep learning architecture learned during hyperparameter search. 

A) ​Structure of the best hyperparameter architecture uncovered. Within each box is the indicated              

type of Keras layer as well as the size of the vector or matrix associated with the layer for a                    
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single training example, indicated in parenthesis. Specified to the right of the flow diagram are               

the number of free parameters fit for each layer. 

B) ​Optimal and suboptimal promoter windows discovered during hyperparameter search as well            

as the best validation mean squared error (MSE) corresponding to given hyperparameter            

configuration, ranked according to MSE. Labeled in blue is the window associated with the best               

manually discovered hyperparameter configuration, with the blue dashed line indicating the           

associated validation MSE for the specified architecture. 
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Figure S3. Additional gene regulatory mechanisms associated with the residuals of cell            

type-specific models. 

A) ​This panel is similar to ​Figure 3B​, except that it displays cumulative distributions of residuals                

corresponding to the enhancer-associated genes shown in ​Figure 3A​. 

B) ​This panel is similar to ​Figure 3B​, except that it evaluates the relationships of               

stretch-enhancer-associated genes and H3K27me3-domain-associated genes in GM12878 cells. 

C) ​This panel is similar to ​Figure 3E​, except that it displays cumulative distributions of residuals                

corresponding to the enhancer and super-enhancer-associated genes shown in ​Figure 3D​. 
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Figure S4. Predictive performance of baseline models. 

Comparison of deep learning-based models relative to several baseline models in explaining the             

variance in median mRNA expression levels on a test set. All human and mouse models were                

trained with and without half life information. Baseline models were trained using multiple linear              

regression, using the following features as input: i) ​k​-mer counts in a ±1500bp window centered               

each TSS, varying ​k ​from 1 to 5 or 6 depending upon the optimal ​k at which performance                  

plateaued, ii) counts of significant hits derived from motif scans of JASPAR transcription factor              

sites in the same window, or iii) both counts from motif scans of JASPAR transcription factor                

sites and ​k ​-mer counts in the same window. 
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Figure S5. Xpresso predictions recapitulate transcriptional activity across a 700Kb region           

of mouse chromosome 3. 

Shown are the predicted Xpresso-predicted expression levels in 100-nt increments from the plus             

and minus strands of genomic sequence of the mouse mm10 genome assembly. Also shown are               

gene annotations, CpG island calls, and genome-wide CAGE signal aggregated among many cell             

types (with red indicating signal from the positive strand and blue indicating signal from the               

negative strand). See also ​Figure 5​ for predictions on the syntenic human locus. 
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Figure S6. Xpresso isolates the mammalian proximal promoter as the key region relevant 

for the prediction of gene expression. 

A) ​This panel is identical to that of ​Figure 6A ​except that it shows saliency scores from the                  

entire -7000 to +3500 region of the input window surrounding the TSS for human promoters. 
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B) ​This panel is similar to those of panel (A) except that the “Integrated gradients” approach is                 

used instead of the “Gradient * input” approach. 

C-D) ​These panels are similar to those of panels (A-B) except that they show the results using                 

mouse promoters. 
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Figure S7. Relationship between dinucleotide content around the TSS and gene expression            

levels in the human. 

This panel is similar to that of ​Figure 6C ​. ​Positional enrichment of dinucleotides relative to               

chance expectation in human promoters for different gene expression level bins. The expected             

frequency of dinucleotides is computed as the joint probability of the composite            

mononucleotides co-occurring based upon their frequency in the corresponding position and           

gene expression bin. 
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Figure S8. Relationship between dinucleotide content around the TSS and gene expression            

levels in the mouse. 

This panel is similar to that of ​Figure S7 ​, except it shows information for mouse promoters                

instead of human promoters.  
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TABLES 

Hyperparameter Range Step size 
 (if discrete)

Best identified
manually 

 

Best identified
from search 

Batch size 2​[5,7] 1 64 128 

Upstream distance from TSS [-10000,0] 500 -1500 -7000 

Downstream distance from TSS [0, 10000] 500 1500 3500 

[Convolutional → Max pooling] layer(s) [One, Two, 
Three, Four] 

 Two Two 

        Number of convolutional filters 2​[4, 7] 1 64 / 64 128 / 32 

        Convolution filter length [1, 10] 1 5 / 5 6 / 9 

        Convolution dilation rate [1, 4] 1 1 / 1 1 / 1 

        Max pooling pool size/stride [5, 100] 5 10 / 20 30 / 10 

Densely connected layer(s) [One, Two]  One Two 

        Number of neurons in layer 2​[1, 8] 1 100 64 / 2 

        Dropout probability [0,1]  0.5 0.00099 / 
0.01546 

 

Table 1. Search space and hyperparameters discovered. Within brackets, the upper and lower             

range are listed if the variable is either discrete or continuous, and all possible values are listed if                  

the variable is categorical. If the variable is discrete, the step size is provided. Beneath each                

underlined hyperparameter are nested hyperparameters that are searched. For example, if three            

[Convolutional → Max pooling] layers are selected, each of these three layers possesses four              

additional types of hyperparameters to search amongst. The values for consecutive layers that             

were ultimately selected in the final models are separated by a ‘/’. 
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DATA ACCESS 

Associated code necessary to train and test the deep learning models and reproduce each figure               

of the manuscript will be made available upon publication through a GitHub package. 
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