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Abstract

Modern SNP genotyping technologies allow to measure the relative abundance of
different alleles for a given locus, and consequently to estimate their allele dosage,
opening a new road for genetic studies in autopolyploids. Despite advances in genetic
linkage analysis in autotetraploids, there is a lack of statistical models to perform
linkage analysis in organisms with higher ploidy levels. In this paper, we present a
statistical method to estimate recombination fractions and infer linkage phases in
full-sib populations of autopolyploid species with even ploidy levels in a sequence of
SNP markers using hidden Markov models. Our method uses efficient two-point
procedures to reduce the search space for the best linkage phase configuration and
reestimates the final parameters using maximum-likelihood estimation of the Markov
chain. To evaluate the method, and demonstrate its properties, we rely on simulations
of autotetraploid, autohexaploid and autooctaploid populations. The results show the
reliability of our approach, including situations with complex linkage phase scenarios in
hexaploid and octaploid populations.

Author summary

In this paper we present a multilocus complete solution based in hidden Markov models
to estimate recombination fractions and infer the linkage phase configuration in full-sib
mapping populations with even ploidy levels under random chromosome segregation.
We also present an efficient pairwise loci analysis to be used in cases were the multilocus
analysis becomes compute-intensive.

Introduction 1

Polyploids are organisms with more than two sets of chromosomes. They are very 2

important in agriculture and play a fundamental role in evolutionary processes, such as 3

differentiation of species [1]. The number of sets of chromosomes in an organism is 4

called ploidy level. These multiple sets of chromosomes in a polyploid can originate from 5

the combination of chromosomes from different, but related species, or from the 6

duplication of chromosomes from the same species [2, 3]. In the first scenario, they are 7
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called allopolyploids; in the second, autopolyploids. Another way to characterize 8

polyploid organisms is according to their pattern of inheritance. In general, 9

allopolyploids exhibits disomic segregation, since homologous chromosomes have more 10

affinity than homeologous chromosomes and tend to form preferential bivalents within 11

each sub-genome [4]. Autopolyploids, however, exhibit more than two homologous 12

chromosomes per homology group. Thus, during the meiosis, they can form either 13

bivalents or multivalents [4, 5]. The expected segregation ratios in autopolyploids vary 14

depending on the type of chromosome configuration that the organism presents during 15

meiosis. If the chromosomes pair randomly, the segregation is called polysomic [6–9]. In 16

addition, the homologous chromosomes may have preferential pairing, which can vary 17

from complete preferential (disomic segregation) to complete random (polysomic 18

segregation). Since the molecular mechanics of polyploid organisms are quite complex, 19

this rigid dichotomy is often broken, and organisms can exhibit intermediate modes of 20

inheritance [4, 10]. Throughout this paper, the term autopolyploid (or autotetraploid, 21

autohexaploid, etc.) will refer to polyploid organisms that exhibit polysomic segregation. 22

Despite all advances in genetic studies in autotetraploids [11–21], there is still a 23

shortage of statistical methods to address organisms with higher ploidy levels, such as 24

sweet potato [22–24], sugarcane [25,26], some ornamental flowers and forage crops 25

(reviewed in [27]). In this work, we denote as high-level autopolyploids those 26

autopolyploid organisms with ploidy level greater than four. A fundamental class of 27

statistical methods that are lagged behind in high-level autopolyploid studies is the 28

construction of genetic maps. A reliable genetic map is a crucial step in quantitative 29

trait loci (QTL) analysis, as well as the assembly of reference genomes and the study of 30

evolutionary processes [28–30]. Although understanding the concept of genetic mapping 31

is rather easy, the construction of such maps in high-level autopolyploids is challenging. 32

Even under bivalent pairing, there is a large number of possible configurations during 33

the meiosis, and this number gets exponentially larger as the ploidy level increases. 34

Denoting m as the ploidy level, it is possible to find up to m different alleles for a locus 35

in one individual. Furthermore, if some of those alleles are not distinguishable, it is 36

necessary to consider the number of copies of each different allelic form, also known as 37

allele dosage. Finally, depending on the marker system used to access the genotypic 38

information, in the vast majority of cases, it is not possible to obtain the complete 39

information about a particular locus. 40

The construction of a genetic map in a full-sib population can be summarized in five 41

basic steps: i) estimation of pairwise recombination fractions and associated LOD 42

Scores; ii) separation of markers into linkage groups; iii) order markers within each 43

linkage group using an optimization technique; iv) parental phasing, recombination 44

fraction update and likelihood computation and v) if the order is optimal, the map is 45

complete, otherwise, return to step iii. Historically, genetic maps in high-level 46

autopolyploids have been constructed using only alleles present in one homologous 47

chromosome, called single-dose markers [31, 32]. In a full-sib population, these markers 48

segregate in a 1:1 ratio (if they are present only in one parent), or in a 3:1 ratio (if 49

present in both parents). Given this level of simplification, it is possible to use the 50

five-step procedure coupled with a standard software suitable for backcross diploid 51

populations. Nevertheless, it is well accepted that the use of single-dose markers imposes 52

limitations on the construction of adequate genetic maps. These approaches sub-sample 53

the genome [19,26], which precludes further consideration of multiallelic effects in 54

models for QTL mapping and subsequent studies. Moreover, there is low statistical 55

power to detect linkage when markers are in repulsion phase configurations [31,33]. 56

Although some authors have addressed this problem by including multiple dose markers 57

when constructing genetic maps and performing QTL mapping [33,34], the limitations 58

on the genotyping technologies at the time required that the allelic dosage had to be 59
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inferred based on expected segregation rates. Because of the high amount of hidden 60

information imposed by marker systems on those studies [31,33], the estimation of 61

recombination fraction between multi-dose markers was highly impaired. 62

Quantitative genotyping technologies for single nucleotide polymorphism (SNPs) 63

evaluation have opened the door for further genetic mapping studies in high-level 64

autopolyploids. It is now possible to measure the abundance of specific alleles within a 65

locus in a polyploid genome [19,26,36–39]. This technology, combined with the 66

genotypic distribution in the population [37], makes it possible to infer the allelic dosage 67

by using the ratio between the abundances of the two alternative alleles. Once the 68

dosage of the markers is estimated, the construction of linkage maps can be significantly 69

improved by taking this information into account. [19] and [40] presented works that 70

take into consideration the dosage of quantitative SNP data both in linkage studies and 71

QTL mapping for autotetraploids. 72

Genetic linkage maps can be constructed based on two-point or multipoint estimates 73

of the recombination fraction. Two-point methods use information of pairs of markers, 74

and even though they are less computationally demanding than multipoint methods, 75

they require a higher amount of information in the markers to provide reliable results. 76

Multipoint approaches, instead, use information of multiple makers present in a linkage 77

group, increasing the statistical efficiency of the analysis [17, 41,42, 53]. This feature is 78

particularly important in polyploid linkage analysis, where markers are mostly partially 79

informative. One widely used procedure to obtain multipoint estimates is the hidden 80

Markov model (HMM) [41]. The construction of the genetic map using this method 81

provides the estimates of the recombination fractions between all adjacent markers in a 82

linkage group, as well the multipoint likelihood, which has been shown to be an 83

excellent criterion to evaluate and compare linkage phase configurations and orders of 84

makers [42]. [17] presented a statistical framework in which HMMs were applied to 85

reconstruct genetic linkage maps, but it was limited to autotetraploids. Recently, [35] 86

constructed an ultra-dense integrated linkage map for hexaploid chrysanthemum using 87

two-point analysis. However, there is a lack of multipoint procedures that can handle 88

cases where less marker information is available in high ploidy levels. 89

The main challenges we address in this paper are the inference of the haplotypes of 90

the multiple homologous chromosomes and the multipoint estimation of recombination 91

fractions in high-level polyploids. Although [21] proposed a probabilistic multilocus 92

haplotype reconstruction model for autotetraploids considering double reduction, this 93

remains as an open question for organisms with higher ploidy levels. Our method relies 94

on an HMM and is developed for species with even ploidy levels under random 95

chromosome segregation (complete polysomic inheritance). We also present a two-point 96

method which is capable of dealing with hundreds of markers even in high ploidy level 97

scenarios. Hence, we are proposing solutions for steps i and iv in high-level 98

autopolyploids. Step ii is straightforward from step i using clusterization algorithms, as 99

proposed by [50]. Even though step iii is a challenging task in genetic mapping, it can 100

be addressed using pairwise recombination fractions or the resulting likelihood of the 101

Markov model as it has been proposed by several studies [43–49]. To evaluate our 102

method, and to show its properties, we rely on simulations of autotetraploid, 103

autohexaploid, and autooctaploid data. The R computer codes to reproduce all 104

simulations and analysis are publicly available. 105

Methods 106

In this section, we define the notation used throughout this article and present the 107

probabilistic model for the gamete formation in autopolyploids. Then, we move to the 108

calculation of the transition probabilities for adjacent marker loci (Eq 6) and follow to 109
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the initial state (Eq 7) and emission probability distributions (Eqs 8 and 9) which are 110

fundamental in an HMM model. We conclude by explaining the complexity of 111

estimating linkage phases between markers, presenting an efficient two-point algorithm 112

that simplifies the problem in a way that allows the phasing to be inferred using real 113

data. 114

Notation 115

Consider one homology linkage group in a mapping population derived from a cross 116

between two autopolyploid individuals P and Q with the same ploidy level (full-sib 117

family). The ploidy level is denoted by m, and can be any even number greater than 118

zero. Let the vectors Pmk = {P ik} and Pmk+1 = {P ik+1}, and Qmk = {Qik} and 119

Qmk+1 = {Qik+1}, i = 1, · · · ,m, denote the genotype of two adjacent multiallelic loci k 120

and k + 1 in P and Q, respectively. The superscript i indicates one of the possible 121

alleles for the loci, and each locus has m different alleles in each parent. For example, 122

for a cross between two autohexaploid individuals, P6
k =

{
P 1
k , P

2
k , · · · , P 6

k

}
; similarly, 123

this can be done for P6
k+1, Q6

k and Q6
k+1. All alleles denoted by the same superscript 124

number are in the same homologous chromosome (e.g., P 1
k and P 1

k+1 are in homologous 125

chromosome 1, etc). 126

The following assumptions are made to ensure random chromosome segregation [6, 8] 127

and no double reduction [51]: i) there is only formation of bivalents during the meiosis; 128

ii) there is no preferential pairing during the formation of bivalents; iii) all bivalents 129

have the same recombination fraction between loci k and k + 1; iv) bivalents are 130

independent and v) there is separation of sister chromatids during the meiosis II. 131

Consequences of violations of these assumptions will be addressed later using 132

simulations. 133

Bivalent formation 134

It occurs during meiosis I (more specifically, at the pachytene stage of prophase). In 135

diploid cells, there is only one possible pairing configuration: two duplicated homologous 136

from a homology group pair to form one bivalent. However, in autopolyploid cells, given 137

the previous assumptions, the number of possible pairing configurations, i.e., the number 138

of possible bivalent chromosomal pairing for a given homology group during meiosis is 139

wm =
1
m
2 !

m
2∏
i=1

(
2i

2

)
(1)

The orientation of the bivalents does not affect the expected frequencies of each 140

gamete type, and therefore will not be considered. For example, for an autotetraploid 141

individual, there are two bivalents and three possible bivalent configurations. 142

Homologous chromosome pair as 1 with 2, and 3 with 4; or, 1 with 3 and 2 with 4; or 1 143

with 4 and 2 with 3 [52]. We denote Ψ = {ψj}, j = 1, · · · , wm a set of all bivalent 144

configurations for a given ploidy level. 145

Expected gametic frequency for a given bivalent configuration 146

We will present the expected gametic frequencies considering parent P . Since parent Q 147

undergoes a similar process, it is possible to combine the expected gametic frequencies 148

to obtain the expected genotypic frequency in the full-sib population. Each of the 149

bivalents obtained for a given configuration ψj can result in two types of chromosomes 150

for loci k and k + 1: parental, which results from bivalents with zero or any other even 151

number of recombinations between k and k + 1; and recombinants, which results from 152
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bivalents with any odd number of recombinations. As presented by [34], the probabilities 153

of all chromosome types for any single bivalent can be represented always as 154

V =

[
Pr(P ik, P

i
k+1) Pr(P ik, P

i′

k+1)

Pr(P i
′

k , P
i
k+1) Pr(P i

′

k , P
i′

k+1)

]
=

[
1−rk

2
rk
2

rk
2

1−rk
2

]
where rk is the recombination fraction between k and k + 1, i 6= i′. For a given 155

configuration ψj , the expected frequencies for all possible gametes derived from that 156

configuration is 157

V1 ⊗ · · · ⊗Vm
2

where ⊗ denotes the Kronecker product of matrices and subscripts in V indicate the 158

corresponding bivalent. All elements of this product are of the form 159

(1− rk)
m
2 −l(rk)l

2
m
2

where l denotes the number of total recombinant bivalents between loci k and k + 1, 160

l ∈ {0, · · · ,m/2}. From this, we can define the probability of observing any gamete (for 161

two loci) given a bivalent configuration ψj as 162

Pr(pk, pk+1|ψj) =

 (1−rk)
m
2
−l(rk)l

2
m
2

if ψj is consistent with the gamete {pk, pk+1}

0 otherwise

(2)
where vectors pk and pk+1 denote a subset of m

2 alleles present in Pmk and Pmk+1, 163

respectively; {pk,pk+1} indicates a gamete for loci k and k + 1 from parental P . 164

Consistent means that the gamete can be produced from bivalent configuration ψj . 165

Notice that some gametes cannot be obtained from ψj once the bivalents are formed. 166

Since we assume that alleles with the same superscript are in the same homologous 167

chromosome, l can be obtained by a simple examination of superscripts of elements 168

contained in pk and pk+1. Consider, for example, ψ1 = {(1, 2), (3, 4), (5, 6)} (m = 6, 169

Fig 1). If one observes pk =
{
P 1
k , P

3
k , P

5
k

}
and pk+1 =

{
P 1
k+1, P

4
k+1, P

6
k+1

}
, the number 170

of recombinant chromosomes is l = 2. Therefore, 171

Pr
(
{P 1

k , P
3
k , P

5
k }, {P 1

k+1, P
4
k+1, P

6
k+1} | ψ1

)
= (1−rk)(rk)2

23 . On the other hand, 172

Pr
(
{P 1

k , P
2
k , P

5
k }, {P 1

k+1, P
2
k+1, P

5
k+1} | ψ1

)
= 0, since it is impossible to obtain this 173

gamete from configuration ψ1, i.e., it is not consistent with ψ1. 174

Figure 1. One possible pairing configuration in an autohexaploid, namely ψ1. P ik
denotes one allele present in homologous chromosome i for loci k in parent P . Notice that
some allelic configurations, such as

(
{P 1

k , P
2
k , P

5
k }, {P 1

k+1, P
2
k+1, P

5
k+1}

)
, are impossible

to be obtained in this bivalent pairing. In this case, the homologous chromosomes
containing alleles P 1

k and P 2
k will migrate to opposite poles of the cell during meiosis I.

Therefore, P 1
k and P 2

k will not be present in the same gamete.

Gametic frequency unconditional to bivalent configurations 175

In reality ψj is unknown, thus the conditional probability given by Eq (2) must be 176

considered for all possible ψj . The probability of observing a gamete {pk, pk+1}, 177
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unconditional to ψj , can be expressed as 178

Pr(pk, pk+1) =

wm∑
j=1

Pr(pk, pk+1|ψj) Pr(ψj) (3)

It is important to notice that only a subset of Ψ is consistent with the observed 179

gamete, and consequently Pr(pk, pk+1 | ψj) > 0 only for some ψj ’s. Fig 2 shows a 180

graphical representation of Eqs 2 and 3 for autohexaploid gametes.

Figure 2. Graphical representation of Eqs 2 and 3 for autohexaploid gametes. The
first 15 tables represent the gametic probabilities given different bivalent configurations
ψ. (Eq 2). The rows and the columns indicate gametic configurations for loci k and
k + 1, respectively. For simplification, only the superscripts of the gametic config-
urations were presented. For example, row 123, column 123, represent the gamete(
{P 1

k , P
2
k , P

3
k }; {P 1

k+1, P
2
k+1, P

3
k+1}

)
. Colored cells indicate the probability of gametic

configurations consistent with the bivalent configuration ψ.. The color scale indicates the
number of recombinant bivalents associated to the gametic probability varying from 0
(dark blue) to 3 (light blue). Blank cells indicate non-consistent configurations. The far
right full table represents the sum over all ψ configurations, weighted by their probability
(Eq 3).

181

The probability of observing a specific gamete is always the same for each ψj in this 182

consistent subset (Eq 2). Therefore, under random pairing (assumption ii), our task 183

reduces to finding the number of elements in this subset that are consistent with the 184

observed gamete and multiply Pr(pk, pk+1|ψj) Pr(ψj) by this number. The result is the 185

probability of observing a gamete unconditional to the bivalent configuration. 186

For every gamete, l can change from zero to m/2 recombinant homologous 187

chromosomes. The observed gamete is the result of homologous chromosomes that 188

migrate to one pole of the cell at anaphase I. Since we are assuming that there is 189

separation of sister chromatids during anaphase II, if l = 0 (all chromosomes are of 190

parental type), there is no information about the pairing configuration of the 191

homologous chromosomes that migrate to the opposite pole of the cell. In this situation, 192

there are
(m

2

)
! possible pairing configurations, and the number of possible ψj that can 193

produce gametes with l = 0 is
(m

2

)
!. Therefore, for l > 0, there are

(m
2
− l
)

! possible 194

pairing configurations of parental chromosomes. For the remaining l recombinant 195

chromosomes, the number of possible pairing configurations is l!. Thus, the total 196

number of possible pairing configurations that can produce a specific gamete is 197
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l!
(
m
2 − l

)
!. This is precisely the number of elements in the subset of Ψ consistent with 198

the observed gamete. Given the assumption of no preferential pairing during the 199

formation of bivalents, Pr(ψj) = 1
wm

, the probability of a gamete {pk, pk+1}, 200

unconditional to ψj , can be simplified to 201

Pr(pk, pk+1) =
l!
(
m
2 − l

)
!

wm

(1− rk)
m
2 −l(rk)l

2
m
2

(4)

Map reconstruction via hidden Markov model 202

The construction of a genetic map involves the estimation of the genetic distance and 203

order between markers within linkage groups. If the origin of the haplotypes (i.e., 204

linkage phase) for the parents of the mapping population is unknown, it also needs to be 205

estimated. For several years, hidden Markov models have been proven to be an excellent 206

avenue for obtaining these estimates [17,41,42,53]. The multipoint likelihood obtained 207

using HMMs is employable as a criterion to compare marker orders and judge which one 208

is best, and also to provide a reliable estimation of recombination fraction and linkage 209

phases. [54] defines an HMM as a generative process composed of three well-defined 210

probability distributions: transition, initial state and emission. In genetic mapping 211

context, the transition probability distribution is defined as the probability of having a 212

particular genotype at position k + 1, given the genotype at position k. Using Eq (4) 213

the gametic transition probabilities Pr(pk+1|pk), or the conditional probability of a 214

gamete genotype at loci k + 1 given the gamete genotype at loci k, is simply 215

Pr(pk+1|pk) =
Pr(pk, pk+1)

Pr(pk)

Under random chromosome segregation, both pk and pk+1 can have
(
m
m
2

)
different 216

genotypes. Let Θm
P =

{
θmP,i
}

, i = 1, · · · ,
(
m
m
2

)
denote all possible genotypes that pk can 217

assume for loci k. Also, assume that genotypes in Θm
P are arranged according to the 218

lexicographical order of their superscripts. For example, in an autotetraploid, 219

Θ4
P = {(P 1

k , P
2
k ), (P 1

k , P
3
k ), (P 1

k , P
4
k ), (P 2

k , P
3
k ), (P 2

k , P
4
k ), (P 3

k , P
4
k )} for locus k. After 220

some simplifications (see S1 Appendix) the transition probability, i.e., the conditional 221

probability of a gametic genotype θmP,i in locus k + 1 given the gametic genotype θmP,i′ in 222

locus k, is 223

Pr(pk+1 = θmP,i′ |pk = θmP,i) =
(1− rk)

m
2 −l(rk)l(m

2

l

) (5)

where i, i′ ∈ {1, · · · ,
(
m
m
2

)
}. The initial state and the emission probability distributions 224

will be addressed in the next section (Eqs 7 to 9). 225

Including information of both parents 226

Any given individual in a full-sib population is formed by the union of gametes from
both parents, P and Q. Each parent can form

(
m
m
2

)
different gametes for locus k. Since

the formation of gametes in both parents is independent, the genotypic transition
probability distribution can be written as

Pr(Gmk+1,j′ |Gmk,j) = Pr(pk+1 = θmP,i′ |pk = θmP,i) Pr(qk+1 = θmQ,h′ |qk = θmQ,h)

=
(1− rk)m−lP−lQ(rk)lP +lQ(m

2

lP

)(m
2

lQ

) (6)
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where Gmk,j denotes the genotype of an individual derived from the union of gametes θmP,i 227

and θmQ,h at locus k. The same reasoning applies to Gmk+1,j′ ; i, i
′, h, h′ ∈ {1, · · · ,

(
m
m
2

)
}, 228

j = (i− 1)
(
m
m
2

)
+ h and j′ = (i′ − 1)

(
m
m
2

)
+ h′. lP and lQ denote the number of 229

recombinant bivalents between loci k and k + 1 in parents P and Q, respectively. Let 230

gm =
(
m
m
2

)2
denote the number of possible genotypes derived from the cross between 231

individuals P and Q. For simplification and without loss of generality, let 232

tk(j, j′) = Pr(Gmk+1,j′ |Gmk,j). For a comprehensive example of the transition probabilities 233

and the indexation used in Eq. 6, see Table 8 in S3 Appendix. 234

Given a ploidy level m and a recombination fraction rk, the only information 235

required to obtain tk(j, j′) in Eq (6) is lP and lQ. Since the genotypes in Θm
P and Θm

Q 236

are arranged according to the lexicographical order of their superscripts, it is possible to 237

obtain (lP , lQ) for any given pair (j, j′) using the algorithm presented in S2 Appendix. 238

Although the number of possible transitions between positions k and k + 1 is (gm)2, 239

which can be a very large number even for modest ploidy levels, it is possible to obtain 240

the transition between any specific genotypes in j and j′ without computing the 241

entirety of the transition space. 242

The initial state distribution is the probability of observing a specific genotype. 243

Given the assumption that there is no preferential pairing during the formation of 244

bivalents, a uniform probability density function can be employed as the initial state 245

probability function 246

γj = Pr(Gm1,j) =
1

gm
, j ∈ {1, · · · , gm} (7)

To this point, both transition and initial state distributions consider different allelic 247

variants for all m homologous chromosomes in both parents. This scenario can only be 248

achieved when using fully informative markers. In reality, autopolyploid species may 249

have the same allelic variant in some homologous chromosomes. Besides, even if all 250

homologous have different allelic forms, modern genotyping platforms are usually 251

capable of detecting polymorphisms at the nucleotide level (SNPs), which are essentially 252

biallelic. Due to this lack of identity between the observed data and the full transition 253

space, we make use of the emission function, which is defined as the probability of 254

observing a molecular phenotype given a genotype Gmk,j . 255

The detection of the allelic variants in modern genotyping platforms is based on the 256

abundance of different alternative nucleotides. In the autopolyploid setting, this can be 257

translated as the dosage of a SNP at a specific locus. The dosage of a SNP can be 258

estimated using the ratio between the abundance of its two allelic forms. Several 259

methods were proposed to perform this task including [36], [37] and [38]. Here we 260

introduce a biallelic derivation of the emission probability distribution. Although the 261

function presented here use biallelic information, other distributions can be derived for 262

partial informative multiallelic marker systems following the same reasoning. 263

Let dkP , d
k
Q ∈ {0, · · · ,m} denote the observed dosage of one allelic form in locus k for 264

parents P and Q, respectively. The choice of the allelic form denoted by dkP is arbitrary, 265

as long as the same allelic form is used in dkQ. The dosage observed in parent P can be 266

originated from alleles present in dkP of the m homologous chromosomes. Let 267

φkP = {ϕkP : ϕkP ⊆ Pmk ,#{ϕkP } = dkP } denote a set of size
(
m
dkP

)
containing all possible 268

subsets in Pmk that originate the observed dosage dkP . The operator #{.} is the 269

cardinality of a set. The same reasoning applies for φkQ. For instance, in an 270

autotetraploid, if dkP = 3, the three doses present in locus k can be derived from four 271

distinct subsets φkP =
{

(P 1
k , P

2
k , P

3
k ), (P 1

k , P
2
k , P

4
k ), (P 1

k , P
3
k , P

4
k ), (P 2

k , P
3
k , P

4
k )
}

. Given 272

two particular subsets ϕkP and ϕkQ in φkP and φkQ, each one of the gm genotypic states in 273

the full transition space can be associated to a dosage. The dosage associated to the 274

j-th state is obtained by counting the number of alleles present in the intersection 275
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between the parental allelic set (ϕkP ∪ ϕkQ) and Gmk,j . Thus, the emission function can be 276

defined as 277

bj(O) = Pr(O|Gmk,j , ϕkP , ϕkQ) =

{
1− ε if O = δ(k, j)
ε
m otherwise

(8)

where δ(k, j) = |(ϕkP ∪ ϕkQ) ∩ Gmk,j | and ε denotes the global genotype error rate. In 278

addition to the punctual estimate of the dosage, the genotyping calling methods cited 279

above also provide the probability distribution of the dosages for a particular marker for 280

all individuals of the biparental population. If this information is available, a more 281

general emission function can be derived. Instead of modeling a global error rate ε, we 282

use the prior information provided by the genotyping calling procedure. Let 283

πππk = {πki }(1×m+1) denote the probability distribution vector associated to the dosages 284

0, · · · ,m at position k for a particular individual in the biparental population. For 285

example, πππk =
{

0, 1
6 ,

2
3 ,

1
6 , 0
}

denotes a tetraploid individual with probabilities 1
6 , 2

3 and 286

1
6 of having one, two and three doses, respectively, and zero for the remaining ones. 287

Then, the emission probability function can be written as 288

bj(O) = Pr(O|Gmk,j , ϕkP , ϕkQ,πππk) = πkδ(k,j)+1 (9)

In this case, the observation O can be any dosage from 0 to m and the information 289

about the genotypes will be contained in the probability distribution of the dosages πππk. 290

Thus, the probability of observing any dosage given a genotype Gmk,j associated to a 291

particular dosage δ(k, j) can be obtained by simply assessing the corresponding value in 292

the probability distribution provided by the genotype calling procedure. Notice that Eq 293

8 can be reduced to Eq 9 using the appropriate πππk. For example, in autotetraploids, 294

when the observed dosage for locus k is one, O = 1, πππk =
{
ε
m , 1− ε,

ε
m ,

ε
m ,

ε
m

}
. 295

Moreover, for missing values, it is possible to use the probability distribution of the 296

genotypic classes under polysomic segregation, as presented by [37]. 297

Multipoint likelihood and the estimation of recombination 298

fraction 299

Suppose there are z markers in a homology group in a known order represented by 300

M1, · · · ,Mk, · · · ,Mz. Let r = (r1, · · · , rk, · · · , rz−1) denote the recombination fraction 301

vector between all marker intervals in this sequence. Also, assume linkage phase 302

configurations in parents P and Q denoted respectively by ΦP = (ϕ1
P , · · · , ϕkP , · · · , ϕzP ) 303

and ΦQ = (ϕ1
Q, · · · , ϕkQ, · · · , ϕzQ). The sequence of observations for the z markers is 304

denoted by (O1, · · · , Ok, · · · , Oz) and its underlying probability distributions is denoted 305

by Π = (πππ1, · · · ,πππk, · · · ,πππz). The likelihood of M1, · · · ,Mk, · · · ,Mz can be obtained 306

using Eqs (6), (7) and (9) following the classical forward procedure [54]. Let 307

αk(j) = Pr(O1, · · · , Ok;Gmk,j | r,ΦP ,ΦQ,Π) denote the probability of the partial 308

observation sequence (O1, · · · , Ok) and genotype Gmk,j , j ∈ {1, · · · , gm} given the 309

sequence of recombination fractions r, the linkage phase configurations ΦP and ΦQ and 310

the probability distributions for the sequence of observations Π. The forward procedure 311

follows the steps below: 312

1. Initialization: 313

α1(j) = γjbj(O1), j = 1, · · · , gm (10)

2. Induction: 314

αk+1 (j′) =

 gm∑
j

αk (j) tk(j, j′)

 bj′(Ok+1) (11)

where k = 1, · · · , z − 1 and j′ = 1, · · · , gm 315
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3. Termination: 316

Pr(O1, · · ·Oz|r,ΦP ,ΦQ,Π) =

gm∑
j=1

αz(j) (12)

Then, the likelihood of the model is defined as 317

n∏
i=1

Pr(O1,i, · · · , Oz,i|r,ΦP ,ΦQ,Πi) (13)

where n is the number of individuals in the full-sib population, O1,i, · · · , Oz,i is the 318

sequence of marker observations for individual i and Πi is a (m+ 1)× z matrix where 319

the k-th column denotes the probability distributions associated to the marker Mk, 320

individual i. The multipoint maximum likelihood estimate of r can be obtained using 321

the forward-backward procedure coupled with the EM algorithm [54]. For the backward 322

procedure, consider the variable βk(j) = Pr(Ok+1, · · · , Oz | Gmk,j , r,ΦP ,ΦQ,Π) as the 323

probability of the partial observation sequence from k + 1 to z, given the genotype Gmk,j , 324

the recombination fraction vector r, the linkage phase configurations ΦP and ΦQ and 325

the probability distributions for the sequence of observations Π. The solution to βk(j) 326

was also described by [54] as follows: 327

1. Initialization: 328

βz(j) = 1, j = 1, · · · , gm (14)

2. Induction: 329

βk (j) =

gm∑
j′

tk(j, j′)bj′(Ok+1)βk+1 (j′) (15)

where k = z − 1, z − 2, · · · , 1 and j = 1, · · · , gm 330

To estimate the recombination fraction for all intervals in the marker sequence we
need to define ξk(j, j′) as the probability of state Gmk,j at position k and state Gmk+1,j′ at
position k + 1 given the sequence of observations O1, · · ·Oz and their underlying
probability distributions Π, the recombination fraction vector r and the linkage phase
configurations ΦP and ΦQ

ξk(j, j′ | r) = Pr(Gmk,j ,Gmk+1,j′ | O1, · · ·Oz,Π, r,ΦP ,ΦQ)

=
αk(j)tk(j, j′)bj′(Ok+1)βk+1(j′)

gm∑
j=1

gm∑
j′=1

αk(j)tk(j, j′)bj′(Ok+1)βk+1(j′)

(16)

The recombination frequency rk can be estimated through an iterative process using 331

rs+1
k =

n∑
i=1

gm∑
j=1

gm∑
j′=1

ξk(j, j′ | rs)φ(j, j′)

n
(17)

where ξk(j, j′ | rs) is calculated for individual i, φ(j, j′) =
(lP +lQ)

m is the proportion of 332

recombinations between markers k and k + 1 for individuals with genotypes Gmk,j and 333

Gmk+1,j′ and rs is the vector of recombination fractions in the iteration (s) and rs+1 is 334

the updated recombination fraction vector [55]. 335
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Estimation of linkage phase 336

Let the Cartesian product 337

φ1
P × · · · × φkP × · · · × φzP = {

(
ϕ1
P , · · · , ϕkP , · · · , ϕzP

)
| ϕiP ∈ φiP , i = 1, · · · , z} denotes a 338

set containing all possible linkage phase configurations in parent P . Also, let 339

Φ = {Φu} = (φ1
P × · · · × φkP × · · · × φzP )× (φ1

Q × · · · × φkQ × · · · × φzQ), 340

u = 1, · · · ,
∏z
k=2

(
m
dkP

)(
m
dkQ

)
, denote a set containing all possible linkage phase 341

configurations in both parents. The probability of the linkage phase configurations can 342

be obtained using Bayes’ rule 343

Pr(Φu | O,ΠΠΠ, r) =

n∏
i=1

Pr(O1,i, · · · , Oz,i|r,ΠΠΠi,Φ
u) Pr(Φu)

∑
Φu∈Φ

n∏
i=1

Pr(O1,i, · · · , Oz,i|r,ΠΠΠi,Φ
u) Pr(Φu)

(18)

where O is an array containing the observation for z markers in n individuals, and ΠΠΠ is 344

the underlying probability distribution for all marker observations. Since the prior 345

probability Pr(Φu) can be assumed to be uniform, the posterior probability is 346

proportional to the likelihood of the model, which can be used to select the best linkage 347

phase configuration. Depending on the dosage and number of markers, some of these 348

configurations are equivalent and will result in the same likelihood. The search space for 349

the best linkage phase configuration can be unwieldy depending on the ploidy level, 350

dosage and number of markers. Also, the transition space on the HMM gets larger as 351

the ploidy level increases. To circumvent these problems, we propose a very efficient 352

two-point procedure to reduce the search space for linkage phases. 353

Two-point algorithm for high-level autopolyploids 354

When the linkage analysis is conducted only in two markers (two-point analysis), the 355

information contained in these markers does not propagate into the rest of the chain. 356

Thus, based on the dosage and linkage phase configuration of the markers involved in 357

the analysis, the gm genotypic states present in the full transition space can be 358

collapsed into a small number of states, and a straightforward likelihood function can be 359

derived. It is worthwhile to mention that the estimates obtained using the two-point 360

procedure are the same as those obtained using the multipoint algorithm for two 361

markers. However, the computation is extremely faster. 362

Consider a biallelic marker in an autopolyploid biparental cross with ploidy m. The 363

number of possible genotypic states in the progeny for a given locus at position k is 364

u(dkP ) + u(dkQ) + 1, where the operator u(x) =
∣∣∣∣x− m

2

∣∣− m
2

∣∣ and |.| denotes module. 365

For example, in an autohexaploid biparental cross, if the dosage of the marker at 366

position k in parent P is two (dkP = 2) and in parent Q is three (dkQ = 3), the number of 367

possible genotypic classes expected in the progeny is six. Depending on the linkage 368

phase configuration, each of the gm genotypic states in the full transition space 369

corresponds to one of these expected genotypic classes, as presented in the emission 370

function (Eqs 8 and 9). Thus, in the previous example, all the gm states could be 371

collapsed into six different classes. To perform this reduction of dimensionality, let 372

Dmk ∈ {0, · · · ,m} denote one of the possible genotypes based on the dosage of one 373

individual in the progeny of an autopolyploid biparental cross for position k with ploidy 374

m. The joint probability of Dmk and Dmk′ , for a given genotypic configuration at 375

positions k and k′ can be written as 376

Pr(Dmk ,Dmk′ | ϕkP , ϕkQ, ϕk
′

P , ϕ
k′

Q ) =
∑
j∈Tk

∑
j′∈Tk′

Pr(Gmk′,j′ |Gmk,j) Pr(Gmk,j) (19)
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where Tk = {j | δ(k, j) = Dmk , j = 1, · · · , gm} and δ(k, j) was defined in Eq 8; the same 377

applies to Tk′ . Since in a two-point analysis the probability distribution of the 378

genotypic states in locus k can be assumed to be uniform, i.e., Pr(Gmk,j) = 1
gm

, Eq (19) 379

can be rewritten as a sum of weighted terms from Eq (6) 380

Pr(Dmk ,Dmk′ | rk, ϕkP , ϕk
′

P , ϕ
k
Q, ϕ

k′

Q ) =

m
2∑

lP =0

m
2∑

lQ=0

ζTk,Tk′ (lP , lQ)
(1− rk)m−lP−lQ(rk)lP +lQ(m

2

lP

)(m
2

lQ

)
(20)

where 381

ζTk,Tk′ (lP , lQ) =
1

gm

∑
j∈Tk

∑
j′∈Tk′

h(j, j′; lP , lQ)

h(j, j′; lP , lQ) is 1 if (j, j′) corresponds to (lP , lQ) according to the procedure described 382

in S2 Appendix and zero otherwise. Eq 20 can be expressed in matrix form as 383

Aϕk
P ,ϕ

k′
P ,ϕ

k
Q,ϕ

k′
Q

(rk) =
{

Pr(Dmk = i− 1,Dmk′ = j − 1 | rk, ϕkP , ϕk
′

P , ϕ
k
Q, ϕ

k′

Q )i,j

}
(21)

where Aϕk
P ,ϕ

k′
P ,ϕ

k
Q,ϕ

k′
Q

(rk) is a (m+ 1)× (m+ 1) matrix. Yet, in a two-point analysis 384

with biallelic markers, the linkage phase configuration can be summarized in an ordered 385

pair (wk,k
′

P , wk,k
′

Q ) indicating the number of homologous chromosomes that share allelic 386

variants for loci k and k′ in parents P and Q, respectively. For a given pair (ϕkP , ϕ
k′

P ), 387

wk,k
′

P = #{xkP ∩ xk
′

P }, where xkP and xk
′

P denote the set of homologous chromosomes 388

inherited by parent P in positions k and k′, which can be assessed using the 389

superscripts in ϕkP and ϕk
′

P . #{.} indicates the cardinality of the set. Notice that ϕkP 390

and ϕk
′

P can assume several linkage phase configurations resulting in the same wk,k
′

P . Let 391

Φk,k
′

P = φkP × φk
′

P denote a set containing all possible pairs (ϕkP , ϕ
k′

P ) for a given pair 392

(dkP , d
k′

P ). In this set, there are min{u(dkp), u(dk
′

p )}+ 1 partitions, each one 393

corresponding to a different wk,k
′

P . Fig 3 shows an example of Φk,k
′

P for (dkP = 2, dk
′

P = 2) 394

in an autotetraploid homology group. The size of the set is 36, and it can be subdivided 395

into three partitions where wk,k
′

P = 2, wk,k
′

P = 1 and wk,k
′

P = 0. 396

In a two-point context, the likelihood function derived from any of the configurations 397

belonging to the same partition (same wk,k
′

P ) will be the same. Thus, any of them can 398

be used to obtain the likelihood function for a given wk,k
′

P . Let (ϕkP , ϕ
k′

P )∗ denote one of 399

the possible pairs (ϕkP , ϕ
k′

P ) that correspond to wk,k
′

P . The same reasoning applies to 400

parent Q. Without loss of generality, the two-point likelihood function of biallelic 401

observed molecular phenotypes for markers k and k′ given wk,k
′

P and wk,k
′

Q is 402

L(rk | wk,k
′

P , wk,k
′

Q ) =
n∏
i=1

πππkA(ϕk
P ,ϕ

k′
P )∗,(ϕk

Q,ϕ
k′
Q )∗(rk)(πππk

′
)T (22)

where n is the number of individuals and T denotes transposition of a vector. In Eq 403

(22), rk can be estimated using iterative procedures such as EM or Newton-Raphson. As 404

in Eq (18), it is possible to list all linkage phase configurations and evaluate them based 405

on their likelihood. Here we use the LOD Score (base-10 logarithm of likelihood ratios) 406

in relation to the highest likelihood. Thus, models with high likelihoods will yield LOD 407

Scores close to zero. We also use the LOD Score to asses the evidence for linkage 408

between the two markers using the ratio between the model under Ha : r = r̂ and under 409

the null hypothesis of no linkage Ho : r = 0.5, given a linkage phase configuration. 410

As previously shown, it is possible to enumerate all linkage phase configurations for 411

parent P using the Cartesian product φ1
P × φ2

P × · · · × φzP . To reduce this Cartesian 412
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Figure 3. Example of Φk,k′

P = φkP × φk
′

P for an autotetraploid homology group with

observed dosages dkP = 2 and dk
′

P = 2 homologous chromosomes sharing alleles. In
this case, φkP denotes a set of size six, containing all possible subsets of size two in

P4
k =

{
P 1
k , P

2
k , P

3
k , P

4
k

}
. The same reasoning applies to φk

′

P . The horizontal bars repre-
sent homologous chromosomes forming a homology group and the dots represent allelic
variations of a biallelic marker. The number below each homology group represents the

number of homologous chromosomes that share allelic variants (wk,k
′

P ). This defines

three partitions: wk,k
′

P = 2, wk,k
′

P = 1 and wk,k
′

P = 0. Notice that, from a homology
group within a specific partition, it is possible to obtain the same linkage phase configu-
ration observed in another homology group within that partition by permuting the its
homologous chromosomes

space based on two-point analysis, we add a restriction where all pairs (ϕkP , ϕ
k′

P ) in a 413

sequence of configurations
(
ϕ1
P , · · · , ϕzP

)
must be contained in Φk,k

′

p (η), where Φk,k
′

p (η) 414

is a subset of all partitions in Φk,k
′

p in which the associated LOD Sore is smaller than η. 415

Thus, a reduced subset of linkage phases in parent P based on two-point analysis can be 416

obtained using 417

ΦP (η) =
{

(ϕ1
P , · · · , ϕzP ) | ϕiP ∈ φiP ∧ (ϕkP , ϕ

k′

P ) ∈ Φk,k
′

P (η), ∀ k, k′ ∈ (1, · · · , z), k > k′
}

(23)
It is important to note that it is not necessary to represent the whole Cartesian space 418

{ΦP } to restrict the linkage phase configurations to the condition (ϕkP , ϕ
k′

P ) ∈ Φk,k
′

P (η). 419

This procedure can be done through the sequential addition of markers from M1 to Mz. 420

For each marker Mk′ added to the end of the chain, the ordered pair (k, k′), 421

k′ = 2, · · · , z and k = k′ − 1, · · · , 1, is evaluated and only linkage phase configurations 422

that meet the condition (ϕkP , ϕ
k′

P ) ∈ Φk,k
′

P (η) ∀k ∈ {k′ − 1, · · · , 1} are considered. 423

Some of the configurations selected using the previous procedure can be equivalent 424

once they are products of a permutation of the same set of homologous chromosomes. 425

In order to remove this redundancy, let each one of the selected configurations be 426

represented as a binary matrix of dimensions (m× k′) such as 427

Hu
k′ = {hi,j}(m×k′) =

{
1 if P ij ∈ ϕ

j
P

0 otherwise
(24)
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where u ∈ {1, · · · , U}, U is the number of selected linkage phase configurations, and k′ 428

indicates that Mk′ was the last marker inserted in the chain. The rows of matrix Hu
k′ 429

represent the homologous chromosomes for the u-th linkage phase configuration with 430

the insertion of the k′-th marker at the end of chain; 1 denotes the presence of an allelic 431

variation, and 0 denotes its absence. If a matrix Hk′ could be obtained from a matrix 432

Hu′

k′ just by permuting the rows (permuting the order of the homologous chromosomes), 433

these two linkage configurations yield the same likelihood. Thus, one of the 434

configurations should be excluded from consideration. The same reasoning applies to 435

parent Q. This procedure can be done recursively until all redundancy is eliminated. 436

The reduced linkage phase configurations search space considering both parents is 437

obtained using Φ(η) = ΦP (η)× ΦQ(η), such as #{Φ(η)} � #{Φ}, combined with the 438

redundancy elimination for homology groups. This sequential procedure results in a set 439

of linkage phase configurations containing markers up to Mk′ , which are evaluated using 440

the HMM likelihood. A LOD Score threshold in relation to the most likely configuration 441

is assumed to determine which configurations should be taken into consideration in the 442

next round of marker inclusion (Fig. 4). 443

Figure 4. Example of linkage phase configuration estimation using two-point based
sequential space reduction and HMM evaluation. Only one parent is presented. The
two-point search reduction is composed of two parts: the first one evaluates the LOD
Scores obtained through pairwise recombination fraction likelihoods. The second detects
equivalent configurations by performing all possible permutations of the homologous
chromosomes. The remaining configurations are evaluated using the HMM-based likeli-
hood. In the first step, linkage phase configurations of M1 and M2 are evaluated using
the two-point analysis. Color shades indicate different linkage phase configurations
provided by the two-point analysis. In this example, there are two possible linkage
phases represented by two shades of red. These configurations are not evaluated using
the HMM, once the outcome would be the same obtained using two-point analysis. In
the second step, we evaluate the linkage phases between markers M3 and M2, and M3

and M1. Configurations with LOD scores smaller than η are maintained to be evaluated
by HMM. There are two possible linkage phases given a certain η, represented by two
shades of blue. These two configurations are combined with the configurations from the
previous step, resulting in four configurations evaluated using HMM likelihood. Given
a likelihood threshold, only configurations 1 and 4 are eligible for the next step. The
same reasoning applies for the remaining markers. A final linkage phase configuration is
obtained after inserting the last marker and choosing the one that yields the highest
HMM-based likelihood.

Finally, with all markers inserted, the multipoint likelihood of the whole map is used 444

to find the best configuration among the remaining ones, and the recombination 445

fractions are reestimated. To demonstrate the mechanics of the two-point analysis 446

coupled with the multipoint procedure, a simple example is presented in S3 Appendix. 447

All the methods and procedures described here are available in a software called 448
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MAPPoly, which can be accessed at https://github.com/mmollina/mappoly. 449

Simulations 450

Simulation 1 - local performance under random bivalent pairing: the aim of 451

this simulation study was to evaluate the local performance of the algorithm considering 452

three ploidy levels (m = 4, m = 6 and m = 8) under the mapping model assumptions 453

(i.e., random pairing and bivalent formation). To be in accordance with molecular data 454

that have been made available through sequence technologies, we simulated bi-allelic 455

markers that can be observed in terms of dosage in parents and progeny. Three different 456

linkage phase scenarios were simulated: In scenario A, for each marker, if the dosage 457

was greater than zero, one of the allelic variants was assigned to the first homologous 458

chromosome in the homology group and the remaining variants of the same type were 459

assigned to the subsequent homologous chromosomes. In B, the allelic variant was 460

randomly assigned to one of the first m
2 homologous chromosome and the remaining 461

were assigned to the subsequent homologous chromosomes; in scenario C the allelic 462

variants were randomly assigned to the m homologous chromosomes. Thus, it is 463

expected an increasing difficulty to detect recombination events from scenario A, where 464

the allelic variants were concentrated in the same homologous chromosomes, to scenario 465

C, where they are randomly distributed. Consequently, the phasing and recombination 466

fraction estimation become more challenging from scenario A to scenario C. In real 467

situations, scenarios A and B could occur locally due to lack of recombination between 468

homologous chromosomes since their polyploid formation, whereas scenario C represents 469

regions with higher recombination rates. 470

For each combination of ploidy level and linkage phase scenario, we simulated five 471

different parental haplotypes. In total, 45 parental configurations were considered 472

(3× 3× 5, S4 Figure). For autotetraploid and autohexaploid configurations, we 473

simulated 1000 full-sib populations. For autooctaploids, this number was reduced to 200 474

due to the high demand of computer processing required to reconstruct such maps. 475

Each population was comprised of 200 individuals with one linkage group containing 10 476

markers positioned at a fixed distance of 1 cM between them. For each combination, the 477

percentage of correctly estimated linkage phase configuration in each parent was 478

recorded. Also, for the cases where the linkage phases were correctly estimated, we 479

calculated the average Euclidean distance between the distances of the estimated and 480

simulated maps using
{

(d̂−d)T (d̂−d)
z−1

}− 1
2

where d̂ is the vector of distances for a 481

estimated map, d is the vector of distances for the simulated map, z is the number of 482

markers and T indicates vector transposition. For example, a value of 1 cM indicates 483

that the maps differ 1 cM in average from each other [42]. We used the sequential 484

two-point procedure to reduce the search space assuming that linkage phase 485

configurations with associated LOD < 3.0 should be investigated using HMM 486

multipoint strategies (η = 3). For the remaining configurations evaluated using HMM, 487

we kept those with LOD < 10.0 to be evaluated in the next round of marker insertion. 488

Notice that, although the likelihood obtained for each map could be used as a criterion 489

to evaluate the order of the markers, this was not considered in this simulation due to 490

the computational demanding nature of the multiple simulations added to high ploidy 491

levels, specially m = 8. 492

Simulation 2 - chromosome-wise performance under preferential pairing 493

and multivalent formation: In this simulation study, we evaluated the performance 494

of the algorithm in dense maps, allowing for multivalent formation and preferential 495

pairing. We used Scenario C from the previous study as a template to simulate five 496
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tetraploid and five hexaploid parental haplotypic configurations, each one comprising 497

200 equally spaced markers with a final length of 100.0 cM (S5 Figure). For each 498

parental configuration, we simulated 200 full-sib populations of 200 offspring considering 499

a combination of three levels of preferential pairing (0.00, 0.25 and 0.50) and three levels 500

of cross-like quadrivalent formation proportion (0.00, 0.25 and 0.50). No hexavalents 501

were simulated in this study. For autohexaploids, the multivalent configurations were 502

always composed by a cross-like quadrivalent plus a bivalent. The centromere was 503

positioned at 20.0 cM from the beginning of the chromosome (subtelocentric centromere 504

with arms ratio 1:4) to study the effect of the double reduction at the distal end of both 505

chromosome arms. All simulations were conducted using the software PedigreeSim [56]. 506

In addition to the statistics recorded in Simulation 1, we computed the rate of double 507

reduction observed in each marker for all constructed maps using the “founderalleles” 508

file provided by PedigreeSim. We also evaluate two values for the LOD Score threshold 509

associated to the two-point analysis (η = 3 and η = 5). We used a multipoint LOD 510

Score threshold of 10.0. The R scripts to perform the simulations presented here can be 511

accessed at https://go.ncsu.edu/mappoly-support-info. 512

Simulation results 513

Simulation 1: Table 1 shows the percentage of data sets where the linkage phase 514

configuration was correctly estimated in both parents P and Q. In scenario (A) the 515

method was capable of recovering the correct linkage phase configuration in all 516

situations for all ploidy levels. In scenarios (B) and (C) there was a slight decrease on 517

the ability to correctly estimate the linkage phase configuration, especially for m = 6 518

and m = 8. Although in these cases the percentage of correctly estimated linkage phases 519

was lower, the numbers are considerably high, varying from 100% to 88.8%. This 520

indicates a very good performance to estimate the linkage phase configurations, even 521

using the two-point procedure to narrow the search space.

Table 1. Percentage of data sets where linkage phase configuration was
correctly estimated for parents P and Q in simulation 1.

Ploidy level
A B C

P Q P Q P Q

Autotetraploid
(m = 4)

100 100 99.7 99.8 100 100
100 100 99.7 99.7 99.9 99.7
100 100 100 100 99.7 99.8
100 100 99.9 99.7 99.9 99.9
100 100 99.9 99.8 100 100

Autohexaploid
(m = 6)

100 100 96.6 97.2 96.1 94.6
100 100 97.3 97.5 95.8 95.6
100 100 96.5 96.7 94.7 94.6
100 100 97.3 97.4 96.1 94.7
100 100 97.2 97.4 95.2 94.5

Autooctaploid
(m = 8)

100 100 93.6 94.4 93.2 95.7
100 100 97.6 96.8 92.1 93.9
100 100 96.8 97.6 90.4 89.2
100 100 97.7 98.4 90.6 90.0
100 100 96.9 94.6 88.8 90.6

522

Fig 5 shows the distributions of the average Euclidean distances between the 523

estimated and simulated distance vectors for the correctly estimated linkage phase 524

configuration. In all cases, the majority of the recombination fractions were consistently 525

estimated once the medians of all distributions are very close 0.5, with no practical 526

problems in terms of mapping construction. These results show that, apart from a 527

relatively small percentage of entangled linkage phase configurations, the method 528

successfully performed the phasing and managed to estimate the recombination fraction 529

of 10 markers in all situations evaluated. 530
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Figure 5. Distributions of the average Euclidean distances between the estimated and
simulated distance vectors considering correctly estimated linkage phase configurations.
The order of boxplots is the same as the order of haplotypes in S4 Figure. Each column
indicates the results for different linkage phase configuration scenarios, namely, A, B and
C, and each row indicates a different haplotypic configuration within three ploidy levels.

Simulation 2 The proportion of correctly estimated linkage phase configurations for 531

the dense chromosome-wise map is shown in Table 2. In general, results for tetraploid 532

maps were superior when compared to results for hexaploid maps. It is also possible to 533

observe a better performance for the threshold level η = 5 in comparison to η = 3. 534

Similarly to Simulation 1, maps resulting from configurations with no preferential 535

pairing or quadrivalent formation showed a high proportion of correctly estimated 536

linkage phase configurations. Results ranged from 100% to 99% for tetraploid maps and 537

from 100% to 84% for hexaploid maps. Different levels of quadrivalent formation rate 538

had no substantial influence in estimating the correct linkage phase configurations in 539

tetraploids. Within the preferential pairing level 0.0, the percentage of maps with 540

correct linkage phases varied from 100% to 90%. For hexaploids, there was a decrease in 541

this percentage as the quadrivalent formation increases from 0.0 to 0.50, with 542

proportions varying from 100% to 70.5%. Especially for autohexaploids, there was a 543

considerable variation between the five simulated configurations. This occurred, because 544

the effect of the quadrivalent formation can be more pronounced depending on the level 545

of information contained in a particular configuration. Also, the use of a more stringent 546

two-point threshold η = 5, improved the performance of the phasing algorithm. 547

Within the preferential pairing level 0.25, results showed decay of correctly 548

estimated linkage phases, which was more pronounced for hexaploid cases with 549

threshold level η = 3, reaching a minimum value of 52.5% for parent Q in configuration 550

1. Again, the use of a higher two-point threshold level, η = 5, helped to improve this 551

number to 68.5%. For preferential pairing level 0.50, there was a clear distinction 552

between the results in tetraploid and hexaploid cases. In the former, the effect was not 553

as pronounced as it was in the latter, where in several cases, the proportion of correctly 554

estimated linkage phases was close to zero. As expected, the usage of a higher threshold 555

level of η = 5 helped to improve the number of corrected estimated linkage phase 556

configurations. Interestingly, for both cases with preferential pairing (0.25 and 0.50), 557

the formation of quadrivalents had an overall tendency to improve the algorithm’s 558

performance. This improvement was expected because when a quadrivalent is formed, 559

each chromosome involved can exchange segments with two others, providing more 560

information regarding their phase configuration. 561

Given a correctly estimated linkage phase, the recombination fractions were 562

consistently estimated for all levels of preferential pairing with no quadrivalent 563

17/28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415232doi: bioRxiv preprint 

https://doi.org/10.1101/415232
http://creativecommons.org/licenses/by/4.0/


Table 2. Percentage of data sets where linkage phase configuration was
correctly estimated for parents P and Q in simulation 2.

Preferential
pairing 0.00 0.25 0.50

Quadrivalent
formation 0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50

Autotetraploid

η = 3 P 100.0 99.0 91.5 98.5 98.5 90.0 80.5 93.0 87.5
100.0 99.5 99.5 98.5 99.5 97.5 57.5 88.5 97.0
99.5 97.5 98.5 100.0 98.5 94.0 55.0 85.5 94.5

100.0 100.0 99.5 99.0 98.0 98.0 60.5 86.5 93.0
99.5 99.5 97.0 98.5 97.0 95.5 67.5 84.5 97.5

Q 100.0 98.5 90.0 100.0 97.0 90.0 60.0 91.5 86.0
100.0 100.0 98.0 99.5 100.0 99.0 65.0 89.0 93.5
100.0 98.5 98.0 97.0 98.5 94.5 41.0 82.0 93.5
100.0 100.0 99.0 99.5 98.0 98.0 56.5 84.5 90.0
99.5 99.5 98.0 99.0 98.5 94.5 58.0 82.0 94.0

η = 5 P 100.0 99.5 93.0 100.0 99.5 95.0 98.0 99.0 95.0
100.0 100.0 100.0 100.0 100.0 100.0 90.0 99.5 99.0
100.0 99.5 100.0 100.0 100.0 99.5 86.0 98.5 100.0
100.0 100.0 100.0 99.5 100.0 99.5 86.5 98.5 100.0
100.0 100.0 100.0 100.0 100.0 100.0 90.5 96.0 100.0

Q 100.0 99.5 93.0 100.0 99.0 94.0 88.0 98.5 95.5
100.0 100.0 100.0 100.0 100.0 100.0 91.5 99.5 99.5
100.0 99.5 100.0 99.5 100.0 99.0 85.0 98.0 100.0
100.0 100.0 100.0 99.5 100.0 99.5 86.0 97.5 98.5
100.0 100.0 99.5 100.0 100.0 100.0 92.0 96.0 99.0

Autohexaploid

η = 3 P 84.0 78.5 70.5 69.0 63.5 61.0 2.5 10.5 19.0
99.0 94.0 91.0 93.0 84.5 80.0 6.5 16.0 22.0
89.0 94.0 88.0 80.0 84.0 80.5 10.5 16.0 32.5
93.0 90.5 86.0 88.5 84.0 80.0 9.0 16.5 28.5
96.0 92.5 91.5 89.5 94.0 87.5 19.0 30.5 44.5

Q 85.0 81.0 71.0 68.0 52.5 57.5 1.5 3.5 8.5
99.0 95.0 91.0 86.5 90.0 88.5 9.0 28.0 37.5
90.0 90.0 86.0 79.0 82.0 77.0 9.5 18.0 28.0
96.5 92.5 89.5 90.0 89.0 89.0 25.5 35.5 41.0
95.0 92.0 92.5 89.5 91.0 88.0 16.0 23.0 39.0

η = 5 P 86.0 84.5 75.5 77.5 69.5 72.5 27.0 36.5 52.5
100.0 97.5 96.5 98.5 98.0 91.0 55.5 70.5 74.5
91.5 95.5 93.0 90.5 94.5 89.5 68.0 68.5 77.5
96.5 94.0 91.0 99.5 99.0 96.5 65.0 78.5 85.0
98.0 98.5 100.0 97.5 99.0 99.0 73.0 87.5 91.0

Q 86.5 83.5 75.0 69.5 68.5 72.0 17.5 20.0 39.5
100.0 99.5 99.0 100.0 99.5 100.0 74.0 81.0 92.5
91.5 95.5 93.0 91.0 95.0 89.5 67.5 71.5 77.0
99.0 97.5 93.5 100.0 100.0 99.5 80.0 89.0 92.0
98.0 98.5 100.0 97.5 99.0 99.0 83.0 83.0 90.5

formation. However, they were overestimated in the presence of quadrivalent formation. 564

This effect was mainly observed at the terminal regions of the chromosome, especially in 565

the long arm, where double reduction is more pronounced (Fig. 6). In this case, 566

tetraploid maps were the most affected. This is in agreement with our expectations 567

since in autohexaploid simulations, there was always the formation of a bivalent which 568

was not involved in the double reduction process (although the rates of double reduction 569

were very similar in both ploidy levels, Fig. 6). In addition to the quadrivalent, the 570

bivalent serves as an extra source of information to access the recombination events. 571
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The average Euclidean distances reflect the overestimation of recombination fractions in 572

cases with quadrivalent formation, showing distributions with higher medians and 573

interquartile ranges in tetraploid cases when compared to hexaploids (S6 Figure). 574

Nevertheless, all the Euclidean distances distributions were located relatively close to 575

zero, with a maximum value of 1.41 cM, indicating that although we observed 576

overestimated recombination fractions towards the terminal ends of the chromosome, 577

they were equally distributed, causing no severe disturbances in the final map. S7 578

Figure shows an example of the effect of increasing quadrivalent formation rate in 579

autotetraploid and autohexaploid maps. As the markers get further away from the 580

centromere, the recombination fractions become overestimated. 581

Figure 6. Comparison of estimated versus simulated maps given a correct estimation of
linkage phases in simulation 2. Smoothed conditional means of the observed average rate
of double reduction is presented along with the simulated chromosome. The centromere
was positioned at 20 cM from its beginning (vertical dashed line). Upper panels show
the results for tetraploid simulations while lower panels show the results for hexaploid
simulations. Three levels of preferential pairing (0.00, 0.25, 0.50) and three levels of
quadrivalent formation rate (0.00, 0.25, 0.50) were simulated. The lines superimposed to
the scatter plots are smoothed conditional means of the distances using a generalized
additive model. Both two-point thresholds were considered since they only affect the
phasing procedure.
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Discussion 582

Although the concept of linkage mapping is relatively simple, the combinatorial 583

properties and increasingly missing information that arise from the multiple sets of 584

chromosomes make the construction of genetic maps in high-level autopolyploids 585

extremely challenging. In this work, we frame and solve two fundamental steps towards 586

the construction of such maps, namely multipoint recombination fraction estimations 587

and linkage phase estimation. Our method can be applied to biallelic codominant 588

markers and, due to the flexibility of the HMM framework upon which it was derived, it 589

can be extended to any type of molecular marker. The HMM used in this work takes 590

into account the linkage phase configuration of the whole linkage group to estimate the 591

recombination fractions between adjacent markers. An efficient two-point approach was 592

also presented to reduce the search space of linkage phase configurations. As result, our 593

method provides the likelihood of the model, which can be used as an objective function 594

to compare different map configurations, including linkage phases and marker order. 595

When considering experimental populations, our method is a generalization, for any 596

even ploidy level, of well established genetic linkage mapping methods. For diploid 597

(m = 2) populations derived from biparental crosses, our method is equivalent to the 598

influential Lander and Green algorithm [41]; considering full-sib phase-unknown crosses, 599

it is equivalent to [57]. For tetraploids (m = 4) the method is equivalent to [17], 600

disregarding double reduction. Thus, it encapsulates the essence of the HMM-based 601

genetic mapping methods in a single one. 602

To assess the statistical power of our method, we conducted two simulation studies. 603

Simulation 1 comprised three ploidy levels and three linkage phase configuration 604

scenarios with ten markers. We demonstrated that our model was capable of correctly 605

estimating the majority of parental linkage phase configurations and recombination 606

fractions, even for complex linkage phase configurations and high ploidy levels. These 607

well-assembled regions could function as multiallelic codominant markers which 608

propagate their information through the HMM to the rest of the chain, improving the 609

quality of the final map. In simulation 2, we analyzed a sequence of 200 markers in 610

combinations of different levels of preferential pairing and rates of quadrivalent 611

formation. In this situation, quadrivalent formation rate had a marginal effect on the 612

phasing procedure, whereas preferential pairing reduced its performance, especially for 613

autohexaploids. The usage of a higher two-point threshold (η) improved the linkage 614

phase estimation in all cases. This fact indicates that the haplotype phasing is more 615

accurate when HMM-based likelihood is used as objective function to evaluate linkage 616

phases. We also observed that quadrivalent formation yield overestimated 617

recombination fractions between adjacent markers located further away from the 618

centromere. This behavior was expected since our model disregards double reduction 619

and, consequently, was not able to correctly estimate the number of crossing over events 620

when this phenomenon was present. Although our model is robust enough to cope with 621

low levels of preferential pairing and tetravalent rate formation, it is possible to include 622

both phenomena in specific points of its derivation. Preferential paring can be included 623

in Eq 4 by not considering Pr(ψj) as uniformly distributed. Double reduction can be 624

included in the definition of the genotypic states in the full transition space (Eq 5). 625

These two phenomena add extra layers of complexity to the genetic mapping of 626

polyploid organisms with high ploidy levels and should be addressed in future studies. 627

The difficulty in correctly estimating entangled linkage phase configurations lies in 628

two major aspects of the experiments studied here: (i) the outbred nature of the 629

experimental crosses and (ii) the incomplete information of the markers based on dosage 630

(i.e., by not being multiallelic). In experimental population derived from inbred lines, 631

the origin of the haplotypes can be easily inferred from the genetic design. However, 632

obtaining pure inbred lines in high-level autopolyploids has been proven to be 633
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impractical due to the high number of crosses and generations necessary to achieve 634

homozygous genotypes and to the inbred depression which some species undergo [61]. In 635

our method, the linkage phase configuration is obtained by comparing the likelihood of 636

a set of models with different linkage phase configurations (Eq 18). The capability of 637

estimating the correct configuration is directly related to the information contained in 638

the marker data. Some of these limitations can be overcome through the use of HMMs 639

which take into account the information of a whole linkage group. 640

HMMs provide an excellent avenue to assemble genetic maps in complex scenarios, 641

but they are remarkably computational demanding and, in some cases, unfeasible to use. 642

Apart from parallel computing, which can greatly speed up the estimation process and 643

is ubiquitous nowadays, the usage of two-point approaches is a viable option to reduce 644

the dimension of the original problem efficiently. The dimension reduction is achieved 645

by collapsing genotypic states in the full transition space according to the marker 646

information. However, in several cases, the two-point based method can result in low 647

statistical power which is related to the amount of information contained in markers in 648

certain combinations of allelic dosage and linkage phase configurations. This lack of 649

information is exacerbated as markers get distant from each other. Fig 7 shows eight 650

possible configurations of pairs of markers in one autohexaploid parent. Considering the 651

other parent non-informative, we computed the Fisher’s information equations based on 652

the likelihood Eq (22) [15,33,62]. The equations were plotted as a function of the 653

recombination fraction. The information profiles are related to the number of different 654

haplotypes present on the parental configuration for a given marker dosage. For 655

instance, for two single-dose markers (Fig 7, panel I), when the alleles share the same 656

homologous chromosome (wk = 1), it is always possible to detect if the gamete contains 657

at least one recombinant chromosome. However, when the alleles are in different 658

homologous chromosomes (wk = 0), the detection of recombination events is limited to 659

meiotic configurations containing a bivalent where these chromosomes paired to each 660

other. Additionally, the model proposed here contemplates both parents on the analyses, 661

leading to more complicated linkage phase configurations and information equations. 662

The multipoint procedure improves the power to detect genetic linkage since the 663

information on the markers depends not only on the observed molecular phenotype for 664

the locus in question but also on the accumulated information along the Markov chain. 665

Fig 7(I) shows that maps using only single-dose markers are limited to the detection of 666

markers whose allelic variants are the same homologous chromosome (wk = 1). Thus, 667

the homologous chromosomes are treated as separate entities, instead of belonging to a 668

homology group, and it is not possible to assemble haplotypes on the parents 669

considering all homologous chromosomes (i.e., linkage phase estimation). Due to the 670

lack of appropriate statistical methods, the use of diploid approximations considering 671

single-dose markers has been the method of choice to build genetic maps in high-level 672

autopolyploids. In our experience with construction of genetic maps in 673

sugarcane [63–66], it is possible to anticipate a great gain of quality in those maps when 674

using the new method proposed in this work. We also expect the same improvement for 675

other high-level autopolyploid species. 676

The intrinsic lack of information in biallelic markers can be circumvented using 677

multiple markers clustered in linkage disequilibrium (LD) blocks to assemble multiallelic 678

marker data. Two different approaches can be used: the first one relies on the usage of 679

high throughput molecular data and subsequent estimation of pairwise recombination 680

fraction between the markers. In this case, due to the density of the data, closely linked 681

markers are expected, and the Fisher’s information for the two-point maximum 682

likelihood estimator is high (Fig 7). Thus, the determination of linkage phase 683

configurations between markers in small blocks can be successfully achieved by using 684

two-point methods (for a detailed example, see S3 Appendix). Once these LD blocks are 685
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Figure 7. Fisher’s information for the two-point maximum likelihood estimators in
different combinations of dosages and linkage phases configurations considering one
informative hexaploid parent. (I) single-dose markers; alleles share 1 and 0 homologous.
(II) double-dose markers; alleles share 2, 1 and 0 homologous. (III) triple dose markers;
alleles share 3, 2, 1 and 0 homologous.

well assembled, including the correct linkage phase configuration of both parents, they 686

can be regarded as multiallelic markers. Simulation 1 showed that using two-point 687

procedures coupled with the multipoint analysis is a trustworthy way to assemble 688

haplotypes with closely linked markers. Another approach relies on a priori information 689

about markers belonging to the same genomic region where recombination events can be 690

neglected. This information can be obtained using any reference such as genomic or 691

transcriptomic information. In this case, the recombination fraction can be assumed to 692

be r = 0 for any pair of markers belonging to the LD block and the linkage phase 693

configuration can be obtained using a trivial Markovian process, with transition 694

probabilities tk(j, j′) = 1, ∀ j = j′ and tk(j, j′) = 0 otherwise. Therefore, the biallelic 695

information contained in SNP markers can be combined to assemble haplotypes which 696

will represent alleles allocated in different homologous chromosomes. 697

The multipoint method proposed herein rely on biallelic marker information. 698

However, the emission function (Eq 9) can be modified to incorporate multiallelic 699

observations. When using multiallelic markers, the number of states that should be 700

visited in the Markov model can be significantly reduced, making the HMM procedure 701

much more efficient. Ideally, in a full-sib population, the number of different alleles 702

should be as high as two times the ploidy level (fully informative). In this case, the 703

Markov model would be fully observed and, the task of estimating recombination 704

fraction reduces to count the number of recombinant events given a linkage phase 705

configuration. Since our algorithm does not need the entire transition space to work, 706

only a subset of states should be visited, making the calculation much faster when 707

compared to the biallelic case. 708

It is worthwhile to mention that, in this paper we do not address the step iii 709

mentioned in the Introduction section, namely, ordering of genetic markers. The genetic 710

mapping literature has an extensive body of methods to address the problem of ordering 711

markers. Several works evaluated some of these methods [42,67,68] and others were 712

proposed since then [47–49]. A fundamental lesson learned from these works is that, in 713
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complex linkage phase configurations with partially informative markers, methods based 714

on multipoint likelihood provide better results when compared with two-point based 715

methods. However, the multipoint procedures are highly compute-intensive. In the case 716

of high-level autopolyploids, while it is important to rely on the multipoint estimates to 717

recover the lack of information in the biallelic markers, it is also fundamental that the 718

method is fast enough to cope with hundreds of markers per linkage group. One 719

possible solution to these problems is to use two-point information to build marker 720

blocks with a small number of SNPs in high linkage disequilibrium using some 721

clusterization process. The linkage phase within these blocks can be estimated using a 722

combination of two-point and HMM procedures. Then, these marker blocks can be used 723

as multiallelic markers to reduce the number of states that need to be visited in the 724

HMM. The more informative the assembled marker blocks are, the faster is the 725

reconstruction of the mapping using the HMM. Moreover, in several situations, genomic 726

and transcriptomic references are available and often provide, at least, the local physical 727

order of SNPs. Thus, instead of using two-point information to cluster the SNPs into 728

marker blocks, they can be assembled using genomic or transcriptomic references. While 729

this paper provides fundamental steps towards the construction of complete genetic 730

maps in high-level autopolyploids using both multipoint and two-point procedures, the 731

practical aspects and implications will be addressed in future studies. 732

Once the map is assembled, it is a trivial exercise to obtain the probability of a 733

specific genotype at any map position, conditioned on the whole linkage group. Using 734

this information, it is possible to compute the probability of any unobserved genotype 735

given the genetic map. These conditional probabilities are the basis for answering a 736

series of fundamental questions about quantitative trait loci analysis in high-level 737

autopolyploids, such as the effect of the dosage level on the variation of quantitative 738

traits, the interaction of the alleles within (dominance effects) and between loci 739

(epistatic effects). Therefore, the present study will provide a sound basis for the next 740

step of genetic studies in high-level autopolyploids, trying to unveil the complex 741

structure of autopolyploid genomes through genetic mapping and genome assembling, 742

and even for studying the genetic architecture of quantitative traits based on QTL 743

mapping. 744

Supporting information 745

S1 Appendix. Algebraic simplifications for transition probabilities. 746

S2 Appendix. Algorithm for obtaining lP and lQ given two genotypic 747

indices. 748

S3 Appendix. Example of usage of the two-point and multipoint 749

procedures. In order to show the mechanics of the mapping reconstruction using the 750

combination of two-point and multipoint strategies, we present a simple full-bib 751

autotetraploid mapping population example. This example is easily extendable to 752

higher ploidy levels, since it does not involve matrix forms whose high dimensions would 753

preclude the operations. 754

S4 Figure. Haplotypes for simulation study 1 Simulated haplotypes with 10 755

markers and three ploidy levels, namely autotetraploid (m = 4), autohexaploid (m = 6) 756

and autooctaploid (m = 8). 757
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S5 Figure. Haplotypes for simulation study 2 Simulated haplotypes with 200 758

markers and two ploidy levels, namely autotetraploid (m = 4) and autohexaploid 759

(m = 6). 760

S6 Figure. Boxplots of the average Euclidean distances between the 761

estimated and simulated distance vectors for simulation study 2 762

S7 Figure. Examples of autotetraploid and autohexapoloid maps 763

estimated from datasets with three quadrivalent formation rates: 0.00, 0.25 764

and 0.50 765
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