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ABSTRACT 
 
In recent years, there has been strong interest in 
examining the microbiome and its impact on human 
health and the environment. By leveraging modern 
sequencing technologies, investigators can quickly 
determine the composition of a given microbial sample. At 
the same time, the same investigations often yield an array 
of categorical and numerical metadata derived from the 
sequenced samples such as immunohistochemical 
measures or locality information. Understanding how the 
microbiome data is associated with this external metadata 
is essential in developing targeted treatments for chronic 
diseases or proposing bacteria-modulated host responses. 
While many R or Python libraries and command-line 
tools have been developed for specific analysis purposes, 
there are still relatively few tools to facilitate open-ended 
data exploration and hypothesis generation. Here we 
introduce Mian, an open-source web framework to 
interactively visualize or run a suite of statistical and 
feature selection tools on the microbiome to identify 
important taxonomic groups in the context of any 
provided categorical or numerical metadata. 
Visualizations include boxplots, correlation networks, and 
PCA or NMDS scatterplots. Tools include Fisher’s Exact 
Test, Boruta feature selection, alpha and beta diversity, 
and differential and correlational analysis. Mian supports 
multiple standard representations of the OTU table as 
input and optionally subsamples the data during the 
upload process. Users can also filter and aggregate the 
OTU table at different taxonomic levels and dynamically 
adjust analysis parameters to see how the visualizations, 
results, and statistical measures change in real-time. Mian 
is freely available at: miandata.org 
 

INTRODUCTION 

The bacteria and archaea that form the microbiome have 
been the focus of many studies in recent years due to the 
influence they have on health and the environment (1, 2). In 
particular, research into the human microbiome has shown 
links between the presence of certain organisms and the 
development of certain human diseases such as 
inflammatory bowel disease and chronic obstructive 
pulmonary lung disease (COPD) (1). Studies done on the 
ocean microbiome have similarly uncovered the importance 
of marine microbes on key biogeochemical processes such 
as carbon and nutrient cycling (2, 3). Yet even today there is 

still much that remains undiscovered in the microbial world. 
By some estimates, less than 1% of all microbial species 
globally have been cultivated and categorized (4, 5). 
Because of this, it is thought that future profiling of 
microbial communities and better understanding of complex 
microbial relationships will fuel a diverse range of 
applications, from the development of new dietary 
interventions for chronic diseases (6), to introducing 
methods for more sustainable crop yields (7).  

 
Traditionally, studies looking at the microbiome have 

primarily targeted the 16S rRNA owing to the universality of 
its distribution among bacteria and archaea, the relative low 
sequencing costs, and the availability of reference taxonomy 
databases such as Greengenes or SILVA (8, 9). A common 
approach to processing 16S rRNA sequencing data has been 
to group related sequences into operational taxonomic units 
(OTUs) which are then assigned to a reference taxonomy to 
determine the abundance and composition of a microbial 
community (5). Several software pipelines have been created 
to take the raw sequencing data and apply this OTU 
clustering analysis including Qiime and mothur (10, 11). As 
output, both of these pipelines can produce an OTU table, 
which is a two-dimensional matrix showing the abundance 
count of each OTU for each sample sequenced, along with 
the annotated OTU taxonomies. In order to provide a 
standardized method of storing these data along with sample 
and observational metadata, the BIOM file format was 
proposed to allow interoperability between different 
software platforms (12). 

 
While data visualization is a crucial conduit in allowing 

users to detect patterns, trends, and relationships and to 
understand their underlying datasets, a core challenge in 
microbial analysis is to relate the changes the microbiome to 
contextual information regarding the samples themselves. 
For instance, when microbiome samples are sequenced from 
a human patient, researchers often also have access to a 
multitude of histological and pathophysiological data about 
the patient. Therefore, meaningful interpretation of the 
microbiome may only make sense when samples are 
grouped together according to this external metadata (13).  

 
Another method of analyzing microbiome data is the 

use of data mining feature selection techniques, which can 
be used to identify statistically relevant organisms or 
taxonomic groups. These techniques are orthogonal to data 
visualizations as they rely on algorithms and statistical 
methods to facilitate hypothesis testing, as opposed to the 
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data exploration capabilities that visualizations bring. It has 
been proposed that combining both data mining algorithms 
and visualizations will yield the most effective data 
discovery experience (14).  

 
The most common method in applying data mining 

algorithms or generating visualizations is to use a common 
scripting language such as R or Python. However, this 
means that microbial researchers or clinicians who are not 
familiar with the computational aspects of microbial analysis 
are excluded from hypothesis testing and exploring data sets 
that they may have generated. Instead, they become reliant 
on bioinformaticians or statisticians to perform this type of 
analysis, increasing the overhead and turnaround time 
needed for studying the data. Moreover, although R or 
Python scripts can be automated or incorporated into broader 
bioinformatics pipelines, they are ultimately not as intuitive 
as a graphical user interface.  

 
Here we introduce Mian, an interactive web-based data 

discovery platform that empowers users to examine the 
microbial community in the context of categorical and 
numerical metadata. Mian operates on OTU tables generated 
from existing OTU-picking software pipelines such as 
mothur and associated taxonomy annotations and user-
provided sample metadata. Some of the key features of Mian 
are highlighted below: 

• Generates interactive in-browser visualizations 
such as boxplots, scatterplots, and bar charts on 
microbial abundance, diversity measures, and 
provided sample metadata 

• Supports principal component analysis (PCA) and 
non-metric multidimensional scaling (NMDS) to 
determine relatedness between distinct populations 

• Runs powerful feature-selection algorithms and 
statistical tests such as Boruta/Random Forest and 
Fisher’s Exact Test to identify OTUs important in 
distinguishing between sample groupings 

• Visualizations or feature-selection results respond 
in real-time with adjustments to the user-
controllable input parameters  

• OTUs can be grouped or filtered at different 
taxonomic levels during data analysis to show 
broad microbial patterns 

• Provides statistical significance testing on select 
visualizations by providing p-values and FDR-
corrected q-values 

• Accepts standard OTU input formats including the 
BIOM file format and the mothur shared file  

 
Mian is freely available for use at miandata.org. Mian is 

an open-source platform licensed under the MIT license with 
source code available at github.com/tbj128/mian. 
 
 
PROGRAM DESCRIPTION 
 
Pre-Requisites 

Prior to using Mian, users are expected to have completed 
processing of their 16S rRNA sequencing data and have 
gone through an OTU-generation protocol such as the 
mothur MiSeq or 454 SOP (15, 16).  

 
Project Creation and Data Upload 
Users first interact with Mian by creating an account. This 
account will store all of the project data that the user will 
upload and generate, allowing ease of use across multiple 
user sessions. Each project consists of an OTU table, the 
RDP, GreenGenes, or SILVA taxonomy annotations, and 
any metadata associated with the samples. All three pieces 
of information can either be uploaded in one single BIOM 
file or as separate tab-separated files. The BIOM file-format 
is recommended as it is a compact and widely used method 
to store and transfer OTU data between different data 
analysis software (12).  

 
Data Normalization 
To avoid extraneous effects due to differences in sampling 
depth and to facilitate comparative analysis between 
different samples and groups, Mian visualizations and 
feature selection algorithms are designed to work against a 
normalized OTU table. There are three main normalization 
methods used in microbial ecology: rarefying, scaling, and 
transforming (17). Mian uses the rarefying method, which 
involves subsampling all samples to the same depth. While 
rarefying does reduce a certain amount of statistical power 
due to the removal of OTUs (17), rarefying reduces noise 
from OTUs which would not have been statistically relevant. 
This is a standard protocol used in many previous microbial 
studies and has been shown to be at least comparable to 
other normalization methods, although this remains a 
contested subject (18). Further OTU filtering based on user-
configurable minimum count and prevalence thresholds is 
used in the feature selection tools. This is done to improve 
performance and increase the statistical power by excluding 
OTUs which will not likely be useful for further analysis.  
 

Within Mian, users can either upload OTU data that is 
already subsampled or request Mian to subsample the data 
when creating a new project. By default, Mian will randomly 
subsample each sample to the overall lowest depth across all 
of the sample. Alternatively, users can also choose to define 
custom subsampling depths and filter out any samples 
falling below this depth. This latter approach is useful when 
the data contains outlier samples which would otherwise 
mislead downstream analysis.  

 
The subsampled OTU table is used for all visualizations 

and feature selection tools with the exception of the 
rarefaction curve visualization which uses the original user-
uploaded OTU table. The rarefaction curve allows a user to 
visually observe the number of OTUs selected as a function 
of subsampling depth. The user can then choose to adjust the 
subsampling depth if they observe the species diversity is 
too under-represented at the current subsampling depth. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416073doi: bioRxiv preprint 

https://doi.org/10.1101/416073
http://creativecommons.org/licenses/by-nc/4.0/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Boxplot tool layout in Mian; the layout is representative of most tools in Mian. (A) Project switcher changes the underlying source of the 
visualization or feature selection tool. (B) Data filtering parameters to selectively exclude or include OTUs/taxonomic groups and/or samples. In 
feature selection tools, there is an additional OTU filtering parameter based on minimum count and prevalence (not shown). (C) Visualization 
parameters that are specific to the tool which can change how samples are grouped and what values are displayed. Feature selection tools also allow 
adjustments to the input parameters of the underlying feature selection algorithms. (D) Main tool display area that shows either the desired 
visualization or a table of results. (E) Statistical significance of the visualization (if applicable). (F) Toolbar to access project details or other 
visualization or feature selection tools.   
 
 
 
 
 
 

 
 

User Configurable Parameters 
Each visualization or feature selection tool are shown as 
individual pages accessible from a dropdown menu. Within 
each page, users are presented with a series of filtering, 
aggregation, and analysis-specific parameter options that 
they can modify to suit their data exploration needs.  

 
With the filtering option, users can choose to include or 

exclude OTUs and/or samples based on their associated 
taxonomic annotations and mappings. For instance, users 
can choose to only include OTUs from a single phylum in 
their analysis. Alternatively, users can decide to exclude any 
samples that have a particular metadata value. These options 
provide flexibility for the investigator to examine a subset of 
the data without having to reprocess the entire dataset. 
Feature selection modules have an additional layer of low-
expression filtering. Only OTUs which meet a minimum 
user-configurable count and prevalence threshold will be 
considered as part of the analysis. By default, only OTUs 
whose abundance is greater than or equal to two in 10% or 

more samples will be kept for analysis. This is done in order 
to reduce the number of redundant computations on OTUs 
which will not produce any meaningful results.  

 
With the aggregation option (“Taxonomic Level”), 

users can instruct Mian to collapse the OTU table at a higher 
taxonomic level by grouping and summing OTUs together 
according to the taxonomic annotations prior to applying the 
analysis. Aggregations can help establish trends or show 
patterns that occur across an entire family or phylum - 
information that otherwise may not have been available at 
just the OTU level. Aggregations can be particularly useful 
if the overall OTU table is extremely sparse by increasing 
statistical resolution to make more definitive conclusions.  

 
Each individual tool will also have its own set of 

parameters which can be adjusted to suit each use case. 
Every time that a parameter is changed, Mian will 
immediately update the visualization or feature selection 
results to reflect the new state. This implementation allows 
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users to more easily explore their dataset by quickly seeing 
how their analysis results change under different conditions 
and by removing any visual distractions such as page 
navigations.  
 
 
TOOLS SUMMARY 

 
Ordination Tool 
Mian supports both principal component analysis (PCA) and 
non-metric multidimensional scaling (NMDS) for 
dimensionality reduction of the OTU table. The captured 
variation is presented on a two-dimension ordination plot. In 
the case of PCA, the user can choose to see which two 
principal components to view after viewing the overall 
variation represented by each of the first five principal 
components. In order to help highlight patterns and 
clustering within the dataset, users can also color the 
samples in the PCA plots based on a selected metadata 
attribute.  

 
Composition Tool 
The composition of the OTU table can be represented at 
different taxonomic level groupings with bar and donut 
charts. These charts visually show the percentage abundance 
of each taxonomic group based on the mean of aggregate 
OTU counts across all samples. Users can also group the 
samples based on categorical metadata, which will generate 
a composition chart for each metadata value. This can, for 
example, allow the user to visually see the compositional 
differences between samples under different environmental 
conditions. These charts are also interactive, which 
encourages users to hover over different components to see 
details on the specific abundances values and taxonomic 
groups.  

 
Diversity Tool 
The microbial community diversity analysis can be 
performed by calculating either the alpha diversity 
(measurement of the species diversity within a community) 
or beta diversity (measurement of the degree of 
differentiation of a community in relation to other 
communities). Both diversity measurements are presented as 
boxplots, which can be broken down based on a categorical 
metadata attribute for comparative analysis. If a breakdown 
is applied, Mian will also apply a Welch’s t-test to calculate 
whether the diversity differences are statistically significant. 
Welch’s t-test was selected as it is more robust than the 
Student’s t-test, allowing for unequal variances and sample 
sizes which can occur when metadata values are unevenly 
distributed across the samples. Each data point on the 
boxplots is also interactive, allowing users to hover over 
them and view details regarding the exact sample ID and 
calculated diversity value.  

 
For alpha diversity, Mian allows users to choose 

between the three available diversity indices (Shannon, 

Simpson, and Inverse Simpson) that the underlying R 
‘vegan’ library provides. In addition to the alpha diversity 
measure, species richness and Pielou's measure of species 
evenness can also be rendered on the boxplots. For beta 
diversity, Mian also supports three types of diversity index 
measures (Bray-Curtis, Sorenson, and Whittaker). The Bray-
Curtis index, based on the abundance counts, is 
recommended to show the dissimilarities between the 
different communities.  

 
Comparative Tools 
 
Boxplots 
Boxplots are the fundamental method of conveying 
numerical information within Mian. In addition to displaying 
diversity measurements, users can also render boxplots to 
show the abundance of a particular OTU or taxonomic group 
and also the mean or maximum OTU abundance per sample. 
This tool can help investigators visualize the differences 
between distinct sample groupings. For instance, in a study 
looking at the microbial samples collected from different 
lakes, investigators could look up whether there was an 
enrichment in the OTUs from the Firmicutes phylum 
between the different lakes. Alternatively, any numerical 
sample metadata can also be displayed on the boxplots. The 
Welch’s t-test is used to indicate whether the boxplot results 
are statistically significant.  

 
Tree View 
While boxplots are useful in exploring numerical attributes 
in relation to different communities, there is sometimes a 
need to compare sample groupings at a finer resolution. 
Within Mian, this can be accomplished by using the tree-
view tool. This view generates a taxonomic tree based on the 
taxonomic assignments of the OTUs, up until a user 
configurable taxonomic level. The leaves of the tree show 
the average, maximum, or non-zero counts of each 
taxonomic group in relation to the sample grouping. This 
can help the user visually find taxonomic groups which are 
highly enriched in one sample grouping, which can then be 
targets of further investigation. Because of data display 
limitations, it is recommended to only perform this analysis 
at the class level or higher or to first filter for specific 
taxonomic groups.  

 
Correlation Analysis 
In microbial studies, correlations are popular and 
straightforward ways to determine relationships between two 
numerical variables. For example, one may want to look at 
correlations between microbial diversity versus gene 
expression data. Mian provides three ways to explore the 
correlational aspect: simple correlation visualization, 
correlation network analysis, and correlation selection.  

 
In the most basic use case, users can choose to render a 

two-dimensional correlation scatterplot after specifying the 
two numerical metadata and/or OTU abundance measures 
they would like to be included in the correlation. Each  
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Figure 2. Examples of visualizations and feature selection results output available in Mian. (A) Beta diversity boxplot using the Bray-Curtis diversity index 
measure across two sample groups (not shown: similar boxplots are drawn for taxonomy abundance, numerical metadata, and alpha diversity). (B) Phylum-
level composition comparison between two sample groups expressed as a bar chart. (C) Correlation scatterplot between taxonomy abundance and a 
numerical metadata attribute. (D) Class-level composition comparison between two sample groups expressed as a donut plot. (E) Random forest importance 
output at the OTU level. (F) Co-correlation network analysis grouped at the family level. (G) PCA scatterplot showing the first two principal components. 
(H) Fisher’s exact test to select for OTUs whose presence/absence can distinguish between control and COPD samples. (I) NMDS scatterplot colored 
according to their sample grouping. (J) Rarefaction curve showing OTU richness at different subsampling depths. (K) Differential selection results output 
after grouping the OTU table at the family level. (L) Tree view showing the relative abundance of each class with respect to each sample grouping. 
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sample on the correlation graph can also be colored or sized 
differently to allow additional categorical or numerical 
metadata to be included within the same analysis. A Pearson 
correlation coefficient and corresponding p-value is 
generated for user reference.  

 
To quickly gain insights into the relationships between 

OTUs or taxonomic groups, Mian provides a weighted co-
correlation network tool. This analysis involves computing 
the correlations between every pair of taxonomic elements 
and visualizing the results as a network. The width of each 
line in the network denotes the strength of the corresponding 
correlation. While this type of analysis is popular within the 
greater biological community, having been applied to cancer 
or evolutionary genetic analysis, it has also been 
successfully applied in the context of the microbial research  
although to a lesser extent. For example, previous studies 
have used co-occurrence networks to study the microbial 
dynamics in the soil environments (19). Co-correlation 
analysis is useful in determining the relationships within a 
complex community, such as identifying groups of 
organisms that may have commensal interactions with each 
other or, conversely, organisms which may be antagonistic 
to each other in a given environmental setting. Moreover, 
centralized modules within a correlation network may also 
hint at “keystone species”, organisms whose presence may 
be key to the stability of a community. Duran-Pinedo et al., 
for example, applied correlation network analysis to the oral 
biofilm to identify key bacterial modules within the oral 
community which could distinguish between healthy and 
disease subjects (20).  

 
Alternatively, the correlation feature selection tool can 

be used to automatically identify OTUs or taxonomic group 
that correlate with a selected numerical metadata attribute. 
This is done by calculating the Pearson correlation 
coefficient, p-value, and FDR-corrected q-value for each 
OTU or taxonomic group and subsequently displaying the 
most statistically correlated OTUs or taxonomic groups to 
the user. This type of analysis can thus be used to determine 
the types of changes that can occur in a microbiome during 
disease progression or a host immune response. For 
example, by correlating microbial abundance against 
expression of genes from identified canonical pathways, 
Jangi et al. showed a positive association between the 
abundance of Methanobrevibacter and Akkermansia species 
and the genes implicated in the pathogenesis of multiple 
sclerosis (21). This type of correlational analysis can 
therefore be used a starting point to quickly assess whether 
there are any taxonomic shifts that warrant further 
investigation.  

 
Fisher’s Exact Test  
The Fisher’s exact test is used to test the statistical 
significance within a contingency table. In Mian, this tool 
examines the presence-absence of OTUs or taxonomy 
groups in the context of two pairwise categorical metadata 

values. This test would then select those OTUs which are 
shown to be statistically significant in discriminating 
between the two sample groupings. For example, consider a 
study where the samples were either “Control” or “Disease”. 
A contingency table could be constructed for each OTU such 
that the columns represent the presence and absence counts 
of the “Control” samples and the rows represent the presence 
and absence counts of the “Disease” samples. OTUs that 
have presence-absence proportions which are significantly 
different between the “Control” and “Disease” groups 
(according to their p-value and FDR-corrected q-value) 
would be highlighted in a tabular format for further 
investigation. This test can be especially useful when the 
OTU table is particularly sparse, since the test is able to 
utilize the full dataset and not just the non-zero values. 
Moreover, this test is also most applicable when the sample 
sizes are relatively small (n < 1000), although it is still 
correct for studies with larger samples (22). In either case, it 
is recommended to group the OTUs at a higher taxonomic 
level prior to running this test in order to increase the overall 
presence-absence counts, reduce computational cycles, and 
increase statistical resolution.  

 
Random Forest/Boruta 
Random forest classification algorithms are popular in the 
life science fields in part due to their ability to assign the 
importance to the variables that make up the classification. 
Random forests work particularly well with life science 
datasets since these datasets often contain more variables 
than samples and random forests can effectively handle this 
by training many decision trees across random subsets of the  
data (23). When applied to an OTU table, random forest 
algorithms can select for OTUs which are important in 
distinguishing between distinct sample groupings. For 
example, Sze et al. used Boruta feature selection with 
random forest analysis to identify 10 core OTUs, including 
known pathogens such as Haemophilus influenzae, that 
could discriminate between the samples taken from GOLD 
stage 4 COPD patients and those from healthy control 
individuals (24).  

 
Within Mian, users can apply the random forest analysis 

to their OTU dataset and the resulting variable importance 
measure is used as input to the Boruta feature selection 
algorithm. Alternatively, Mian can also show the OTUs 
ranked by the random forest feature importance values as 
produced by the Python scikit-learn library. Boruta is an 
“all-relevant” feature selection method, which is ideal for 
selecting all OTUs that are relevant in discriminating 
between populations, as opposed to simply finding the non-
redundant ones (25). By selecting for all relevant OTUs, one 
can start to explore patterns and commonalities between the 
selected OTUs such as shared metabolic processes or 
common environmental growth conditions.  
 
 
 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416073doi: bioRxiv preprint 

https://doi.org/10.1101/416073
http://creativecommons.org/licenses/by-nc/4.0/


Elastic Net 
Mian supports a limited logistic and multinomial regression 
analysis for categorical metadata attributes using the R 
package GLMNet (26). GLMNet applies the elastic net 
regularization that linearly combines both lasso and ridge 
regularization penalties. Elastic net is particularly useful 
when the number of predictors outweigh the number of 
samples, such as the case of an OTU table. Elastic net also 
exposes groupings within the data, as it is able to select all 
members within a correlated group (27). On the UI, users 
can tune some basic hyperparameters to the GLMNet 
package in order to determine the OTUs or taxonomic 
groups that are most associated with certain outcomes such 
as a disease state or a particular phenotype. These OTUs can 
then be investigated in further downstream analysis. 
Depending on the use case, the user can choose to adjust the 
alpha parameter (elastic net mixing parameter) to vary the 
balance between the L1 or L2 regularization. On the UI, 
Mian abstracts away the majority of the tunable GLMNet 
parameters by using the default values or using fixed 
strategies, such as using cross-validation to determine the 
ideal lambda parameter. While this simplifies the flow for 
the user and allows users to quickly experiment with this 
model, it is recommended that users complete the analysis 
by replicating the results in R if further study is required or 
if additional visualizations are needed, such as the cross-
validation curve. 
 
Differential Selection 
Using differential selection, Mian users can identify 
individual OTUs or taxonomic groups whose abundances are 
statistically different between two groups of samples. This is 
done by applying the Welch’s t-test to each candidate OTU 
(after filtering out low-expressed OTUs which would not 
result in meaningful results). This type of analysis is useful 
in understanding whether there are organisms which can 
differentiate between two disease states or two 
environmental habitats. For example, Fujimura et al. 
performed this type of between-groups comparison to 
determine what gastrointestinal microbial members afforded 
the best protection against allergens. Within their study, they 
found that Lactobacillus enrichment was associated with the 
adaptive immune response to respiratory insults (28). This 
type of selection is the categorical counterpart to the 
correlations selection, which instead selects OTUs based on 
comparisons with numerical metadata factors.  
 
 
PROGRAM IMPLEMENTATION 

 
Mian consists of a web-based user-interface (written in 
JavaScript, HTML, and CSS) and a server-side data 
processing framework (written in Python and R). After the 
end-user defines their filtering, aggregating, and 
visualization parameters, the user-interface issues Ajax 
requests to the server to transform the underlying matrix data 
depending on the selected visualization or feature selection 

tool. By using the Python-based Flask microframework, 
Mian can leverage popular open-source statistics and 
machine learning libraries including “scikit-learn”, “scikit-
bio”, and “numpy”. The server also interfaces with R 
libraries such as “vegan”, “Boruta”, and “glmnet” using the 
“RPy2” Python package. Visualizations are rendered on the 
user-interface using D3, an open-source JavaScript library.  

 
Mian has been tested for compatibility with major 

browsers including Google Chrome, Safari, and Firefox. 
Testing was performed on a Macbook with 16GB of RAM 
running a 3.1 GHz Intel Core i7 processor and on an AWS 
EC2 Ubuntu m5.large instance with 8GB of RAM running 
2.5GHz Intel Xeon Platinum processor. 

 
 

USE CASE EXAMPLE 
 
In order to demonstrate Mian usage in real-world settings, 
we used raw data deposited in the DataDryad online 
repository from a previously published study by Sze et al. 
that examined the lung microbiome in individuals with 
COPD (24, 29). We processed the raw data in accordance 
with the mothur 454 SOP that was used by the original paper 
(16). For our case, we subsampled the dataset to 676 reads, 
and used version 132 of the SILVA reference to perform the 
alignment and version 16 of the RDP reference to assign the 
taxonomy, both of which are more recent than the reference 
alignments used by the original paper. The output files of the 
454 SOP were uploaded directly to Mian along with sample 
metadata that labeled the samples as either “Control” or 
“COPD Gold 4”.  

 
By using the alpha diversity tool, the visualization 

showed that the Shannon diversity index was significantly 
higher in the COPD samples than the control samples (P < 
0.01). This observation is in-line with the study findings 
which showed that a decline in microbial diversity was 
associated with the emphysematous destruction that is 
hallmark of COPD disease progression.  

 
The Boruta feature selection also confirmed eight OTUs 

as being relevant in distinguishing between the control and 
COPD samples. These OTUs included those from the 
Prevotella, Streptococcus, and Flavobacterium genera. 
Similar OTUs were also identified by the GLMNet and 
differential selection tools. As shown in Figure 1, we can 
then easily use the boxplot module to visually depict the 
differences in abundance of a particular taxonomic group.  

 
When aggregated at the phylum level, the differential 

selection module showed that Proteobacteria phylum was an 
important differentiating factor between control and COPD 
samples (FDR < 0.002). Similarly, Sze et al. also found 
Proteobacteria to be the most significant driver of the 
difference between the control and the COPD samples. Both 
the PCA and NMDS plots also show a distinct separation 
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between the microbiome communities of the control and 
COPD samples. Overall, the results obtained from Mian are 
comparable to the results from the COPD study. Some 
differences naturally arose due to differences in the 
subsampling depths and taxonomy reference files used. 
 
 
LIMITATIONS AND FUTURE DIRECTION 
 
Because Mian is intended to be an interactive, real-time 
web-based platform, performance can become a bottleneck. 
The core data uploaded to Mian is a two-dimensional matrix 
representing the OTU table. As thousands of OTUs are 
typically generated through the upstream OTU selection 
process, this table rapidly grows in size with the number of 
samples which in turn consumes more computational and 
memory resources. Mian performs best when the OTU table 
is < 5MB (post-subsampling) - computationally expensive 
analysis may perform poorly on OTU tables larger than this 
size. For this reason, additional data filters based on 
minimum OTU count and prevalence on feature selection 
tools were implemented in order to reduce unnecessary 
computations on OTUs or taxonomic groups which would 
be poor targets of any further investigations due to their low 
expression.  

 
Future iterations of Mian will look at using Map-Reduce 

libraries such as Apache Spark running on distributed cloud 
infrastructure in order to process large datasets in a more 
efficient manner. Mian will also look at introducing ways to 
more intuitively explore and visualize gene expression data, 
among other systems biology datasets, in the context of the 
microbiome community structure. In addition, we will look 
at augmenting the existing statistical and visualization tools 
with any tools that are found to be relevant to the microbial 
research community but currently missing in Mian.  

 
   

CONCLUSION 
 

The microbiome is an ever-growing popular field of study 
due to its implications in a multitude of fields including 
medicine and the environment. In particular, microbial 
sequencing represents an important avenue of investigation 
in current human health related research as shifts in an 
individual’s microbiome have been associated with 
idiopathic diseases such as psoriasis and inflammatory 
bowel disease (30). With the costs of sequencing also 
continuing to decline, microbial sequencing is becoming 
more and more popular and accessible which will inevitably 
lead to a concomitant increase in the amount of data 
produced. Nevertheless, microbial sequencing is still a 
relatively young field. Many studies are still exploratory in 
nature and try to infer general patterns based on differential 
analysis. Therefore, it is critical to have tools that can 
facilitate data exploration in order to drive hypothesis 
generation and gain insights into these large microbial 

datasets. As part of this explorative narrative, these tools 
should also juxtapose any numerical and categorical 
metadata available on the microbial samples in order to drive 
research questions and shape future experiments.  

 
Mian fulfills this need by packaging several commonly 

used visualization, feature selection, and diversity tools into 
a user-friendly unified web interface. This design enables 
users without any programming or scripting background to 
upload their data sets and immediately generate boxplots or 
run a random forest feature selection algorithm without any 
data manipulation required. While tools have been created to 
generate visualizations based on microbial data sets such as 
EMPeror (13), Mian extends this concept further with novel 
visualizations such as the tree view to explore the 
relationship between external metadata and the microbial 
community. Furthermore, Mian emphasizes the use of 
machine learning and data mining feature selection 
algorithms to discover individual organisms or groups of 
organisms that may together contribute to a particular 
response in a population or result in a disease state. We 
believe the results derived from Mian will allow researchers 
to better integrate multiple datasets and more quickly 
explore different hypotheses to identify the ones that are 
most promising to pursue. Ultimately, Mian seeks to help 
researchers set the direction of their research and to remove 
technical hurdles in the data exploration process.   
 
 
REFERENCES 
 
1. Shreiner AB, Kao JY, Young VB. The gut microbiome in 

health and in disease. Current opinion in gastroenterology. 
2015 Jan;31(1):69. 

2. Moran MA. The global ocean microbiome. Science. 2015 Dec 
11;350(6266):aac8455. 

3. White III RA, Callister SJ, Moore RJ, Baker ES, Jansson JK. 
The past, present and future of microbiome analyses. Nature 
Protocols. 2016 Nov;11(11):2049. 

4. Locey KJ, Lennon JT. Scaling laws predict global microbial 
diversity. Proceedings of the National Academy of Sciences. 
2016 May 24;113(21):5970-5. 

5. Chen W, Zhang CK, Cheng Y, Zhang S, Zhao H. A 
comparison of methods for clustering 16S rRNA sequences 
into OTUs. PloS one. 2013 Aug 13;8(8):e70837. 

6. Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant 
microbiome: looking back and future perspectives. Frontiers 
in microbiology. 2014 Jun 4;5:148. 

7. Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, 
Sherman PM, Versalovic J, Young V, Finlay BB. Defining a 
healthy human gut microbiome: current concepts, future 
directions, and clinical applications. Cell host & microbe. 
2012 Nov 15;12(5):611-22. 

8. Větrovský T, Baldrian P. The variability of the 16S rRNA 
gene in bacterial genomes and its consequences for bacterial 
community analyses. PloS one. 2013 Feb 27;8(2):e57923. 

9. Balvočiūtė M, Huson DH. SILVA, RDP, Greengenes, NCBI 
and OTT—how do these taxonomies compare?. BMC 
genomics. 2017 Mar;18(2):114. 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416073doi: bioRxiv preprint 

https://doi.org/10.1101/416073
http://creativecommons.org/licenses/by-nc/4.0/


10. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, 
Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, 
Gordon JI, Huttley GA. QIIME allows analysis of high-
throughput community sequencing data. Nature methods. 
2010 May;7(5):335. 

11. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, 
Hollister EB, Lesniewski RA, Oakley BB, Parks DH, 
Robinson CJ, Sahl JW. Introducing mothur: open-source, 
platform-independent, community-supported software for 
describing and comparing microbial communities. Applied 
and environmental microbiology. 2009 Dec 1;75(23):7537-41. 

12. McDonald D, Clemente JC, Kuczynski J, Rideout JR, 
Stombaugh J, Wendel D, Wilke A, Huse S, Hufnagle J, Meyer 
F, Knight R. The Biological Observation Matrix (BIOM) 
format or: how I learned to stop worrying and love the ome-
ome. GigaScience. 2012 Dec;1(1):7. 

13. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. 
EMPeror: a tool for visualizing high-throughput microbial 
community data. Gigascience. 2013 Dec;2(1):16. 

14. Shneiderman B. Inventing discovery tools: combining 
information visualization with data mining. Information 
visualization. 2002 Mar;1(1):5-12. 

15. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss 
PD. Development of a dual-index sequencing strategy and 
curation pipeline for analyzing amplicon sequence data on the 
MiSeq Illumina sequencing platform. Applied and 
environmental microbiology. 2013 Jun 21:AEM-01043. 

16. Schloss PD, Gevers D, Westcott SL. (2011). Reducing the 
effects of PCR amplification and sequencing artifacts on 16S 
rRNA-based studies. PloS ONE. 6:e27310. 

17. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez 
A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham 
A, Hyde ER. Normalization and microbial differential 
abundance strategies depend upon data characteristics. 
Microbiome. 2017 Dec;5(1):27. 

18. Weiss SJ, Xu Z, Amir A, Peddada S, Bittinger K, Gonzalez A, 
Lozupone C, Zaneveld JR, Vazquez-Baeza Y, Birmingham A, 
Knight R. Effects of library size variance, sparsity, and 
compositionality on the analysis of microbiome data. PeerJ 
PrePrints; 2015 Jun 6. 

19. Barberán A, Bates ST, Casamayor EO, Fierer N. Using 
network analysis to explore co-occurrence patterns in soil 
microbial communities. The ISME journal. 2012 
Feb;6(2):343. 

20. Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J. 
Correlation network analysis applied to complex biofilm 
communities. PloS one. 2011 Dec 7;6(12):e28438. 

21. Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R, Patel 
B, Mazzola MA, Liu S, Glanz BL, Cook S. Alterations of the 
human gut microbiome in multiple sclerosis. Nature 
communications. 2016 Jun 28;7:12015. 

22. Connelly LM. Fisher's exact test. MedSurg Nursing. 
2016;25(1):58. 

23. Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, 
Wels M, van Hijum SA. Data mining in the Life Sciences with 
Random Forest: a walk in the park or lost in the jungle?. 
Briefings in bioinformatics. 2012 Jul 10;14(3):315-26. 

24. Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell 
JD, Brothers JF, Erb-Downward JR, Huffnagle GB, Hayashi 
S, Elliott WM, Cooper J. Host response to the lung 
microbiome in chronic obstructive pulmonary disease. 
American journal of respiratory and critical care medicine. 
2015 Aug 15;192(4):438-45. 

25. Kursa MB, Rudnicki WR. Feature selection with the Boruta 
package. J Stat Softw. 2010 Sep 16;36(11):1-3. 

26. Friedman JH, Hastie TJ, Tibshirani RJ. glmnet: lasso and 
elastic-net regularized generalized linear models, 2010b. URL 
http://CRAN. R-project. org/package= glmnet. R package 
version.:1-. 

27. Zou H, Hastie T. Regularization and variable selection via the 
elastic net. Journal of the Royal Statistical Society: Series B 
(Statistical Methodology). 2005 Apr 1;67(2):301-20. 

28. Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, 
Johnson CC, Boushey HA, Zoratti E, Ownby D, Lukacs NW, 
Lynch SV. House dust exposure mediates gut microbiome 
Lactobacillus enrichment and airway immune defense against 
allergens and virus infection. Proceedings of the National 
Academy of Sciences. 2014 Jan 14;111(2):805-10. 

29. Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell 
JD, Brothers JF, Erb-Downward JR, Huffnagle GB, Hayashi 
S, Elliott WM, Cooper J, Sin DD, Lenburg ME, Spira A, 
Mohn WW, Hogg JC (2015) Data from: The host response to 
the lung microbiome in Chromic Obstructive Pulmonary 
Disease. Dryad Digital Repository. 
https://doi.org/10.5061/dryad.2p66n 

30. Cho I, Blaser MJ. The human microbiome: at the interface of 
health and disease. Nature Reviews Genetics. 2012 
Apr;13(4):260. 

 
 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416073doi: bioRxiv preprint 

https://doi.org/10.1101/416073
http://creativecommons.org/licenses/by-nc/4.0/

