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SUMMARY 34	

Gβγ subunits are involved in many different signalling processes in various 35	

compartments of the cell, including the nucleus. To gain insight into the functions of nuclear 36	

Gβγ, we investigated the functional role of Gβγ signalling in regulation of GPCR-mediated gene 37	

expression in primary rat neonatal cardiac fibroblasts. Following activation of the angiotensin II 38	

type I receptor in these cells, Gβγ dimers interact with RNA polymerase II (RNAPII). Our 39	

findings suggest that Gβ1 recruitment to RNAPII negatively regulates the fibrotic transcriptional 40	

response, which can be overcome by strong fibrotic stimuli. The interaction between Gβγ 41	

subunits and RNAPII expands the role for Gβγ signalling in cardiac fibrosis. The Gβγ-RNAPII 42	

interaction was regulated by signaling pathways in HEK 293 cells that diverged from those 43	

operating in cardiac fibroblasts. Thus, the interaction may be a conserved feature of 44	

transcriptional regulation although such regulation may be cell-specific.  45	

 46	
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INTRODUCTION 57	

In recent years, study of the role of paracrine interactions between cardiomyocytes and 58	

cardiac fibroblasts in modulating the response to cardiac damage has expanded dramatically. 59	

Cardiac fibroblasts, in particular, respond dynamically following damage to the myocardium 60	

which is characterized by differentiation into myofibroblasts, increased proliferation and 61	

migration to areas of damage (Travers et al., 2016, Fu et al., 2018, Dobaczewski et al., 2010). 62	

This fibrotic response is modulated by the renin-angiotensin system, acting predominantly 63	

through the peptide ligand angiotensin II (Ang II) (Murphy et al., 2015, Kawano et al., 2000). 64	

Ang II drives changes in fibroblast function both directly and indirectly by increasing expression 65	

of other pro-fibrotic growth factors, such as transforming growth factor β1 (TGF-β1) (Campbell 66	

and Katwa, 1997). Collectively, these factors regulate alterations in cardiac architecture required 67	

for tissue repair by modulating the expression of genes encoding extracellular matrix proteins 68	

and proteases (Rosenkranz, 2004, Gao et al., 2009). Ang II also promotes cytokine secretion, 69	

thereby triggering autocrine and paracrine signalling to elicit further responses (Cheng et al., 70	

2003, Ahmed et al., 2004). These signalling events create a feedforward loop, amplifying the 71	

fibrotic response from the initial area of damage to more distal regions of the heart (Ma et al., 72	

2018). While the process initially aids in wound healing, a prolonged, activated fibrotic response 73	

worsens adverse cardiac remodelling and accelerates progression to heart failure (Travers et al., 74	

2016, Weber et al., 2013). Importantly, inhibiting aspects of the fibrotic response reduces 75	

adverse cardiac remodelling (Fu et al., 2018, Weber and Diez, 2016). Hence, deciphering how 76	

Ang II signalling regulates pro-fibrotic gene expression is an important step towards 77	

understanding how these processes might be targeted therapeutically. 78	
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Cardiac fibroblasts respond to increased Ang II levels through Ang II type I (AT1R) and 79	

type II (AT2R) G protein-coupled receptors (GPCRs). Of these, the AT1R is responsible for 80	

positively regulating the fibrotic response in cardiac fibroblasts (Travers et al., 2016). The AT1R 81	

couples to multiple heterotrimeric G proteins composed of specific combinations of Gα and Gβγ 82	

subunits (Namkung et al., 2018). G proteins serve as signal transducers to relay extracellular 83	

ligands bound to GPCRs into activation of different intracellular signalling pathways (Khan et 84	

al., 2013). Gβγ subunits, like the more extensively studied Gα subunits, modulate a wide variety 85	

of canonical GPCR effectors at the cellular surface such as adenylyl cyclases, phospholipases 86	

and inwardly rectifying potassium channels (Khan et al., 2013, Dupré DJ, 2009, Smrcka, 2008). 87	

However, compared with Gα-mediated events, Gβγ-mediated signalling is relatively 88	

understudied and is complicated by the existence of 5 Gβ and 12 Gγ subunits which can combine 89	

in multiple ways to form obligate dimers. Gβγ subunits also regulate a variety of non-canonical 90	

effectors in distinct intracellular locations, and a number of studies have described roles for Gβγ 91	

signalling in the nucleus (Khan et al., 2013, Campden et al., 2015a). Nuclear Gβγ subunits 92	

modulate gene expression through interactions with a variety of transcription factors, such as 93	

adipocyte enhancer binding protein 1 (AEBP1), the AP-1 subunit c-Fos, HDAC5 and MEF2A 94	

(Park et al., 1999, Robitaille et al., 2010, Spiegelberg and Hamm, 2005, Bhatnagar et al., 2013). 95	

Furthermore, we have detected Gβ1 occupancy at numerous gene promoters in HEK 293 cells 96	

(Khan et al., 2015). While canonical Gβγ signalling has been implicated in both cardiac fibrosis 97	

and heart failure (Kamal et al., 2017, Travers et al., 2017), how nuclear Gβγ signalling impacts 98	

these events is currently unknown.  99	

Here, we describe a novel interaction between Gβγ subunits and RNA polymerase II 100	

(RNAPII) which regulates the cardiac fibrotic response to Ang II activation of AT1R. We 101	
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characterize the GPCR-dependent, signalling pathway-specific regulation of this interaction in 102	

primary neonatal rat cardiac fibroblasts and in HEK 293 cells. To understand the potential role of 103	

individual Gβγ subunits, we knocked down Gβ1 and Gβ2 as exemplars of Gβ subunits highly 104	

expressed in these cells and characterized how nuclear Gβ1, in particular, is a key regulator of 105	

AT1R-driven transcriptional changes. 106	
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 125	

RESULTS 126	

Gβγ interaction with RNAPII following activation of Gαq-coupled GPCRs 127	

As Gβγ interacts with transcription factors and occupies gene promoter regions, we 128	

hypothesized that Gβγ subunits interact with a protein complex ubiquitously involved in 129	

transcription, and we initially focused on RNAPII. We assessed the potential Gβγ-RNAPII 130	

interaction following endogenous M3-muscarinic acetylcholine receptors (M3-mAChRs) 131	

activation with carbachol in HEK 293F cells. An initial co-immunoprecipitation time course 132	

experiment revealed a carbachol-induced interaction between endogenous Gβγ subunits (Gβ1-4 133	

detected with a pan-Gβ antibody) and Rpb1, the largest subunit of RNAPII, peaking between 45 134	

and 120 mins (Supplemental Figure 1A, B). Immunoprecipitation of Rpb1 with two different 135	

antibodies also co-immunoprecipitated Gβ1-4 in an agonist-dependent manner (Supplemental 136	

Figure 1C). Further, we observed no basal or carbachol-dependent interaction of Rpb1 with 137	

Gαq/11 or ERK1/2 (Supplemental Figure 1D, E) suggesting that Gβγ was not in complex with 138	

these proteins when it was associated with RNAPII in the nucleus.  Under similar conditions, we 139	

observed no basal or carbachol-dependent interaction of Gβγ subunits with the A194 subunit of 140	

RNA polymerase I (Supplemental Figure 1F), suggesting Gβγ is not recruited to all RNA 141	

polymerases.  142	

We next assessed the whether the Gβγ-RNAPII interaction also occurred in primary rat 143	

neonatal cardiac fibroblasts following treatment with Ang II. A time-course co-144	

immunoprecipitation experiment revealed an agonist induced Gβγ-RNAPII interaction with a 145	

major peak interaction observed 75 minutes post stimulation (Figure 1A, B). As cardiac 146	

fibroblasts express both AT1R and AT2R, we next examined which receptor subtype regulated 147	
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the response, by pre-treatment with the AT1R-specific antagonist losartan. Pre-treatment of cells 148	

with losartan prior to Ang II treatment abolished the agonist-induced interaction, but preserved 149	

the basal interaction, suggesting that AT1R, and not AT2R, is primarily responsible for 150	

mediating the interaction (Figure 1C, D). 151	

Although several Gβγ isoforms have been detected in the nucleus (Bhatnagar et al., 2013, 152	

Campden et al., 2015b, Zhang et al., 2001), the mechanisms leading to entry of Gβγ into the 153	

nucleus remain unknown. Using subcellular fractionation following M3-mAChR activation in 154	

HEK 293F cells, we observed importin-β dependent translocation of Gβγ into the nucleus (data 155	

not shown). In addition, the agonist-dependent interaction of Gβ1-4 and RNAPII was blocked by 156	

importazole pre-treatment, suggesting that nuclear import of Gβ1-4 is required for the interaction 157	

with RNAPII in these cells (Supplemental Figure 2A, B). Next, we determined the effect of 158	

importazole pre-treatment on the Ang II-mediated Gβγ-RNAPII interaction in cardiac 159	

fibroblasts. The Gβγ-RNAPII interaction was also ablated when nuclear import via importin-β 160	

was inhibited, suggesting again that Gβγ subunits must translocate to the nucleus for the 161	

interaction with RNAPII to occur (Figure 1E, F).  162	

 163	

Signalling pathways regulating Gβγ-RNAPII interaction are cell-specific 164	

We next examined signalling events downstream of receptor activation that could 165	

mediate the interaction between Gβγ subunits and RNAPII. To this end, we pursued a 166	

pharmacological and genetic approach using both cardiac fibroblasts (Figure 2) and HEK 293F 167	

cells (Figure 3). Our data indicated that the pathways responsible for promoting the Gβγ-168	

RNAPII interaction are cell type specific. Since AT1R couples to both Gq/11 and Gi/o G 169	

proteins (Sauliere et al., 2012), we used FR900359 to inhibit Gαq/11 (Schrage et al., 2015) and 170	
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pertussis toxin (PTX) to inhibit Gαi/o. The agonist-induced response was markedly (~80%) 171	

decreased by the Gαq/11 inhibitor, and also decreased (~30%) by the Gαi/o inhibitor, 172	

demonstrating that AT1R signalling through Gαq is the primary pathway leading to increased 173	

Gβγ-RNAPII interaction (Figure 2A-B, Supplemental Figure 3A-B). We next used U71322 to 174	

inhibit the activity of phospholipase Cβ (PLCβ), downstream of both Gq/11 and Gi/o (the latter 175	

via Gβγ signalling). In cardiac fibroblasts, pre-treatment of U71322 blocked the agonist-induced 176	

Gβγ-RNAPII interaction with no effect on the basal interaction, suggesting a pivotal role for 177	

PLCβ (Figure 2C, Supplemental Figure 3C). Chelation of Ca2+ using BAPTA-AM in cardiac 178	

fibroblasts also abrogated the Ang II-induced Gβγ-RNAPII interaction (Figure 2D, 179	

Supplemental Figure 3D), as did treatment with the PKC inhibitor Gö6983 and the CaMKII 180	

inhibitor KN-93 (Figure 2E, F, Supplemental Figure 3E, F). Conversely, the MEK1 inhibitor 181	

U0126 led to an increased basal Gβγ-RNAPII interaction but abrogated the Ang II-induced 182	

interaction (Figure 2G, Supplemental Figure 3G). Lastly, the calcineurin inhibitor cyclosporin 183	

A lead to an increased basal interaction did not prevent further Ang II-dependent increase in 184	

interaction (Figure 2H, Supplemental Figure 3H).  185	

Extending these studies to HEK 293F cells, we observed a similar reliance on Gαq 186	

signalling for the agonist-induced Gβγ-RNAPII interaction. The carbachol-induced Gβγ-RNAPII 187	

interaction was prevented by pre-treatment with the Gαq inhibitor FR900359 (Figure 3A and 188	

Supplemental Figure 4A) and also by CRISPR/Cas9-mediated knockout of Gαq/11/12/13 189	

(Figure 3B and Supplemental Figure 4B). However, except for this common event, the 190	

signalling pathways in cardiac fibroblasts and HEK 293F cells diverged substantially. In HEK 191	

293F cells, U71322 also blocked the carbachol-induced Gβγ-RNAPII interaction but there was a 192	

pronounced increase in the basal interaction (Figure 3C, Supplemental Figure 4C). Further 193	
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differences were observed following chelation of calcium with BAPTA-AM which increased 194	

basal levels of the Gβγ-RNAPII interaction but did not block further carbachol-induced 195	

stimulation of the interaction (Figure 3D, Supplemental Figure 4D), suggesting a modulatory 196	

role for calcium in HEK 293F cells rather than the direct role seen in cardiac fibroblasts. HEK 197	

293F cells employed different regulatory mechanisms involving protein kinases activated 198	

downstream of Gαq/11-coupled GPCRs compared to cardiac fibroblasts. For example, the PKC 199	

inhibitor Gö6983 and the CaMKII inhibitor KN-93 both increased basal levels of interaction but 200	

did not block carbachol-induced interactions between Gβγ and Rpb1 (Figure 3E, F, 201	

Supplemental Figure 4E, F). Indeed, inhibition of calcineurin with cyclosporin A blocked the 202	

carbachol-mediated increase in interaction between Gβγ and Rpb1, suggesting a role for this 203	

phosphatase in mediating the interaction in response to M3-mAChR activation (Figure 3G and 204	

Supplemental Figure 4G). While the requirement for activation of Gαq is common for the Gβγ-205	

RNAPII interaction in both cell types, the regulation by downstream signalling pathways 206	

diverges. 207	

 208	

Roles of individual Gβ subunits in regulating the angiotensin II-activated fibrotic response in rat 209	

neonatal cardiac fibroblasts 210	

The Gβ family is comprised of five members which, with the exception of Gβ5, exhibit 211	

high levels of sequence and structural similarity (Khan et al., 2013). Despite these similarities, 212	

Gβ isoforms differ considerably with respect to their associated receptors and signalling 213	

pathways (Khan et al., 2015, Yim et al., 2019, Greenwood and Stott, 2019). As our above-214	

reported characterization used a pan-Gβ1-4 antibody, we next sought to examine the specificity of 215	

Gβ isoforms interacting with Rpb1 in cardiac fibroblasts. We initially focused on Gβ1 and Gβ2 as 216	
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they exhibit the highest expression in cardiac fibroblasts determined by RNA-seq (Shu et al., 217	

2018) and RT-qPCR (Supplemental Figure 5A). Immunoprecipitation with a Gβ1 specific 218	

antibody revealed an increase in the amount of Rpb1 co-immunoprecipitated in response to Ang 219	

II treatment, whereas immunoprecipitation of Gβ2 indicated a basal interaction with Rpb1 that 220	

was lost in response to Ang II treatment (Supplemental Figure 5B). We also assessed Gβ 221	

isoform specificity in HEK 293F cells through heterologous expression of FLAG-tagged 222	

versions of each Gβ subunit. In response to M3-mAChR activation, FLAG-Gβ1 was the only 223	

isoform that showed an increased interaction with Rpb1 (Supplemental Figure 5C, D). Hence, 224	

an increased interaction between Gβ1 and Rpb1 was seen in both cell types, suggesting that our 225	

earlier observations using the pan-Gβ1-4 antibody likely reflected increased interactions with Gβ1. 226	

As we observed isoform-specific roles in RNAPII interactions, we next assessed how 227	

knockdown of either Gβ isoform affected the interaction. We first validated knockdown 228	

conditions for each Gβ subunit by siRNA at the mRNA and protein levels (Supplemental 229	

Figure 6A, B). We observed a reduction in the Ang II-induced Gβγ-RNAPII interaction upon 230	

knockdown of Gβ1, supporting Gβ1 as the isoform involved in the increased interaction with 231	

Rpb1. Surprisingly, knockdown of Gβ2 also prevented the Ang II-mediated increase in the Gβγ-232	

RNAPII interaction (Figure 4A, B). The loss of Gβγ-RNAPII interaction after Gβ2 knockdown, 233	

despite it not being involved in the Ang II-dependent increase, suggested that AT1R signalling 234	

could be altered by loss of Gβ2 subunits.  235	

We thus determined whether specific Gβ isoforms were required to initiate signalling 236	

cascades proximal to AT1R activation. Following receptor activation, Gβγ subunits regulate 237	

intracellular Ca2+ mobilization through activation of PLCβ (Park et al., 1993). As we have 238	

previously demonstrated Gβ isoform specificity for PLCβ signalling in HEK 293F cells (Khan et 239	
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al., 2015), we assessed the relative roles of Gβ1 and Gβ2 in AT1R-dependent Ca2+ mobilization. 240	

To assess AT1R-dependent intracellular Ca2+ mobilization, we used the cell-permeable Ca2+ dye 241	

Fura 2-AM. Following AT1R activation, we observed a rapid increase in intracellular Ca2+ 242	

mobilization (Figure 4A, black, empty triangles) and the quantified area under the curve (Figure 243	

4B, black bar). Knockdown of Gβ1 did not alter Ca2+ mobilization following stimulation with 244	

Ang II (8.1 ± 7.0% decrease, red bar). However, knockdown of Gβ2 resulted in a significant 31.6 245	

± 9% decrease in Ca2+ release (Figure 4A, B, green bar), suggesting a role for Gβ2-containing 246	

Gβγ dimers in mediating receptor-proximal signalling downstream of AT1R activation. This 247	

suggests Gβ2 knockdown prevented the Ang II-dependent increase in Gβγ-RNAPII interaction 248	

through disruption to AT1R Ca2+ signalling, aligning with the observed effect of Ca2+ chelation 249	

with BAPTA-AM. These results highlight the complex interplay between cell surface receptors 250	

and multiple Gβγ subunits, in modulating both basal and ligand stimulated RNAPII/Gβγ 251	

interactions.   252	

 253	

 Gβγ interacts with transcribing RNAPII 254	

 As we demonstrated that Gβγ is recruited to RNAPII following AT1R activation, which 255	

also activates a transcriptional program in fibroblasts, we assessed the relationship between the 256	

transcriptional response and Gβγ recruitment (Shu et al., 2018, Dang et al., 2015). To assess this 257	

potential relationship, we disrupted the transcription cycle at two different regulatory points 258	

through inhibition of Cdk7, a component of the general transcription factor TFIIH, and Cdk9, the 259	

protein kinase subunit of P-TEFb (Zhou et al., 2012). Following RNAPII recruitment, Cdk7 260	

activity stimulates promoter clearance of RNAPII to begin transcription. Soon after RNAPII 261	

pauses at a promoter-proximal region and requires the activity of Cdk9 in order to be released 262	
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into productive elongation (Liu et al., 2015). We assessed involvement of both Cdk7 and Cdk9 263	

on the Ang II-induced Gβγ-RNAPII interaction using the selective inhibitors THZ1 and iCdk9, 264	

respectively (Lu et al., 2015, Kwiatkowski et al., 2014). THZ1 abrogated the Ang II-stimulated 265	

Gβγ-RNAPII interaction (Figure 5A, Supplemental Figure 7A) while iCdk9 resulted in a loss 266	

of both the basal and Ang II-stimulated Gβγ-RNAPII interaction (Figure 5B, Supplemental 267	

Figure 7B). This suggests that the Gβγ-RNAPII interaction requires the transcriptional response 268	

to Ang II in cardiac fibroblasts. As with cardiac fibroblasts, in HEK 293F cells disruption of the 269	

transcriptional cycle through inhibition of Cdk7 and Cdk9 with DRB also blocked the increased 270	

interaction between RNAPII and Gβγ (data not shown), showing that the Gβγ/RNAPII 271	

interaction is dependent on an active transcriptional response in both cell types. 272	

 273	

The role of Gβγ subunits in fibrotic gene expression 274	

In order to understand the role of Gβγ in Ang II-regulated gene expression, we examined 275	

changes in the levels of 84 genes involved in the fibrotic response using the Qiagen RT2 276	

ProfilerTM PCR array platform. Gene expression changes were assessed following 75 min or 24 h 277	

Ang II treatment alongside Gβ1 or Gβ2 knockdown. These two time points were selected to 278	

investigate the effect of disrupting the Gβγ-RNAPII interaction or, in the longer term, upstream 279	

signalling, respectively. We assessed gene expression changes across all 67 genes remaining 280	

after excluding genes below our chosen threshold of detection (i.e. Ct > 35). After 75 min of Ang 281	

II treatment, we observed a similar upregulation of fibrotic genes in both control and Gβ1 282	

knockdown conditions (Figure 5C, Supplemental Table 1). However, Gβ1 knockdown 283	

increased both basal expression and the total number of genes altered by AT1R stimulation 284	

(Figure 5C, Supplemental Table 1). Following 24 h Ang II treatment, this effect became more 285	
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pronounced. Gβ1 knockdown led to increases in basal gene expression, expression regulated by 286	

Ang II treatment and the overall number of genes upregulated (Figure 5D, Supplemental Table 287	

1). The increased expression following Gβ1 knockdown suggests the Gβγ-RNAPII interaction 288	

negatively modulates the Ang II transcriptional response.  289	

Whereas Gβ1 knockdown altered the transcriptional response to Ang II treatment, 290	

disruption of AT1R signalling by Gβ2 knockdown did not significantly alter basal fibrotic gene 291	

expression or the overall response to 24 h Ang II treatment (Figure 5D, Supplemental Table 1). 292	

The lack of effect of Gβ2 knockdown suggests that Gβγ signalling through Ca2+ is not required 293	

for AT1R-mediated transcriptional changes. To further address the role of Gβγ signalling, we 294	

utilized the small-molecule pan-Gβγ inhibitor gallein (Lehmann et al., 2008). As with Gβ2 295	

knockdown, pre-treatment with gallein did not significantly alter the transcriptional response 296	

following 24 h Ang II treatment (Figure 5E). This suggests that Gβγ-dependent signalling 297	

downstream of the AT1R is not a key driver of transcriptional changes. Instead, Gβγ is required 298	

to modulate processes driven by other signalling pathways and dampen the fibrotic response 299	

until such signals rise above a threshold.  300	

 301	

Genome-wide recruitment of Gβ1 and the effect on RNAPII occupancy following Ang II 302	

treatment  303	

 To assess the possibility of genome-wide Gβ1 recruitment and changes in RNAPII 304	

occupancy following 75 min Ang II treatment in cardiac fibroblasts, we performed chromatin 305	

immunoprecipitation followed by next generation sequencing (ChIP-seq) for heterologously 306	

expressed FLAG-Gβ1 and endogenous Rpb1. We confirmed that, like endogenous Gβ1, the 307	

interaction of Rbp1 with heterologously expressed FLAG-Gβ1 increased following AT1R 308	
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activation (Supplemental Figure 8A, B). We focused on genes with RNAPII peaks identified by 309	

the peak calling software macs2 and annotated with HOMER (Heinz et al., 2010, Zhang et al., 310	

2008). The same Gβ1 knockdown conditions that increased the number of genes upregulated in 311	

response to Ang II (above) also increased the number of genes occupied by RNAPII following 312	

Ang II treatment (Figure 6A). To identify groups of genes with similar FLAG-Gβ1 and RNAPII 313	

occupancy patterns, we performed K-means clustering with genes that RNAPII peaks were 314	

identified in any treatment condition. Two K-means clusters were identified (98 genes in cluster 315	

1 and 806 in cluster 2) with distinct occupancy patterns (Figure 6B, C). In cluster 1, FLAG-Gβ1 316	

occupancy increased within the gene body in response to Ang II. A similar but weaker tendency 317	

was also observed in cluster 2 (Figure 6B). The increased FLAG-Gβ1 occupancy in cluster 1 318	

corresponded to Gβ1-dependent changes to the Ang II-induced RNAPII occupancy alterations. 319	

First, Ang II treatment led to increased RNAPII occupancy throughout the gene body under 320	

siRNA control conditions (Figure 6C). In the absence of Ang II, Gβ1 knockdown increased 321	

RNAPII occupancy near transcription start sites (TSSs) which corresponds with increased gene 322	

expression under these conditions (Figure 6C). Lastly, there was greater RNAPII occupancy 323	

when Ang II treatment was combined with Gβ1 knockdown than in the absence of knockdown 324	

(Figure 6C). Similar RNAPII occupancy patterns were observed in cluster 2, suggesting that 325	

Gβ1 also plays a regulatory role along these genes and our FLAG-Gβ1 ChIP-seq was not 326	

sensitive enough to reliably detect Gβ1. We also assessed the functional pathways enriched in 327	

cluster 1, through gene ontology (GO) term enrichment. The top four significant GO terms 328	

identified (corresponding to cellular processes such as inflammation, fibroblast activation and 329	

apoptosis) indicate that Gβ1 is recruited to genes involved in processes essential to fibrosis 330	

(Figure 6D).   331	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 13, 2020. ; https://doi.org/10.1101/415935doi: bioRxiv preprint 

https://doi.org/10.1101/415935


	 15	

 The increased number of genes with RNAPII occupancy in the Ang II and Gβ1 332	

knockdown condition suggested that Gβ1 occupancy impairs RNAPII recruitment. As such, we 333	

would expect cluster 1 genes to be more enriched in genes with RNAPII occupancy under Ang II 334	

and Gβ1 knockdown condition than Ang II and siRNA control conditions. Therefore, we 335	

performed a Fisher’s exact test to compare the proportion of cluster 1 genes in these treatment 336	

conditions, which demonstrated a significant (p-value < 0.01) enrichment in the Ang II and Gβ1 337	

knockdown condition gene list compared to Ang II and siRNA control condition. This again 338	

suggests Gβ1 functions to suppress RNAPII transcription following AT1R activation.  339	

In order to assess the relationship between Gβ1 occupancy and transcription, we focused 340	

on genes from our fibrosis qPCR array that were also found in cluster 1. Eight genes from the 341	

fibrosis array were identified in cluster 1, which included five of the seven genes upregulated 342	

after 75 min of Ang II treatment such as thrombospondin 1 (Thbs1) and connective tissue growth 343	

factor (Ctgf) (Figure 6E, F). We confirmed the Ang II-dependent increase in Gβ1 occupancy 344	

along Ctgf by ChIP-qPCR (Supplemental Figure 8C). We also assessed the effect of Gβ1 345	

knockdown on AT1R-dependent changes of RNAPII occupancy along Ctgf by ChIP-qPCR. 346	

Similar to our ChIP-seq analysis, we observed a greater increase in RNAPII along the gene in 347	

response to Ang II under siRNA GNB1 knockdown compared to siRNA control, where we 348	

observed a slight decrease (Supplemental Figure 8D). We also validated the change in 349	

expression of Ctgf by RT-qPCR using primers designed in-house (Supplemental Table 2). 350	

Under control conditions Ang II had a minor effect on Ctgf expression, however in the absence 351	

of Gβ1 Ang II treatment resulted in a significant upregulation of Ctgf mRNA. (Supplemental 352	

Figure 8E). Taken together, our results demonstrate Gβ1 recruitment negatively regulates 353	
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expression of genes involved in the fibrotic response to Ang II by inhibiting early stages of the 354	

RNAPII transcription cycle.  355	

 356	

 357	

 358	

 359	

  360	
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DISCUSSION 361	

The functional specificity of Gβ and Gγ subunits has been mostly investigated in the 362	

context of signalling proximal to GPCR activation (i.e., the regulation of effector activity 363	

downstream of receptor stimulation) (Khan et al., 2013). In contrast, our findings provide new 364	

insights regarding non-canonical roles of specific Gβγ dimers in more distal events in the 365	

nucleus, particularly in the regulation of gene expression. Here, we demonstrate for the first time 366	

an interaction between Gβγ and RNAPII and investigate the regulatory signalling mechanisms in 367	

transformed cell lines (HEK 293 cells) and in primary cells (neonatal rat cardiac fibroblasts). The 368	

interaction of Gβγ and RNAPII represents a significant addition to the expanding list of Gβγ 369	

interactors, and our findings suggest that regulatory mechanisms impacting the interaction are 370	

dependent on cellular context. We also show that Gβγ signalling is a critical regulator of the 371	

fibrotic response in cardiac fibroblasts.  372	

Our findings suggest that following acute treatment with Ang II, Gβ1 is transiently 373	

recruited to pro-fibrotic genes to negatively regulate RNAPII recruitment, thereby limiting the 374	

fibrotic response following transient fluctuations in local Ang II concentrations likely seen in 375	

vivo. This negative RNAPII regulation may potentially occur through direct interactions with 376	

RNAPII, preventing its recruitment or other aspects of initiation, or else via an indirect 377	

mechanism in which Gβγ would form part of a larger RNAPII-containing complex altering the 378	

local chromatin landscape. We cannot currently distinguish between these two possibilities, 379	

given that our co-immunoprecipitation assay was performed using whole-cell lysates. On the 380	

other hand, chronic stress or damage to the heart leads to a sustained increase of Ang II 381	

concentrations in cardiac tissue (Sun and Weber, 1996, Passier et al., 1996). We propose that 382	

such sustained AT1R signalling overcomes the transient Gβ1 “brake” to elicit a robust fibrotic 383	
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response. Alternatively, pro-fibrotic factors that are upregulated and secreted following AT1R 384	

activation may elicit autocrine signalling pathways that overcome the Gβ1 transcriptional 385	

repression (Lee et al., 1995, Ma et al., 2018). Our gene expression data at 75 min, and more 386	

especially at 24 h, begins to identify the increased number and greater gene expression in the 387	

absence of the proposed negative regulatory mechanism when Gβ1 is knocked down. Further 388	

analysis of the kinetics of the interaction and how this changes the dynamics of chromatin 389	

occupation or gene expression are required as well. Future experiments assessing nascent RNA 390	

production are required to accurately determine gene expression changes at early time points.  391	

We demonstrated that Gβ2, and not Gβ1, was important for proximal signalling 392	

downstream of AT1R activation similar to the requirement of specific Gβ isoforms for activation 393	

of PLCβ in HEK 293 cells (Khan et al., 2015). Our data suggest that Gβ2 plays a minimal role in 394	

regulating AT1R-dependent gene expression per se. Rather, our findings using the broad-395	

spectrum Gβγ inhibitor gallein suggest that receptor-proximal Gβγ signalling in general is not 396	

required for the transcriptional response and instead it is dependent on Gαq signalling and more 397	

distal Gβ1-dependent events. Knockdown of Gβ2 also compromised Ang II-mediated interactions 398	

between Gβγ and RNAPII even though Gβ2 had a limited role in the fibrotic transcriptional 399	

response. This suggests Gβ2 knockdown does not prevent the response but rather alters the 400	

kinetics of Gβγ-RNAPII interactions, which then translates into different fibrotic responses over 401	

time. Further, the roles of specific Gγ subunits in mediating proximal signal transduction must 402	

also be considered as for other Gβγ effectors (Khan et al., 2015), and should be the subject of 403	

future studies. Taken together, our findings suggest that in fibrosis and potentially in other 404	

diseases, the indiscriminate targeting of Gβγ signalling (e.g. with compounds such as gallein) 405	
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will result in outcomes that differ considerably from those obtained by targeting particular Gβγ 406	

combinations (Lin and Smrcka, 2011, Kamal et al., 2011, Smrcka et al., 2008).  407	

Analysis of the signalling networks regulating the Gβγ/RNAPII interaction yielded four 408	

main conclusions: (1) different GPCR signalling systems in distinct cell types lead to different 409	

kinetics of the Gβγ-RNAPII interaction, (2) different signalling pathways downstream of GPCR 410	

activation act to both induce or modulate the interaction, (3) Gαq-coupled GPCRs regulate the 411	

interaction in both cell types examined, and (4) signalling ultimately converged on activation of 412	

transcription. Indeed, our results suggest that the cell context plays a critical role in determining 413	

the mechanism by which the Gβγ-RNAPII interaction is regulated. First, in cardiac fibroblasts, 414	

the Gβγ/RNAPII interaction depended on a Gq-PLCβ-Ca2+-CaMKII/PKC/MEK-dependent 415	

pathway downstream of AT1R activation, whereas calcineurin acted as a basal negative regulator 416	

(summarized in Supplemental Figure 9). On the other hand, in HEK 293 cells, we observed that 417	

the interaction was reliant on a Gq-PLCβ-Ca2+-calcineurin pathway downstream of M3-mAChR 418	

activation, whereby PKC and CaMKII both negatively regulate this interaction under basal 419	

conditions (summarized in Supplemental Figure 9). The involvement of Ca2+, PKC and 420	

ERK1/2 in the induction of the Gβγ/RNAPII interaction in fibroblasts is supported by previous 421	

reports that demonstrate their involvement in Ang II-induced fibrosis (Chintalgattu and Katwa, 422	

2009, Olson et al., 2008).  423	

The different signalling pathways promoting the Gβγ-RNAPII interaction appear to 424	

converge at the point of Cdk7 and Cdk9 activation. In particular, we found that the Cdk7 and 425	

Cdk9 inhibitors (DRB, THZ1 and iCdk9, respectively) inhibited both carbachol-induced Gβγ-426	

RNAPII interaction in HEK 293 cells and the analogous Ang II-induced interaction in cardiac 427	

fibroblasts. This suggests the differential regulatory signalling pathways identified are due to cell 428	
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type- and receptor-specific activation pathways of both Cdk7 and Cdk9. The recruitment of Gβγ 429	

serves as a common negative regulatory mechanism regardless of the pathway leading to 430	

transcriptional activation. Furthermore, a strong connection has been established between the 431	

control of transcriptional pausing and pathological cardiac remodelling, although primarily in the 432	

cardiomyocyte (Yang et al., 2017, Sayed et al., 2013, Anand et al., 2013, Duan et al., 2017, 433	

Stratton et al., 2016, Sano et al., 2002). Our results indicate that regulation of the early stages of 434	

the RNAPII transcription cycle is also an important checkpoint in the fibrotic response mediated 435	

by cardiac fibroblasts.  436	

Taken together, the Gβγ-RNAPII interaction identifies a new mechanism by which Gβγ 437	

modulates gene expression. Our study highlights the complex interplay of different Gβγ subunit 438	

combinations at the cell surface and in the nucleus initiated upon stimulation of Gαq-coupled 439	

receptors. Since Gβ1γ dimers play an important role in regulating the expression of fibrotic genes 440	

in cardiac fibroblasts, the development of selective Gβ1γ inhibitors hold some promise for 441	

preventing the pathological consequences of myocardial damage. 442	

 443	

 444	

 445	

 446	

 447	

 448	

 449	

 450	

 451	
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METHODS 452	

 453	

Reagents –The following were all purchased from Sigma-Aldrich: carbachol, angiotensin II, 454	

BAPTA-AM, KN-93, Gö6983, PTX, U0126, calyculin A, cyclosporin A, TRI reagent, isopropyl 455	

thiogalactopyranoside (IPTG), protease inhibitor cocktail, triton X-100, bovine serum albumin, 456	

ethylenediaminetetraacetic acid (EDTA), 70% NP-40 (Tergitol), sodium deoxycholate, 457	

magnesium chloride, lithium chloride, anti-rabbit IgG (whole molecule)-agarose antibody, anti-458	

mouse IgG (whole molecule)-agarose antibody, goat anti-rabbit IgG (whole molecule) 459	

conjugated to peroxidase secondary antibody, goat anti-mouse IgG (Fab specific) conjugated to 460	

peroxidase secondary antibody, anti-FLAG M2 antibody, and rabbit IgG (St. Louis, MO, USA). 461	

U71322 pan-PKC inhibitor was purchased from Biomol International (Plymouth Meeting, PA, 462	

USA). Lysozyme (from hen egg white) and phenylmethylsulfonyl fluoride (PMSF) were 463	

purchased from Roche Applied Sciences (Laval, QC, Canada). Ethylene glycol bis (2-464	

aminooethyl ether) N,N,N’,N’ tetraacetic acid (EGTA) and HEPES were purchased from 465	

BioShop (Burlington, ON, Canada). Sodium chloride, glutathione (reduced form), dithiothreitol 466	

(DTT) and Dynabeads protein G were purchased from Fisher Scientific (Ottawa, ON, Canada). 467	

Dulbecco's modified Eagle's medium (DMEM) (supplemented with 4.5 g/L glucose, L-glutamine 468	

and phenol red), DMEM low glucose (supplemented with 1.0 g/L glucose, L-glutamine and 469	

phenol red), Hank’s Balanced salt solution (HBSS), HBSS (with no phenol), 470	

Penicillin/Streptomycin solution, Tris base buffer, ampicillin sodium salt, and fetal bovine serum 471	

were purchased from Wisent (St. Bruno, QC, Canada). Glutathione sepharose 4B GST beads was 472	

purchased from GE Healthcare (Mississauga, ON, Canada). Lipofectamine 2000 and Alexa Fluor 473	

488 goat anti-mouse IgG were purchased from Invitrogen (Burlington, ON, Canada). Enhanced 474	
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chemiluminescence (ECL) Plus reagent was purchased from Perkin Elmer (Woodbridge, ON, 475	

Canada). Moloney murine leukemia virus reverse transcriptase (MMLV-RT) enzyme and 476	

recombinant RNasin® ribonuclease inhibitor were purchased from Promega (Madison, WI, 477	

USA). Evagreen 2X qPCR MasterMix was purchased from Applied Biological Materials Inc. 478	

(Vancouver, BC, Canada) and iQ SYBR Green Supermix was purchased from Bio-Rad 479	

Laboratories (Mississauga, ON, Canada).  Anti-Gβ1-4 (T-20) antibody, anti-RNA Polymerase I 480	

Rpa194 (N-16) antibody, anti-ERK1/2 antibody, anti-Gαq antibody and anti-Rpb1 (N20) were 481	

purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). Anti-RNA polymerase II 482	

clone CTD4H8 (Rpb1) antibody was purchased from EMD Millipore (Temecula, CA, USA). 483	

Anti-Schizosaccharomyces pombe histone H2B (ab188271) antibody was purchased from 484	

Abcam Inc. (Toronto, ON, Canada). Polyclonal anti-Gβ1 and anti-Gβ2 were a generous gift of 485	

Professor Ron Taussig (UT Southwestern). THZ1 was a gift from Nathanael S. Gray (Harvard 486	

University) and iCdk9 was a gift from James Sutton (Novartis). FLAG-Gβ1, FLAG-Gβ2, FLAG-487	

Gβ3, FLAG-Gβ4 and FLAG-Gβ5 plasmids were obtained from UMR cDNA Resource 488	

(www.cdna.org). 489	

 490	

Tissue culture, transfection and treatments – Human embryonic kidney 293 (HEK 293), HEK 491	

293T cells and CRISPR/Cas9 generated ∆Gαq/11/12/13 knockout HEK 293 cells (quadKO cells) 492	

(Devost et al., 2017), a generous gift from Dr. Asuka Inoue (Tohuku University, Sendai, Japan), 493	

were grown at 37°C in 5% CO2 in DMEM supplemented with 5% (v/v) fetal bovine serum and 494	

1% (v/v) penicillin/streptomycin (P/S). HEK 293 cells were transiently transfected with FLAG-495	

Gβ1-5 using Lipofectamine 2000 as per the manufacturer’s recommendations. Primary rat 496	

neonatal cardiac fibroblasts were isolated from 1-3 day old Sprague-Dawley rat pups (Charles 497	
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River Laboratories, St-Constant, Quebec) as previously described (Calderone et al., 1998). All 498	

procedures using animals were approved by the McGill University Animal Care Committee, in 499	

accordance with Canadian Council on Animal Care Guidelines. Two days after isolation, cells 500	

were detached with trypsin/EDTA and plated at a density of ~8 x 103 cells/cm2 in fibroblast 501	

growth medium for 48h. For siRNA transfection, cardiac fibroblasts were plated at a density of 502	

~20 x 103 cells/cm2 and transfected using Lipofectamine 2000 as per the manufacturer’s 503	

instructions. For treatment of HEK 293F cells, HEK 293F quadKO cells or cardiac fibroblasts, 504	

cells were serum-deprived for 6 h with DMEM or overnight (~12 h) with DMEM low glucose 505	

(with no FBS and no P/S) respectively, and subsequently treated with pathway inhibitors, 1 mM 506	

carbachol or 1 µM Ang II for the treatment lengths indicated in the various assays.  507	

 508	

RT-qPCR – Reverse transcription of RNA isolated from rat neonatal cardiac fibroblasts was 509	

performed as previously described (Khan et al., 2015).  Briefly, cells were lysed in TRI reagent 510	

and RNA was extracted using a protocol adapted from Ambion (Burlington, ON, Canada). 511	

Reverse transcription was performed on 1 µg of total RNA using an MMLV-RT platform 512	

according to the manufacturer’s protocol. Subsequent qPCR analysis was performed with 513	

Evagreen Dye qPCR master-mixes using a Corbett Rotorgene 6000 thermocycler or Bio-Rad 514	

1000 Series Thermal Cycling CFX96 Optical Reaction module. mRNA expression data were 515	

normalized to housekeeping transcripts for U6 snRNA. Ct values obtained were analyzed to 516	

calculate fold change over respective control values using the 2-ΔΔCt method. Primer sequences 517	

for all primers used are listed in Supplemental Table 2. 518	

   519	
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Ca2+ mobilization – Cardiac fibroblasts were cultured as previously described following 520	

transfection with respective siRNA. Cardiac fibroblasts were washed and media replaced with 521	

HBSS (no phenol) and incubated for 1 h at 37°C and 5% CO2. Media was replaced with Fura 2-522	

AM in HBSS and incubated for another 1 h at 37°C and 5% CO2. Fura 2-AM containing media 523	

was replaced with HBSS and Cardiac fibroblasts incubated for another 30 min at 37°C and 5% 524	

CO2 prior to recordings. Baseline recordings were obtained every 0.7 s for 10 s followed by 525	

injection of Ang II to a final concentration of 1 µM and recordings obtained every 0.7 s for a 526	

total of 1 min. A control well with no Fura-2 AM was included in order to control for 527	

background fluorescence. Fluorescence intensity was recorded using Bio-Tek Synergy 2 Multi-528	

Mode Microplate Reader with fluorescence excitation at 340 nm or 360 nm and fluorescence 529	

emission at 516 nm. Data is presented as the ratio of fluorescence emission at 516 nm following 530	

340 nm excitation over 360 nm excitation. The ratio was normalized to the mean baseline ratio 531	

from control cells. 532	

 533	

Nuclear isolation – Nuclei from HEK 293 cells and cardiac fibroblasts were isolated as 534	

previously described (Campden et al., 2015b). Briefly, cells seeded in T175 flasks (Corning) 535	

were treated as indicated, washed three times with 1X PBS (137 mM NaCl, 2.7 mM KCl, 10 mM 536	

Na2HPO4, 1.8 mM KH2PO4), and harvested in 1X PBS by centrifugation. Pelleted cells were 537	

lysed in lysis buffer (320mM sucrose, 10 mM HEPES, 5 mM MgCl2, 1 mM DTT, 1 mM PMSF, 538	

1% Triton X-100), added gently on top of a high-sucrose buffer (1.8 M sucrose, 10 mM HEPES, 539	

5 mM MgCl2, 1 mM DTT, 1 mM PMSF), and centrifuged at 4600 g for 30 min at 4°C, 540	

separating unlysed nuclei from the cytosolic fraction. Pelleted nuclei were then resuspended in 541	
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resuspension buffer (320 mM sucrose, 10 mM HEPES, 5 mM MgCl2, 1 mM DTT, 1 mM 542	

PMSF), pelleted at 300 g for 5 min and subsequently lysed in 1X RIPA buffer.  543	

 544	

Immunoprecipitation and western blotting – Immunoprecipitation (IP) assays of Gβ and Rpb1 545	

pull downs were performed as previously described, with minor alterations (Robitaille et al., 546	

2010). Protein extracts from treated HEK 293 cells and cardiac fibroblasts lysed in RIPA (1% 547	

NP-40, 50 mM Tris-HCl ph 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 0.1% SDS, 0.5% 548	

sodium deoxycholate) were quantified by Bradford assay and 500 µg of protein lysate was 549	

precleared with 15 µl of anti-rabbit IgG-agarose beads. Precleared lysates were then incubated 550	

with 1 µg anti-Gβ1-4, 2 µg of anti-Rpb1 or anti-Gβ1 serum or anti-Gβ2 serum overnight at 4°C 551	

with end-over mixing. The next day, 40 µl of washed agarose beads were added to each 552	

lysate/antibody mixture, incubated for 3.5 hours at 4°C with end-over mixing, and then beads 553	

were washed 3X with RIPA. Proteins were eluted off the beads by the addition of 4X Laemmli 554	

buffer followed by denaturation at 65°C for 15 min. Protein immunoprecipitation and co-IP were 555	

then assessed by western blot as previously described (Khan et al., 2015). Resulting western blot 556	

images were quantified using ImageJ 1.48v.  557	

 558	

Rat Fibrosis qPCR arrays – Fibrosis qPCR arrays were performed as per the manufacturer’s 559	

instructions (Qiagen, Toronto, ON, Canada). Briefly, 0.5 µg of isolated total RNA from siRNA 560	

transfected and vehicle or Ang II treated cardiac fibroblasts was subject to genomic DNA 561	

elimination using mixes supplied with the array kit for 5 mins at 42°C. DNA eliminated RNA 562	

was then subject to reverse transcription reactions using Qiagen RT2 First Strand Kits with 563	

protocols according to the manufacturer’s instructions. Qiagen RT2 SYBR Green MasterMix was 564	
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added to the cDNA and subsequently dispensed in wells of a 96-well plate containing pre-loaded 565	

lyophilized primers provided by the manufacturer. Quantitative PCR reactions were then run on 566	

an Applied Biosystems ViiA 7 thermocycler according to the manufacturers cycle 567	

recommendations. Each sample was run on separate individual 96 well plates and Ct values for 568	

each gene assessed were collected and analyzed; Ct values greater than 35 were eliminated from 569	

the overall analysis. Expression data was normalized to levels of two housekeeping genes 570	

contained on each plate – Ldha1 and Hprt.  571	

 572	

AAV Production and transduction of cardiac fibroblasts – FLAG-Gβ1 and FLAG-Gβ2 were 573	

PCR amplified from a pcDNA3.1+ plasmid and BamHI and EcoRI restrictions sites added to the 574	

5’ and 3’ end, respectively. These restrictions sites were used to insert each FLAG-Gβ into the 575	

pAAV-CAG plasmid. Adeno-associated viruses were produced as previously described (Burger 576	

and Nash, 2016). Cells were transduced with AAV1-FLAG-Gβ1 (MOI of 103 or 5x104) in 577	

DMEM low glucose for 6h. Additional media was added to obtain a final 7% FBS concentration 578	

and incubated for another 24 h. At this point, the cells were detached with trypsin/EDTA and 579	

plated as described for respective experiments.  580	

 581	

ChIP-qPCR – Immunoprecipitation in cardiac fibroblasts was performed as previously 582	

described, with minor modifications (Bolli et al., 2013). Isolated nuclei were sonicated with a 583	

Diagenode BioRuptorTM UCD-200 (18 cycles, 30 s on/off, high power) to shear chromatin. 584	

FLAG-Gβ1 immunoprecipitation was performed with 10 µg sheared rat chromatin alongside 5 585	

µg of Schizosaccharomyces pombe yeast chromatin, obtained as previously described (Mbogning 586	

and Tanny, 2017). Chromatin was immunoprecipitated with an anti-FLAG M2 antibody (2 µg) 587	
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or equivalent amount of rabbit IgG alongside an anti-Schizosaccharomyces pombe H2B 588	

antibody. RNAPII immunoprecipitation was performed with 20 µg of sheared rat chromatin 589	

alongside 0.2 µg of Schizosaccharomyces pombe yeast chromatin. Chromatin was 590	

immunoprecipitated with an anti-Rpb1 (8WG16) antibody. Localization was assessed by qPCR 591	

with primers for specific genomic loci (Supplemental Table 2). All qPCR reactions were 592	

performed using a Bio-Rad 1000 Series Thermal Cycling CFX96 Optical Reaction module and 593	

iQ SYBR Green Supermix. Data analysis included subtracting the % Input of IgG control for 594	

each treatment from the respective IP, followed by normalization to the % Input yeast cdc2+ of 595	

each FLAG IP or act1+ for each RNAPII IP to account for differences in IP efficiencies.  596	

 597	

ChIP-seq immunoprecipitation and data analysis - Immunoprecipitation in Cardiac 598	

fibroblasts was performed as previously described, with minor modifications (Bolli et al., 2013). 599	

Isolated nuclei were sonicated with a Diagenode BioRuptorTM UCD-200 (18 cycles, 30 s on/off, 600	

high power) to shear chromatin. FLAG-Gβ1 immunoprecipitation was performed with 40 µg of 601	

sheared rat chromatin alongside 0.4 µg of chromatin from a S. pombe strain expressing FLAG-602	

Bdf2. RNAPII immunoprecipitation was performed using 20 µg sheared rat chromatin alongside 603	

0.2 µg wild-type S. pombe chromatin. Chromatin was immunoprecipitated with an anti-FLAG 604	

M2 antibody (2 µg) or anti-Rpb1 (8WG16) antibody (2 µg). Two biological replicates of FLAG-605	

Gβ1 immunoprecipitation and three biological replicates of Rpb1 immunoprecipitation were 606	

included. Following immunoprecipitation and DNA cleanup, libraries were prepared with the 607	

NEBNext® UltraTM II DNA Library Prep kit for Illumina and 50 bp single end reads obtained 608	

with an Illumina HiSeq 4000 at the McGill University and Génome Québec Innovation Centre, 609	

Montréal, Canada. 610	
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 Reads were trimmed with TrimGalore (0.6.0) (Krueger, Martin, 2011)  using the 611	

following settings: --phred33 --length 36 -q 5 --stringency 1 -e 0.1. A Bowtie2 genome 612	

comprised of the Ensembl rat reference genome (Rattus.norvegicus.Rnor.6.0.94) (Zerbino et al., 613	

2018) and S. pombe reference genome (Schizosaccharomyces_pombe.ASM294v2) was built 614	

with the bowtie2-build function. Processed reads were aligned to the custom combined rat and S. 615	

pombe genome with Bowtie2 (v2.3.5), followed by removal of low-quality mapped reads 616	

(MAPQ < 10) and reads mapped to non-standard chromosomes with SAMtools (v1.9) (Li et al., 617	

2009). Duplicate reads were removed with Picard tools (v2.20.6, Broad Institute). Aligned reads 618	

were separated into individual files for the rat or S. pombe genome respectively. For RNAPII 619	

ChIP, peaks were called using macs2 (v2.1.1) with settings --broad and --broad-cutoff 0.1 620	

(Zhang et al., 2008), reads extended by the fragment length determined by 621	

phantompeakqualtools (v1.14) (Landt et al., 2012, Kharchenko et al., 2008), a scaling factor 622	

estimated using the NCIS R package (Liang and Keles, 2012) and potential misassembled 623	

regions of the rat genome blacklisted (Ramdas et al., 2019). RNAPII peaks were annotated with 624	

HOMER (v4.11) (Heinz et al., 2010) and those protein-coding genes with RNAPII peaks in two 625	

of three replicates in any treatment were used for subsequent analysis. BAM files of treatment 626	

replicates were combined, input reads subtracted with the deepTools (Ramirez et al., 2014) 627	

function bamCompare (--scaleFactorsMethod SES) and negative values set to 0. Lastly, values 628	

were converted to counts per million mapped reads with library size adjusted by the total number 629	

of reads aligned to the S. pombe genome. K-means clustering for genes with identified RNAPII 630	

peaks and data visualization was performed with the deepTool’s computeMatrix and plotProfile 631	

functions. Gene ontology enrichment was performed using the R package topGO (v2.36.0). 632	

 633	
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Statistical Analysis – Statistical tests were performed using GraphPad Prism 8.0 software. For 634	

quantifications of immunoprecipitation experiments, two-way analysis of variance (ANOVA) 635	

followed by post-hoc Dunnett’s test was used on quantifications of western blot bands, with all 636	

multiple comparisons being made to vehicle-vehicle conditions. To analyse Ca2+ release 637	

experiments, the dependent measure was the area under the curve (AUC), computed from 638	

release-time data sets. AUC data were subjected to ANOVA and Dunnett’s tests, using as a point 639	

of comparison the siRNA control condition. For the FLAG-Gβ and RNAPII interaction in HEK 640	

293F cells, one-sample t-tests were performed with a Bonferroni correction. Summary gene 641	

expression of the fibrosis array qPCR was compared with a two-way ANOVA followed by post-642	

hoc t-tests with a Bonferroni correction. Individual gene expression from the fibrosis qPCR array 643	

and Ctgf gene expression with in-house primers was assessed with a two-way ANOVA followed 644	

by Bonferroni corrected post-hoc t-tests at individual time points. For validation of Gβ1 and Gβ2 645	

knockdown in cardiac fibroblasts, fold changes over siRNA control were compared to siRNA 646	

control using paired Student’s t-tests. For FLAG-Gβ1 ChIP-qPCR, independent paired Student t-647	

tests with a Bonferroni post-hoc correction were performed. A Fisher’s exact test was used to 648	

compare the proportion of cluster 1 genes in the list of genes with RNAPII peaks following Ang 649	

II treatment in control or Gβ1 knockdown conditions and to assess GO Term enrichment in 650	

cluster 1 genes. Alpha was set at p<0.05 (2-tailed). All results are expressed as mean ± S.E.M, 651	

and data are represented as pooled experiments whose sample sizes are indicated in figure 652	

legends.  653	

 654	

 655	

 656	
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FIGURE LEGENDS 657	

Figure 1. Characterization of Gβγ-RNAPII in rat neonatal cardiac fibroblasts. (A) Time 658	

course of the Ang II-stimulated interaction between Gβγ and Rpb1. The ratio of Rpb1 co-659	

immunoprecipitated with Gβ1-4 upon treatment of 1 µM Ang II treatment at the indicated 660	

timepoints in cardiac fibroblasts was assessed. (B) Densitometry-based quantification of panel A 661	

was used to determine the ratio of Rpb1 to Gβ1-4 immunoprecipitated at each time point. The fold 662	

change over the 0 min time point was then calculated. Data is representative of four independent 663	

experiments. (C) Effect of AT1R antagonist losartan pre-treatment on the Ang II-mediated 664	

interaction, demonstrating angiotensin receptor subtype selectivity. (D) Densitometry-based 665	

quantification of AT1R antagonist effect on Ang II-induced interaction. The ratio of Rpb1 666	

immunoprecipitated with Gβ1-4 was determined for each condition and fold change over 667	

DMSO/DMEM was calculated. Data is representative of three independent experiments. (E) 668	

Assessment of the necessity of Gβγ import into the nucleus for interaction to occur upon AT1R 669	

stimulation with Ang II. Cardiac fibroblasts were pretreated for 1 h with importazole prior to 670	

Ang II stimulation. Data are representative of four independent experiments. (F) Densitometry-671	

based quantification of the Ang II induced interaction and the effect of nuclear import inhibition. 672	

The ratio of Rpb1 to Gβ1-4 immunoprecipitated was determined and normalized to fold change 673	

over DMSO/DMEM treatment. In all panels, data represents mean ± S.E.M, * indicates p<0.05, 674	

** indicates p<0.01.  675	

 676	

Figure 2. Mechanistic analysis of Gβγ interactions with Rpb1 in rat neonatal cardiac 677	

fibroblasts. (A-H) Assessment of the effect of inhibition of signalling molecules and effectors 678	

implicated in AT1R signalling on the induction of the Gβγ-RNAPII interaction in cardiac 679	
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fibroblasts. Concentrations of inhibitors and lengths of pre-treatment are indicated in each panel. 680	

In all experiments, Ang II treatment was applied at a concentration of 1 µM for 75 min in order 681	

to induce the interaction. Data shown is representative of between 3 and 6 independent co-682	

immunoprecipitation and western blot experiments. Corresponding quantification analyses of 683	

inhibitor co-IP experiments are depicted in Supplemental Figure 3.  684	

 685	

Figure 3. Mechanistic analysis of carbachol-induced Gβγ interaction occurs in HEK 293 686	

cells. (A-G) HEK 293 cells were starved for 10-12 hours in DMEM without FBS and were then 687	

pre-treated with the indicated inhibitors for the indicated times. Cells were subsequently treated 688	

with 1 mM carbachol for 45 min, and the amount of Rpb1 co-immunoprecipitated with Gβ1-4 689	

was assessed by western blot. Data is representative of at least 3 independent experiments. The 690	

associated quantifications of the co-IPs are represented in Supplemental Figure 4. 691	

 692	

Figure 4. Gβ subunit-specific effects on Ang II signalling and induction of Rpb1 693	

interaction. (A) Assessment of the effect of Gβ subunit knockdown by siRNA on the Gβγ-694	

RNAPII interaction upon AT1R stimulation. Cardiac fibroblasts were transfected with siRNA 695	

control or siRNA to knockdown Gβ1 or Gβ2 and were then serum-deprived overnight before 696	

treatment with Ang II for 75 min. Cells were assessed for Gβγ-RNAPII interaction by co-697	

immunoprecipitation and western blots. Data represents mean ± S.E.M. of 6-7 independent 698	

experiments. (B) Densitometry-based quantification of knockdown experiments in (C) were 699	

normalized as fold change over the respective siRNA-DMEM condition; data represents mean ± 700	

S.E.M. of six independent experiments. (C) Traces of calcium release upon AT1R stimulation 701	

with Ang II at the 10 s time point, with or without knockdown of either Gβ1 or Gβ2. Data 702	
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represents mean ± S.E.M. of fluorescence ratios of 340/516 emission readings to 360/516 703	

emissions readings normalized to basal ratios of three independent experiments. (D) Area under 704	

the curve analysis of the data obtained in panel A. * indicates p<0.05. 705	

 706	

Figure 5. Requirement of RNAPII transcription for Gβγ-RNAPII interaction in rat 707	

neonatal cardiac fibroblasts. Effect of Cdk7 inhibition with THZ1 (A) or Cdk9 inhibition with 708	

iCdk9 (B) on Ang II-induced Gβγ-RNAPII interaction. Length of inhibitor pre-treatment is 709	

indicated in each respective panel, and the extent of Gβγ-RNAPII interaction was assessed by 710	

co-immunoprecipitation coupled to western blot analysis. Data is representative of three 711	

independent experiments. Corresponding quantification analyses of inhibitor co-712	

immunoprecipitation experiments are depicted in Supplemental Figure 7. Cumulative log2(Fold 713	

Change) of all genes detected by qPCR-based fibrosis array following treatment with 1 µM Ang 714	

II lasting either 75 min (C) or 24 h (D and E). Cardiac fibroblasts were transfected with 50 nM 715	

of the indicated siRNA, and were serum-deprived for 12 h before Ang II treatment for the 716	

indicated times. Cardiac fibroblasts were pre-treated for 30 min with 10 µM gallein prior to Ang 717	

II. Ct values were normalized to the housekeeping genes Hprt1 and Ldha and the log2(fold 718	

change) over control was determined. For each gene, the average log2(fold change) across three 719	

independent experiments was plotted. *** indicates p<0.001, **** indicates p<0.0001. 720	

 721	

Figure 6. ChIP-seq for FLAG-Gβ1 and Rpb1 following 75 min Ang II treatment in cardiac 722	

fibroblasts. Cardiac fibroblasts were transduced with AAV1-FLAG-Gβ1 or transfected with the 723	

indicated siRNA followed by Ang II treatment (1 µM for 75 min). (A) Comparison of genes with 724	

annotated RNAPII peaks following Ang II treatment and siRNA control or Gβ1.  FLAG-Gβ1 (B) 725	
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or the Rpb1 subunit of RNAPII (C) were immunoprecipitated from crosslinked and sonicated 726	

chromatin, followed by DNA purification and next-generation sequencing. Reads were 727	

normalized to an exogenous S. pombe chromatin spike-in. Genes with a RNAPII peak annotated 728	

by HOMER in two of the three replicates were used to identify two K-means clusters. (D) Top 729	

four significant GO terms enriched in cluster 1. Individual FLAG-Gβ1 or RNAPII tracks for two 730	

genes from cluster 1, (E) Thbs1 or (F) Ctgf.  731	

 732	

Supplemental Figure 1. Induction of the Gβγ-RNAPII interaction in HEK 293 cells. (A) 733	

Time-course analysis of the induction of the Gβγ-RNAPII interaction. The amount of Rpb1 co-734	

immunoprecipitated with Gβ1-4 from HEK 293 cells treated for the indicated times with 1 mM 735	

carbachol was assessed by western blot for each time point. Data is representative of three 736	

independent experiments. (B) Quantification of Gβγ-RNAPII time-course co-737	

immunoprecipitation. Densitometry-based analysis of bands corresponding to Rpb1 at each 738	

timepoint was normalized to the band intensity of the amount of Gβ1-4 immunoprecipitated to 739	

yield ratios of Rpb1 pulled down with Gβ1-4. (C) Assessing the Gβγ and Rpb1 interaction by 740	

immunoprecipitation of Rpb1 with two different antibodies. Western blots are representative of 741	

at least two independent experiments. Immunoprecipitation experiments demonstrating that 742	

carbachol treatment does not induce interaction of Rpb1 with (D) Gαq/11 nor (E) ERK1/2 in HEK 743	

293 cells, and also does not alter the amount of Gαq/11 or ERK1/2 interacting with Gβγ under 744	

such conditions. (F) Assessment of interaction between Gβ1-4 and Rpa194, the largest subunit of 745	

RNA polymerase I. Data represents analysis of a time course experiment western blot performed 746	

as in Supplemental Figure 2A. Data represents mean ± S.E.M; * indicates p<0.05, ** indicates 747	

p<0.01. 748	
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 749	

Supplemental Figure 2. Requirement for Gβγ nuclear transport for RNAPII interaction in 750	

HEK 293 cells. (A) Representative experiment assessing the requirement of importin-β 751	

inhibition on the Gβγ-RNAPII interaction by sub-cellular fractionation and co-752	

immunoprecipitation. (B) Densitometry-based quantification of the carbachol induced interaction 753	

and the effect of nuclear import inhibition on interaction induction. Data represents mean ± 754	

S.E.M. of three independent experiments for black bars, and two independent experiments for 755	

white bars (nuclear import inhibition conditions).  756	

 757	

Supplemental Figure 3. Quantitative analysis of the effects of inhibition of signalling 758	

molecules downstream of AT1R activation. (A-H) The relative quantities of Rpb1 co-759	

immunoprecipitated with Gβ1-4 under different conditions depicted in Figure 2 were quantified 760	

using ImageJ and normalized to DMSO/DMEM control conditions. Data shown is representative 761	

of (A) 3, (B) 6, (C) 3, (D) 4, (E) 5, (F) 5, (G) 4 or (H) 3 independent co-immunoprecipitation and 762	

western blot experiments. Data is represented as fold change over respective controls and error 763	

bars represent S.E.M. * indicates p<0.05, ** indicates p<0.01.  764	

 765	

Supplemental Figure 4. Quantitative analysis of the effects of inhibition of signalling 766	

molecules downstream of M3-mAChR activation in HEK 293 cells. (A-G) The relative 767	

quantities of Rpb1 co-immunoprecipitated with Gβ1-4 under different conditions depicted in 768	

Figure 3 were quantified using ImageJ and were normalized to amounts pulled down in 769	

DMSO/DMEM control conditions. Data shown is representative of (A) 3, (B) 4, (C) 5, (D) 3, (E) 770	

3, (F) 6 or (G) 4 independent co-immunoprecipitation and western blot experiments. Data is 771	
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represented as fold change over respective controls and error bars represent S.E.M. * indicates 772	

p<0.05.  773	

 774	

Supplemental Figure 5. Assessment of specific Gβ subunits interacting with RNAPII upon 775	

agonist stimulation in rat cardiac fibroblasts or in HEK 293 cells. (A) Transcript levels for 776	

GNB1, GNB2, GNB3, and GNB4 were assessed in cardiac fibroblasts by RT-qPCR. The Ct 777	

values for each gene transcript were normalized to the house keeping U6 snRNA gene transcript 778	

for comparison. Data represents mean ± S.E.M for 3-4 independent experiments. (B) Gβ1 and 779	

Gβ2 were immunoprecipitated with isoform specific antibodies from cardiac fibroblasts lysates 780	

treated with 1 µM Ang II for 75 min. The amount of Rpb1 pulled down with either Gβ isoform 781	

was assessed by western blot. (C) Assessment of specific FLAG-tagged Gβ isoforms interaction 782	

with Rpb1 under conditions of M3-mAChR stimulation with carbachol in HEK 293 cells. The 783	

amount of Rpb1 interacting with each Gβ isoform was assessed by western blot following FLAG 784	

immunoprecipitation. (D) Densitometry-based quantification of the ratio of Rpb1 co-785	

immunoprecipitated with the indicated FLAG-tagged Gβ subunit. The ratio of Rpb1 to FLAG-786	

Gβx immunoprecipitated was determined and normalized to fold change over DMEM treatment. 787	

Data represents mean ± S.E.M for four independent replicates; * indicates p<0.01 788	

 789	

Supplemental Figure 6. Validation of RNAi knockdown of Gβ1 and Gβ2. Validation of Gβ1 790	

and Gβ2 mRNA (A) and protein (B) knockdown with siRNA in rat neonatal cardiac fibroblasts. 791	

Rat neonatal cardiac fibroblasts were transfected with 50 nM siRNA control, Gβ1 or Gβ2 for 72 792	

hours, serum-deprived for 12 h and RNA or protein collected as described in Methods. Data in 793	

(A) represents mean ± S.E.M for four independent experiments; * Ct values were normalized to 794	
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the housekeeping U6 snRNA transcript and fold change over siRNA control determined using 795	

the 2-ΔΔCt. ** indicates p<0.001 and **** indicates p<0.0001. 796	

 797	

Supplemental Figure 7. Quantitative analysis of the effect of transcriptional regulator 798	

inhibition on the Gβγ-RNAPII interaction in cardiac fibroblasts.  (A-B) The relative 799	

quantities of Rpb1 co-immunoprecipitated with Gβ1-4 under conditions depicted in Figure 5A 800	

(THZ1) and B (iCdk9) were quantified and normalized to DMSO/DMEM control conditions. 801	

Data shown is representative of between three to six independent co-immunoprecipitation and 802	

western blot experiments. Data represents mean ± S.E.M. * indicates p<0.05.  803	

 804	

Supplemental Figure 8. Validation of heterologously expressed FLAG-tagged Gβ1 in rat 805	

neonatal cardiac fibroblasts. (A) Assessment of Rpb1 co-immunoprecipitated with FLAG-Gβ1 806	

following 75 min treatment of 1 µM Ang II in rat neonatal cardiac fibroblasts. Cardiac 807	

fibroblasts were transduced with AAV1-FLAG-Gβ1 prior to treatment with 1 µM Ang II. (B) 808	

Densitometry-based quantification of the ratio of Rpb1 co-immunoprecipitated with FLAG-Gβ1. 809	

The ratio of Rpb1 to FLAG-Gβ1 was calculated and normalized as fold change over DMEM 810	

condition. Data is represented as mean ± S.E.M for four independent experiments. Assessing 811	

changes in FLAG-Gβ1 (C) or (D) Rpb1 occupancy along Ctgf following 75 min treatment with 1 812	

µM Ang II. FLAG-Gβ1 or Rpb1 was immunoprecipitated from crosslinked and sonicated 813	

chromatin, DNA purified and quantified by qPCR. Data is represented as mean ± S.E.M for 4-6 814	

independent experiments, * indicates p<0.05. (E) Validation of Ctgf gene expression with 815	

primers distinct from those used in the Qiagen RT2 ProfilerTM PCR array. Data represents mean 816	

± S.E.M for four independent experiments, * indicates p<0.05.  817	
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 818	

 819	

Supplemental Figure 9. Schema summarizing signalling events regulating the agonist 820	

induced Gβγ interaction with RNAPII. Signalling cascade downstream of AT1R in cardiac 821	

fibroblasts or M3 muscarinic receptors in HEK 293F cells regulating the interaction. Signalling 822	

pathways were determined by assessing Gβγ-RNAPII interactions by co-immunoprecipitation 823	

and western blot as shown in Figure 2 and Supplemental Figure 3 for cardiac fibroblasts and 824	

Figure 3 and Supplemental Figure 4 for HEK 293F cells. 825	

 826	

 827	

 828	

 829	

 830	

 831	

 832	

 833	

 834	

 835	

 836	

 837	

 838	

 839	

 840	
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Tables 841	

Supplemental Table 1. Summary of fibrosis RT-qPCR array results. This table summarizes 842	

gene expression changes measured using the Qiagen RT2 ProfilerTM PCR Array at 75 min and 24 843	

h Ang II stimulation. Genes were considered to have altered expression with fold changes ≥ 1.5 844	

or ≤ 0.5 compared to DMEM/siRNA control conditions at the respective time point. In 845	

parenthesis are the number of genes with a significant (p<0.05) change in expression compared 846	

to DMEM/siRNA control at the respective time point. Two-way ANOVA followed by post-hoc 847	

t-test comparisons with Bonferroni correction was performed for each gene individually. Data is 848	

representative of three independent biological replicates. 849	

Time siRNA Treatment Upregulated Downregulated 

75 min 
Control DMEM 0 0 

1 µM Ang II 7(5) 0 

Gnb1 DMEM 4(1) 1 
1 µM Ang II 10(6) 2 

24 h 

Control DMEM 0 0 
1 µM Ang II 37(7) 0 

Gnb1 DMEM 26(2) 1 
1 µM Ang II 53(13) 0 

Gnb2 DMEM 7 1 
1 µM Ang II 44(11) 0 

 850	

 851	

 852	

 853	

 854	

 855	

 856	

 857	
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Supplemental Table 2. List of primers used to assess gene expression by RT-qPCR and 858	

ChIP-qPCR in cardiac fibroblasts.  Forward and reverse primers were used at a concentration 859	

of 300 nM for each qPCR reaction. Primer sequences were designed using NCBI’s Primer-860	

BLAST tool and validated by analysis of standard curve qPCR assays performed in-house. 861	

Target Forward (5’ -> 3’) Reverse (5’ -> 3’) 
U6 snRNA TGGAACGATACAGAGAAGATTAG GAATTTGCGTGTCATCCTTG 
Gβ1 CTCATGACCTACTCCCATGA TCAGCTTTGAGTGCATCC 
Gβ2 CAGCTACACCACTAACAAGG CTCTCGGGTCTTGAGACTAT 
Gβ3 CTCCTTAGGGTCAGTCTTCTAT AAAGGCACACTCCCATAATC 
Gβ4 GGTGGTCAAAGAAACAATCAAG GTCTGTCGGGATAGGGATAA 
Ctgf TGCATCCTCCTACCGCGTCC GAGGCTGATGGGACCTGCGA 
Ctgf TSS CAGACCCACTCCAGCTCCGA GTGGCTCCTGGGGTTGTCCA 
Ctgf Exon TCAAGCTGCCCGGGAAATGC GCGGTCCTTGGGCTCATCAC 
Ctgf 3' End AATGGCTTGCTCAGGGTAACTGG AACTGCCTCCCAAACCAGTCATAG 
cdc2+ ATCATTCTCGCATCTCTATTA ATTCTCCATTGCAAACCACTA 
act1+ GGTTGCTCAATGTTATCCGTTTC TGATAAAGCCACACACAGCGTTA 
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Supplemental Figure 1.
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Supplemental Figure 3
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