
1 

 

 

Disease networks and their contribution to disease understanding and drug 

repurposing. A survey of the state of the art 

 

Authors   

Eduardo P. García del Valle
1
*, Gerardo Lagunes García

1,2
, Lucía Prieto Santamaría

2
, 

Massimiliano Zanin
2
†, Ernestina Menasalvas Ruiz

1,2
†, Alejandro Rodríguez-González

1,2
†. 

 

†Equally contributing senior authors 

*To whom correspondence should be addressed: ep.garcia@alumnos.upm.es  

Centro de Tecnología Biomédica. Campus de Montegancedo. Pozuelo de Alarcon, 28223, 

Madrid. +34 913364663 

 

Affiliations 

1 
ETS de Ingenieros Informáticos. Universidad Politécnica de Madrid. Boadilla del Monte, 

Madrid, Spain. 

2
 Centro de Tecnología Biomédica, ETS Ingenieros Informáticos. Universidad Politécnica de 

Madrid. Pozuelo de Alarcón, Madrid, Spain. 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

About the authors 

Eduardo P. García del Valle is a PhD student at the Faculty of Computer Science of the 

Universidad Politécnica de Madrid (UPM). His research areas are Knowledge Recovery, 

Artificial Intelligence and Bioinformatics. 

Gerardo Lagunes García is a PhD student in the Medical Data Analytics Laboratory at the Center 

for Biomedical Technology (CTB) of the Technical Universidad Politécnica de Madrid (UPM). 

he areas of research of interest are data mining, knowledge recovery, web development and 

bioinformatics. 

Lucía Prieto Santamaría is a biotechnology graduate student of the Universidad Politécnica de 

Madrid (UPM). 

Ernestina Menasalvas Ruiz is a Full Professor of Universidad Politécnica de Madrid. Her 

research activities are on various aspects of data mining project development and in the last years 

her research is focused on data mining on the medical field. She leads the Data Mining and 

Simulation research group at UPM. 

Alejandro Rodríguez-González, PhD, is an Associate Professor Universidad Politécnica de 

Madrid (UPM). His main research interests are the Semantic Web, Artificial Intelligence and 

Biomedical informatics field. He leads the Medical Data Analytics laboratory at the Center for 

Biomedical Technology (CTB). 

Massimiliano Zanin is a Postdoctoral Researcher at at the Center for Biomedical Technology 

(CTB) of Universidad Politécnica de Madrid (UPM). He is a member of the editorial team of 

Nature Scientific Reports, the European Journal of Social Behaviour, PeerJ and PeerJ Computer 

Science 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Abstract  

Over a decade ago, a new discipline called network medicine emerged as an approach to 

understand human diseases from a network theory point-of-view. Disease networks proved to be 

an intuitive and powerful way to reveal hidden connections among apparently unconnected 

biomedical entities such as diseases, physiological processes, signaling pathways, and genes. 

One of the fields that has benefited most from this improvement is the identification of new 

opportunities for the use of old drugs, known as drug repurposing. The importance of drug 

repurposing lies in the high costs and the prolonged time from target selection to regulatory 

approval of traditional drug development. In this document we analyze the evolution of disease 

network concept during the last decade and apply a data science pipeline approach to evaluate 

their functional units. As a result of this analysis, we obtain a list of the most commonly used 

functional units and the challenges that remain to be solved. This information can be very 

valuable for the generation of new prediction models based on disease networks. 

 

Keywords: Disease Networks, Disease Similarity, Disease Understanding, Drug Repurposing, 

Data Science Pipeline 
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Introduction 

The study of diseases as non-isolated elements and the understanding of how they resemble and 

relate to each other are crucial to provide novel insights into pathogenesis and etiology, as well 

as in the identification of new targets and applications for drugs [1]. The complete sequencing of 

the human genome at the beginning of the 21st century represented a revolution in the study of 

the relationships between diseases. In combination with the growing availability of 

transcriptomic, proteomic, and metabolomic data sources, it should help to improve the 

classification of diseases [2]. However, the use of these sources raised new problems such as 

their fragmentation, heterogeneity, availability and different conceptualization of their data [3, 

4]. 

Recent developments in network theory provide a way to address this challenge by representing 

these complex relationships as a collection of linked nodes [5].  Complex networks theory is a 

statistical physics interpretation of the old graph theory, aimed at describing and understanding 

the structures created by the relationships between the elements of a complex system [6–9]. 

Those elements are represented by nodes, pairwise connected by links whenever a relationship is 

observed between the corresponding elements. The resulting structure can then be described by 

means of a plethora of topological metrics [10], or be used as a base for modelling the system. 

The application of this field to biological problems has been named "network biology", while its 

use in biomedical problems is known as "network medicine" [11]. Following this approach, 

disease networks express the relationship between diseases as nodes and edges in a graph in 

  (   ), where D represents the set of diseases (nodes) and W the set of their relationships 

(edges) based upon their similarity. The meaning of similarity varies depending on the data used 
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to build the network, which may be biological (genes or common proteins) or phenotypic 

(comorbidity, similar symptoms) [12], among other approaches.  

During the past decade, numerous studies have been proposed to improve our understanding of 

the functioning of diseases and their relationships by creating disease networks based on 

different disease-disease association models and large-scale data exploitation. Of them, a 

significant number was oriented to exploit the new discovered relationships between diseases in 

the reassignment of known compounds for their treatment, the so-called "drug repurposing". In 

the first part of this document, we will thoroughly review this previous work, analyzing the 

evolution of the methodologies used in the creation of disease networks from a timeline 

perspective up to the state of the art. 

Despite their different approaches and methodologies, in the studies dedicated to the 

improvement of the disease understanding and particularly to drug repositioning, the typical 

phases of a data science pipeline are observed, such as data  extraction, data integration model, 

validation and presentation. In the second part of the document, these common parts are analyzed 

and their existing implementations are compared taking into account their use and performance. 

Finally, based on the previous analysis, new studies are proposed by improving or combining the 

phases of the pipeline. 

Evolution of disease networks 

Early studies proposing the use of disease networks for the analysis of their underlying 

relationships used data of biological origin. In 2007, Goh et al.  constructed a disease-gene 

bipartite graph called ―Diseasome‖ using information from OMIM database [1]. From the 

diseasome they derived the Human Disease Network (HDN), in which pairs of disorders are 
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connected if they have common genes. The study revealed that diseases tend to cluster by disease 

classes and that their degree of distribution follows a power law; that is, only a few diseases 

connect to a large number of diseases, whereas most diseases have few links to others. Aiming to 

reduce the bias of the HDN towards diseases transmitted in a Mendelian manner [13], 

subsequent studies used other sources of biological data. In 2008 year, Lee et al. constructed a 

metabolic disease network in which two disorders are connected if the enzymes associated with 

them catalyze adjacent reactions [14]. In 2009, Barrenas et al. [15] derived a complex disease-

gene network (CDN) using GWAs (Genome Wide Association studies). The complex disease 

network showed that diseases belonging to the same disease class do not always share common 

disease genes. Complex disease genes are less central than the essential and monogenic disease 

genes in the human interactome. 

The abundance of new biological data did not make researches overlook the existence of another 

important resource: the highest level clinical phenotypes, that is, symptoms. As one of the first 

and most obvious forms of diagnosis, the relationship between symptoms and diseases is widely 

documented in clinical records. In 2007, Rzhetsky et al. used the disease history of 1.5 million 

patients at the Columbia University Medical Center to infer the comorbidity links between 

disorders and prove that phenotypes form a highly connected network of strong pairwise 

correlation [16]. In 2009, Hidalgo et al. built a Phenotypic Disease Network (PDN) summarizing 

the connections of more than  10 thousand diseases  obtained from pairwise comorbidity 

correlations reconstructed from over 30 million records from Medicare patients. The PDN is 

blind to the mechanism underlying the observed comorbidity, but it shows that patients tend to 

develop diseases in the network vicinity of diseases they have already had. Also disease 

progression was found to be different across genders and ethnicities [17]. More recently, Jiang et 
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al. [18] used data from the Taiwan National Health Insurance Research Database to construct the 

epidemiological HDN (eHDN), where two diseases are concluded as connected if their 

probability of co-occurring in clinics deviates from what expected under independence. 

However, despite their demonstrated potential in pathological analysis, the access and use of 

clinical records in medical research is limited by several issues, including the heterogeneity of 

sources [19], ethical and legal restrictions and the disparity of regulations between countries 

[20].  

The analysis of open text sources has been used as an alternative to medical records. One of the 

reasons is the improvement in the techniques for  Named Entity Recognition (NER) for the 

extraction of medical terms. Okumura et al. [21] performed an analysis of the mapping between 

clinical vocabularies and findings in medical literature using OMIM as a knowledge source and 

MetaMap as the NLP tool. Following this idea, Rodríguez et al. [22] used web scraping and a 

combination of NLP techniques to extract diagnostic clinical findings from MedlinePlus articles 

about infectious diseases using MetaMap tool. In a further study, the same team compared the 

performance of MetaMap and cTakes in the same task [23]. The increasing availability of 

retrieval engines such as PubMed or UKPMC, maintained by the US National Center for 

Biotechnology Information (NCBI) and the European Bioinformatics Institute (EBI), 

respectively, has also boosted this approach [24]. In 2014  Zhou et al. extracted symptom 

information from PubMed to construct the Human Symptoms Disease Network (HSDN). In the 

HSDN, the link weight between two diseases quantifies the similarity of their respective 

symptoms [25]. In 2015, Hoehndorf et al. created yet another Human Disease Network using a 

proposed similarity measure for text-mined phenotypes [26]. In both cases, these studies 

compare their results with gene-based networks, finding that symptom-based similarity of two 
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diseases strongly correlates with the number of shared genetic associations. They also 

demonstrated that not only Mendelian diseases tend to be grouped into classes, but also common 

ones. 

Due to the intrinsic complexity of the relationships between diseases, the consideration of a 

single factor (shared genes or common symptoms) is a limiting point. In his review of the HDN 

in 2012, Goh. et al. proposed that each and every disease-contributing factor such as molecular 

links from interactome, co-expression and metabolism, as well as genetic interactions and 

phenotypic comorbidity links, will have to be integrated in a context-dependent manner. 

Furthermore, drug chemical information and non-biological environmental factors such as 

toxicity information altogether must also be incorporated [13]. The result will be a combination 

of general and bipartite network representations into a single, complex, k-partite heterogeneous 

network referred as the complete Diseasome. 

In line with this idea, Sun [27] and Albornoz [28] combined multiple data sources to create 

tripartite networks of gene-disease-PPI and gene-disease-pathways, respectively, to predict 

disease-disease associations. The latter study proved that for two diseases sharing a certain 

number of genes, the level of inclusion can be different between both diseases due to the 

different pool of genes and metabolic pathways involved in each disease. In 2012, Chen et al. 

created an heterogeneous network from 17 public data sources relating to drugs, chemical 

compounds, protein targets, diseases, side effects and pathways [29]. In 2013, Žitnik et al. 

integrated molecular interaction and ontology data of 11 different types to create another 

heterogeneous network. When evaluating the predictive capacity of the network, genetic 

interactions proved to be the most informative feature, as they tend to be causative as opposed to 
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correlative and may therefore have less noise associated [4]. In both studies, the authors 

leveraged semantic ontology-level information to annotate the edges, as shown in Figure 1. 

 

Figure 1. An example of a semantically annotated heterogeneous network. Every node and 

edge was semantically annotated using a systems chemical biology/chemogenomics 

ontology. Nodes were grouped into 10 classes which are linked by 12 types of edges. Two 

nodes are linked by one or more number of annotated paths. Retrieved from 

https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1002574.g001. 

Copyright: 2012 Chen et al. This is an open-access article distributed under the terms of 

the Creative Commons Attribution License. 

The evolution of these heterogeneous networks has resulted in the generation of complex tools 

for the study of disease associations based on multiple sources and types of relationships. A 

notable example is Hetionet [30], an integrative network encoding knowledge from millions of 

biomedical studies. Its data were integrated from 29 public resources to connect compounds, 

diseases, genes, anatomies, pathways, biological processes, molecular functions, cellular 
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components, pharmacologic classes, side effects, and symptoms. The completeness of the 

network is depicted in Figure 2. 

 

Figure 2. Representation of the metagraph in the Hetionet heterogeneous network. The 

schema shows the variety of data types (metanodes, depicted as circles) and connection 

types (metaedges, depicted as links) semantically annotated. Retrieved from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640425/figure/fig1/. Copyright: 2017, 

Himmelstein et al. This article is distributed under the terms of the Creative Commons 

Attribution License. 

Application to drug repurposing 

The constant improvement in disease association prediction through the use of network theory 

has fostered its application to drug repurposing. Drug repurposing is the utilization of known 

drugs and compounds to treat new indications [31]. Since the repositioned drug has already 

passed a significant number of toxicity and other tests, its safety is known and the risk of failure 

for reasons of adverse toxicology are reduced [32]. As a result, the cost and time needed to bring 
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a drug to market is significantly reduced compared to traditional drug development. The 

commercial applications of drug repositioning and the interest shown by pharmaceutical 

companies have led to a growing academic activity in this field. This fact is reflected in the 

evolution of the results for the search by ―Drug Repurposing‖ in Google Scholar, as seen in 

Figure 3. 

 

Figure 3. Evolution of the number of articles in Google Scholar containing the term “drug 

repurposing” within the last 10 years. Retrieved from https://csullender.com/scholar/. 

Copyright: 2017, Colin Sullender. Use authorized by the copyright owner. 

First studies in drug repurposing were based on the ―guilt-by-association‖ assumption, that is, 

similar drugs may share similar targets and vice-versa [33]. In 2007, Yildrim et al. created a 

graph composed of US Food and Drug Administration–approved drugs and proteins linked by 

drug–target binary associations [34]. Similar studies were carried out by Ma’ayan [35] in 2007 

and Chiang [36] and Bleakley [37] in 2009.  In 2008, Nacher Schwartz compiled a drug-therapy 

network with all US-approved drugs and associated human therapies. From this bipartite network 

they constructed two other networks: a drug network and a therapy network. Therapies are 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

closely linked to diseases, therefore the therapy network gave insights about the relations 

between diseases as well, making this work comparable to previous studies on human disease 

networks [38]. 

The above mentioned studies followed a drug-centric approach, that is, they discovered new 

indications for existing drugs based on drug-drug similarities. Other studies followed a disease-

centric approach, in which effective drugs were identified based on disease-disease similarity. In 

2008, Campillos et al. predicted new targets for drugs by calculating similarities between 

diseases based on side effect that appears from injection of drug [39]. In 2009, Guanghui Hu et 

al. performed a systematic, large-scale analysis of genomic expression profiles of human 

diseases and drugs to create a disease-drug network [40]. Suthram in 2010 [41], Mathur in 2012 

[42] or Zhou in 2014 [25] also predicted new uses of existing drugs based on disease-disease 

associations calculated from mRNA expression similarity, biological process semantic similarity 

or phenotypic similarity, respectively.  

As was the case in disease classification, focusing purely on drug-disease relations with no 

consideration of other underlying genetic or pharmacological mechanisms at play is a limiting 

factor in accuracy of drug repurposing prediction, due to the lack of completeness of individual 

information [31]. Therefore, incorporating heterogeneous data sources can potentially solve this 

issue. In 2011 Gottlieb made use of a broader collection of data sources to create five drug-drug 

similarity measures and two disease-disease similarity measures. These similarity measures were 

then used by PREDICT, an algorithm to infer novel drug indications [43]. Daminelli in 2012 

[44] and Wang in 2014 [45] built tripartite drug-target-disease networks to predict repurposing 

candidate drugs.  
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Ultimately, advances towards more comprehensive networks have resulted in tools for the 

prediction of new treatments given a certain disease. This is the case of Rephetio [46], a project 

based on Hetionet [30] that predicted repurposing candidates by applying an algorithm originally 

developed for social network analysis [47]. Similarly, in the context of drug discovery, one can 

leverage on identifying potential associations between compounds and protein targets. To cope 

with the noisy, incomplete and high-dimensional nature of large-scale biological data, Luo et al. 

proposed DTINet [48], a Drug Target Indications (DTI) prediction system based on learning 

low-dimensional feature vectors that capture the context information of individual networks. 

DTINet showed better performance than other state-of-the-art DTI prediction methods and 

discovered the potential application of  cyclooxygenase inhibitors in preventing inflammatory 

diseases. 

A data science pipeline to build disease networks 

Throughout the previous section, we have seen how the rise of network medicine studies has 

resulted in a expanding variety of innovative methods for the construction and exploitation of 

disease networks. However, despite using different strategies, these methods are generally based 

on determining the similarities and relationships between diseases and their treatments at 

phenotypic level (comorbidity, side-effects) or biological level (common genes, proteins, 

compounds). Furthermore, they clearly share common phases such as data ingestion, data 

processing, analysis, modeling or visualization that can be represented as functional units of a 

data science pipeline, as shown in Figure 4. 
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Figure 4. Sequence of functional units of a data science pipeline, including: data 

adquisition, data processing, data integration, analytical modeling, validation and 

presentation. 

The data science pipeline consists in a sequence of stages or functional units that sequentially 

process some input data in order to solve a certain problem [49]. This concept applies to disease 

networks, where disease information is processed to discover how diseases relate to each other or 

how drugs can be repositioned. The pipeline representation also facilitates the reproducibility 

and the comparison among studies as a whole and also at phase level. Most importantly, it also 

enhances the reusability and the recombination of the functional units to build new drug-

repurposing. Throughout the following sections we will describe the process of construction and 

exploitation of a disease network through the functional units of a data science pipeline. 

Data acquisition and processing 

The first step in the pipeline is to acquire data from a variety of sources, a process known as data 

acquisition or data ingestion. As seen in the section about the Evolution of Disease Networks, the 
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growing availability of information sources has allowed developing different approaches to 

improve our understanding of diseases and to predict new drug applications. 

A significant number of studies use biological data, such as KEGG (genes and pathways) [14], 

BioGRID (protein interactions) [4] or OMIM (genes and phenotypes) [1, 42], among many 

others. Supplementary Table 1 contains some of the most important sources of biological 

information, including their type and description. Studies on disease networks focusing on drug 

repositioning exploit drug databases and their relation to genes, phenotypes and compounds, 

such as those offered by the FDA [34–37] or DrugBank [25, 39–42], for instance. 

Supplementary Table 2 collects the most common drug data sources. Finally, an increasingly 

significant number of studies use data obtained by mining medical literature sources (e.g. 

articles, clinical trials) such as PubMed [25, 26, 50] or the GWAS Catalog [27]. Supplementary 

Table 3 contains some of the most relevant sources of medical literature. 

A second step in the pipeline consists in transforming and mapping data into a format with the 

intent of making it more appropriate to work (usually referred as data processing, data wrangling 

or data munging). Recent studies combine multiple databases to provide more accurate 

prediction models [4, 29, 30]. However, this poses a challenge when relating identifiers or terms 

obtained from different sources. To address this problem, researchers use thesauri of terms such 

as MeSH, SNOMED CT or UMLS; code listings such as ICD or HGNC; and ontologies such as 

DO, PO, GO or Uberon [26, 51]. Being a valuable source of semantic and hierarchical 

information themselves, these resources allow mapping data such as disease codes or medical 

terms. In the case of medical literature sources, the use of metadata (such as MeSH headers in 

the case of Pubmed, for example) is often combined with terms extraction tools such as 
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MetaMap or cTakes [23]. Supplementary Table 4 lists some of the sources used for data 

mapping. 

The way to exploit the information in these databases varies greatly from one source to another. 

Largest databases offer online advanced search and provide developers with application 

programming interfaces (APIs) to facilitate intensive access to data. For example, the NCBI 

provides the E-utilities, a public API to access all the Entrez databases including PubMed, PMC, 

Gene, Nuccore and Protein. The Japanese KEGG also provides REST APIs for data 

consumption. DisGeNET provides an SPARQL endpoint that allows exploration of the 

DisGeNET-RDF data set and query federation to expand gene-disease association information 

with data on gene expression, drug activity and biological pathways, among other. In some cases, 

data can also be downloaded for their consumption through on-premise applications, as in the 

case of the Disease Ontology or the Gene Ontology, for example. This disparity complicates the 

use of different sources in research projects. To alleviate this problem, initiatives such as 

Biopython
1
  offer common libraries to access multiple sources reducing code duplication in 

computational biology. Finally, it is very important to know the limitations imposed by each 

source regarding the volume and use of the data. Supplementary Tables 1-4 also include 

information in this regard. 

Data integration and modeling 

In the next steps of the data science pipeline, data previously acquired and processed are 

integrated and analyzed in order to answer the matter of our study. In other words, a disease 

network is built by combining the output of the previous stage and a model is constructed from 

                                                           
1
 https://biopython.org 
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it. Disease networks consist of  a set of nodes (mainly, but not only, representing diseases) and a 

set of edges (connecting diseases directly or through other related node types). Depending on the 

type of node they connect, network edges can be directed or undirected, weighted or unweighted. 

As described in previous sections, over the past decade successive studies based on disease 

networks have proposed different models of data integration. 

Homogeneous networks 

Homogeneous disease networks (i.e. those where nodes represent diseases and edges represent 

direct connections among them) are the simplest type of disease networks. In many studies these 

networks are built as a projection of a heterogeneous disease network (i.e. a network in which 

diseases are connected to other types of nodes) [1, 28]. For example, in Figure 5, the gene-

disease bipartite network is projected onto the disease similarity network (DSN) by relating two 

diseases that have a gene in common. The disease–disease network can then be analysed by 

using standard network based methods [1, 52]. In a simplistic approach, the link weights in the 

resulting disease–disease network represent the link multiplicity resulting from the projection. 

More complex methods, such as hyperbolic weighting or resource allocation weighting, have 

been proposed as an alternative [53, 54]. 
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Figure 5. A representation of a heterogeneous network composed of gene-disease 

interactions. Homogeneous gene-gene or disease-disease networks are obtained via gene or 

disease projections, respectively. 

In other studies, homogeneous disease networks are built as similarity networks. In these 

networks, if the similarity score between disease i and j is more than zero, the corresponding 

vertices are linked by an edge in the network. The weight of this edge is the corresponding 

disease similarity score. Several computation methods for the disease similarity score have been 

proposed, being Vector Space Model (VSM) [55] among the most popular ones. For instance, in 

2006 Van Driel et al. represented diseases as vectors of features (viz. disease associated MeSH 

terms extracted from OMIM records) weighted by their inverse document frequency [56]. The 

similarity between diseases was then computed as the cosine of the disease vector angles (i.e. 

cosine similarity). A similar approach was followed by Zhou to build the HSDN [25] and by Sun 

to build the Integrated Disease Network [57]. Hoehndorf et al. proposed Normalized Pointwise 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Mutual Information (NPMI) for disease phenotypic term weighting and later used the 

PhenomeNET system to compute similarity between diseases using a Jaccard index based 

measured [26]. Similarity measures based on the term hierarchy in the Disease Ontology and the 

Gene Ontology have been proposed by Resnik, Lin, Wang, Mathur and Cheng [42, 58–61], and 

have been integrated in online tools like DisSim or DisSetSim [62, 63]. Okumura et al. described 

alternative similarity measures based on standardized disease classification, probabilistic 

calculation, and machine learning [64]. 

Heterogeneous networks 

The projection of heterogeneous networks into homogeneous disease-disease networks allows 

applying simpler network analysis techniques on the resulting network. However, it often results 

in information loss. For instance, in Figure 5 by projecting the gene-gene network onto the 

disease-disease network, the information about gene interactions and their structure is lost. In 

contrast, heterogeneous networks make it easy to predict relationship between entities of 

different types, such as diseases, genes or drugs, following a guilt-by-association paradigm [33]. 

For example, a drug that regulates a gene associated to a disease could be repurposed for 

diseases associated to the same gene. Data fusion by matrix factorization and network topology 

based techniques, such as diffusion and meta-path, are the most common methods for edge 

prediction in heterogeneous networks. 

Matrix Factorization methods are closely related to clustering (unsupervised) algorithms. Non-

Negative Matrix Factorization (NNMF) decompose matrices of heterogeneous data and data 

relationships to obtain low-dimensional matrix factors. These factors are then used to reconstruct 

the data matrices, adding new unobserved data obtained from the latent structure captured by the 

low-dimensional matrix factors. Hence, NNMF provides a mechanism to integrate heterogeneous 
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data of any number, type and size. In 2013 Žitnik et al. applied a variant of NNMF called non-

negative matrix tri-factorization to discover new disease-disease association by fusing 11 data 

sources on four type of objects including drugs, genes, DO terms and GO terms [4]. In 2015 Dai 

et al. integrated drug-disease associations, drug-gene interactions, and disease-gene interactions 

with a a matrix factorization model to predict novel drug indications [65]. More recently, Zhang 

et al. proposed a similarity constrained matrix factorization method for the drug-disease 

association prediction using data of known drug-disease associations, drug features and disease 

semantic information [66]. 

Methods based on diffusion (i.e. information spreading across network links) have also been 

extensively proposed to estimate the strength of the connection between nodes of heterogeneous 

networks. An advantage of such approaches, also called  network propagation methods, over 

matrix factorization is that they they preserve the network structure. Chen et al developed the 

method of Network-based Random Walk with Restart on the Heterogeneous network (NRWRH), 

a variation of a ranking algorithm, to predict potential drug-target interactions on heterogeneous 

networks [67]. Further variations of random walk algorithms, such Bi-Random Walk (BiRW) 

have been applied to predict novel disease-gene [68], disease-MiRNA [69] or disease-lncRNA 

associations [70], among others.  

Metapath-based approaches also preserve the network structure, and additionally provide an 

intuitive framework and interpretable models and results. A meta-path P is a path defined over 

the general schema of the heterogeneous network G = (A, R), where A represents the set of 

nodes and R the set of their relationships. The metapath is denoted by   
  
→   

  
→ 

  
→     , 
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where l is an index indicating the corresponding metapath [47]. Figure 6 shows the metapaths 

extracted from an annotated heterogeneous network.  

 

Figure 6. A) The Hetionet annotated heterogeneous network is constructed according to the 

metagraph schema, which is composed of metanodes (node types) and metaedges (edge 

types). B) The network topology connecting a gene and disease node is measured along 

metapaths (types of paths). Starting on Gene and ending on Disease, all metapaths length 

three or less are computed by traversing the metagraph. Retrieved from 

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004259. Copyright: 

2015 Himmelstein, Baranzini. This is an open access article distributed under the terms of 

the Creative Commons Attribution License. 

In their 2012 study, Chen et al. developed a meta-path based statistical model called Semantic 

Link Association Prediction (SLAP) to assess the association of drug target pairs and to predict 

missing links [29]. In 2016 Gang Fu et al. proposed an alternative DTI approach to the SLAP 

algorithm taking advantage of machine learning methods such as Random Forest and Support 

Vector Machine [63]. To quantify the prevalence of the meta-paths, Himmelstein adapted an 

existing method developed for social network analysis (PathPredict) and developed a new metric 
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called degree-weighted path count (DWPC). The DWPC downweights paths through high-

degree nodes when computing meta-path prevalence [30].  

Despite maintaining and exploiting the structure of heterogeneous networks, methods based on 

diffusion or meta-paths present some scalability limitations, such as the bias introduced by the 

noise and high-dimensionality of biological data or the effort in feature engineering. Recently, 

Luo et al. designed DTINet, a novel network integration pipeline for DTI prediction. DTINet 

integrates information from heterogeneous sources (e.g., drugs, proteins, diseases and side-

effects) and copes with the noisy, incomplete and high-dimensional nature of large-scale 

biological data by learning low-dimensional but informative vector representations of features 

for both drugs and proteins [48]. 

Model validation 

In this analysis of the reconstruction of disease networks, we wanted to give a special relevance 

to the validation process. Ensuring that the computational pipeline is producing correct and valid 

results is critical, particularly in a clinical setting [71]. As previously explained, disease networks 

are used in studies as diverse as the discovery of new disease-disease relationships, the 

prediction of gene-disease relationships (GDA) or the repositioning of drugs. The validation of 

the network depends, therefore, on the type of study in question. In general, the validation can be 

done experimentally or by computational techniques.  

Approaches and sources 

Experimental validation includes the verification of the predictions in a controlled environment 

outside of a living organism (in vitro) or using a living organism (in vivo). Animal studies and 

clinical trials are two forms of in vivo research.  For example, in their drug repositioning study 
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based on heterogeneous networks, Luo et al. validated the bioactivities of the COX inhibitors 

predicted by DTINet experimentally. They tested their inhibitory potencies on the mouse kidney 

lysates using the COX fluorescent activity assays [48]. Jodeleit et al. validated their disease 

network of inflammatory processes in humanized NOD/SCID/IL2Rγ (NSG) mices [72]. While 

experimental validation studies have the potential to offer more conclusive results about the 

performance of disease networks, they have several limitations. First, animal studies and clinical 

trials require expensive lab work and are long and costly. In addition, their conclusions can be 

misleading. For example, a therapy can offer a short-term benefit, but a long-term harm. Also, it 

is debatable that genomic responses in mouse models mimic human inflammatory disease [73]. 

In silico is an expression used to mean ―performed on computer or via computer simulation.‖ In 

silico tests have the potential to speed the validation process while reducing the need for 

expensive lab work. In silico validation requires a point of reference for evaluating the model 

performance, also known as Criterion Standard or Gold Standard. It is noteworthy that in the 

field of biomedicine usually the Criterion Standard is actually the best performing test available 

under reasonable conditions [74].  For example, in this sense, a MRI is the gold standard for 

brain tumour diagnosis, though it is not as good as a biopsy [75]. Hence, the most recurrent 

benchmarks used in the validation in silico of disease networks include consolidated data 

biomedical sources and medical literature. 

Sources of biological, phenotypic or chemical data as well as several available ontologies and 

code standards (see Data extraction section) are used for validation in many studies focusing on 

disease networks. For instance, their performance to discover disease-disease relationships has 

been validated with the disease classifications in the Disease Ontology [4, 26] or in the ICD 

codes [28], as well as with comorbidity associations downloaded from the Human Disease 
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Network (HuDiNe) [27]. DisGeNET has been used to validate de novo gene-disease associations 

[76], as it  integrates data from expert curated repositories with information gathered through 

text-mining of the scientific literature, GWAS catalogues and animal models [77]. For the 

validation of drug repositioning predictions, sources such as PharmacotherapyDB and 

DrugCentral were exploited [46].  

The aforementioned sources are inevitably biased towards consolidated knowledge, and 

therefore they might suffer some limitations in corroborating new discoveries. As an alternative 

(or usually, as a complement) to these sources, medical literature (i.e. studies, medical trials, 

clinical histories) are used to validate disease network based studies. For instance, Mathur and 

Paik used previous studies to validate disease-disease and drug-target associations [42, 78]. In 

some cases, the validation process also combined human (i.e. medical experts) action to 

corroborate the discoveries [25]. 

Methods 

Leaving aside the particularities of biomedical research and its sources, the validation of 

classification or prediction methods based on disease networks does not differ from other 

validation cases. Therefore, in the analyzed studies we found validation methods widely used. 

For example, k-fold cross-validation is often used to check whether the model is an overfit or not 

[79, 80]. Overfitting is one of the typical problems of validation, especially when limited data 

sets are available.  

To quantify the predictive power of their network-based model, many studies use the Area Under 

the Curve of the Receiver Operating Characteristic (AUC-ROC), another frequently used method 

in validation problems [26, 81, 82]. The AUC-ROC is the plot between sensitivity and (1- 
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specificity). (1- specificity) is also known as false positive rate and sensitivity is also known as 

true positive rate. The p-value  Is the probability that the observed sample AUC-ROC could 

actually correspond to a model of no predictive power (null hypothesis), i.e. to a model whose 

population AUC-ROC is 0.5. If p-value is small, then it can be concluded that the AUC-ROC is 

significantly different from 0.5 and that therefore there is evidence that the model actually 

discriminates between significant and non-significant results [83]. Typically, a threshold value 

(called significance level) of p-value < 0.05 is used. However, biomedicine studies often use 

more restrictive values like 0.005 [42] or even 0.001 [4]. As an alternative to the AUC-ROC, the 

p-value can be obtained for other tests such as chi-squared or Fisher's exact, depending on the 

case of study [84]. Finally, to control the familywise error rate associated with multiple testing, a 

correction algorithm like Benjamini–Hochberg or Bonferroni is applied. 

Presentation 

Last but not least, at the end of the pipeline the results obtained should come out in a format that 

can be consumed by the audience (e.g. the scientific community, the media or even ourselves to 

inform the next iteration). One of the major advantages of disease networks is the intuitive access 

to the underlying complex interactions between diseases and other diseases, genes or drugs. 

Thus, publishing not only the data but also means to explore and exploit the network is key to 

ensure reproducibility and extensibility of the study [85]. Early studies lacked this option, 

although access to their data allowed the construction of visualization tools a posteriori. For 

example, Ramiro Gómez created an interactive view of the Human Disease Network proposed 

by Goh in 2007 using the graph visualization software Gephi
2
 and the original dataset from the 

                                                           
2
 https://gephi.org 
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study
3
.  The same software was used by in 2014 and by Hoehndorf in 2015 to visualize the 

generated disease networks [26]. In both cases, a force-directed layout was used for the graph 

drawing [86].  

Advances in network visualization tools have prompted the publication of network exploration 

systems associated with studies, being Cystoscape
4
 a remarkable example. Cytoscape provides 

basic functionality to layout and query the network; to visually integrate the network with 

expression profiles, phenotypes, and other molecular states; and to link the network to databases 

of functional annotations [87]. A number of studies have used Cytoscape as a basis to build and 

visualize their networks. For instance, Le et al. created HGPEC as an app for Cytoscape to 

predict novel disease-gene and disease-disease associations [88]. DisGeNet provided another app 

that allows to visualize, query and analyse a network representation of DisGeNET database (See 

Figure 7) [89]. Many other apps can be found in the Cytoscape app store
5
.   

 

                                                           
3
 https://exploring-data.com/info/human-disease-network 

4
 http://www.cytoscape.org 

5
 http://apps.cytoscape.org 
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Figure 7. A representation of gene-disease associations with the DisGeNET application for 

Cytoscape.  Retrieved from http://apps.cytoscape.org/apps/disgenetapp. Copyright: 2016, 

Anna Bauer-Mehren et al.  The DisGeNET plugin is distributed under the GNU GPL 3.0 

license. 

On their side, Himmelstein et al. accompanied their study based on heterogeneous disease 

networks with a powerful visualization tool built with Neo4j
6
 [30] that provides browsing and 

querying on Hetionet (see Figure 8). Being a remarkable example of data accessibility, not only 

the data but also the code of this tool is publicly available. Different studies of the University of 

Rome, such as SIGNOR
7
 and DISNOR

8
, also provides a disease network visualization tool that 

includes intuitive representations of the interactions between biological entities at different 

complexity levels (see Figure 9). This visualization tool was developed ad-hoc for these projects 

[90–92].  

 

Figure 8. Hetionet Neo4j browser displaying disease-gene associations for Crohn’s disease 

in an intearctive way. Retrieved from https://neo4j.het.io/browser. Copyright: 2015 

                                                           
6
 https://neo4j.com 

7
 https://signor.uniroma2.it 

8
 https://disnor.uniroma2.it 
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Himmelstein, Baranzini. This is an open access project distributed under the terms of the 

Creative Commons Universal License. 

 

Figure 9. DISNOR signaling network browser showing an interactive graph for a protein 

related with Breast Cancer. Copyright: 2018, SIGNOR. This is an open access project 

distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 

International License. 

A recent study by Pavlopoulos et al. performs an empirical comparison of visualization tools for 

large-scale network analysis [93]. 

Discussion 

The analysis of the evolution of the disease networks carried out in the first part of the document 

shows how these models have become increasingly complex and allow to address arduous 

problems such as the improvement of our disease understanding or the repositioning of drugs 

with promising results. However, as a side effect of this growing complexity, new challenges 

have emerged that need to be addressed. 
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The growing availability of biological sources, key in the improvement of disease networks, is 

ballasted by their fragmentation, heterogeneity, availability and different conceptualization of 

their data [3]. Furthermore, these sources are intrinsically biased towards consolidated 

knowledge, which complicates the discovery of novel findings. The exploitation of textual 

sources such as clinical histories or scientific articles - more abundant and faster growing - 

allows researchers to compensate for these limitations. As an example of the abundance and 

potential of these alternative sources, in a recent study Westergaard extracted and analyzed 15 

million English scientific full-text articles published during the period 1823–2016 [94].  

Despite this demonstrated potential, the exploitation of medical literature is hindered by factors 

such as its limited access and heterogeneity. In the aforementioned study by Westergaard, the 

team could only access a subset of the Medline articles in full-text mode, while for the rest only 

the abstracts were available. In addition, depending on the source, they had to process documents 

with different structures and format. As an alternative, a recent study proposed the use of 

Wikipedia as a source of structured and free-access text data, evaluating its usefulness in the 

detection of relations between diseases based on its symptoms/diagnosis elements, and 

comparing its performance with that of PubMed. The obtained results showed that Wikipedia can 

be as relevant a source as PubMed for this type of analysis [95]. 

Another limiting factor when integrating new sources to enhance the predictive capacity of 

disease networks is noise [96]. Adding new sources does not necessarily imply an improvement, 

since some databases are more informative than others. For example, Žitnik et al. evaluated the 

impact of removing sources in the performance of the proposed model to validate their 

informativeness. They observed that while the absence of some sources significantly affected the 

performance, in other case the impact was minimum [4]. It is therefore necessary to counteract 
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this effect by choosing algorithms that eliminate irrelevant sources or features before 

constructing the model [48]. 

Validation is yet another challenge in the studies based on disease networks. In some cases, the 

absence of a Standard Criterion leads to the use of previous studies for the validation of the new 

models [42, 78]. This might ultimately result in the propagation of errors from one study to 

another. The use of curated sources and of sufficiently contrasted studies, combined when 

possible with in-vitro and in-vivo validations, helps to alleviate solution to this problem [48, 72].  

Related with the challenge of validation, the difficulty in accessing data from some studies 

prevents their reproducibility and verification by other teams, which makes them less reliable as 

references for future studies or as benchmarks. However, the effort of some researchers in 

making available the results of their work is worth to mention. Study cases such as Hetionet, 

Rephetio, SIGNOR and DisNOR [30, 46, 90, 91], which offer advanced search and visualization 

tools, undoubtedly represent the path to follow. 

The review of the process of creating a disease network from the point of view of a data science 

pipeline carried out in the second part of the document allows to compare how each study has 

faced these challenges. Supplementary Table 5 lists some of the most notable studies related to 

disease networks of the last decade, breaking down each of its phases. It also contains 

information on the type of problem addressed and the characteristics of the obtained network. 

This table could be considered an extension / update of the one compiled by  Sun K. et al. [27]. 

Conclusion and future work 

Research studies on based disease networks have significantly advanced over the last decade. 

From the initial simple undirected networks that associated diseases with symptoms or genes in a 
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way, we have moved to complex networks that relate the disease to dozens of features from 

different sources in a semantic, directional and weighted way. The growing availability of 

biological and textual sources, the improvement in techniques and processing capacity and the 

use of new models have contributed fundamentally to this progress. As can be concluded from 

the analysis in the first part of the document, the contribution of disease networks to fields of 

disease understanding and drug repositioning is increasingly notable. 

Nevertheless, an exhaustive analysis of the phases in the process of creating disease networks 

carried out in the second half of the document reveals important challenges. First, biological 

sources suffer from fragmentation, heterogeneity, lack of availability and different 

conceptualization, that can only be alleviated in part with the aggregation of textual sources. 

Second, the combination of sources involves the introduction of noise that can affect the 

performance of the model, which makes it necessary to take preventive measures in this regard. 

Finally, the scarcity of reference data and verifiable studies hinders the validation of the new 

models. 

In addition to detecting these challenges, the analysis of disease networks from the point of view 

of their functional units allows for a more precise comparison of studies, highlighting their 

differences and common points. This study and the presented analyses, reflected in the summary 

tables, can serve to inspire future work. For example, a performance comparison of the 

prediction models in the different studies might lead to deduce which functional units offer better 

results. In a next phase, based on the obtained results, alternative combinations of these 

functional units could be proposed to build new pipelines and obtain more precise models based 

on disease networks. 
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Keypoints  

 Disease networks have proved to be an intuitive and powerful way to address arduous 

problems such as the improvement of our disease understanding or the repositioning of 

drugs. 

 Over the last decade, disease networks have evolved from initial simple and undirected 

homogeneous networks, to complex, semantic, directional and weighted heterogeneous 

networks.  

 Depite their increasing complexity, studies on disease networks share common phases 

that can be represented as functional units of a data science pipeline for a better analysis 

and comparison. 

 The heterogeneity and fragmentation of biological and textual sources, the noise 

introduced by their combination and the scarcity of validation datasets are some of the 

challenges discovered through this analysis.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

References 

1. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network. PNAS. 

2007;104:8685–90. 

2. Yang J, Wu S-J, Dai W-T, Li Y-X, Li Y-Y. The human disease network in terms of dysfunctional regulatory 

mechanisms. Biol Direct. 2015;10. doi:10.1186/s13062-015-0088-z. 

3. Loscalzo J, Kohane I, Barabasi A-L. Human disease classification in the postgenomic era: A complex systems 

approach to human pathobiology. Mol Syst Biol. 2007;3:124. 

4. Žitnik M, Janjić V, Larminie C, Zupan B, Pržulj N. Discovering disease-disease associations by fusing systems-

level molecular data. Scientific Reports. 2013;3:3202. 

5. Chan SY, Loscalzo J. The emerging paradigm of network medicine in the study of human disease. Circ Res. 

2012;111:359–74. 

6. Strogatz SH. Exploring complex networks. Nature. 2001;410:268–76. 

7. Albert R, Barabási A-L. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74:47–97. 

8. Newman M. The Structure and Function of Complex Networks. SIAM Rev. 2003;45:167–256. 

9. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U. Complex networks: Structure and dynamics. Physics 

Reports. 2006;424:175–308. 

10. Costa L da F, Rodrigues FA, Travieso G, Boas PRV. Characterization of complex networks: A survey of 

measurements. Advances in Physics. 2007;56:167–242. 

11. Barabási A-L. Network Medicine — From Obesity to the ―Diseasome.‖ New England Journal of Medicine. 

2007;357:404–7. 

12. Park S, Lee D, Shin H. Network mirroring for drug repositioning. BMC Med Inform Decis Mak. 2017;17 Suppl 

1. doi:10.1186/s12911-017-0449-x. 

13. Goh K-I, Choi I-G. Exploring the human diseasome: the human disease network. Brief Funct Genomics. 

2012;11:533–42. 

14. Lee D-S, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási A-L. The implications of human metabolic 

network topology for disease comorbidity. PNAS. 2008;105:9880–5. 

15. Barrenas F, Chavali S, Holme P, Mobini R, Benson M. Network Properties of Complex Human Disease Genes 

Identified through Genome-Wide Association Studies. PLoS One. 2009;4. doi:10.1371/journal.pone.0008090. 

16. Rzhetsky A, Wajngurt D, Park N, Zheng T. Probing genetic overlap among complex human phenotypes. PNAS. 

2007;104:11694–9. 

17. Hidalgo CA, Blumm N, Barabási A-L, Christakis NA. A Dynamic Network Approach for the Study of Human 

Phenotypes. PLOS Computational Biology. 2009;5:e1000353. 

18. Jiang Y, Ma S, Shia B-C, Lee T-S. An Epidemiological Human Disease Network Derived from Disease Co-

occurrence in Taiwan. Scientific Reports. 2018;8:4557. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 

19. Conway M, Berg RL, Carrell D, Denny JC, Kho AN, Kullo IJ, et al. Analyzing the heterogeneity and complexity 

of Electronic Health Record oriented phenotyping algorithms. AMIA Annu Symp Proc. 2011;2011:274–83. 

20. Yip C, Han N-LR, Sng BL. Legal and ethical issues in research. Indian J Anaesth. 2016;60:684–8. 

21. Okumura T, Aramaki E, Tateisi Y. Clinical Vocabulary and Clinical Finding Concepts in Medical Literature. In: 

The First Workshop on Natural Language Processing for Medical and Healthcare Fields. Nagoya: Asian Federation 

of Natural Language Processing; 2013. p. 7–13. http://www.aclweb.org/anthology/W13-4602. Accessed 3 Sep 2018. 

22. Rodríguez-González A, Martínez-Romero M, Costumero R, Wilkinson MD, Menasalvas-Ruiz E. Diagnostic 

Knowledge Extraction from MedlinePlus: An Application for Infectious Diseases. In: Overbeek R, Rocha MP, 

Fdez-Riverola F, De Paz JF, editors. 9th International Conference on Practical Applications of Computational 

Biology and Bioinformatics. Springer International Publishing; 2015. p. 79–87. 

23. Rodríguez González A, Costumero Moreno R, Martínez Romero M, Wilkinson MD, Menasalvas Ruiz E. 

Extracting diagnostic knowledge from MedLine Plus: a comparison between MetaMap and cTAKES Approaches. 

Current Bioinformatics. 2015;375:1–7. 

24. Rebholz-Schuhmann D, Oellrich A, Hoehndorf R. Text-mining solutions for biomedical research: enabling 

integrative biology. Nat Rev Genet. 2012;13:829–39. 

25. Zhou X, Menche J, Barabási A-L, Sharma A. Human symptoms–disease network. Nature Communications. 

2014;5:4212. 

26. Hoehndorf R, Schofield PN, Gkoutos GV. Analysis of the human diseasome using phenotype similarity between 

common, genetic, and infectious diseases. Sci Rep. 2015;5:10888. 

27. Sun K, Gonçalves JP, Larminie C, Pržulj N. Predicting disease associations via biological network analysis. 

BMC Bioinformatics. 2014;15:304. 

28. Garcia-Albornoz M, Nielsen J. Finding directionality and gene-disease predictions in disease associations. BMC 

Syst Biol. 2015;9. doi:10.1186/s12918-015-0184-9. 

29. Chen B, Ding Y, Wild DJ. Assessing Drug Target Association Using Semantic Linked Data. PLoS Comput Biol. 

2012;8. doi:10.1371/journal.pcbi.1002574. 

30. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. Systematic integration of 

biomedical knowledge prioritizes drugs for repurposing. eLife. 6. doi:10.7554/eLife.26726. 

31. Mullen J, Cockell SJ, Woollard P, Wipat A. An Integrated Data Driven Approach to Drug Repositioning Using 

Gene-Disease Associations. PLoS One. 2016;11. doi:10.1371/journal.pone.0155811. 

32. Hernandez JJ, Pryszlak M, Smith L, Yanchus C, Kurji N, Shahani VM, et al. Giving Drugs a Second Chance: 

Overcoming Regulatory and Financial Hurdles in Repurposing Approved Drugs As Cancer Therapeutics. Front 

Oncol. 2017;7:273. 

33. Altshuler D, Daly M, Kruglyak L. Guilt by association. Nat Genet. 2000;26:135–7. 

34. Yildirim MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M. Drug-target network. Nat Biotechnol. 

2007;25:1119–26. 

35. Ma’ayan A, Jenkins SL, Goldfarb J, Iyengar R. Network Analysis of FDA Approved Drugs and their Targets. 

Mt Sinai J Med. 2007;74:27–32. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

36. Chiang AP, Butte AJ. SYSTEMATIC EVALUATION OF DRUG-DISEASE RELATIONSHIPS TO 

IDENTIFY LEADS FOR NOVEL DRUG USES. Clin Pharmacol Ther. 2009;86:507–10. 

37. Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models. 

Bioinformatics. 2009;25:2397–403. 

38. Nacher JC, Schwartz J-M. A global view of drug-therapy interactions. BMC Pharmacol. 2008;8:5. 

39. Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P. Drug target identification using side-effect similarity. 

Science. 2008;321:263–6. 

40. Hu G, Agarwal P. Human Disease-Drug Network Based on Genomic Expression Profiles. PLoS One. 2009;4. 

doi:10.1371/journal.pone.0006536. 

41. Suthram S, Dudley JT, Chiang AP, Chen R, Hastie TJ, Butte AJ. Network-based elucidation of human disease 

similarities reveals common functional modules enriched for pluripotent drug targets. PLoS Comput Biol. 

2010;6:e1000662. 

42. Mathur S, Dinakarpandian D. Finding disease similarity based on implicit semantic similarity. J Biomed Inform. 

2012;45:363–71. 

43. Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring novel drug indications with 

application to personalized medicine. Mol Syst Biol. 2011;7:496. 

44. Daminelli S, Haupt VJ, Reimann M, Schroeder M. Drug repositioning through incomplete bi-cliques in an 

integrated drug-target-disease network. Integr Biol (Camb). 2012;4:778–88. 

45. Wang W, Yang S, Zhang X, Li J. Drug repositioning by integrating target information through a heterogeneous 

network model. Bioinformatics. 2014;30:2923–30. 

46. Himmelstein D, Lizee A, Hessler C, Brueggeman L, Chen S, Hadley D, et al. Rephetio: Repurposing drugs on a 

hetnet [report]. Thinklab. 2016. doi:10.15363/thinklab.a7. 

47. Sun Y, Barber R, Gupta M, Aggarwal CC, Han J. Co-author Relationship Prediction in Heterogeneous 

Bibliographic Networks. In: 2011 International Conference on Advances in Social Networks Analysis and Mining. 

2011. p. 121–8. 

48. Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, et al. A Network Integration Approach for Drug-Target 

Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information. bioRxiv. 

2017;:100305. 

49. Ojeda T, Murphy SP, Bengfort B, Dasgupta A. Practical Data Science Cookbook. Packt Publishing; 2014. 

50. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, et al. An Analysis of Human MicroRNA and Disease 

Associations. PLOS ONE. 2008;3:e3420. 

51. Zhou X, Lei L, Liu J, Halu A, Zhang Y, Li B, et al. A Systems Approach to Refine Disease Taxonomy by 

Integrating Phenotypic and Molecular Networks. EBioMedicine. 2018;31:79–91. 

52. Gligorijević V, Pržulj N. Methods for biological data integration: perspectives and challenges. Journal of The 

Royal Society Interface. 2015;12:20150571. 

53. Fan Y, Li M, Zhang P, Wu J, Di Z. The effect of weight on community structure of networks. Physica A: 

Statistical Mechanics and its Applications. 2007;378:583–90. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

54. Zhou T, Ren J, Medo M, Zhang Y-C. Bipartite network projection and personal recommendation. Phys Rev E 

Stat Nonlin Soft Matter Phys. 2007;76 4 Pt 2:046115. 

55. Salton G, Lesk ME. Computer Evaluation of Indexing and Text Processing. J ACM. 1968;15:8–36. 

56. van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JAM. A text-mining analysis of the human 

phenome. Eur J Hum Genet. 2006;14:535–42. 

57. Sun K, Buchan N, Larminie C, Pržulj N. The integrated disease network. Integr Biol (Camb). 2014;6:1069–79. 

58. Resnik P. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In: Proceedings of the 

14th International Joint Conference on Artificial Intelligence - Volume 1. San Francisco, CA, USA: Morgan 

Kaufmann Publishers Inc.; 1995. p. 448–453. http://dl.acm.org/citation.cfm?id=1625855.1625914. Accessed 3 Sep 

2018. 

59. Lin D. An Information-Theoretic Definition of Similarity. In: In Proceedings of the 15th International 

Conference on Machine Learning. Morgan Kaufmann; 1998. p. 296–304. 

60. Wang JZ, Du Z, Payattakool R, Yu PS, Chen C-F. A new method to measure the semantic similarity of GO 

terms. Bioinformatics. 2007;23:1274–81. 

61. Cheng L, Li J, Ju P, Peng J, Wang Y. SemFunSim: A New Method for Measuring Disease Similarity by 

Integrating Semantic and Gene Functional Association. PLOS ONE. 2014;9:e99415. 

62. Cheng L, Jiang Y, Wang Z, Shi H, Sun J, Yang H, et al. DisSim: an online system for exploring significant 

similar diseases and exhibiting potential therapeutic drugs. Scientific Reports. 2016;6:30024. 

63. Hu Y, Zhao L, Liu Z, Ju H, Shi H, Xu P, et al. DisSetSim: an online system for calculating similarity between 

disease sets. J Biomed Semantics. 2017;8 Suppl 1. doi:10.1186/s13326-017-0140-2. 

64. Omura M, Tateishi Y, Okumura T. Disease Similarity Calculation on Simplified Disease Knowledge Base for 

Clinical Decision Support Systems. :6. 

65. Dai W, Liu X, Gao Y, Chen L, Song J, Chen D, et al. Matrix Factorization-Based Prediction of Novel Drug 

Indications by Integrating Genomic Space. Computational and Mathematical Methods in Medicine. 2015. 

doi:10.1155/2015/275045. 

66. Zhang W, Yue X, Lin W, Wu W, Liu R, Huang F, et al. Predicting drug-disease associations by using similarity 

constrained matrix factorization. BMC Bioinformatics. 2018;19:233. 

67. Chen X, Liu M-X, Yan G-Y. Drug-target interaction prediction by random walk on the heterogeneous network. 

Mol Biosyst. 2012;8:1970–8. 

68. Xie M, Hwang T, Kuang R. Prioritizing Disease Genes by Bi-Random Walk. In: Tan P-N, Chawla S, Ho CK, 

Bailey J, editors. Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg; 2012. p. 292–

303. 

69. Liu Y, Zeng X, He Z, Zou Q. Inferring MicroRNA-Disease Associations by Random Walk on a Heterogeneous 

Network with Multiple Data Sources. IEEE/ACM Trans Comput Biol Bioinformatics. 2017;14:905–915. 

70. Yu G, Fu G, Lu C, Ren Y, Wang J. BRWLDA: bi-random walks for predicting lncRNA-disease associations. 

Oncotarget. 2017;8:60429–46. 

71. Yang A, Troup M, Ho JWK. Scalability and Validation of Big Data Bioinformatics Software. Comput Struct 

Biotechnol J. 2017;15:379–86. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

72. Jodeleit H, Palamides P, Beigel F, Mueller T, Wolf E, Siebeck M, et al. Design and validation of a disease 

network of inflammatory processes in the NSG-UC mouse model. Journal of Translational Medicine. 2017;15:265. 

73. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, et al. Genomic responses in mouse models 

poorly mimic human inflammatory diseases. PNAS. 2013;110:3507–12. 

74. Versi E. ―Gold standard‖ is an appropriate term. BMJ. 1992;305:187–187. 

75. D S, S S, A M. Measurement error correction for logistic regression models with an ―alloyed gold standard‖. 

American Journal of Epidemiology. 1997;145:184–96. 

76. Suratanee A, Plaimas K. Network-based association analysis to infer new disease-gene relationships using large-

scale protein interactions. PLOS ONE. 2018;13:e0199435. 

77. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: a 

comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids 

Res. 2017;45:D833–9. 

78. Paik H, Chen B, Sirota M, Hadley D, Butte AJ. Integrating Clinical Phenotype and Gene Expression Data to 

Prioritize Novel Drug Uses. CPT Pharmacometrics Syst Pharmacol. 2016;5:599–607. 

79. Zhang X, Yuan Z, Ji J, Li H, Xue F. Network or regression-based methods for disease discrimination: a 

comparison study. BMC Medical Research Methodology. 2016;16:100. 

80. Liu H, Song Y, Guan J, Luo L, Zhuang Z. Inferring new indications for approved drugs via random walk on 

drug-disease heterogenous networks. BMC Bioinformatics. 2016;17:539. 

81. Carson MB, Lu H. Network-based prediction and knowledge mining of disease genes. BMC Medical Genomics. 

2015;8:S9. 

82. Gu C, Liao B, Li X, Li K. Network Consistency Projection for Human miRNA-Disease Associations Inference. 

Sci Rep. 2016;6. doi:10.1038/srep36054. 

83. Detector Performance Analysis Using ROC Curves | Receiver Operating Characteristic | Signal To Noise Ratio. 

Scribd. https://es.scribd.com/document/339719122/Detector-Performance-Analysis-Using-ROC-Curves. Accessed 3 

Sep 2018. 

84. du Prel J-B, Röhrig B, Hommel G, Blettner M. Choosing statistical tests: part 12 of a series on evaluation of 

scientific publications. Dtsch Arztebl Int. 2010;107:343–8. 

85. Bustin SA. The reproducibility of biomedical research: Sleepers awake! Biomolecular Detection and 

Quantification. 2014;2:35–42. 

86. Kobourov SG. Spring Embedders and Force Directed Graph Drawing Algorithms. arXiv:12013011 [cs]. 2012. 

http://arxiv.org/abs/1201.3011. Accessed 3 Sep 2018. 

87. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environment for 

Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13:2498–504. 

88. Le D-H, Pham V-H. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease 

associations and evidence collection based on a random walk on heterogeneous network. BMC Systems Biology. 

2017;11:61. 

89. Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, et al. DisGeNET: a discovery 

platform for the dynamical exploration of human diseases and their genes. Database (Oxford). 2015;2015:bav028. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

90. Perfetto L, Briganti L, Calderone A, Cerquone Perpetuini A, Iannuccelli M, Langone F, et al. SIGNOR: a 

database of causal relationships between biological entities. Nucleic Acids Res. 2016;44:D548–54. 

91. Lo Surdo P, Calderone A, Iannuccelli M, Licata L, Peluso D, Castagnoli L, et al. DISNOR: a disease network 

open resource. Nucleic Acids Res. 2018;46:D527–34. 

92. Calderone A, Cesareni G, Stegle O. SPV: a JavaScript Signaling Pathway Visualizer. Bioinformatics. 

2018;34:2684–6. 

93. Pavlopoulos GA, Paez-Espino D, Kyrpides NC, Iliopoulos I. Empirical Comparison of Visualization Tools for 

Larger-Scale Network Analysis. Advances in Bioinformatics. 2017. doi:10.1155/2017/1278932. 

94. Westergaard D, Stærfeldt H-H, Tønsberg C, Jensen LJ, Brunak S. A comprehensive and quantitative comparison 

of text-mining in 15 million full-text articles versus their corresponding abstracts. PLOS Computational Biology. 

2018;14:e1005962. 

95. Valle EPG del, García GL, Santamaría LP, Zanin M, Ruiz EM, González AR. Evaluating Wikipedia as a Source 

of Information for Disease Understanding. In: 2018 IEEE 31st International Symposium on Computer-Based 

Medical Systems (CBMS). 2018. p. 399–404. 

96. Grewal N, Singh S, Chand T. Effect of Aggregation Operators on Network-Based Disease Gene Prioritization: A 

Case Study on Blood Disorders. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 

2017;14:1276–87. 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

Supplementary Tables 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415257doi: bioRxiv preprint 

https://doi.org/10.1101/415257
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

Supplementary Table 1. Biological data sources  

 

Data Source Type URL Description Access 9 API10 

NCBI Databases Various https://www.ncbi.nlm.nih.gov The National Center for Biotechnology Information (NCBI) advances science and 

health by providing access to biomedical and genomic information. Major 

biological databases include GenBank for DNA sequences, RefSeq for reference 

sequences and PheGenI for Phenotype-Genotype integration, among others. 

Free 

 

Yes11 

KEGG Pathway 

Database 

Various http://www.genome.jp/kegg The Kyoto Encyclopedia of Genes and Genome (KEGG) is a database resource for 

understanding high-level functions and utilities of the biological system, such as the 

cell, the organism and the ecosystem, from genomic and molecular-level 

information. 

Free Yes 

ArrayExpress Genomic https://www.ebi.ac.uk/arrayexpres

s/browse.html 

Functional Genomics Data from high-throughput functional genomics experiments. 

It is part of the European Bioinformatics Institute12 (EMBL-EBI) and the ELIXIR 

infrastructure13. 

Free Yes 

MetaCyc Biological 

Pathways 

https://metacyc.org Curated database of experimentally elucidated metabolic pathways from all 

domains of life. MetaCyc contains pathways involved in both primary and 

secondary metabolism. MetaCyc is part of the BioCyc database collection14.  

Free15 Yes 

 

WikiPathways Biological 

Pathways 

http://www.wikipathways.org A database maintained by and for the scientific community dedicated to the 

curation of biological pathways. 

Free (CC) Yes 

Reactome Biological 

Pathways 

http://reactome.org An open-source, open access, manually curated and peer-reviewed pathway 

database. 

Free (CC) Yes 

BioGRID  PPI https://thebiogrid.org Biological General Repository for Interaction Dataset with with data compiled 

through comprehensive curation efforts. 

Free Yes 

STRING PPI https://string-db.org A database of known and predicted protein-protein interactions. STRING is part of 

the ELIXIR infrastructure. 

Free (CC) Yes 

                                                           
9
 To resouces, online search, downloads and/or API, least for academic purposes. Databases with a Creative Commons License type are marked with CC. For 

commercial use, please refer to licensing details on the Databse URL. 
10

 The database provides a consumible API for extensive use, via tools and/or web services. See details on database URL. 
11

 Entrez: API key required (as of May 1, 2018) to reach a request rate up to 10 per second. See https://www.ncbi.nlm.nih.gov/books/NBK25500. 
12

 https://www.ebi.ac.uk/ 
13

 https://www.elixir-europe.org/ 
14

 https://biocyc.org 
15

 Access via BioCyc web services require paid subscription, but MetaCyc search online and downloads are free access. 
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UniProt Protein 

sequence 

http://www.uniprot.org A database of protein sequence and functional information, many entries being 

derived from genome sequencing projects. It contains a large amount of information 

about the biological function of proteins derived from the research literature. It is 

part of the European Bioinformatics Institute (EMBL-EBI) and the ELIXIR 

infrastructure. 

Free (CC) Yes 

Human Protein 

Atlas 

Protein / 

Anatomy / 

Phenotype 

http://www.proteinatlas.org Contains information for a large majority of all human protein-coding genes 

regarding the expression and localization of the corresponding proteins based on 

both RNA and protein data. It is part of the ELIXIR infrastructure. 

Free (CC) No16 

CMAP Gene 

expression 

https://portals.broadinstitute.org/c

map 

The Connectivity Map is a collection of genome-wide transcriptional expression 

data from cultured human cells treated with bioactive small molecules and simple 

pattern-matching algorithms that together enable the discovery of functional 

connections between drugs, genes and diseases through the transitory feature of 

common gene-expression change 

Free Yes17 

JASPAR Gene 

expression 

http://jaspar.genereg.net The high-quality transcription factor binding profile database (JASPAR) 

(regulatory). 

Free (CC) Yes 

Expression Atlas Gene 

expression 

https://www.ebi.ac.uk/gxa/home An open science resource with information about gene and protein expression 

across species. It is part of the European Bioinformatics Institute (EMBL-EBI) and 

the ELIXIR infrastructure. 

Free (CC) No18 

DisGeNET Gene / 

Phenotype 

http://www.disgenet.org One of the largest publicly available collections of genes and variants associated to 

human diseases. It is part of the ELIXIR infrastructure. 

Free (CC) Yes19 

OMIM Gene / 

Phenotype 

http://www.omim.org A comprehensive, authoritative compendium of human genes and genetic 

phenotypes. OMIM is currently biocurated at the McKusick-Nathans Institute of 

Genetic Medicine, The Johns Hopkins University School of Medicine. 

Free Yes20 

 
 

 

  

                                                           
16

 Data is accessible via downloads. A programmatic access to filter downloadable data is provided. https://www.proteinatlas.org/about/help/dataaccess 
17

 Clue API Key required for unlimited use. https://clue.io/api 
18

 Tools for R available, but data must be downloaded first. 
19

 API-like access through SPARQL endpoint http://rdf.disgenet.org/sparql/ 
20

 Registration is required. https://omim.org/api 
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Supplementary Table 2. Drug data sources  
 

Data Source Type URL Description Access API 

FDA Databases Various https://www.fda.gov/Drugs/Infor

mationOnDrugs 

Information about FDA-approved brand name and generic prescription and over-

the-counter human drugs and biological therapeutic products.  

Free Yes21 

PubChem Compound https://pubchem.ncbi.nlm.nih.gov A database of chemical molecules and their activities against biological assays. 

The system is maintained by the National Center for Biotechnology Information 

(NCBI), a component of the National Library of Medicine, which is part of the 

United States National Institutes of Health (NIH). 

Free Yes22 

DrugBank

  

Phenotype http://www.drugbank.ca This database combines detailed drug (i.e. chemical, pharmacological and 

pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, 

and pathway) information.  

Free (CC) Yes23 

Orphanet Phenotype http://www.orphadata.org A unique resource, gathering and improving knowledge on rare diseases so as to 

improve the diagnosis, care and treatment of patients with rare diseases. The 

Orphanet Rare Disease ontology (ORDO) provides a structured vocabulary for 

rare diseases capturing relationships between diseases, genes and other relevant 

features. 

Free (CC) No24 

SIDER Phenotype http://sideeffects.embl.de Contains information on marketed medicines and their recorded adverse drug 

reactions. The information is extracted from public documents and package 

inserts. The available information includes side effect frequency, drug and side 

effect classifications as well as links to further information, for example drug–

target relations. 

Free (CC) No25 

PharmaGKB Gene / 

Phenotype 

http://www.pharmgkb.org Pharmacogenomics knowledge resource that encompasses clinical information 

including dosing guidelines and drug labels, potentially clinically actionable 

gene-drug associations and genotype-phenotype relationships 

Free (CC) Yes26 

ChEMBL Compound https://www.ebi.ac.uk/chembl Database of bioactive drug-like small molecules, it contains 2-D structures, 

calculated properties and abstracted bioactivities.  It is part of the European 

Bioinformatics Institute (EMBL-EBI) and the ELIXIR infrastructure. 

Free Yes 

                                                           
21

 Open FDA Access Key is needed to get the maximum rate of requests per minute. https://open.fda.gov/apis/authentication/ 
22

 Limited to 5 requests per second. https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest 
23

 A paid subscription is required to access the API. Data is available through online search and downloads. 
24

 Downloads available. SPARQL endpoint available to consume the ontology. 
25

 Data are available via online search and downloads 
26

 Beta version. Limited to 2 requests per second. https://api.pharmgkb.org/ 
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Drug 

Repurposing 

Hub 

Compound https://clue.io/repurposing Contains extensive curated annotations for each drug, including details about 

commercial sources of all compounds 

Free Yes27 

 
  

                                                           
27

 Clue API Key required for unlimited use. https://clue.io/api 
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Supplementary Table 3. Medical textual sources  
 

Data Source Type URL Description Access API 

PubMed/PMC Journals https://www.nlm.nih

.gov/bsd/pmresourc

es.html 

PubMed contains more than 28 million medical journal citations from MEDLINE indexed 

journals and NCI Bookshelf. These citations may have links to full-text articles or 

manuscripts in PMC (PubMed Central).  

Free Yes28 

MedlinePlus Medical 

Encyclopedia 

https://medlineplus.

gov 

Provides encyclopedic information on health and drug issues, and provides a directory of 

medical services. The service provides curated consumer health information in English and 

Spanish. 

Free Yes 

ClinicalTrials Clinical Trials http://www.clinicalt

rials.gov 

A database of privately and publicly funded clinical studies conducted around the world. It is 

a resource provided by the U.S. National Library of Medicine. 

Free No29 

Europe PMC Journals / Clinical 

Trials 

http://europepmc.or

g 

Provides access to worldwide life sciences articles, books, patents and clinical guidelines. 

Europe PMC provides links to relevant records in databases such as Uniprot, European 

Nucleotide Archive (ENA), Protein Data Bank Europe (PDBE) and BioStudie. It is part of 

the ELIXIR infrastructure. 

Free Yes 

GWAS Catalog GWAS Studies https://www.ebi.ac.u

k/gwas/ 

The NHGRI-EBI Catalog of published genome-wide association studies. Eligible studies are 

curated within 1-2 months of publication, dependent on the availability of literature, and the 

data is released on a weekly cycle 

Free Yes 

 

  

                                                           
28

 Entrez: API key required (as of May 1, 2018) to reach a request rate up to 10 per second. See https://www.ncbi.nlm.nih.gov/books/NBK25500. 
29

 Not strictly an API. The combination of Advanced Search query building and results download provides intensive data access. 
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Table 4. Mapping sources  
 

Data Source Type URL Description Access API 

MeSH Medical Thesaurus https://www.ncbi.nl

m.nih.gov/mesh 

Medical Subject Headings (MeSH) is the NLM controlled vocabulary thesaurus used for 

indexing articles for PubMed. It is also used by ClinicalTrials.gov registry to classify which 

diseases are studied by trials. 

Free Yes30 

SNOMED CT Medical Thesaurus http://www.snomed.

org/snomed-ct 

Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is a comprehensive 

and precise clinical health terminology product. 

Licensed31 Yes 

UMLS Medical Thesaurus https://www.nlm.nih

.gov/research/umls/ 

Unified Medical Language System (UMLS) integrates and distributes key terminology, 

classification and coding standards, and associated resources to promote creation of more 

effective and interoperable biomedical information systems and services, including electronic 

health records  

Licensed32 Yes 

ICD-CM Disease Codes http://www.who.int/

classifications/icd 

International Classification of Diseases (ICD) is the classification used to code and classify 

mortality data from death certificates. ICD-Clinical Modification (CM) is used to code and 

classify morbidity data from the inpatient and outpatient records, physician offices, and most 

National Center for Health Statistics (NCHS) surveys. 

Free Yes33 

HGNC Gene Codes https://www.genena

mes.org/ 

HGNC is responsible for approving unique symbols and names for human loci, including 

protein coding genes, ncRNA genes and pseudogenes, to allow unambiguous scientific 

communication. 

Free Yes 

DO Disease Ontology https://bioportal.bioo

ntology.org/ontologi

es/DOID 

The Disease Ontology (DO) provides the biomedical community with consistent, reusable 

and sustainable descriptions of human disease terms, phenotype characteristics and related 

medical vocabulary disease concepts. The DO semantically integrates disease and medical 

vocabularies through extensive cross mapping of DO terms to MeSH, ICD, NCI’s thesaurus, 

SNOMED and OMIM. 

Free (CC) Yes 

PO Phenotype Ontology https://hpo.jax.org/a

pp/ 

The Human Phenotype Ontology (HPO) provides a standardized vocabulary of phenotypic 

abnormalities encountered in human disease. The HPO is currently being developed using the 

medical literature, Orphanet, DECIPHER, and OMIM.  

Free Yes34 

GO Gene Ontology http://www.geneonto The Gene Ontology (GO) provides a computational representation of our evolving Free (CC) Yes 

                                                           
30

 API-like access through the SPARQL endpoint. https://hhs.github.io/meshrdf/sparql-and-uri-requests 
31

 Free license for member countries. See other fee exemptions: https://www.snomed.org/snomed-ct/get-snomed-ct 
32

 Free license available under certain conditions. https://uts.nlm.nih.gov//license.html 
33

 Provided by NLM Clinical Tables Search Service: https://clinicaltables.nlm.nih.gov/apidoc/icd10cm/v3/doc.html 
34

 SPARQL endpoint available at http://www.orphadata.org/cgi-bin/inc/sparql_hoom.inc.php 
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logy.org knowledge of how genes encode biological functions at the molecular, cellular and tissue 

system levels. GO terms are organised in three domains: cellular component, molecular 

function and biological process. 

Uberon Anatomy Ontology http://uberon.github.i

o/ 

An integrated cross-species ontology covering anatomical structures in animals. See the about 

page for more info, or read the Uberon paper in Genome Biology 

Free Yes35 

 

 

  

                                                           
35

 SPARQL endopoint available: http://sparql.hegroup.org/sparql 
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Supplementary Table 5. Studies on disease networks  
 

Author. Study (year) Addressed 

problem 

Sources Methods Validation Network facts Access/ 

Visualization 

Mathur et al. Finding 

disease similarity based on 

implicit semantic 

similarity (2012) 

Disease 

similarity 

OMIM, SwissProt, 

GeneRif 

Similarity of disease gene 

and processes (Jaccard 

based) 

Comparison with previous studies 

using KEGG data 

1,477 disease-disease linked by 

GO process 

Validation data 

set and results 

available as 

supplementary 

material36.  

Zhou et al. Human 

symptoms–disease 

network (2014) 

Disease 

similarity 

PubMed, OMIM, 

PharmaGKB, 

BioGrid 

Similarity of disease 

symptoms (Cosine based) 

Manual validation. 

Overlapping of predicted 

similarities with HPO 

HSDN with 147,978 

connections between 4,219 

diseases and 322 symptoms.  

Results available 

as supplementary 

material in the 

article37. Network 

analysis and 

visualization with 

Gephi. 

Sun et al. Predicting 

disease associations via 

biological network 

analysis (2014) 

Disease 

similarity 

BioGrid, 

OMIM, CTD, 

HuGeNet 

 

Similarity of disease 

genes and PPIs (Jaccard 

based).  

Disease gene topology. 

Correlation of similarity scores 

with ICD-9 groups, comorbidity 

from HuDiNet and GWAS 

associations. Manual confirmation 

with medical literature. 

Disease-disease associations 

predicted for 543 diseases. 

 

Hoehndorf et al. Analysis 

of the human diseasome 

using phenotype similarity 

between common, genetic, 

and infectious diseases 

(2015) 

Disease 

similarity 

and drug 

repurposing. 

PubMed Similarity of disease 

phenotypes (Jaccard 

based). 

Correlation of predicted disease 

clusters and top-level DO groups. 

Comparison against models of the 

Mouse Genome Informatics 

database and gene-disease 

associations from OMIM.  

Drug-disease associations validated 

with data from SIDER.  

5,030 disease nodes and 65,795 

disease-disease association 

edges. 

Results and 

visualization 

available online38. 

Garcia-Albornoz et al. 

Finding directionality and 

gene-disease predictions in 

disease associations (2015) 

Disease 

similarity 

OMIM, KEGG Mapping of disease codes 

to OMIM and KEGG 

data to obtain directional 

disease-gene-pathway 

associations using the 

Correlation of predicted 

associations with ICD-10 

categories. 

880 diseases with 3,430 disease-

disease gene-based associations 

and 112,956 disease-disease 

pathway-based associations. 

Top-rated gene 

disease pairs 

available as 

additional info in 

the article. 

                                                           
36

 https://ars.els-cdn.com/content/image/1-s2.0-S1532046411002073-mmc1.doc 
37

 https://www.nature.com/articles/ncomms5212#s1  
38

 http://aber-owl.net/aber-owl/diseasephenotypes 
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level-of-inclusion. Cytoscape used 

for network 

analysis39. 

Paik et al. Integrating 

Clinical Phenotype and 

Gene Expression Data to 

Prioritize Novel Drug Uses 

(2016) 

Drug 

repurposing 

SIDER2,, 

DrugBank, CMap 

Similarity of drug-

phenotype indications 

and drug-gene 

expressions and  (Cosine 

based) 

Comparison of results with 

previous studies. 

Two bipartite networks: Drug-

phenotype network with 1,631 

drug nodes, 1,587 phenotype 

nodes and 72,848 edges.  

Drug-gene expression network 

with 756 drugs, 8,101 gene 

nodes and 17,000 edges. 

Results available 

as supporting 

information of the 

article40. 

Himmelstein et al. 

Systematic integration of 

biomedical knowledge 

prioritizes 

drugs for repurposing 

(2016) 

 

Drug 

repurposing 

DrugBank, 

SIDER, 

DrugCentral, 

Gene, 

WikiPathways, 

Reactome, 

UniChem, 

ChEMBL, 

PharmacotherapyD

B, DisGeNET, 

PubMed, GWAS 

Catalog, among 

others 

Metapath based approach 

with Degree-Weighted 

Path Count for metapath 

weighting. Machine 

learning techniques to 

translate the network 

connectivity 

between a compound and 

a disease into a 

probability of treatment. 

 

Comparison of drug predictions 

with new indications extracted from 

DrugCentral and ClinicalTrials.  

Metagraph with 47,031 

metanodes of 11 types and 

2,250197 metaedges of 24 

types.  

A derived drug-disease bipartite 

network with 136 disease nodes, 

1,538 drugs and 209,168 edges. 

Network 

accessible 

online41.  Neo4j 

used for network 

analysis and 

visualization. 

Guney et al. Network-

based in silico drug 

efficacy screening 

(2016) 

Drug 

repurposing 

DrugBank, 

OMIM, GWAS, 

UniProtKB, 

PheneGenI, 

Orphanet 

Mapping of drugs and 

diseases using associated 

genes. Drug-disease 

proximity based on 

shortest-path. 

Comparison with drug-disease 

associations on DailyMed. 

Bipartite disease-drug network 

with 402 drug-disease 

associations between 238 drugs 

and 78 diseases. 

Results available 

as supplementary 

information42.  

Luo et al. A network 

integration approach for 

drug-target interaction 

prediction and 

computational drug 

Drug 

repurposing 

DrugBank, 

HPRD, 

Comparative 

Toxicogenomics, 

SIDER 

Low-dimensional vector 

representation of features 

and vector space 

projection to predict 

drug-disease associations. 

Comparison with known drug-

disease associations and in-vivo 

validation of some of the obtained 

predictions. 

Heterogeneous network with 

12,015 nodes of 4 types and 

1,895,445 edges of six types. 

Data and source 

code available 

online43.  

 

                                                           
39

 https://static-content.springer.com/esm/art%3A10.1186%2Fs12918-015-0184-9/MediaObjects/12918_2015_184_MOESM1_ESM.xlsx 
40

 https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/psp4.12108 
41

 http://het.io 
42

 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4740350/#S1 
43

 https://github.com/luoyunan/DTINet 
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repositioning from 

heterogeneous information 

(2017) 

Luo et al. Computational 

Drug Repositioning using 

Low-Rank Matrix 

Approximation and 

Randomized 

Algorithms (2018) 

Drug 

repurposing 

DrugBank, 

OMIM 

Similarity of drug-

chemical structure and 

disease-phenotypes. 

Singular Value 

Thresholding (SVT) 

algorithm to 

complete the drug-

disease adjacency matrix 

with predicted scores for 

unknown drug-disease 

pairs. 

Comparison of drug predictions 

with previous studies, mainly 

Gottlieb et al. (2011). 

Bipartite disease-drug network 

with 593 drugs, 313 diseases 

and 1,933 interactions. 

Drug 

repositioning 

recommendation 

system and data 

available online44. 

 
 

 

 

 

                                                           
44

 http://bioinformatics.csu.edu.cn/resources/softs/DrugRepositioning/DRRS/index.html 
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