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11 Abstract
12
13 The identification of genes essential for bacterial growth and survival represents a 
14 promising strategy for the discovery of antimicrobial targets. Essential genes can be 
15 identified on a genome-scale using transposon mutagenesis approaches; however, 
16 variability between screens and challenges with interpretation of essentiality data hinder 
17 the identification of both condition-independent and condition-dependent essential genes. 
18 To illustrate the scope of these challenges, we perform a large-scale comparison of multiple 
19 published Pseudomonas aeruginosa gene essentiality datasets, revealing substantial 
20 differences between the screens. We then contextualize essentiality using genome-scale 
21 metabolic network reconstructions and demonstrate the utility of this approach in 
22 providing functional explanations for essentiality and reconciling differences between 
23 screens. Genome-scale metabolic network reconstructions also enable a high-throughput, 
24 quantitative analysis to assess the impact of media conditions on the identification of 
25 condition-independent essential genes. Our computational model-driven analysis provides 
26 mechanistic insight into essentiality and contributes novel insights for design of future 
27 gene essentiality screens and the identification of core metabolic processes.
28
29 Author Summary
30
31 With the rise of antibiotic resistance, there is a growing need to discover new 
32 therapeutic targets to treat bacterial infections. One attractive strategy is to target genes 
33 that are essential for growth and survival. Essential genes can be identified with 
34 transposon mutagenesis approaches; however, variability between screens and challenges 
35 with interpretation of essentiality data hinder the identification and analysis of essential 
36 genes. We performed a large-scale comparison of multiple gene essentiality screens of the 
37 microbial pathogen Pseudomonas aeruginosa. We implemented a computational model-
38 driven approach to provide functional explanations for essentiality and reconcile 
39 differences between screens. The integration of computational modeling with high-
40 throughput experimental screens may enable the identification of drug targets with high-
41 confidence and provide greater understanding for the development of novel therapeutic 
42 strategies.
43
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44 Introduction
45
46 With the rise of antibiotic resistance, there is a growing need to discover new 
47 therapeutic targets to treat bacterial infections. One attractive strategy is to target genes 
48 that are essential for growth and survival [1–4]. Discovery of such genes has been a long-
49 standing interest, and advances in transposon mutagenesis combined with high-
50 throughput sequencing have enabled their identification on a genome-scale. Transposon 
51 mutagenesis screens have been used to discriminate between in vivo and in vitro essential 
52 genes [1,5], discover genes uniquely required at different infection sites [6], and assess the 
53 impact of co-infection on gene essentiality status [7]. However, nuanced differences in 
54 experimental methods and data analysis can lead to variable essentiality calls between 
55 screens and hamper the identification of essential genes with high-confidence [8,9]. 
56 Additionally, a central challenge of these screens is in interpreting why a gene is or is not 
57 essential in a given condition, hindering the identification of promising drug targets.
58 These data are often used to validate and curate genome-scale metabolic network 
59 reconstructions (GENREs) [10,11]. GENREs are knowledgebases that capture the genotype-
60 to-phenotype relationship by accounting for all the known metabolic genes and associated 
61 reactions within an organism of interest. These reconstructions can be converted into 
62 mathematical models and subsequently used to probe the metabolic capabilities of an 
63 organism or cell type in a wide range of conditions. GENREs of human pathogens have been 
64 used to discover novel drug targets [12], determine metabolic constraints on the 
65 development of antibiotic resistance [13], and identify metabolic determinants of virulence 
66 [14]. Importantly, GENREs can be used to assess gene essentiality by simulating gene 
67 knockouts. Through in silico gene essentiality analysis, GENREs can be useful in the 
68 systematic comparison of gene essentiality datasets.
69 Here, we perform the first large-scale, comprehensive comparison and 
70 reconciliation of multiple gene essentiality screens and contextualize these datasets using 
71 genome-scale metabolic network reconstructions. We apply this framework to the Gram-
72 negative, multi-drug resistant pathogen Pseudomonas aeruginosa, using several published 
73 transposon mutagenesis screens performed in various media conditions and the recently 
74 published GENREs for strains PAO1 and PA14. We demonstrate the utility of interpreting 
75 transposon mutagenesis screens with GENREs by providing functional explanations for 
76 essentiality, resolving differences between the screens, and highlighting gaps in our 
77 knowledge of P. aeruginosa metabolism. Finally, we perform a high-throughput, 
78 quantitative analysis to assess the impact of media conditions on identification of core 
79 essential genes. This work demonstrates how genome-scale metabolic network 
80 reconstructions can help interpret gene essentiality data and guide future experiments to 
81 further enable the identification of essential genes with high-confidence.
82
83 Results
84
85 Comparison of candidate essential genes reveals variability across transposon mutagenesis 
86 screens
87
88 We obtained data from several published transposon mutagenesis screens for P. 
89 aeruginosa strains PAO1 and PA14 in various media conditions and determined candidate 
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90 essential genes for each screen as described in Methods (Table S1) [15–19]. Briefly, where 
91 available, we used the published essential gene lists identified by the authors of the screen. 
92 Otherwise, we defined genes as essential in a particular screen if the corresponding mutant 
93 did not appear in that screen, suggesting that a mutation in the corresponding gene 
94 resulted in a non-viable mutant. Candidate essential gene lists ranged in size from 179 to 
95 913 for PAO1 and from 510 to 1544 for PA14, suggesting substantial variability between 
96 the screens (Table 1, Dataset_S1, Dataset_S2). To investigate the similarity between the 
97 different candidate essential gene lists for the two strains, we performed hierarchical 
98 clustering with complete linkage on the dissimilarity between the candidate essential gene 
99 lists, as measured by Jaccard distance (Figure 1A and 1C). Interestingly, the screens 

100 clustered by publication rather than by media condition for both strains. As an example 
101 from the PAO1 screens, rather than clustering by lysogeny broth (LB) media, sputum 
102 media, pyruvate minimal media, and succinate minimal media, all three of the screens from 
103 the Lee et al. publication clustered together, all three of the screens analyzed in the Turner 
104 et al. publication clustered together, and the Jacobs et al. transposon mutant library 
105 clustered independently. This result suggests that experimental technique and 
106 downstream data analysis play a large role in determining essential gene calls, motivating 
107 the importance of comparing several screens to identify consensus essential gene lists, or 
108 genes identified as essential across multiple screens.
109 We then measured the overlap of the candidate essential gene lists to calculate how 
110 many genes were shared across all the screens as well as those unique to particular sets of 
111 screens, defined as intersections (Figure 1B and 1D). For both strains, the candidate 
112 essential genes unique to the transposon mutant libraries (i.e., PAO1.LB.913 and 
113 PA14.LB.1544) accounted for the largest grouping, reflecting the disproportionately large 
114 size of both screens’ candidate essential gene lists relative to the transposon sequencing 
115 screens. Approximately 63% and 54% of the essential genes were unique to the 
116 PA14.LB.1544 and PAO1.LB.913 screens, respectively. While genes were uniquely essential 
117 for PAO1 on individual LB screens, there were no genes uniquely essential to all three LB 
118 screens; rather, the genes identified as commonly essential in all three LB screens were 
119 also identified in one or more of the sputum, pyruvate and succinate screens. This trend 
120 also held for the PAO1 sputum screens; however, 61 genes were uniquely identified in the 
121 succinate minimal media screen and two genes were uniquely identified in the pyruvate 
122 minimal media screen, perhaps reflecting the more stringent conditions of the minimal 
123 media screens relative to the more rich conditions of the LB and sputum screens.  
124 This analysis revealed substantial differences in the overlap of the candidate 
125 essential genes across the screens. Using the number of intersections as an indicator of 
126 variability, comparison of the PAO1 screens resulted in more than 30 intersections, while 
127 comparison of the PA14 screens resulted in seven, highlighting the discrepancies between 
128 the screens for both P. aeruginosa strains. This heterogeneity across the screens could be 
129 attributed to a number of factors such as screening approach (e.g., individually mapped 
130 mutants versus transposon sequencing), library complexity, metrics of essentiality, data 
131 analysis, and the media conditions tested. To investigate the possibility that these 
132 discrepancies were completely due to data analysis alone and not experimental differences, 
133 we re-analyzed the sequencing data for the PAO1 transposon sequencing screens 
134 performed on LB where sequencing data was publicly available using the same analytical 
135 pipeline (Figure S1)[18,20]. As expected, when the same analysis pipeline was applied to 
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136 the two screens, there was an increase in the number of commonly essential genes 
137 compared to the overlap between the published results. However, there were still genes 
138 that were identified as uniquely essential to each screen. These results suggest that 
139 differences in data processing alone do not account for the observed variability between 
140 the screens but that experimental differences, such as library complexity, number of 
141 replicates, and read depth, likely also contribute.
142 To determine potential core essential genes (i.e., genes that are essential regardless 
143 of media or other conditions), we measured the number of genes that were shared by all of 
144 the screens for either PAO1 or PA14. Surprisingly, only 17 genes were shared by all PAO1 
145 screens while 192 genes were shared by all PA14 screens. These numbers of core essential 
146 genes are lower than expected, particularly for strain PAO1. Typically, essential genes are 
147 thought to number a few hundred for the average bacterial genome [21]. We reasoned that 
148 this unexpectedly low number of observed core essential genes might be due to the variety 
149 of media conditions across the PAO1 screens, so we repeated our analysis focusing only on 
150 the LB media screens for both PA14 and PAO1 (Figure S2). Interestingly, the trends 
151 remained the same, with 434 genes shared across both PA14 LB media screens and only 44 
152 genes shared across all PAO1 LB media screens. Overall, the PA14 screens had higher 
153 numbers of essential genes compared to those for PAO1, with all the PA14 screens having 
154 at least 400 essential genes. In contrast, there were four PAO1 screens with less than 350 
155 essential genes. Together, these differences suggest greater variability for transposon 
156 mutagenesis in PAO1 compared to PA14. Strain-specific differences in essentiality have 
157 been reported previously but are underappreciated [22]. This result adds to the growing 
158 literature emphasizing how the genetic background of the strain analyzed may impact the 
159 identification of essential genes. Nevertheless, the identified core essential genes point to 
160 genes that may potentially be indispensable for bacterial growth and survival regardless of 
161 condition. 
162 Taken together, results from this comparison revealed vast differences between the 
163 candidate essential gene lists across screens, even for those from the same media 
164 condition. These differences may be due to a number of factors such as experimental 
165 screening approach, library complexity, read depth, and downstream data analysis. 
166 Ultimately, this variability complicates the discovery of essential genes with high-
167 confidence. 
168
169 Contextualization of gene essentiality datasets using genome-scale metabolic network 
170 reconstructions
171
172 A central challenge of transposon mutagenesis screens lies in the interpretation of 
173 why a gene is or is not essential in a given condition. Here, we demonstrate the utility of 
174 genome-scale metabolic network reconstructions to contextualize gene essentiality and 
175 provide mechanistic explanations for the essentiality status of metabolic genes. To do this, 
176 we compared the in vitro candidate essential gene lists to predicted essential genes from 
177 the PAO1 and PA14 GENREs [23]. These GENREs were previously shown to predict gene 
178 essentiality with an accuracy of 91% [23]. For both models, we simulated in silico gene 
179 knockouts under media conditions that approximated those used in the in vitro screens and 
180 assessed the resulting impact on biomass synthesis as an approximation for growth 
181 (Dataset_S3, Dataset_S4). Genes were predicted to be essential if biomass production for 
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182 the associated mutant model was below a standard threshold. Predicted essential gene lists 
183 for both the PAO1 and PA14 models under the different media conditions were compared 
184 to the candidate essential gene lists for each of the experimental screens and the matching 
185 accuracy between model predictions and the in vitro screens was assessed (Figure 2A, 
186 Table S2). 
187 As expected, most genes were identified as nonessential by both the screens and the 
188 models. These nonessential genes likely encode redundant features in the metabolic 
189 network, such as isozymes or alternative pathways, or are involved in accessory 
190 metabolism, such as the production of small molecule virulence factors. Interestingly, the 
191 number of screen-essential genes predicted as nonessential was significantly larger than 
192 the number of screen-nonessential genes predicted as essential (p < 0.01, as measured by 
193 Wilcoxon signed-rank test). We hypothesize that the reason for this difference is due to the 
194 increased likelihood of an in vitro screen missing a gene, potentially due to gene length or 
195 transposition cold spots [16], and subsequently incorrectly identifying it as essential. 
196 This analysis can help to provide specific functional explanations for essentiality. 
197 Where there is agreement between the model predictions and in vitro screens, we can use 
198 the network to explain why a gene is or is not essential. Similarly, we can analyze the 
199 network to explain why a gene may be essential in one media condition versus another. A 
200 mismatch denotes some discrepancy between the model predictions and the experimental 
201 results. These mismatches may point to a gap in the model, indicating that it is missing 
202 some relevant biological information. Alternatively, the mismatches may be due to 
203 experimental variability such as differences in environmental conditions or technique. 
204 To begin contextualizing the gene essentiality datasets using the GENREs, we 
205 focused on metabolic genes that were identified as essential or as nonessential in all LB 
206 screens for either PAO1 or PA14 (which we termed “consensus essential genes” and 
207 “consensus nonessential genes”, respectively) (Table S3, Dataset_S5, Dataset_S6). 
208 Consensus essential genes have a greater likelihood of being truly essential rather than 
209 experimental artifacts since they were identified as such in multiple independent screens. 
210 We then compared these lists of consensus essential genes and consensus nonessential 
211 genes to the model predictions of essentiality in LB media. 
212 From this comparison, we found 45 of 113  consensus  essential genes predicted to 
213 be essential by the PA14 model and 777 of 800 consensus nonessential genes predicted to 
214 be nonessential by the PA14 model.  For PAO1, we found seven of 15 consensus essential 
215 genes predicted to be essential by the PAO1 model and 843 of 863 consensus nonessential 
216 genes predicted as nonessential by the PAO1 model (Table S3). The low number of 
217 consensus essential genes for PAO1 reflects the high variability between screens, as 
218 highlighted in Figures 1 and S1.
219 We then used the models to delineate subsystem assignments for the model-
220 predicted consensus essential and nonessential genes (Figure 2B for PA14 and Figure S3 
221 for PAO1). As expected, the consensus nonessential genes spanned most subsystems within 
222 the network, likely due to redundancy in the network as well as the presence of accessory 
223 metabolic functions that are not critical for biomass production. In contrast, for PA14, the 
224 consensus essential genes were limited to seven of the 14 subsystems within the network 
225 (note that this trend does not hold for PAO1 because there were very few consensus 
226 essential genes to consider). These seven subsystems capture metabolic pathways that are 
227 critical for bacterial growth and survival. For instance, lipid metabolism is essential for 
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228 building and maintaining cell membranes, while carbohydrate metabolism is critical for 
229 ATP generation. None of the genes involved in transport were consensus essential genes. 
230 Because we only considered screens performed in LB media, transport of individual 
231 important metabolites, such as a specific carbon sources, was not a limiting factor given the 
232 abundant availability of such compounds in rich media conditions. However, we would 
233 expect that if we considered screens performed under minimal media conditions, relevant 
234 transport genes would be essential for bacterial growth.
235 Because these consensus essential genes were also predicted to be essential by the 
236 model, we can use the network to provide functional reasons for essentiality. For example, 
237 both the model and screens identified the gene adk, encoding adenylate kinase, as essential. 
238 Using the model, we determined that when adk is not functional, the conversion of 
239 deoxyadenosine diphosphate (dADP) to deoxyadenosine monophosphate (dAMP) cannot 
240 proceed, impacting the cell’s ability to synthesize DNA and ultimately produce biomass 
241 (Figure 2C). The model can also tease out less obvious relationships. For instance, both the 
242 model and the screens identified glmS, encoding glucosamine-fructose-6-phosphate 
243 aminotransferase, as essential. Using the model, we found that when glmS is not functional, 
244 the conversion of L-Glutamine to D-Glucosamine phosphate cannot proceed. D-
245 Glucosamine phosphate is an essential precursor to both Lipid A, a component of the 
246 endotoxin lipopolysaccharide, and peptidoglycan, which forms the cell wall (Figure 2D). 
247 For each of the model-predicted consensus essential genes, we identified which biomass 
248 components could not be synthesized when the gene was removed from the model 
249 (Dataset_S7 and Dataset_S8). Further analysis is necessary to tease out the metabolic 
250 pathways that prevent synthesis of these biomass metabolites; however, from the 
251 examples above it is evident that GENREs can provide both obvious and non-obvious 
252 functional explanations for essentiality, streamlining the interpretation of transposon 
253 mutagenesis screens.
254 In addition to identifying consensus essential and nonessential genes that were in 
255 agreement with the models, we also uncovered discrepancies between model predictions 
256 and experimental results. For PAO1 and PA14, respectively, there were 8 and 68 consensus 
257 essential genes that the models predicted to be nonessential and 20 and 23 consensus 
258 nonessential genes that the models predicted to be essential. These mismatches between 
259 model predictions and experimental results provide insight into gaps in our understanding 
260 of P. aeruginosa metabolism. 
261 In the case where a consensus essential gene was predicted to be non-essential by 
262 the model, this result indicates that the model has some additional functionality that is not 
263 available in vitro. This result could be an inaccuracy of the network reconstruction or it 
264 could be a result of using a non-condition-specific network where the model has access to 
265 all possible reactions in the network. Because cells undergo varying states of regulation, 
266 gene essentiality can be modulated as a result. Thus, profiling data such as transcriptomics 
267 could be integrated into the network reconstruction to generate a condition-specific model 
268 to improve model predictions under specified conditions [24,25].
269 In contrast, in the case where a consensus nonessential gene was predicted to be 
270 essential, this result indicates that the model is missing key functionality, pointing to areas 
271 of potential model curation. Using this list of discrepancies to guide curation (Table 2), we 
272 performed an extensive literature review and found several suggested changes to the 
273 metabolic network reconstruction (Dataset_S9). For instance, we incorrectly predicted as 
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274 essential the gene fabI (PA1806), which is linked to triclosan resistance; however, a recent 
275 study discovered an isozyme of fabI in PAO1 called fabV (PA2950) [26]. To account for this 
276 new information, we suggest changing the gene-protein-reaction (GPR) relationship for the 
277 28 reactions governed by fabI to be “fabI OR fabV”, making fabI no longer essential in the 
278 model. Additionally, our model incorrectly predicted the genes ygiH (PA0581) and plsX 
279 (PA2969) to be essential due to a GPR formulation of “ygiH AND plsX” for several reactions 
280 in glycerolipid metabolism. Literature evidence suggests that the gene-product of plsB 
281 (PA3673) is also able to catalyze these reactions. Specifically, the gene-products of both 
282 plsB and the ygiH/plsX system are able to carry out the acylation of glycerol-3-phosphate 
283 from an acyl carrier protein whereas only the gene-product of plsB is able to carry out this 
284 reaction for acyl-CoA thioesters [27,28]. This experimental evidence motivates changing 
285 the GPRs for 16 reactions in glycerolipid metabolism. 
286 In addition to changes in the GPR formulation for specific reactions, we also 
287 identified a potential change to the biomass reaction. Two PAO1 genes, glgA (PA2165) and 
288 algC (PA5322), are incorrectly predicted as essential for the synthesis of glycogen, a 
289 biomass component. Glycogen is not an essential metabolite for P. aeruginosa growth; 
290 however, it is very important for energy storage, which is why it was initially included in 
291 the biomass reaction [29]. Removal of glycogen from the biomass equation would make 
292 glgA and algC accurate predictions as nonessential genes in PAO1. Implementing these 
293 proposed changes in the PAO1 and PA14 GENREs resulted in enhanced predictive 
294 capability of the models (Dataset_S10, Dataset_S11, Table S3). The updated PAO1 model 
295 predicted consensus gene essentiality status in LB media with an accuracy of 97.4% 
296 compared to 96.8% for the original model. Meanwhile, the updated PA14 model predicted 
297 consensus gene essentiality status in LB media with an accuracy of 90.5% compared to 
298 90.0% for the original mode. It is worth noting that, although these changes to the 
299 reconstructions were made to address essentiality discrepancies in LB media conditions, 
300 they also improved the PAO1 model predictive capabilities for consensus genes in sputum 
301 media, increasing accuracy from 92.6% to 93.0%.
302 While we identified several changes to the model to improve predictions, there were 
303 several genes for which we could find no literature evidence to change their predicted 
304 essentiality status.  These genes highlight gaps in our current knowledge and 
305 understanding of Pseudomonas metabolism and indicate areas of future research. 
306 Identification of these knowledge gaps is not possible without the reconciliation of 
307 experimental data with model predictions. Ultimately, this analysis demonstrates the utility 
308 of integrating data with GENREs to improve gene annotation and suggest areas of future 
309 research.
310 In addition to contextualizing essentiality for a given media condition, we also used 
311 the model to explain why certain metabolic genes are essential in one media-type versus 
312 another. We compared consensus LB essential genes to consensus sputum essential genes 
313 for PAO1 and identified the essential genes that were either shared by both conditions or 
314 unique to one condition versus the other. Overall, 18 genes were commonly essential, while 
315 92 genes were uniquely essential in sputum and 26 genes were uniquely essential in LB, 
316 indicating the presence of condition-dependent essential genes.
317 We then focused our analysis just on those genes that were also present in the PAO1 
318 model and compared these lists to model predictions. We found four genes that both the 
319 model and the screens indicated as uniquely essential in sputum but not in LB. 
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320 Interestingly, all four of these genes (pyrB, pyrC, pyrD, and pyrF) are involved in pyrimidine 
321 metabolism. Applying flux sampling [30] to the PAO1 metabolic network model, we 
322 investigated why these four genes were uniquely essential in sputum but not in LB (Figure 
323 2E). The pyrimidine metabolic pathway directly leads to the synthesis of several key 
324 biomass precursors (UMP, CMP, dCMP and dTMP), making it an essential subsystem within 
325 the network. Under LB media conditions, there are two inputs into the pathway, one 
326 through L-Glutamine and the other through Cytosine. However, in sputum media 
327 conditions, L-Glutamine is the only input into the pathway. Because of this reduction in the 
328 number of available substrates in sputum media, the steps for L-Glutamine breakdown 
329 must be active to synthesize the biomass precursors. Thus, the genes responsible for 
330 catalyzing this breakdown are essential in sputum media conditions. In contrast, because 
331 there are two LB substrates that feed into pyrimidine metabolism, if a gene involved in the 
332 breakdown of one of the substrates is not functional the other substrate is still accessible, 
333 thus making the deletion of that gene nonessential. 
334 As stated above, further constraining the model with profiling data from both media 
335 conditions would help to further contextualize differences in the essentiality results by 
336 modulating the availability of certain reactions. Nevertheless, as demonstrated here, the 
337 metabolic network reconstruction can be a useful tool for providing functional 
338 explanations for why certain genes are essential in one condition versus another. 
339
340 Quantitative evaluation of the impact of media formulation on condition-independent 
341 essential gene identification
342
343 Given the variability in the number of candidate essential genes across the screens, 
344 we were interested in using the models to quantitatively evaluate the impact of media 
345 conditions on essentiality. We first focused our analysis on how the number of considered 
346 minimal media conditions impacts the number of condition-independent essential genes 
347 identified, or the number of genes found as essential in every condition. To do this, we 
348 simulated growth of the PA14 model on 42 different minimal media and performed in silico 
349 gene knockouts, identifying the genes essential for biomass production on each media 
350 condition (Figure 3A). We then randomly selected groups of minimal media conditions and 
351 compared their essential gene lists to determine the commonly essential genes, defined as 
352 the overlap. We performed this random selection of minimal media conditions for group 
353 sizes ranging from two to 40 minimal media conditions considered. For each group size, we 
354 randomly selected minimal media conditions 500 times. As expected, the more media 
355 conditions considered, the smaller the overlap of essential genes (Figure 3B). This 
356 relationship between the number of media conditions considered and the size of the 
357 overlap is best characterized by an exponential decay, with the size of the overlap 
358 eventually converging on 131 genes as 40 conditions are considered. This result suggests 
359 that to identify a core set of condition-independent essential genes, dozens of minimal 
360 media screens need to be compared. However, variability between the screens, as indicated 
361 by the error bars, could still confound interpretation, necessitating the comparison of 
362 replicates and potentially even more screens to truly identify condition-independent 
363 essential genes with high confidence.
364 We next assessed how modifications to a rich media, like LB, impact gene 
365 essentiality. LB is a complex media with known batch-to-batch variability [31,32], 
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366 motivating this analysis of how differences in LB composition can alter essentiality. Given 
367 the challenge of modeling concentration, here the simulations focus on the presence or 
368 absence of metabolites in LB media. Specifically, we randomly selected carbon source 
369 components from LB media in sets of varying sizes, ranging from two to 21 LB media 
370 components considered. We then used these sets as the model media conditions and 
371 performed in silico gene knockouts to identify essential genes for biomass production on 
372 each LB media formulation (Figure 4A). For each set size, we randomly selected LB 
373 components 100 times and calculated the average number of essential genes identified as 
374 well as the number of shared essential genes across all 100 sets. As the number of LB media 
375 components increases, we found that the size of the essential gene lists decreases linearly 
376 (Figure 4B). If we were to consider even more media components beyond the scope of LB, 
377 we predict that this linear relationship would eventually plateau due to limitations in the 
378 metabolic network. This result suggests that a media richer than LB may be necessary to 
379 identify a core set of condition-independent essential genes.
380 Interestingly, we found that as more complex LB media formulations are 
381 considered, the number of shared essential genes across 100 simulations quickly converges 
382 on 111. Indeed, only three LB media components were needed to achieve this overlap. 
383 Thus, even though the average size of essential gene lists is larger for less complex media 
384 formulations, the overlap of these larger essential gene lists still results in the same overlap 
385 as more complex media formulations, suggesting that changes in complex media 
386 formulation have minimal impact on determining a core set of essential genes. 
387 However, for this analysis, we had compared 100 random media formulations for 
388 each set size, potentially masking the impact of media changes on essentiality. To identify 
389 how many LB media formulations need to be compared to converge on this overlap value, 
390 we re-ran this analysis 10 times and, for each iteration, determined the number of samples, 
391 or replicates, needed to recapture the 111 overlapping genes (Figure 4C). In more complex 
392 media formulations, relatively few comparisons are needed to identify the 111 overlapping 
393 essential genes. However, as fewer LB media components are considered, more 
394 comparisons need to be made. For example, in the case of formulations consisting of only 
395 three LB media components, nearly 60 comparisons are needed to converge on the 111 
396 overlap essential genes. Thus, as the media formulation diverges from true LB due to batch-
397 to-batch variability, more comparisons are necessary to converge on a core set of essential 
398 genes. 
399 Taken together, these computational analyses define the scope that is needed to 
400 identify condition-independent essential genes. These results suggest that both the number 
401 of media conditions and the number of replicates analyzed can impact our ability to 
402 determine condition-independent essential genes.
403
404 Discussion
405
406 The identification of both condition-dependent and condition-independent essential 
407 genes has been a long-standing interest [33,34]. Determination of these essential processes 
408 can aid in the discovery of novel antibacterial targets as well as the discovery of minimal 
409 genomes required to sustain life [7,35]. In this study, we performed a large-scale 
410 comparison of multiple gene essentiality datasets and contextualized essential genes using 
411 genome-scale metabolic network reconstructions. We applied this approach to several P. 
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412 aeruginosa transposon mutagenesis screens performed on multiple media conditions and 
413 demonstrated the utility of GENREs in providing functional explanations for essentiality 
414 and resolving differences between screens. Finally, using the P. aeruginosa GENRE, we 
415 performed a high-throughput, quantitative analysis to determine how media conditions 
416 impact the identification of condition-independent essential genes. The resulting insights 
417 would be challenging to develop without the use of a computational model of P. aeruginosa 
418 metabolism. Our work enables the elucidation of mechanistic explanations for essentiality, 
419 which is challenging to determine experimentally. Ultimately, this approach serves as a 
420 framework for future contextualization of gene essentiality data and can be applied to any 
421 cell type for which such data is available. Additionally, by quantifying the impact of media 
422 conditions on the identification of condition-independent essential genes, we contribute 
423 novel insights for design of future gene essentiality screens and identification of core 
424 metabolic processes.
425 Recent advances in deep-sequencing technologies combined with transposon 
426 mutagenesis have enabled high-throughput determination of candidate essential genes for 
427 a variety of bacterial species in a wide range of environmental conditions [36]. While 
428 researchers have demonstrated reasonable reproducibility within a given study [37], 
429 variability across studies has been suggested but not assessed on a large-scale [1,38]. Our 
430 comparison of multiple P. aeruginosa transposon mutagenesis screens revealed substantial 
431 variability in candidate essential genes within and across media conditions, particularly for 
432 strain PAO1. Numerous factors may contribute to this lack of overlap between the screens, 
433 such as differences in transposon insertion library complexity, differences in data analysis 
434 and statistical determination of essentiality, as well as environmental variability between 
435 the screens [8,9]. Factors such as these lead to discrepancies between screens and 
436 complicate our ability to identify high-confidence sets of condition-dependent and 
437 condition-independent essential genes. 
438 Focusing on one of these factors, we used the metabolic model of P. aeruginosa 
439 strain PA14 to quantitatively assess how media formulation impacts the identification of 
440 condition-independent essential genes. While previous in vitro studies have surveyed 
441 conditional essentiality in numerous environmental conditions, these screens used an 
442 already established mutant library for each media-type [39]. In this work, we 
443 computationally generated de novo mutant libraries for individual media conditions, 
444 eliminating any bias from starting with an established mutant library. Ultimately, we found 
445 that to determine a high-confidence set of core essential genes for minimal media 
446 conditions, more than 40 minimal media formulations need to be compared. We extended 
447 this analysis to consider how differences in rich media formulations impact gene 
448 essentiality and found that as rich media formulations diverge, as many as 60 replicates are 
449 needed to identify condition-independent essential genes with high-confidence. Taken 
450 together, these computational results suggest a rich opportunity for a large-scale 
451 experimental effort to identify with high confidence condition-independent essential genes. 
452 These insights would be impossible to garner without computational modeling due to the 
453 sheer number of comparisons made.
454 In addition to variability between datasets, a central difficulty of performing gene 
455 essentiality screens lies in the interpretation of why a gene is essential in a given condition. 
456 Oftentimes, laborious follow-up experiments are necessary to investigate the role of a gene 
457 in a given condition using lower-throughput approaches [36]. Here, we presented a 
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458 strategy for contextualizing gene essentiality data using genome-scale metabolic network 
459 reconstructions. We demonstrated the utility of this approach by providing functional 
460 reasons for essentiality for consensus LB media essential genes. For these genes, we 
461 determined which specific components of biomass could not be synthesized when the gene 
462 was knocked out. Additionally, by analyzing the network structure and flux patterns, we 
463 used the model to explain why certain genes are essential in one condition versus another. 
464 Our computational approach provides testable hypotheses regarding the functional role of 
465 a gene in synthesizing biomass in a given environmental condition, streamlining 
466 downstream follow-up experiments. In future work, profiling data could be integrated with 
467 the metabolic networks to further enhance the utility of these models in contextualizing 
468 gene essentiality [24]. Additionally, integration of transcriptional regulatory networks with 
469 the GENREs would further expand the number of genes considered [40].
470 In summary, genome-scale metabolic network reconstructions can guide the design 
471 of gene essentiality screens and help to interpret their results. The identification of both 
472 condition-independent and condition-dependent essential genes is vital for the discovery 
473 of novel therapeutic strategies and mechanistic modeling streamlines the ability to identify 
474 these genes. This framework can be applied to numerous other organisms of both clinical 
475 and industrial relevance.
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494 Methods
495
496 Data sources
497
498 Transposon insertion library datasets were downloaded from the original publication for 
499 each screen where available. Screens were renamed following this pattern: 
500 Strain.Media.NumEssentials, where Strain indicated whether the screen was for strain PAO1 
501 or PA14, Media indicated which media condition the screen was performed on, and 
502 NumEssentials indicated the number of essential genes identified for the given strain on the 
503 given media condition. Specifically, for the PAO1.LB.201, PAO1.Sputum.224, and 
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504 PAO1.Pyruvate.179 datasets, Dataset_S01 was downloaded from [19]. For the 
505 PAO1.LB.335, PAO1.Sputum.405, and PAO1.Succinate.640 datasets, Dataset_S01 was 
506 downloaded from [18]. For the PA14.LB.634 dataset, Table S1 was downloaded from [17]. 
507 For the PA14.Sputum.510 dataset, Dataset_S04 was downloaded from [18]. For the 
508 PAO1.LB.913 dataset, PA_two_allele_library5.xlsx was downloaded from the Manoil 
509 Laboratory website (http://www.gs.washington.edu/labs/manoil/libraryindex.htm). For 
510 the PA14.LB.1544 dataset, NRSetFile_v5_061004.xls was downloaded from the PA14 
511 Transposon Insertion Mutant Library website (http://pa14.mgh.harvard.edu/cgi-
512 bin/pa14/downloads.cgi). 
513
514 The PAO1 and PA14 genome-scale metabolic network reconstructions were downloaded 
515 from the Papin Laboratory website (http://www.bme.virginia.edu/csbl/Downloads1-
516 pseudomonas.html). 
517
518 Generation of candidate essential gene lists
519
520 Candidate essential genes were determined for each screen as follows. For PAO1.LB.201, 
521 we considered genes to be essential if they were not disrupted in all six of the Tn-seq runs 
522 on LB in the original dataset. For PAO1.Sputum.224, we considered genes to be essential if 
523 they were not disrupted in all four of the Tn-seq runs on sputum in the original dataset. For 
524 PAO1.Pyruvate.179, we considered genes to be essential if they were not disrupted in all 
525 three of the Tn-seq screens on Pyruvate minimal media in the original dataset. For 
526 PAO1.LB.335, PAO1.Sputum.405, and PAO1.Succinate.640, we used the genes that were 
527 labeled as essential in the original dataset. For PAO1.LB.913, the mutants listed in the 
528 transposon insertion library were compared to a list of all known genes in the PAO1 
529 genome. Genes in the PAO1 genome that were not in the mutant library list were 
530 considered to be essential. For PA14.LB.634, we used the genes listed as essential in the 
531 original dataset. For PA14.BHI.424 and PA14.Sputum.510, we used the genes that were 
532 labeled as essential in the original dataset. For PA14.LB.1544, the mutants listed in the 
533 transposon insertion library were compared to a list of all known genes in the PA14 
534 genome. Genes in the PA14 genome that were not in the mutant library list were 
535 considered to be essential. 
536
537 Comparison of candidate essential gene lists
538
539 Hierarchical clustering with complete linkage was performed on the candidate essential 
540 gene lists for the PA14 and PAO1 screens and visualized with a dendrogram. The overlap 
541 between the datasets was visualized using the R-package, UpsetR [41].
542
543 Re-analysis of transposon sequencing datasets
544 PAO1.LB.335 sequencing data were downloaded from NCBI SRA under the accession 
545 number SRX031647. PAO1.LB.201 sequencing data were downloaded from NCBI SRA 
546 under the accession number PRJNA273663. Data were analyzed using methods adapted 
547 from [18,20]. Briefly, reads were mapped to the PAO1 reference genome 
548 (GCA_000006765.1 ASM676v1 assembly downloaded from NCBI) using bowtie2 v.2.3.4.1. 
549 Open reading frame assignments were modified where 10% of the 3’ end of every gene was 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415448doi: bioRxiv preprint 

https://doi.org/10.1101/415448
http://creativecommons.org/licenses/by/4.0/


13

550 removed in order to disregard insertions that may not interrupt gene function. Aligned 
551 reads were mapped to genes and we removed the 50 most abundant sites to account for 
552 potential PCR amplification bias. We applied weighted LOESS smoothing to correct for 
553 genome position-dependent effects. One-hundred random datasets were generated by 
554 randomizing insertion locations. Previous analysis showed that results begin to converge 
555 after 50 random datasets [18]. We compared the random datasets to the experimental 
556 datasets with a negative binomial test in DESeq2.  We corrected for multiple testing by 
557 adjusting the p-value with the Benjamini-Hochberg method. We used the mclust package in 
558 R to test whether a gene was ‘reduced’ or ‘unchanged’. Genes were called ‘essential’ if they 
559 were assigned to the ‘reduced’ category by mclust with an adjusted p-value <0.05 and 
560 uncertainty <0.1.
561
562 Model gene essentiality predictions
563
564 In silico gene essentiality screens were performed in relevant media conditions using the 
565 PAO1 and PA14 genome-scale metabolic network reconstructions [23]. Specifically, media 
566 formulations were computationally approximated for LB, sputum, pyruvate minimal media, 
567 and succinate minimal media for the PAO1 simulations and LB and sputum for the PA14 
568 simulations. Systematically, genes were deleted from the models one-by-one and the 
569 resulting impact on biomass production was assessed. If biomass production for the 
570 associated mutant model was below 0.0001 h-1, a standard threshold, the knocked-out gene 
571 was predicted to be essential [23]. For each in silico predicted essential gene, we 
572 determined which biomass components specifically could not be synthesized using the 
573 COBRA toolbox function, biomassPrecursorCheck() [42]. Statistical significance for the 
574 comparison of the “mismatch: model nonessential, screen essential” category and the 
575 “mismatch: model essential, screen nonessential” category was assessed using the 
576 Wilcoxon signed-rank test. 
577
578 Subsystem assignment of consensus essential and nonessential genes
579
580 For each of the consensus essential and nonessential genes that were also present in the 
581 PAO1 and PA14 models, we determined which subsystems they participated in using an in-
582 house script (see Supplementary Information). Briefly, we first converted model 
583 subsystems to broad subsystems based on KEGG functional categories [43]. We then 
584 identified the reactions associated with the gene of interest and used the broad subsystem 
585 of this reaction to indicate the subsystem assignment for the gene of interest. Where there 
586 was more than one reaction connected to a gene, we used the reaction associated with the 
587 first instance of the gene in the network for subsystem assignment.
588
589 Flux sampling in LB and sputum
590
591 The impact of media conditions on flux through pyrimidine metabolism in the PAO1 
592 metabolic network reconstruction was assessed using the flux sampling algorithm 
593 optGpSampler [30]. Briefly, optGpSampler samples the solution space of genome-scale 
594 metabolic networks using the Artificial Centering Hit-and-Run algorithm and returns a 
595 distribution of possible flux values for reactions of interest. Three-thousand flux samples 
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596 were collected for each simulation, using one thread and a step-size of one. Maximization of 
597 biomass synthesis was set as the objective function. Flux sampling simulations were 
598 performed for PAO1 grown in LB media and sputum media. The median flux values for 
599 every reaction in pyrimidine metabolism were compared between the LB and sputum 
600 simulations to determine whether flux was higher, lower, or unchanged in sputum versus 
601 LB.
602
603 Media formulation impact on essentiality
604
605 The impact of media formulation on gene essentiality predictions was assessed using the 
606 PA14 genome-scale metabolic network reconstruction. For the minimal media analysis, the 
607 PA14 model was grown on 42 different minimal media and in silico essential genes were 
608 identified as described above. We then randomly selected groups of minimal media 
609 conditions of varying sizes, ranging from two to 41 minimal media conditions considered, 
610 and found the intersection of the group’s predicted essential gene lists, or the genes that 
611 were identified as essential in every condition considered within that group. For each 
612 group size, we randomly selected minimal media conditions 500 times.
613
614 For the LB media analysis, we randomly selected components from LB media in sets of 
615 varying sizes, ranging from two to 21 LB media components considered, used these sets as 
616 the model media conditions, and identified in silico essential genes as above. For each set 
617 size, we randomly selected LB components 100 times and calculated the average total 
618 number of essential genes identified and the intersection of the essential genes across all 
619 100 sets. To determine how many LB media formulations needed to be compared to 
620 converge on this intersection, we re-ran this LB media formulation analysis 10 times and, 
621 for each iteration, determined the number of samples needed to achieve the size of the 
622 overlap if all 100 samples were considered at each set size
623
624 Code and data availability
625
626 Code and files necessary to recreate figures and data can be found here: 
627 https://github.com/ablazier/gene-essentiality
628
629 Computational resources
630
631 The COBRA Toolbox 2.0.5 [42], the Gurobi 6.5 solver, and MATLAB R2016a were used for 
632 model simulations. optGPSampler1.1 was used for flux sampling simulations [30].  Bowtie2 
633 v.2.3.4.1 [44] and Samtools v.1.3.1 [45] were used for transposon sequencing analysis. R 
634 3.3.3 was used for all other analyses and figure generation.
635
636
637
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638 Figures and Legends

639
640 Figure 1. Comparison of candidate essential genes from transposon mutagenesis 
641 screens reveals variability.
642 (A and C). Hierarchical clustering of candidate essential gene lists from transposon 
643 mutagenesis screens for PAO1 and PA14, respectively.
644 (B and D). Overlap analysis of candidate essential gene lists for transposon mutagenesis 
645 screens for PAO1 and PA14, respectively. Blue bars indicate the total number of candidate 
646 essential genes identified in each screen. Black bars indicate the number of candidate 
647 essential genes unique to the intersection given by the filled-in dots. The orange bar 
648 indicates the overlap for all screens for either PAO1 (Panel B) or PA14 (Panel D). For the 
649 relationship between the overlap analysis and venn diagrams, see Figures S1 and S2.
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650

651
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652 Figure 2. Contextualization of gene essentiality datasets using genome-scale 
653 metabolic network reconstructions.
654 (A). Comparison of model essentiality predictions to in vitro essentiality screens. In silico 
655 gene knockouts were performed for both PA14 and PAO1 genome-scale metabolic network 
656 reconstructions to predict essential genes. Model-predicted essential genes were compared 
657 to the candidate essential genes for each in vitro screen. The bars show the result of this 
658 comparison, with orange indicating the number of genes for which both the model and 
659 experimental screen identified the gene as nonessential (match: both nonessential), red 
660 indicating the number of genes for which the model identified the gene as nonessential 
661 whereas the screen identified the gene as essential (mismatch: model-nonessential, screen-
662 essential), green indicating the number of genes for which both the model and 
663 experimental screen identified the gene as essential (match: essential), and blue indicating 
664 the number of genes for which the model identified the gene as essential whereas the 
665 screen identified the gene as nonessential (mismatch: model-essential, screen-
666 nonessential).
667 (B). Functional subsystems for PA14 consensus essential and nonessential genes that were 
668 also correctly predicted to be essential or nonessential in the PA14 GENRE. Consensus 
669 essential and nonessential genes were identified for PA14 by comparing all three LB 
670 screens and determining genes essential or nonessential in all three screens. 
671 (C and D). Metabolic pathways demonstrating essentiality for the consensus essential 
672 genes adk and glmS, respectively. Dashed lines represent inputs and outputs of the 
673 pathway, or, as in D, multiple steps. Brown boxes indicate media inputs, while purple boxes 
674 indicate biomass outputs. Metabolites are labeled beside the nodes, with bold metabolites 
675 indicating biomass components. Genes associated with the specific reaction are indicated.
676 (E). Flux activity in pyrimidine metabolism under both sputum and LB media conditions. 
677 Consensus LB essential genes were compared to consensus sputum essential genes for 
678 PAO1. The PAO1 GENRE was used to explain differences in essentiality between the two 
679 media-types. Black lines indicate that the reaction is capable of carrying flux under both 
680 sputum and LB conditions, while the gray lines indicate that the reaction does not carry 
681 flux in sputum conditions but does in LB conditions. Brown boxes are media inputs, purple 
682 boxes are biomass outputs. Metabolites are labeled above the nodes, with bold metabolites 
683 indicating biomass components. Many of these metabolites are involved in many reactions 
684 beyond pyrimidine metabolism. Gene-protein-reaction relationships are indicated in italics 
685 beside each reaction edge.
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686
687 Figure 3. Computational assessment of the impact of number of minimal media 
688 conditions considered on condition-independent essentiality.
689 (A). Pipeline for computational assessment of the impact of minimal media composition on 
690 condition-independent essentiality. The base PA14 model is grown on 42 different minimal 
691 media. For each minimal media condition, the in silico essential genes are identified, 
692 resulting in 42 essential gene lists. Initially, pairwise comparisons are made between 
693 minimal media essential gene lists to identify the shared essential genes. Specifically, the 
694 essential gene lists from two randomly selected minimal media conditions are compared to 
695 determine the overlap between the two gene lists. This random selection of two minimal 
696 media conditions to compare is repeated 500 times. The average number of overlap genes 
697 for all 500 comparisons is calculated as well as the standard deviation. Ultimately, this 
698 random selection of groups of minimal media conditions to compare is repeated for groups 
699 of three minimal media conditions, groups of four, and so on, up to groups of 40 minimal 
700 media conditions.
701 (B). Impact of minimal media differences on the identification of condition-independent 
702 essential genes. Each data point represents the mean from 500 comparisons. Error bars 
703 indicate standard deviation.
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704
705 Figure 4. Computational assessment of the impact of LB media composition on 
706 condition-independent essentiality.
707 (A). Pipeline for computational assessment of the impact of LB media formulation on 
708 condition-independent essentiality. The PA14 model is grown on different media 
709 formulations consisting of random groups of LB components. For instance, two random LB 
710 components are selected out of a pool of 23 LB components. The model is grown on these 
711 randomly selected pairs and the essential genes for growth on this media formulation are 
712 identified. This analysis is repeated 100 times for 100 pairs of LB media components. The 
713 average number of essential genes for growth on these random pairs across 100 different 
714 formulations is calculated as well as the standard deviation. Additionally, the essential 
715 genes common to all 100 different formulations is determined. Ultimately, this random 
716 selection of groups of LB media components to support growth of the model and essential 
717 gene identification is repeated for groups of three LB components, groups of four, and so 
718 on, to groups of 21 LB media components.
719 (B) Impact of LB media formulation on the identification of condition-independent 
720 essential genes. Circles represent the average number of essential genes identified in 
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721 different LB media formulations across 100 comparisons. Triangles represent the shared 
722 essential genes (i.e., the overlap) across all 100 comparisons. Error bars indicate standard 
723 deviation. 
724 (C) Number of replicates needed to converge on shared essential genes in different LB 
725 formulations. The pipeline outlined in Panel A was repeated 10 independent times, with 
726 100 replicates per set size. For each iteration, the number of replicates needed to recapture 
727 the 111 overlapping genes was calculated. Each data point represents the average number 
728 of replicates from the 10 runs. Error bars indicate standard deviation.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415448doi: bioRxiv preprint 

https://doi.org/10.1101/415448
http://creativecommons.org/licenses/by/4.0/


21

729 Tables

730
731 Table 1. Characteristics of the in vitro transposon mutagenesis screens.
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732
733 Table 2. Discrepancies between model predicted essential genes and in vitro 
734 identified consensus nonessential genes for PAO1.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415448doi: bioRxiv preprint 

https://doi.org/10.1101/415448
http://creativecommons.org/licenses/by/4.0/


23

735 References

736 1. Umland TC, Schultz LW, MacDonald U, Beanan JM, Olson R, Russo TA. In vivo-validated 
737 essential genes identified in Acinetobacter baumannii by using human ascites overlap 
738 poorly with essential genes detected on laboratory media. MBio. 2012;3. 
739 doi:10.1128/mBio.00113-12

740 2. Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P, Tettelin H, et al. Essential Genes in 
741 the Core Genome of the Human Pathogen Streptococcus pyogenes. Sci Rep. 2015;5: 
742 9838.

743 3. Gallagher LA, Shendure J, Manoil C. Genome-Scale Identification of Resistance 
744 Functions in Pseudomonas aeruginosa Using Tn-seq. 2011; doi:10.1128/mBio.00315-
745 10.Editor

746 4. Moule MG, Hemsley CM, Seet Q. Genome-Wide Saturation Mutagenesis of Burkholderia 
747 pseudomallei. MBio. 2014;5: 1–9.

748 5. van Opijnen T, Camilli A. A fine scale phenotype–genotype virulence map of a bacterial 
749 pathogen. Genome Res. 2012;22: 2541–2551.

750 6. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M. Requirements for 
751 Pseudomonas aeruginosa Acute Burn and Chronic Surgical Wound Infection. PLoS 
752 Genet. 2014;10. doi:10.1371/journal.pgen.1004518

753 7. Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K, Gilmore MS, et al. Co-infecting 
754 microorganisms dramatically alter pathogen gene essentiality during polymicrobial 
755 infection. Nature Microbiology. Nature Publishing Group; 2017;2: 1–6.

756 8. Chao MC, Abel S, Davis BM, Waldor MK. The design and analysis of transposon 
757 insertion sequencing experiments. Nat Rev Microbiol. Nature Publishing Group; 
758 2016;14: 119–128.

759 9. Grenov AI, Gerdes SY. Modeling competitive outgrowth of mutant populations: why do 
760 essentiality screens yield divergent results? Methods Mol Biol. 2008;416: 361–367.

761 10. Burger BT, Imam S, Scarborough MJ, Noguera DR, Donohue TJ. Combining genome-
762 scale experimental and computational methods to identify essential genes in 
763 Rhodobacter sphaeroides. mSystems. 2017;2: 1–18.

764 11. Broddrick JT, Rubin BE, Welkie DG, Du N, Mih N, Diamond S, et al. Unique attributes of 
765 cyanobacterial metabolism revealed by improved genome-scale metabolic modeling 
766 and essential gene analysis. Proceedings of the National Academy of Sciences. 
767 2016;113: E8344–E8353.

768 12. Chavali AK, D’Auria KM, Hewlett EL, Pearson RD, Papin J a. A metabolic network 
769 approach for the identification and prioritization of antimicrobial drug targets. Trends 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415448doi: bioRxiv preprint 

https://doi.org/10.1101/415448
http://creativecommons.org/licenses/by/4.0/


24

770 Microbiol. Elsevier Ltd; 2012;20: 113–123.

771 13. Zampieri M, Enke T, Chubukov V, Ricci V, Piddock L, Sauer U. Metabolic constraints on 
772 the evolution of antibiotic resistance. 2017; 1–14.

773 14. Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BØ. Comparative genome-scale 
774 modelling of Staphylococcus aureus strains identifies strain-specific metabolic 
775 capabilities linked to pathogenicity. Proceedings of the National Academy of Sciences. 
776 2016; 201523199.

777 15. Jacobs M a., Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, et al. 
778 Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl 
779 Acad Sci U S A. 2003;100: 14339–14344.

780 16. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, et al. An ordered, 
781 nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion 
782 mutants. Proc Natl Acad Sci U S A. 2006;103: 2833–2838.

783 17. Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, et al. A Comprehensive 
784 Analysis of In Vitro and In Vivo Genetic Fitness of Pseudomonas aeruginosa Using 
785 High-Throughput Sequencing of Transposon Libraries. PLoS Pathog. 2013;9. 
786 doi:10.1371/journal.ppat.1003582

787 18. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. Essential genome of 
788 Pseudomonas aeruginosa in cystic fibrosis sputum. Proceedings of the National 
789 Academy of Sciences. 2015; 201419677.

790 19. Lee S a., Gallagher L a., Thongdee M, Staudinger BJ, Lippman S, Singh PK, et al. General 
791 and condition-specific essential functions of Pseudomonas aeruginosa. Proceedings of 
792 the National Academy of Sciences. 2015; 201422186.

793 20. Powell JE, Leonard SP, Kwong WK, Engel P, Moran NA. Genome-wide screen identifies 
794 host colonization determinants in a bacterial gut symbiont. Proc Natl Acad Sci U S A. 
795 2016;113: 13887–13892.

796 21. Juhas M, Eberl L, Glass JI. Essence of life: essential genes of minimal genomes. Trends 
797 Cell Biol. 2011;21: 562–568.

798 22. Juhas M. Pseudomonas aeruginosa essentials: An update on investigation of essential 
799 genes. Microbiology. 2015;161: 2053–2060.

800 23. Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, et al. Reconstruction 
801 of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor 
802 synthesis. Nat Commun. 2017;8. doi:10.1038/ncomms14631

803 24. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase 
804 that computes Escherichia coli traits_supplement. Nat Biotechnol. 2017;35: 904–908.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415448doi: bioRxiv preprint 

https://doi.org/10.1101/415448
http://creativecommons.org/licenses/by/4.0/


25

805 25. Ghosh S, Baloni P, Mukherjee S, Anand P, Chandra N. A multi-level multi-scale 
806 approach to study essential genes in Mycobacterium tuberculosis. BMC Syst Biol. 
807 2013;7: 132.

808 26. Zhu L, Lin J, Ma J, Cronan JE, Wang H. Triclosan resistance of Pseudomonas aeruginosa 
809 PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. 
810 Antimicrob Agents Chemother. 2010;54: 689–698.

811 27. Lu Y-J, Zhang Y-M, Grimes KD, Qi J, Lee RE, Rock CO. Acyl-phosphates initiate 
812 membrane phospholipid synthesis in Gram-positive pathogens. Mol Cell. 2006;23: 
813 765–772.

814 28. Kondakova T, D’Heygère F, Feuilloley MJ, Orange N, Heipieper HJ, Duclairoir Poc C. 
815 Glycerophospholipid synthesis and functions in Pseudomonas. Chem Phys Lipids. 
816 2015;190: 27–42.

817 29. Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, et al. 
818 Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 
819 2010;34: 952–985.

820 30. Megchelenbrink W, Huynen M, Marchiori E. optGpSampler: an improved tool for 
821 uniformly sampling the solution-space of genome-scale metabolic networks. PLoS One. 
822 2014;9: e86587.

823 31. Sridhar S, Steele-Mortimer O. Inherent Variability of Growth Media Impacts the Ability 
824 of Salmonella Typhimurium to Interact with Host Cells. PLoS One. 2016;11: e0157043.

825 32. Sezonov G, Joseleau-Petit D, D’Ari R. Escherichia coli physiology in Luria-Bertani broth. 
826 J Bacteriol. 2007;189: 8746–8749.

827 33. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, et al. Essential 
828 Bacillus subtilis genes. Proceedings of the National Academy of Sciences. 2003;100: 
829 4678–4683.

830 34. Sassetti CM, Boyd DH, Rubin EJ. Comprehensive identification of conditionally 
831 essential genes in mycobacteria. Proceedings of the National Academy of Sciences. 
832 2001;98: 12712–12717.

833 35. Hutchison C a. III, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, et al. Global 
834 Transposon Mutagenesis and a Minimal Mycoplasma Genome. Science. 1999;286: 
835 2165–2169.

836 36. Van Opijnen T, Camilli A. Transposon insertion sequencing: A new tool for systems-
837 level analysis of microorganisms. Nat Rev Microbiol. Nature Publishing Group; 
838 2013;11: 435–442.

839 37. Fu Y, Waldor MK, Mekalanos JJ. Tn-seq analysis of vibrio cholerae intestinal 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415448doi: bioRxiv preprint 

https://doi.org/10.1101/415448
http://creativecommons.org/licenses/by/4.0/


26

840 colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell 
841 Host Microbe. Elsevier Inc.; 2013;14: 652–663.

842 38. Osterman AL, Gerdes SY. Comparative approach to analysis of gene essentiality. 
843 Methods Mol Biol. 2008;416: 459–466.

844 39. Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M, Chaba R, et al. Phenotypic landscape of a 
845 bacterial cell. Cell. 2011;144: 143–156.

846 40. Wang Z, Danziger SA, Heavner BD, Ma S, Smith JJ, Li S, et al. Combining inferred 
847 regulatory and reconstructed metabolic networks enhances phenotype prediction in 
848 yeast. PLoS Comput Biol. 2017;13: e1005489.

849 41. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of 
850 intersecting sets and their properties. Bioinformatics. 2017;33: 2938–2940.

851 42. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. Quantitative 
852 prediction of cellular metabolism with constraint-based models: the COBRA Toolbox 
853 v2.0. Nat Protoc. 2011;6: 1290–1307.

854 43. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and 
855 interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40: D109–14.

856 44. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 
857 2012;9: 357–359.

858 45. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 
859 Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415448doi: bioRxiv preprint 

https://doi.org/10.1101/415448
http://creativecommons.org/licenses/by/4.0/


27

860 Supplementary Information
861
862 Dataset_S1.xls - PAO1 candidate essential genes for in vitro screens
863 Candidate essential genes lists for each PAO1 transposon mutagenesis screen. 
864 Candidate essential genes are marked with a ‘1’, while non-essential genes are 
865 marked with a ‘0’.
866
867 Dataset_S2.xls - PA14 candidate essential genes for in vitro screens
868 Candidate essential genes lists for each PA14 transposon mutagenesis screen. 
869 Candidate essential genes are marked with a ‘1’, while non-essential genes are 
870 marked with a ‘0’.
871
872 Dataset_S3.xls - PAO1 model predicted essential genes for in silico screens
873 Model predicted essential genes lists for PAO1 growth simulated on LB media, 
874 Sputum media, Pyruvate minimal media, and Succinate minimal media. Model 
875 predicted essential genes are marked with a ‘1’, while non-essential genes are 
876 marked with a ‘0’.
877
878 Dataset_S4.xls - PA14 model predicted essential genes for in silico screens
879 Model predicted essential genes lists for PA14 growth simulated on LB media and 
880 Sputum media. Model predicted essential genes are marked with a ‘1’, while non-
881 essential genes are marked with a ‘0’.
882
883 Dataset_S5.xls - PAO1 consensus metabolic essential/non-essential genes
884 Lists of consensus metabolic essential and non-essential genes for PAO1 on LB 
885 media and Sputum media.
886
887 Dataset_S6.xls - PA14 consensus metabolic essential/non-essential genes
888 Lists of consensus metabolic essential and non-essential genes for PA14 on LB 
889 media.
890
891 Dataset_S7.xls - Biomass precursors for PAO1 model predicted consensus essential genes
892 List of biomass precursors that cannot be synthesized when PAO1 model predicted 
893 consensus essential genes are removed from the model.
894
895 Dataset_S8.xls - Biomass precursors for PA14 model predicted consensus essential genes
896 List of biomass precursors that cannot be synthesized when PA14 model predicted 
897 consensus essential genes are removed from the model.
898
899 Dataset_S9.xls - Proposed model changes
900 Table of proposed model changes based on discrepancies between model 
901 predictions and consensus metabolic non-essential genes for PAO1 on LB. 
902
903 Dataset_S10.xls - PAO1 model predicted essential genes for in silico screens for the updated 
904 PAO1 model
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905 Model predicted essential genes lists for PAO1 growth simulated on LB media and 
906 Sputum media. Model predicted essential genes are marked with a ‘1’, while non-
907 essential genes are marked with a ‘0’.
908
909 Dataset_S11.xls - PA14 model predicted essential genes for in silico screens for the updated 
910 PA14 model
911 Model predicted essential genes lists for PA14 growth simulated on LB media. 
912 Model predicted essential genes are marked with a ‘1’, while non-essential genes are 
913 marked with a ‘0’.
914
915 Figure S1. Comparison of candidate essential genes from PAO1 LB transposon mutagenesis 
916 screens reveals variability across screens.
917
918 Figure S2. Comparison of candidate essential genes from LB transposon mutagenesis 
919 screens reveals variability across screens.
920
921 Figure S3. Distribution of PAO1 consensus essential and nonessential genes across model 
922 subsystems
923
924 Table S1. Detailed description of in vitro transposon mutagenesis screens.
925
926 Table S2. Percent accuracy between model predictions of essentiality and in vitro identified 
927 essential genes.
928
929 Table S3. Consensus metabolic essential and non-essential genes for PAO1 and PA14 media 
930 conditions with more than two screens.
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931

932
933 Figure S1. Comparison of candidate essential genes from PAO1 LB transposon 
934 mutagenesis screens reveals variability across screens.
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935 (A and C). Venn diagrams of original (Panel A) and re-analyzed (Panel C) candidate 
936 essential gene lists from PAO1 transposon mutagenesis screens performed on LB .
937 (B and D). Overlap analysis of original (Panel B) and re-analyzed (Panel D) candidate 
938 essential gene lists for PAO1 transposon mutagenesis screens performed on LB. Blue bars 
939 indicate the total number of candidate essential genes identified in each screen. Black bars 
940 indicate the number of candidate essential genes unique to the intersection given by the 
941 filled-in dots. The orange bar indicates the overlap of both screens. 
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942
943 Figure S2. Comparison of candidate essential genes from LB transposon mutagenesis 
944 screens reveals variability across screens.
945 (A and C). Venn diagram of candidate essential genes lists for transposon mutagenesis 
946 screens performed on LB for PAO1 and PA14, respectively.
947 (B and D). Overlap analysis of candidate essential gene lists for transposon mutagenesis 
948 screens performed on LB for PAO1 and PA14, respectively. Blue bars indicate the total 
949 number of candidate essential genes identified in each screen. Black bars indicate the 
950 number of candidate essential genes unique to the intersection given by the filled-in dots. 
951 The orange bar indicates the overlap for all screens for either PAO1 (Panel B) or PA14 
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952 (Panel D). The black and orange bars correspond to the intersections identified in the venn 
953 diagrams in panels A and C. 
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954
955 Figure S3. Distribution of PAO1 consensus essential and nonessential genes across 
956 model subsystems
957 Functional subsystems for PAO1 consensus essential and nonessential genes that were also 
958 identified to be essential or nonessential in the PAO1 genome-scale metabolic network 
959 model. Consensus essential and nonessential genes were identified for PAO1 by comparing 
960 all three LB screens and identifying those genes which were either essential or 
961 nonessential in all three screens.
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962
963 Table S1. Detailed description of in vitro transposon mutagenesis screens.
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964
965 Table S2. Percent accuracy between model predictions of essentiality and in vitro 
966 identified essential genes.
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967
968 Table S3. Consensus metabolic essential and non-essential genes for PAO1 and PA14 
969 media conditions with more than two screens.
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