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Abstract

Even across genomes of the same species, prokaryotes exhibit remarkable flexibility in gene content.
We do not know whether this flexible or “accessory” content is mostly neutral or adaptive, largely
due to the lack of explicit analyses of accessory gene function. Here, across 96 diverse prokaryotic
species, | show that a considerable fraction (~40%) of accessory genomes harbours beneficial
metabolic functions. These functions take two forms: (1) they significantly expand the biosynthetic
potential of individual strains, and (2) they help reduce strain-specific metabolic auxotrophies via
intra-species metabolic exchanges. | find that the potential of both these functions increases with
increasing genome flexibility. Together, these results are consistent with a significant adaptive role for
prokaryotic pangenomes.

Author Summary

Recent and rapid advancements in genome sequencing technologies have revealed key insights into
the world of bacteria and archaea. One puzzling aspect uncovered by these studies is the following:
genomes of the same species can often look very different. Specifically, some “core” genes are
maintained across all intraspecies genomes, but many “accessory” genes differ between strains. A
major ongoing debate thus asks: do most of these accessory genes provide a benefit to different
strains, and if so, in what form? In this study, | suggest that the answer is “yes, through metabolic
interactions”. | show that many accessory genes provide significant metabolic advantages to different
strains in different conditions. | achieve this by explicitly conducting a large-scale systematic analysis
of 1,339 genomes across 96 diverse species of bacteria and archaea. A surprising prediction of this
study that in many ecological niches, co-occurring strains of the same species may help each other
survive by exchanging metabolites exclusively produced by these different accessory genes. More
pronounced gene differences lead to more underlying metabolic advantages.
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Introduction

Prokaryotes exhibit remarkable genome flexibility, with strains from the same species often
containing dramatically different gene content'*. Intraspecific differences in gene content are often
characterized by a “core” genome (genes common to all strains) and “accessory” genome (genes
found in a fraction of strains)®. While the core genome might represent a set of species-specific
indispensable genes, we do not yet understand whether the accessory genome of a species is the
result of neutral or adaptive evolution. Indeed, this is the subject of an ongoing debate: do the
majority of prokaryotic accessory genes have negligible or positive fitness effects, i.e. are they
neutral or adaptive?

Recent population genetics arguments support roles for both neutral and adaptive evolution as
possible factors driving accessory genome evolution®®. For example, microbial species with more
accessory genes also tend to have larger effective population sizes, as expected of genetic variation
in a population under neutral evolution®. On the other hand, models in which microbial genomes
evolve in large, migrating populations, suggest that acquired genes can often be beneficial, as
expected under adaptive evolution’. However, these studies have only addressed broad aspects of
microbial populations such as effective population size, migration, and the fitness effects of gene
loss and gain. In response, subsequent criticisms of these studies have strongly expressed the need
for more functional, gene-explicit and ecological analyses'®''. Here | present the first such
systematic analysis of 96 phylogenetically diverse prokaryotic species, which suggests that
prokaryotic accessory genomes often provide significant metabolic benefits.

| chose to study metabolism as a possible explanatory factor for three reasons. (1) Metabolic genes
dominate the functional content of accessory genomes™ (supplementary figure 8a). (2) Metabolic
interactions between microbes—especially interdependencies—can often be adaptive'®'. For
instance, microbes that obligately cross-feed, i.e. that critically depend on exchanging metabolites
with each other, can grow faster than their wild-type counterparts'. Such a fitness benefit can also
drive genomes, in many cases, to lose genes and become metabolically dependent', If different
genes are lost between different conspecific strains, this can lead to both metabolic
interdependence, as well as accessory genomes (since different strains will have different metabolic
repertoires)’®. (3) Databases such as KEGG contain already-curated genomes for several
fully-sequenced strains. KEGG contains high-quality gene and reaction annotations, allowing us to
accurately predict the biosynthetic capabilities of each strain under different conditions’.

In this study, | ask to what degree accessory genes can metabolically benefit conspecific strains. For
this, | have used genome-scale metabolic network reconstructions of 1,339 prokaryotic strains
(corresponding to 92 bacterial and 4 archaeal species) from the KEGG database over 59 distinct
nutrient environments. In general, my analyses reveal two beneficial roles for the accessory metabolic
content of prokaryotes. First, | find that the accessory genome of most species harbours extensive
biosynthetic potential, with several accessory genes providing strains with additional nutrient
utilization abilities. Second, | find that pairs of strains from the same species often display a
remarkable potential for metabolic interdependence, which scales with the amount of accessory
genome content. These interdependencies have the ability to alleviate strain-specific auxotrophies in
a particular niche through the exchange of secreted metabolites. My results are, from a metabolic
standpoint, consistent with a possible adaptive evolution of accessory genomes.

Results and Discussion

To obtain a large set of species pangenomes, | first collected a list of all prokaryotic species in the
KEGG GENOME database, and filtered those that had complete genomes for 5 or more conspecific
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77 strains. This gave me 1,339 genomes (96 species), which | used in all my subsequent analyses
78 (supplementary table 1). To account for potential biases due to uneven phylogenetic sampling, |
79 verified that a more restrictive choice of one species per genus did not significantly impact my results
80 (55 species; supplementary figure 1). For each strain, | then extracted all annotated genes and
81 metabolic reactions from the KEGG GENES and REACTION databases, respectively. To quantify
82 accessory genome content for every species, | used the well-studied genome fluidity measure, ¢'".
83 For this, | calculated, across each pair of conspecific strains, the fraction of all genes in the pair that
84 were unique to each strain. The average of this fraction over each species gave me its genome
85 fluidity ¢ (see Methods).

86 | constructed metabolic networks for every individual strain, where each network contained the set of
87 reactions corresponding to the strain’s genome in KEGG. | included gap-filled reactions when
88 curated models were available'®, though | verified that their addition did not impact my results
89 (supplementary figure 2). | used these reaction networks to infer the biosynthetic capabilities of each
90 strain under several different conditions. To define these conditions, | selected 59 different carbon
91 sources, previously shown and commonly used to sustain the growth of diverse microbial
92 metabolisms in laboratory experiments®2' (supplementary table 2). | associated with each carbon
93 source a different nutrient environment or condition. In each condition, | included exactly one of the
94 59 carbon sources, say glucose, along with a set of 30 commonly available metabolites, which |
95 assumed were always available (for example, water and ATP; supplementary table 3).

96 To assess biosynthetic capability, | curated a list of 137 crucial biomass precursor molecules, often

97 essential for growth (hereafter, “precursors”) from 70 experimentally verified high-quality metabolic

98 models? (supplementary table 4). Finally, to calculate what each strain could synthesize in a

99  particular environment, | used a popular network expansion algorithm: called scope expansion?24,
100 This algorithm determines which metabolites each strain can produce — its “scope” — given an
101 initial seed set of already available metabolites. To start with, only those reactions whose substrates
102 are available in the environment can be performed, and their products constitute the initial set of
103 metabolites that can be produced. These metabolites can then be used as substrates for new
104 reactions that can then be performed, and step by step, more metabolites can be produced. When
105 no new reactions can be performed, the algorithm stops, giving the full set of metabolites that could
106 be synthesized in the given environment. Such a calculation sidesteps the need for arbitrary
107 assumptions of binary (yes/no) growth and optimality typically used in more complex metabolic
108 modeling approaches such as flux balance analysis?® and is well-known for its ability to infer what
109 metabolic networks can synthesize in diverse conditions?®?’,

110 | first investigated the capabilities of individual strains. Specifically, | was interested in the extent to
111 which the accessory genes in each strain expanded the set of precursors that could be synthesized.
112 For each species, | calculated, via network expansion, the list of precursors that could be produced
113 per strain per condition. | then counted how many unique precursors each strain could synthesize
114 across all conditions, i.e. by the accessory genes alone. From this, | computed, for every species, its
115 accessory metabolic capacity a, defined as the average number of precursors (per strain per
116 condition) produced exclusively due to the accessory genome.

117 | found that while for 18 species this quantity was zero, for the majority of prokaryotic species (81%),
118 this number lay between 0.1 and 15.0 (mean 3.1; median 2.0). Further, o scaled positively with
119 genome fluidity ¢ (Spearman's rho = 0.44; P value = 7 x 10°¢; figure 1).

120 Since | observed that the accessory genome of different strains typically imparted different
121 biosynthetic capabilities to different strains, | wondered if, in the same conditions, metabolic
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122 interactions between conspecific strains could further expand these capabilities. This could, for
123 instance, indicate a potential dependence of an auxotrophic strain on another strain, i.e. a strain that
124 cannot produce a crucial precursor in an environment. Such auxotrophies have been previously
125 shown for example, in different strains of Escherichia coli co-inhabiting the human gut®.

126 For each pair of conspecific strains in each condition, | calculated a metabolic dependency potential
127 (MDP), defined as the average number of new precursors each strain has the potential to synthesize
128 when grown as a pair versus alone. Here | assessed, in every pair, which metabolites that could be
129 produced and secreted by one strain could subsequently allow the production of a new precursor in
130 the other strain that it would not otherwise be able to make (i.e. was auxotrophic for). Note that this
131 method does not count those metabolic interactions that can provide extra (functionally redundant)
132 pathways to produce a precursor and supplement growth, and is thus more likely to represent actual
133 or obligate dependencies. | verified that my approach can successfully predict such obligate
134 dependencies by comparing with some well-documented intra- and inter-species pairs'142°3! (sge
135 Methods) (supplementary figure 3).

136 | found that while | could not detect any dependency potential for 17 species, surprisingly, the
137 majority of species (82%) showed an MDP per strain per condition between 0.1 (for Bacillus
138 thuringiensis) and 3.3 (for Ralstonia solanacearum), with a mean 1.7 and median 1.4. Interestingly, the
139 17 species for which | could not detect any MDP matched those with zero « (the leftover Legionella
140 pneumophila showed low MDP = 0.5). Over all tested pairs with detected dependency potential
141 (48%), commensal interactions were more common than mutualisms (29% versus 19%; figure 2b).
142 This is because, in species with detected dependencies, not all pairs show dependency potential (on
143 average 46% conspecific pairs do). The auxotrophies relieved by these dependencies varied from
144 those for amino acids, vitamins, carbohydrates, and organic acids, among others (figure 2c).

145 Strikingly, like «, MDP also scaled positively with genome fluidity ¢, suggesting that greater amounts
146 of accessory content can potentially sustain more conspecific metabolic dependencies (Spearman's
147 rho = 0.56, P value = 4 x 107 figure 2a). For both « and MDP, considering medians instead of means
148 did not impact my results (for a: Spearman's rho = 0.38, P value = 10*; for MDP: Spearman's rho =
149 0.51, P value = 107; supplementary figures 4 and 5). To verify that such potential conspecific
150 dependencies are indeed ecologically realizable, | repeated my analysis, this time restricting it to
151 those genomes, which were known to co-occur in microbial communities (29 strains across 14
152 species; see Methods). | found that my observed trend was still valid, namely MDP still scaled with ¢,
153 suggesting that several auxotrophies may indeed be reduced through within-species metabolic
154 exchanges in nature (Spearman’s rho = 0.56, P value = 0.03; supplementary figure 6).

155 Given the extent to which | detected the potential for obligate metabolic interactions between
156 conspecific strains, | wondered whether such interactions are possibly common among prokaryotes.
157 For this, | extended my study to analyze metabolic dependency potential between inter-specific
158 strains (see Methods). | found that, indeed, strains from all species can metabolically depend on
159 strains from at least one other species to alleviate potential auxotrophies across many different
160 environments (with MDP ranging from 1.6 to 3.2, with mean 2.2; supplementary figure 7).
161 Interestingly, | found that these interspecific metabolic interactions often involve accessory metabolic
162 genes as well.

163 Taken together, my results suggest that a considerable fraction of prokaryotic accessory genomes
164 contains potentially beneficial metabolic functions (upto 70% of accessory genes per strain across
165 my study, with median 40%; see supplementary figure 8d). Specifically, | found that the accessory
166 “metabolome”: (1) expands a genome’s biosynthetic potential, possibly allowing for niche-specific
167  adaptations®32-3%; and (2) reduces potential auxotrophies via obligate metabolic interactions, also
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168 explaining how conspecific strains can coexist despite high competitive potential®***”. The accessory
169 genes that impart these functions are often different (median overlap 10%), suggesting that these are
170 indeed distinct, non-redundant benefits. Moreover, apart from these additional biosynthetic abilities,
171 the y-intercept for genome fluidity (at ¢ = 0.03 for both « and MDP) provides an estimate of
172 metabolic redundancies (such as extra pathways).

173 My findings may additionally help explain the following observations: (1) metabolic functions are
174 enriched in accessory genomes (median 50% in accessory versus 38% in core; supplementary figure
175 8c); and (2) the variation in accessory metabolic genes exceeds the variation in genes of many other
176 functions (metabolic variation being dominant in 81% of examined cases; supplementary figure 8b).

177 Previous studies have suggested that the evolution of metabolic dependencies likely occurs via
178  adaptive gene loss***° (e.g. the Black Queen hypothesis). Such a mechanism suggests that
179 metabolic dependency evolution can often lead to reduced genome sizes, but makes no comment
180 on genome flexibility (i.e. gene content variability). My results also indicate that metabolic
181 dependency evolution can impact genome flexibility as well. Specifically, more flexible genomes (with
182 more variable gene content) are more likely to display a potential for metabolic interactions.

183 Can stochastic accessory gene turnover explain these results? To test this, | repeated my study with
184 randomly assembled pangenomes. Within each species, | retained the core genes in every strain and
185 shuffled the accessory genes between strains (see Methods). During this randomization, | preserved
186 the observed within-species genome size distribution, strain number distribution, and ensured that
187 any change in species’ genome fluidity was insignificant. | found that not only did this significantly
188 diminish the metabolic benefits observed in each species, both measurements of « and MDP yielded
189 non-significant correlations, suggesting that the mere presence of additional accessory genes is
190 unlikely to explain my observed trends (for «: Spearman's rho = 0.01, P value = 0.9; for MDP:
191 Spearman's rho = 0.17, P value = 0.1; supplementary figures 9a and 10a). The measured benefits
192 remained lower than observed, even when | shuffled known operons of genes together instead of
193 shuffling genes one by one (supplementary figures 9b and 10b; see Methods). | believe this is
194 because often, prokaryotic operons do not contain complete metabolic pathways, but instead parts
195 of them (in my data set, each metabolic operon encoded 1.5 reactions on average, while pathways
196 typically had 4 to 5 steps). Collectively, this suggests that accessory gene acquisition is consistent
197 with the coordinated gain of functional and beneficial pathways, which | believe provides further
198 support for the accessory genes being maintained for adaptive reasons.

199 To summarize, here | addressed the debate on whether the accessory genomes of prokaryotes are
200 beneficial. | found that, indeed, large fractions (about 40%) of the prokaryotic accessory gene pool
201 can contribute to metabolic benefits. Specifically, such genes can allow microbes to produce a larger
202 repertoire of crucial molecules, and facilitate the exchange of important metabolites. Since these
203 functions can improve growth in many habitats, my results suggest that maintaining accessory
204 genes can be adaptive. Note, however that my analyses are only capable of detecting obligate
205 metabolic dependencies and biosynthetic potential, and do not consider signaling, regulation,
206 metabolic redundancy, etc. that could also play important functional roles and might indicate
207 potential benefits due to additional accessory genes. Further work might also explain accessory
208 genomes in those species, where | could not detect additional metabolic functions, if such roles are
209 indeed there. Moreover, even in the context of metabolism, more detailed metabolic models, when
210 available, may be used to probe even more precise fithess effects of intraspecies metabolic
211 variability, including the effect of higher-order interactions. However, these studies would require
212 knowledge of a large number of parameters such as reaction kinetics, thermodynamics, and exact
213 strain biomass compositions before they are feasible. Finally, systematic measurements of the fitness
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214 effects of all accessory genes, metabolic and otherwise, are needed for more complete estimates of
215 the fraction of accessory genomes consistent with adaptive versus neutral evolution.
216

Methods
217 Acquiring pangenomes and metabolic networks from KEGG

218 | used the KEGG GENOMES database'® to extract a list of all prokaryotic species with complete
219 genomes for 5 or more strains. This yielded a list of 1,339 strains or genomes corresponding to 96
220 species (92 bacteria, 4 archaea), which | used for all subsequent analyses (see supplementary table 1
221 for the full list of species and strains, along with their taxonomic classification). For each strain with a
222 unique genome abbreviation, | extracted the full set of annotated genes under the KEGG GENES
223 database and reactions under the KEGG REACTION database using an in-house Python script. | also
224 extracted the full list of reactions with their stoichiometries and participating metabolites in the
225 database. The metabolic reaction network for each strain was considered to be the complete set of
226 annotated reactions detected in that strain’s genome in KEGG. Note that my analyses systematically
227 ignore genes without known functions.

228  Adding gap-filled reactions from Model SEED

229 For strains for which genome-scale metabolic reconstructions were available in the Model SEED
230 database', | also included gap-filled reactions. Specifically, | extracted the list of all gap-filled
231 reactions for 130 genomes from table S3 in ref. 18. | mapped all genomes from this table to KEGG
232 genomes by matching strain names, and all reaction IDs to KEGG reactions by searching the Model
233 SEED database online (https://modelseed.org/biochem/reactions) using a custom Python script. This
234 resulted in a total of 562 gap-filled reactions, spread across 22 genomes (20 out of 96 species;
235 supplementary table 6). | then added these reactions to the metabolic networks already constructed
236 via KEGG. Separately, | verified that adding these gap-filled reactions did not impact my results
237 (supplementary figure 2).

238 Defining nutrient environments or conditions

239 For nutrient environments or conditions, | selected a set of 59 diverse carbon sources known to
240 sustain microbial biomass and energy synthesis from previous genome-scale metabolic studies of
241 phylogenetically broad species'®?' (supplementary table 2). Every condition was assumed to contain
242 one of these carbon sources (such as glucose and maltose), along with a set of 30 commonly
243 available metabolites (assumed to be present in all conditions, such as water, oxygen and ATP),
244 similar to the aforementioned studies (supplementary table 3). To infer biosynthetic potential, |
245 separately collected a set of all prokaryotic species biomass compositions and their constituent
246 metabolites from high-quality experimentally verified metabolic models in the BiGG database?. |
247 curated from this a list a union of 137 biomass precursors across diverse microbial metabolisms
248 (supplementary table 4).

249 Network expansion algorithm

250 To infer what each strain could synthesize in each nutrient environment or condition, | used a
251 well-documented network expansion algorithm — scope expansion®24, Briefly, this algorithm is
252 given a reaction network (one from each genome) and an initial “seed” set of available metabolites
233 (each nutrient environment). It first determines which reactions can be performed by the network
254 using only the nutrients in the environment. | assume that metabolites that are products in this initial
255 set of reactions can be synthesized by the network, and can be subsequently used as reactants in
256 new reactions. Again, | consider that the products of such new reactions can be synthesized by the
257 network, and may allow additional new reactions to be performed. This continues step by step, till no
258 no new reactions can be performed. All metabolites that can be produced over all such steps are

6


https://doi.org/10.1101/415182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/415182; this version posted October 16, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

259 defined as the “scope” of the metabolic network, i.e. | assume that these metabolites can be
260 synthesized by the reaction network from the initial nutrients in the environment.

261 Calculating genome fluidity

262 | calculated genome fluidity ¢ as prescribed in a previous study'’, using a custom Python script. For
263 every genome, | considered each constituent gene’s KO number as its unique identifier. Then, to
264 estimate ¢ for every species, | calculated, for all conspecific pairs, the ratio of the number of genes
265 unique to a strain in the pair to the total number of genes in their sum. The average over all pairs for a
266 species was considered its genome fluidity ¢. Note that though using KEGG orthologous groups
267 underestimates the exact values of ¢, my estimates still scale well with previously reported values®
268 (Spearman's rho = 0.60, P value = 7 x 10°%; supplementary figure 11).

269  Calculating accessory metabolic capacity

270 | calculated an accessory metabolic capacity a for every species. For each conspecific strain, | first
271 calculated, using the network expansion algorithm described, the scope of each of the 1,339
272 reaction networks across all 59 conditions. Then, species by species, for every condition, | calculated
273 a “core” metabolome, i.e. metabolites that were present in the scope of every conspecific strain. |
274 then explicitly removed these metabolites within every species from the scope of each strain and
275 counted how many precursors remained in the corresponding “accessory” metabolome of every
276 strain across all conditions. This gave me a number of additional precursors that could be
277 synthesized per strain per condition for each species, and was defined as the species’ accessory
278 metabolic capacity « (supplementary table 5).

279 Calculating metabolic dependency potential between conspecific pairs

280 | calculated a metabolic dependency potential (MDP) for every species. For this, | considered within
281 each species, all conspecific pairs across all 59 conditions. For each pair, | calculated the scope for
282 both strains first in “monoculture”, i.e. when grown alone. | then calculated, for every metabolite that
283 could be produced by one strain but not the partner strain, whether or not its secretion could
284 alleviate an auxotrophy in the partner. | specifically considered auxotrophies only for the 137 key
285 precursors | had selected. | then counted each alleviated auxotrophy as a potential metabolic
286 dependency, and the average number of dependencies (per strain per pair per condition) for each
287 species was defined as its metabolic dependency potential, or MDP (supplementary table 5).

288 Calculating metabolic dependency potential between inter-specific pairs

289 To quantify the extent of metabolic interactions between inter-specific strains, | calculated a separate
290 metabolic dependency potential for every species. For each species, | paired each conspecific strain
291 with 25 randomly chosen strains from other species, also picked at random. For all inter-specific
292 pairs generated this way, | calculated metabolic dependency potential using the same method as
293 described above, for conspecific pairs. In this way, the average number of dependencies identified
294 per strain per condition was defined as the inter-specific metabolic dependency potential, or MDP
295 (supplementary table 5).

296 Determining strain co-occurrence from microbial community data

297 To test whether the conspecific metabolic interactions detected in my MDP analysis could be realized
208 in natural microbial communities, | analyzed genome co-occurrence data from Chaffron et al®®. These
299 data list all 16S rRNA sequences co-detected across several microbial community samples. Here,
300 sets of sequences are clustered into operational taxonomic units (OTUs) corresponding to different
301 sequence similarity thresholds. To map these OTUs to the genomes in my study, | first obtained 16S
302 rRNA sequences for all the 1,339 genomes | analyzed from KEGG. When multiple sequences were
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303 available for a given genome, | used the longest sequence and maped that as the unique 16S
304 identifier for that strain. Then, using BLAST, | mapped OTUs in the co-occurrence data to the
305 genomes in my study (where OTUs were binned with a sequence similarity threshold of 99%). Here, |
306 used the BLAST bit score as my assignment criterion. | used the 689 genomes that could be mapped
307 this way for further analysis. Here, across all microbial community samples, | asked which
308 conspecific genomes co-occurred in at least one sample — from which | found 29 genomes
309 corresponding to 14 species (supplementary table 7). | then repeated my metabolic dependency
310 potential analysis for these conspecific strains, as described above.

311 Testing for the role of stochastic accessory gene turnover

312 To test if my observed correlations between ¢ and o as well as ¢ and MDP could be explained by
313 random accessory gene turnover, | repeated my study with a “randomly assembled” pangenome
314 dataset. | randomized genomes species by species. | first collected all available genomes for a
315 species, and picked a random pair of these. | then shuffled the accessory genes in this pair in two
316 ways: (1) gene by gene, and (2) operon by operon.

317 When shuffling gene by gene, for each strain pair, | randomly picked two genes, one from each strain
318 in the pair, and swapped them. | repeated this several times before picking another conspecific pair
319 from the same species. The number of swaps per pair was chosen such that each accessory gene
320 was swapped once on average. | verified that the exact number of swaps does not affect my results.
321 By the end of this process, | had a new set of genomes which had undergone “stochastic accessory
322 gene turnover”. Note that in order to avoid any potential biases, this process preserves the observed
323 genome sizes and strain numbers while only slightly affecting genome fluidity. | then repeated my «a
324 and MDP calculations for these “shuffled” genomes. This would test if the mere acquisition of extra
325 genes from a species’ accessory genome could allow the expanded biosynthetic potential and
326 metabolic dependencies observed in the data.

327 To identify operons, | used the ProOpDB database, which lists operon compositions for more than
328 1200 prokaryotic genomes*'. | found that this database had operon compositions available for 795
329 strains across 64 of the species in my study, which | used for the operon shuffling analysis
330 (supplementary table 8). Here, when shuffling operons, | used a similar method as when shuffling
331 genes, but instead of swapping merely randomly chosen genes from a pair of strains, | identified
332 which operon they belonged to in their respective strain’s genome, and swapped all genes in those
333 operons across the pair. | repeated these operon swaps several times for each strain pair, and for
334 several pairs, at the end of which, | had another new set of randomly shuffled genomes.

335  Comparing predicted dependencies with experimentally verified pairs

336 To test if my metabolic dependency potential (MDP) measure could accurately predict metabolic
337 dependencies between different pairs, | compared its performance on genome-scale metabolic
338 networks corresponding to some well-studied experimentally verified metabolically dependent pairs.
339 Specifically, | considered 2 conspecific and 4 inter-specific pairs. For conspecific dependencies, |
340 used 2 Escherichia coli cross-feeding pairs'® and for inter-species, | used (1) a Desulfovibrio vulgaris
341 and Methanococcus maripaludis pair®®; (2) an E. coli and Acinetobacter baylyi pair'*; (3) an
342 Lactobacillus bulgaris and Streptococcus thermophilus pair®®; and (4) a Bifidobacterium longum and
343 Eubacterium rectale pair®'. In all cases, | obtained the metabolic models for the closest available
344 strains from KEGG and, when needed, modified the genes present to best match those described in
345 the respective studies. | then used my MDP approach as described to infer which potential
346 dependencies were detected in each pair for the specific conditions mentioned in each study. | found
347 that my method could accurately identify the extent of dependencies (number of auxotrophies) and
348 interaction directionality (commensal or mutualistic interactions; supplementary figure 3).
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349 Statistics

350 To calculate correlation coefficients throughout the study, | used Spearman’s nonparametric rho, and
351 for P values, | used a one-way asymptotic permutation test for positive correlation. All statistical tests
352 were performed using standard implementations in the SciPy (version 0.18.1) and NumPy (version
353 1.13.1) libraries in the Python programming language (version 3.5.2). Linear regression and prediction
354 interval calculations were performed using the Seaborn library function regplot (version 0.7.1).

355

Data and code availability

356 All computer code and extracted data files used in this study are available at the following URL:
357 https://github.com/eltanin4/pangenome dep.
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Figure 1 | The accessory genomes of prokaryotes harbour extensive biosynthetic potential
Scatter plot of genome fluidity ¢ versus accessory metabolic capacity « for the 96 prokaryotic species in this
study. Each point represents the average number of precursors that could be synthesized by the accessory
genome content alone in each strain of a species. The Venn diagrams on the right provide a schematic
representation of open pangenomes (high ¢, small core) versus closed pangenomes (low ¢, large core). The
solid black line represents a linear regression and the gray envelope around it, the 95% prediction interval.
rho corresponds to Spearman’s nonparametric correlation coefficient and the P value to a one-way
asymptotic permutation test for positive correlation.
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Figure 2 | Conspecific metabolic dependencies scale with accessory genome content

a, Scatter plot of genome fluidity ¢ versus conspecific metabolic dependency potential (MDP) for the 96
prokaryotic species in this study. Each point represents the average number of dependencies detected per
strain per condition across all conspecific pairs for one species. Colours represent each species’
phylum-level taxonomic identity. The solid black line represents a linear regression and the gray envelope
around it, the 95% prediction interval. rho corresponds to Spearman’s nonparametric correlation coefficient
and the P value to a one-way asymptotic permutation test for positive correlation. b, Pie chart of the types of
interactions detected in each conspecific pair. ¢, Pie chart of the types of auxotrophies that the detected
dependencies relieve due to pairwise growth. Each of the 137 precursors belongs to a unique chosen
category (supplementary table 4).
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471

Supporting Information Legends
472 Supplementary Figures

473 Supplementary Figure 1 | Phylogenetic bias in species set does not impact my key result

474 Scatter plot of genome fluidity ¢ versus conspecific metabolic dependency potential (MDP), similar to
475 figure 2, but to minimize phylogenetic bias, here | only included one species per genus. This resulted
476 in 55 species (51 bacteria, 4 archaea). Each point represents the average number of dependencies
477 detected per strain per condition across all conspecific pairs for one species. The solid black line
478 represents a linear regression and the gray envelope around it, the 95% prediction interval. MDP still
479 increases significantly with increasing genome fluidity.

480 Supplementary Figure 2 | Using gap-filled metabolic models does not impact my results

481 a, Scatter plot of genome fluidity ¢ versus accessory metabolic capacity o for the 96 prokaryotic
482  species in this study, similar to figure 1; and b, scatter plot of genome fluidity ¢ versus conspecific
483 metabolic dependency potential (MDP), similar to figure 2; except without the addition of any
484 gap-filled reactions (see Methods). This eliminates any potential bias that may arise from adding
485 gap-filled reactions. Each point represents one species, both solid black lines represent linear
486 regression, and the gray envelopes around them, 95% prediction intervals. Both observed trends are
487 qualitatively unaffected.

488 Supplementary Figure 3 | Metabolic dependency potential (MDP) accurately captures

489 experimentally verified dependencies

490 For a, 2 conspecific and b, 4 interspecific pairs of prokaryotes, | verified that my approach to infer
491 and measure metabolic dependencies using KEGG-annotated metabolic reaction networks (see
492 Methods) can predict both the number of dependencies between each microbe, as well as the
493 correct interaction type (commensalism, as in the top-left pair in b; and mutualism, as in the top-right
494 pair).

495 Supplementary Figure 4 | The impact of considering medians instead of means for «

496 Same as figure 1, except here to calculate «, instead of using the mean number of precursors
497 produced by each individual strain’s accessory genome, | considered medians. The solid black line
498 represents a linear regression and the gray envelope around it, the 95% prediction interval. rho
499 corresponds to Spearman’s nonparametric correlation coefficient and the P value to a one-way
500 asymptotic permutation test for positive correlation. This choice does not significantly impact my
501 results for a.

502 Supplementary Figure 5 | The impact of considering medians instead of means for MDP

503 Same as figure 2a, except here to calculate «, instead of using the mean number of dependencies
504 per strain across conspecific pairs, | considered medians. The solid black line represents a linear
505 regression and the gray envelope around it, the 95% prediction interval. rho corresponds to
506 Spearman’s nonparametric correlation coefficient and the P value to a one-way asymptotic
507 permutation test for positive correlation. This choice does not significantly impact my results for
508 MDP.

509 Supplementary Figure 6 | Co-occurring genomes from microbial community data capture my
510 key observed trend

511 Scatter plot of genome fluidity ¢ versus conspecific metabolic dependency potential (MDP), similar to
512 figure 2, but to test if the detected dependencies are realizable in nature, here | only included known
513 co-occurring strains (see Methods). This resulted in 29 strains across 14 species (supplementary
514 table 7). Each point represents the average number of dependencies detected per strain per
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515 condition across all co-occurring conspecific pairs for one species. The solid black line represents a
516 linear regression and the gray envelope around it, the 95% prediction interval. MDP still increases
517 significantly with increasing genome fluidity.

518 Supplementary Figure 7 | Complementary metabolic interactions are also likely to be common
519 between prokaryotic species

520 Scatter plot of genome fluidity ¢ versus conspecific metabolic dependency potential (MDP), similar to
521 figure 2, but here MDP was measured between inter-specific strains (see Methods). For each strain
522 within a species, | measured its dependency potential with 25 randomly chosen strains from other
523 species. Each point represents the average number of dependencies detected per strain per
524 condition across several inter-specific pairs for one species. The solid black line represents a linear
525 regression and the gray envelope around it, the 95% prediction interval. MDP is nonzero for all
526 species in the study, though it does not increase significantly with increasing genome fluidity.

527 Supplementary Figure 8 | Quantitative aspects of prokaryotic core and accessory genomes

528 a, Pie chart of the average fraction of genes belonging to different functions typical to prokaryotic
529 accessory genomes (for the 1,339 genomes in this study). b, Pie chart of the fraction of 96 species in
530 the study where metabolic functions showed more gene content variation than other functions in
531 accessory genomes (namely, genetic information processing, environmental information processing,
532 and others). ¢, Bar chart of the typical functional composition of both core and accessory genomes,
533 for the 96 species in the study. Values indicate median fraction, and error bars indicate the extent of
534 variation observed across the genomes studied. Metabolic functions are enriched in accessory
535 genomes when compared with core genomes. d, Histogram of the fraction of accessory genes in
536 each strain, which | identified as potential contributors to metabolically beneficial functions in the
537 study.

538 Supplementary Figure 9 | Randomly shuffling species pangenomes significantly diminishes «
539 Scatter plot of genome fluidity ¢ versus accessory metabolic capacity « for the prokaryotic species in
540 this study, with each species’ accessory content randomly shuffled between strains, either a, gene
541 by gene (for 96 species), or b, operon by operon (for 64 species, see Methods). The solid black lines
542 represent linear regression. In both cases, not only does randomly shuffling accessory genes
543 significantly reduce the additional biosynthetic potential of each strain’s accessory genome, there is
544 no significant correlation with increasing accessory content (compared with figure 1).

545 Supplementary Figure 10 | Randomly shuffling species pangenomes significantly diminishes
546 MDP

547 Scatter plot of genome fluidity ¢ versus metabolic dependency potential MDP for the prokaryotic
548 species in this study, with each species’ accessory content randomly shuffled between strains, either
549 a, gene by gene (for 96 species), or b, operon by operon (for 64 species, see Methods). The solid
550 black lines represent linear regression. In both cases, not only does randomly shuffling accessory
551 genes significantly reduce the number of metabolic dependencies between conspecific pairs, there is
552 no significant correlation with increasing accessory content (compared with figure 2a).

553 Supplementary Figure 11 | Comparing KEGG ortholog-based genome fluidity estimates with
554 alignment-based estimates

555 Scatter plot of genome fluidity ¢ using KEGG (this study; y-axis) versus estimates of ¢ reported in
556 Andreani et. al., The ISME Journal (2017) (x-axis) for the 38 species common to both analyses. Each
557 point represents one species. My measure uses KEGG’s orthologous gene categories for scoring
558 gene presence-absence, whereas Andreani et. al. use thresholded sequence alignment to classify
559 genes into “families”. The solid black line represents a linear regression. rho corresponds to
560 Spearman’s nonparametric correlation coefficient and P to a one-way asymptotic permutation test
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561 for positive correlation. While my estimates are lower than those of Andreani et. al., they show
562 consistent linear scaling and can thus still be used to infer trends.

563  Supplementary Tables

564 Supplementary Table 1: List of all 96 species and 1,339 strains used in the study

565 Supplementary Table 2: List of all 59 carbon sources used as nutrients

566 Supplementary Table 3: List of all 30 compounds assumed to present in all conditions

567 Supplementary Table 4: List of all 137 key biomass precursors used to define biosynthetic potential
568 Supplementary Table 5: Summary table with all measurements made during the analyses

569 Supplementary Table 6: List of all 562 Model SEED-derived gap-filled reactions added to the KEGG
570 metabolic models

571 Supplementary Table 7: List of all 29 conspecific strains found to co-occur in microbial community
572 data

573 Supplementary Table 8: List of all 795 strains used for operon shuffling
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575 Metabolic adaptations underlying genome flexibility in prokaryotes
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Supplementary Figure 1 | Phylogenetic bias in species set does not impact my key result
Scatter plot of genome fluidity ¢ versus conspecific metabolic dependency potential (MDP), similar
to figure 2, but to minimize phylogenetic bias, here | only included one species per genus. This
resulted in 55 species (51 bacteria, 4 archaea). Each point represents the average number of
dependencies detected per strain per condition across all conspecific pairs for one species. The
solid black line represents a linear regression and the gray envelope around it, the 95% prediction
interval. MDP still increases significantly with increasing genome fluidity.
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Supplementary Figure 2 | Using gap-filled metabolic models does not impact my results

a, Scatter plot of genome fluidity ¢ versus accessory metabolic capacity a for the 96 prokaryotic
species in this study, similar to figure 1; and b, scatter plot of genome fluidity ¢ versus conspecific
metabolic dependency potential (MDP), similar to figure 2; except without the addition of any
gap-filled reactions (see Methods). This eliminates any potential bias that may arise from adding
gap-filled reactions. Each point represents one species, both solid black lines represent linear
regression, and the gray envelopes around them, 95% prediction intervals. Both observed trends
are qualitatively unaffected.
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Supplementary Figure 3 | Metabolic dependency potential (MDP) accurately captures
experimentally verified dependencies

For a, 2 conspecific and b, 4 interspecific pairs of prokaryotes, | verified that my approach to infer
and measure metabolic dependencies using KEGG-annotated metabolic reaction networks (see
Methods) can predict both the number of dependencies between each microbe, as well as the
correct interaction type (commensalism, as in the top-left pair in b; and mutualism, as in the
top-right pair).
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Supplementary Figure 4 | The impact of considering medians instead of means for o

Same as figure 1, except here to calculate «, instead of using the mean number of precursors
produced by each individual strain’s accessory genome, | considered medians. The solid black line
represents a linear regression and the gray envelope around it, the 95% prediction interval. rho
corresponds to Spearman’s nonparametric correlation coefficient and the P value to a one-way
asymptotic permutation test for positive correlation. This choice does not significantly impact my
results for a.
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Supplementary Figure 5 | The impact of considering medians instead of means for MDP
Same as figure 2a, except here to calculate a, instead of using the mean number of dependencies
per strain across conspecific pairs, | considered medians. The solid black line represents a linear
regression and the gray envelope around it, the 95% prediction interval. rho corresponds to
Spearman’s nonparametric correlation coefficient and the P value to a one-way asymptotic
permutation test for positive correlation. This choice does not significantly impact my results for
MDP.

21


https://doi.org/10.1101/415182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/415182; this version posted October 16, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

I | ] | | | | ]
0.10 | .
5 | —
2> = ]
= I ]
S I ]
© 005 | '
m . |- p—
& i ]
o)
o [ ]
e ]
O - 7
I rho = 0.56 |
0.00 [ l | 1 l :D: ?‘03|_
0 1 2 3 4

Metabolic dependency potential (MDP)

Supplementary Figure 6 | Co-occurring genomes from microbial community data capture my
key observed trend

Scatter plot of genome fluidity ¢ versus conspecific metabolic dependency potential (MDP), similar
to figure 2, but to test if the detected dependencies are realizable in nature, here | only included
known co-occurring strains (see Methods). This resulted in 29 strains across 14 species
(supplementary table 7). Each point represents the average number of dependencies detected per
strain per condition across all co-occurring conspecific pairs for one species. The solid black line
represents a linear regression and the gray envelope around it, the 95% prediction interval. MDP
still increases significantly with increasing genome fluidity.
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Supplementary Figure 7 | Complementary metabolic interactions are also likely to be
common between prokaryotic species

Scatter plot of genome fluidity ¢ versus conspecific metabolic dependency potential (MDP), similar
to figure 2, but here MDP was measured between inter-specific strains (see Methods). For each
strain within a species, | measured its dependency potential with 25 randomly chosen strains from
other species. Each point represents the average number of dependencies detected per strain per
condition across several inter-specific pairs for one species. The solid black line represents a linear
regression and the gray envelope around it, the 95% prediction interval. MDP is nonzero for all
species in the study, though it does not increase significantly with increasing genome fluidity.
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Supplementary Figure 8 | Quantitative aspects of prokaryotic core and accessory genomes

a, Pie chart of the average fraction of genes belonging to different functions typical to prokaryotic
accessory genomes (for the 1,339 genomes in this study). b, Pie chart of the fraction of 96 species
in the study where metabolic functions showed more gene content variation than other functions
in accessory genomes (namely, genetic information processing, environmental information
processing, and others). ¢, Bar chart of the typical functional composition of both core and
accessory genomes, for the 96 species in the study. Values indicate median fraction, and error
bars indicate the extent of variation observed across the genomes studied. Metabolic functions
are enriched in accessory genomes when compared with core genomes. d, Histogram of the
fraction of accessory genes in each strain, which | identified as potential contributors to

metabolically beneficial functions in the study.
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Supplementary Figure 9 | Randomly shuffling species pangenomes significantly diminishes a
Scatter plot of genome fluidity ¢ versus accessory metabolic capacity a for the prokaryotic
species in this study, with each species’ accessory content randomly shuffled between strains,
either a, gene by gene (for 96 species), or b, operon by operon (for 64 species, see Methods). The
solid black lines represent linear regression. In both cases, not only does randomly shuffling
accessory genes significantly reduce the additional biosynthetic potential of each strain’s
accessory genome, there is no significant correlation with increasing accessory content (compared
with figure 1).
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Supplementary Figure 10 | Randomly shuffling species pangenomes significantly diminishes

MDP

Scatter plot of genome fluidity ¢ versus metabolic dependency potential MDP for the prokaryotic
species in this study, with each species’ accessory content randomly shuffled between strains,
either a, gene by gene (for 96 species), or b, operon by operon (for 64 species, see Methods). The
solid black lines represent linear regression. In both cases, not only does randomly shuffling
accessory genes significantly reduce the number of metabolic dependencies between conspecific
pairs, there is no significant correlation with increasing accessory content (compared with figure
2a).
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Supplementary Figure 11 | Comparing KEGG ortholog-based genome fluidity estimates with
alignment-based estimates

Scatter plot of genome fluidity ¢ using KEGG (this study; y-axis) versus estimates of ¢ reported in
Andreani et. al., The ISME Journal (2017) (x-axis) for the 38 species common to both analyses.
Each point represents one species. My measure uses KEGG’s orthologous gene categories for
scoring gene presence-absence, whereas Andreani et. al. use thresholded sequence alignment to
classify genes into “families”. The solid black line represents a linear regression. rho corresponds
to Spearman’s nonparametric correlation coefficient and P to a one-way asymptotic permutation
test for positive correlation. While my estimates are lower than those of Andreani et. al., they show
consistent linear scaling and can thus still be used to infer trends.
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