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In epigenome-wide association studies, the measured signals for each sample are a mixture

of methylation profiles from different cell types. The current approaches to the association

detection only claim whether a cytosine-phosphate-guanine (CpG) site is associated with the

phenotype or not, but they cannot determine the cell type in which the risk-CpG site is affected

by the phenotype. Here, we propose a solid statistical method, HIgh REsolution (HIRE), which

not only substantially improves the power of association detection at the aggregated level as

compared to the existing methods but also enables the detection of risk-CpG sites for individual

cell types.
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Epigenome-wide association studies (EWAS) aim to identify cytosine-phosphate-guanine (CpG)

sites associated with phenotypes of interest, for example, disease status [1, 2, 3], smoking

history [4, 5], body mass index [6], and age [7, 8]. However, as samples in EWAS are measured

at the bulk level rather than at the single-cell level, the obtained methylome for each sample

shows the signals aggregated from distinct cell types [3, 9, 10], leading to two main challenges

for analyzing EWAS data. On the one hand, the cell type compositions differ between samples

and can be associated with phenotypes [3, 10]. Both binary phenotypes, such as the diseased

or normal status [3], and continuous phenotypes, for example, age [10], have been found to

affect the cell type compositions. As a result, ignoring the cellular heterogeneity in EWAS

can lead to a large number of spurious associations [10, 11, 12, 13]. On the other hand, the

phenotype may change the methylation level of a CpG site in some but not all of the cell types.

Identifying the exact cell types that carry the risk-CpG sites can deepen our understandings

of disease mechanisms. Nevertheless, such identification is challenging because we can only

observe the aggregated-level signals.

To the best of our knowledge, no existing statistical method for EWAS can detect cell-type-

specific associations despite the active research on accounting for cell-type heterogeneity. The

existing approaches can be categorized into two schools [14]: “reference-based” and “reference-

free” methods. The reference-based methods [9, 15] require the reference methylation profiles for

each cell type to be known a priori, and they regress the aggregated methylation levels observed

from each sample on the same set of references to learn the sample’s cellular compositions.

However, as samples have different attributes, such as age and gender, the methylation levels of

a given cell type can vary with samples. Therefore, it is problematic to assume that all of the

samples have the same set of reference profiles [10, 14]. Furthermore, high-quality references

are difficult to obtain for most EWAS due to the existence of unknown cell types, the high cost

of cell sorting, and confounding effects [14]. Consequently, a large amount of recent EWAS

literature was devoted to finding risk-CpG sites without the need of the reference methylation

profiles.

The reference-free methods in general can be further divided into two classes accord-

ing to whether they estimate the cell-type mixing proportions directly or not. The direct-

decomposition-based procedures consist of the following two stages: in the first stage, they
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simultaneously estimate the cellular compositions for each sample and the cell-type-specific

reference methylomes via quadratic programming [16]; and in the second stage, the direct-

decomposition-based methods treat the estimated cell-type proportions as covariates with

additive effects in the linear models to conduct association tests. However, when estimating

cellular compositions in the first stage, the direct-decomposition-based methods also do not

consider samples’ phenotype information, thus suffering from the same problem of biasing

the cellular composition estimates as the reference-based approaches [9]. Moreover, similar

to tumor purity [17], we argue that the estimated cellular composition has a multiplicative

rather than additive effect on the observed methylation level (Methods). The second class

of methods, exemplified by SVA [18], RefFreeEWAS [19], and ReFACTor [13], do not carry

out cell-type decompositions. They resort to singular value decomposition, which includes

the principal component (PC) analysis, to construct surrogates for the underlying cell-type

composition. EWASher, a linear mixed model, also belongs to this class as it is “equivalent

to using PCs as fixed effect covariates” [11]. However, the use of PCs as the covariates in

the regression undergoes the same issue of additive effects as the direct-decomposition-based

methods. Therefore, the existing reference-free methods have low power in detecting risk-CpG

sites [12].

Although all of the existing methods aim to address the cellular heterogeneity problem in

EWAS and claim whether a CpG site is associated with phenotypes at the aggregated level,

none of them can identify the risk-CpG sites for each individual cell type, thus missing the

opportunity to obtain finer-grained results in EWAS.

Here, we propose a new method HIRE to identify the association in EWAS at an un-

precedented HIgh REsolution: detecting whether a CpG site has any associations with the

phenotypes in each cell type (Methods). The keys to HIRE’s success are twofold. First, HIRE

links the underlying cell-type-specific methylation profiles for each sample to the sample’s

phenotypes, thus avoiding the bias in estimating the cellular composition by the reference-based

and direct-decomposition-based methods. Second, HIRE correctly characterizes the cellular

compositions as the multiplicative effects, whereas the cell proportions are inappropriately

treated as additive effects by the existing methods (Methods). HIRE is applicable to EWAS

with binary phenotypes, continuous phenotypes, or both. By helping researchers understand in

which cell types the CpG sites are affected by a disease, HIRE can utlimately facilitate the
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development of epigenetic therapies by targeting the specifically affected cell types.

Results

Method overview. HIRE is a hierarchical model that closely follows the data generation

process. Its elaborate modeling depicts how phenotypes affect the methylation levels of each

sample. Here we briefly introduce the method. The technical details are provided in the

Methods section and the Supplementary Note.

To begin with, let us review the cornerstone in most EWAS approaches. These methods

model the observed methylation levels of them CpG sites for sample i, Oi = (O1i, O2i, . . . , Omi)
T ,

as the weighted average of the methylation profiles of K cell types, ui = (ui1,ui2, . . . ,uiK).

The weights are the cellular compositions pi = (p1i, p2i, . . . , pKi)
T of sample i (see the top panel

of Fig. 1a). However, no matter the reference is known a priori or not, the existing methods

assume that the cell-type-specific methylation profiles uis stay the same for all of the samples:

ui = M, for i = 1, · · · , n. Unfortunately, because methylation levels can actually change with

covariates such as age and disease status, ignoring the covariates effects and enforcing static

reference methylomes can bias the estimation of pi and subsequently affect all the downstream

analyses [14]. More importantly, assuming that cell-type-specific methylation profiles are the

same for each sample forbids the detection of cell-type-specific risk-CpG sites.

For association detection at the aggregated level, after estimating pi using the deconvolution-

based approach or its surrogates from PC-based methods, the existing methods examine a

linear model where the phenotypes xi = (xi1, . . . , xi`, . . . , xiq)
T and the cellular proportions pi

have additive effects on the methylation level Oi:

Oi = Txi + Mpi. (1)

Subsequently, a CpG-site j is associated with phenotype ` if we reject the null hypothesis that

the covariate coefficient Tj` equals zero.

In contrast, HIRE further models the impact of each phenotype on each cell type as shown

in the bottom panel of Fig. 1a. In cell type k, sample i’s cell-type-specific methylation

profile, uik, is the summation of the corresponding baseline cell-type-specific methylation

levels, µk, and the phenotype effects Bk`xi` on sample i from all the l = 1, · · · , q phenotypes:

uik = µk +
∑q

l=1 Bk`xi`, where xi` is the phenotype ` of sample i and Bk` = (β1k`, . . . , βmk`)
T—
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the kth column of B`—reflects the association of phenotype ` with each of the m CpG sites

in cell type k. Consequently, by collecting the baseline cell-type-specific methylation profiles

to µ = (µ1, . . . ,µk) and denoting the m by K phenotype coefficient matrix (βjk` : 1 ≤ j ≤

m, 1 ≤ k ≤ K) by B`, now we have:

Oi = uipi =

q∑
l=1

B`xi`pi + µpi = (B1pi, . . . ,Bqpi)xi + µpi. (2)

Comparing the red parts in Equation 1 and 2, we can see that via the two-layer hierarchical

model HIRE correctly captures the multiplicative effects of the cellular compositions on the

phenotype effects (see also Methods and the Supplementary Note). As a result, HIRE achieves

an increased statistical power for the association detection at the aggregated level and enables

the fine-scale resolutions that had previously been infeasible.

Fig. 1b summarizes the inputs and outputs of HIRE. Given the methylation measurements

at the aggregated level of n samples, HIRE is able to estimate all the parameters of interests

—pi (i = 1, . . . , n), µ, and B` (` = 1, . . . , q). Subsequently, HIRE determines whether there is

any association between CpG site j and phenotype ` in each individual cell type by testing

the hypotheses H0 : βjk` = 0 versus H1 : βjk` 6= 0. When the null hypothesis H0 : βjk` = 0 is

rejected, HIRE calls CpG site j as a risk-CpG site for phenotype ` in cell type k. The detection

of cell-type-specific risk-CpG sites is not available by all the existing state-of-the-art methods.

Moreover, HIRE allows the users to pre-specify the number of cell types K. When K is

unknown, HIRE selects the cell type number according to the penalized Bayesian information

criterion (pBIC) [20] (Supplementary Note).
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Figure 1: A simple cartoon illustration of the HIRE model, where there are three cell types

(K = 3) and two phenotypes, disease status and age (q = 2). (a) The data generation procedure

for the observed methylation vector Oi for sample i (i = 1, . . . , n). In the top panel, Oi is the

convolution of cell-type-specific methylation profiles ui with cellular compositions pi. Both

ui and pi depend on the attributes of sample i. The bottom panel describes how sample

i’s phenotypes affect ui through two phenotype-effect matrices B1 and B2. In B1 and B2,

the white square represents zero, which means that the phenotype has no influence on the

corresponding methylation level in ui. (b) The inputs and outputs of HIRE. We input the

observed methylation matrix O, the phenotype data matrix X, and a predetermined cell

type number K into HIRE, and HIRE outputs the estimates for cellular compositions p̂,

baseline methylation profiles µ̂, phenotype effects B̂`, and the penalized BIC value. In addition,

HIRE tests whether there is any association between CpG site j and phenotype ` in cell type

k—H0 : βjk` = 0 vs H1 : βjk` 6= 0—and provides the p-values.

Simulation. As the definition of the gold standards for real data is debatable [21, 22], we

designed extensive simulation studies to evaluate the performance of HIRE and compared

it with commonly used methods—unadjusted analysis, SVA, RefFreeEWAS, EWASHer, and

ReFACTor (Methods). We generated datasets where the observed methylation was a mixture

of several cell types and each sample was accompanied with a diseased or normal status and
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a continuous age attribute. We deliberately designed some cell types with similar baseline

methylation profiles to mimic cell types from the same cell lineage. We set the sample size n

to 180, 300, and 600 and let the underlying cell type number K be 3, 5, and 7. For each pair

of (n,K), we investigated two scenarios: (1) all of the phenotype effects βjk`s are zero—the

“true null ” case—to compare each method’s ability to control false positives; and (2) a small

portion of βjk`s are non-zero—the “true alternative” case—to study the power of each method

for detecting risk-CpG sites. Under the “true alternative,” both the binary and the continuous

phenotypes were assumed to have cell-type-specific risk-CpG sites and to affect the cell-type

proportions among the samples [10]. We further simulated phenotype effects with different

directions and magnitudes.
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Table 2: The performance of HIRE in detecting cell-type-specific risk-CpG sites in the “true

alternative” cases. The results are based on five replicates for each setting. A CpG site is

claimed to be “significant” in a given cell type if its p-value is less than α/(mKq).

Phenotype
cell type

number

sample

size

cell types

1 2 3 4 5 6 7

Disease

status

K = 3

n = 180
FPR 0.01% 0.00% 0.01%

TPR 83% 85% 92%

n = 300
FPR 0.02% 0.02% 0.04%

TPR 74% 85% 95%

n = 600
FPR 0.03% 0.03% 0.05%

TPR 99% 98% 100%

K = 5

n = 180
FPR 0.01% 0 0.00% 0.01% 0.02%

TPR 35% 46% 44% 39% 75%

n = 300
FPR 0.02% 0.02% 0.02% 0.06% 0.10%

TPR 66% 73% 67% 43% 43%

n = 600
FPR 0.02% 0.02% 0.01% 0.10% 0.12%

TPR 81% 77% 92% 52% 56%

K = 7

n = 180
FPR 0 0 0.01% 0 0.00% 0 0.00%

TPR 13% 28% 32% 20% 21% 15% 69%

n = 300
FPR 0.01% 0.01% 0.01% 0.00% 0.01% 0.01% 0.02%

TPR 20% 48% 60% 52% 40% 23% 78%

n = 600
FPR 0.02% 0.02% 0.01% 0.02% 0.01% 0.01% 0.07%

TPR 37% 79% 90% 52% 71% 66% 98%

Age

K = 3

n = 180
FPR 0.01% 0.01% 0.06%

TPR 68% 76% 96%

n = 300
FPR 0.05% 0.03% 0.08%

TPR 95% 95% 90%

n = 600
FPR 0.06% 0.06% 0.08%

TPR 94% 99% 95%

K = 5

n = 180
FPR 0.05% 0.05% 0.01% 0.04% 0.06%

TPR 67% 61% 82% 69% 97%

n = 300
FPR 0.09% 0.03% 0.04% 0.04% 0.08%

TPR 78% 85% 97% 85% 91%

n = 600
FPR 0.07% 0.06% 0.07% 0.08% 0.08%

TPR 88% 84% 94% 83% 94%

K = 7

n = 180
FPR 0.02% 0.01% 0.01% 0 0.02% 0.01% 0

TPR 39% 62% 58% 68% 38% 54% 85%

n = 300
FPR 0.08% 0.01% 0.04% 0.01% 0.03% 0.03% 0.02%

TPR 46% 62% 79% 84% 79% 73% 93%

n = 600
FPR 0.09% 0.08% 0.04% 0.10% 0.03% 0.05% 0.07%

TPR 52% 77% 85% 84% 77% 79% 84%
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Figure 2: (Caption next page.)
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Figure 2: The association detection performance by HIRE and the commonly used methods in

the “true alternative” setting with K = 3 and n = 180. (a) The ROC curves of HIRE and

the commonly used methods. HIRE has the largest area under the curve among all of the

methods. (b) The true cell-type-specific association pattern with disease status for the 10,000

simulated CpG sites, where the columns correspond to cell types and the rows represent the

CpG sites. The dark cells correspond to risk-CpG sites, whereas the grey cells are CpG sites

not associated with the disease status. (c) The detected cell-type-specific association pattern

with disease status by HIRE. The darkness represents − log10(p − value) (d-i) The p-value

density plots for association with disease status in the simulation dataset for (d) HIRE, (e)

unadjusted analysis, (f) SVA, (g) RefFreeEWAS, (h) EWASHer, and (i) ReFACTor. (j-o) The

Q-Q plots for association with disease status for (j) HIRE, (k) unadjusted analysis, (l) SVA,

(m) RefFreeEWAS, (n) EWASHer, and (o) ReFACTor.

Under the “true null,” HIRE, EWASHer, and ReFACTor control the FPR very well, none

of which are greater than 0.05% (Table 1 and Supplementary Figs. 1-9). In comparison,

RefFreeEWAS often has FPRs larger than 0.1%, performing not as well as HIRE, and the

unadjusted analysis and SVA further suffer from the dramatic inflation of false positives. For

the “true alternative” settings, given that the FPRs are well-controlled, with FPRs below

0.05%, HIRE achieves the highest TPR among all of the methods in every simulation setting

(see also Figure 2a and Supplementary Figs. 10-17). As expected, as the sample size increases,

HIRE’s power increases. For example, when there are five cell types in the data, HIRE can

identify 89.6% of the risk-CpG sites with 300 samples, and HIRE is able to detect almost all

of the risk-CpG sites when the sample size reaches 600, which is a typical sample size for an

EWAS. Although EWASHer and ReFACTor have low FPRs, they miss a large proportion

of risk-CpG sites. EWASHer’s maximum TPR is only 35.33%, and ReFACTor’s maximum

TPR is slightly more than 60%. However, in those cases, HIRE’s power is greater than 95%.

Consistent with the “true null” scenario, in the “true alternative,” RefFreeEWAS has inflated

FPRs compared to HIRE, and the unadjusted analysis and SVA always have explosive false

positives. Therefore, HIRE substantially improves the power of association detection at the

aggregated level compared with existing methods.

In the multiple hypothesis testing, the p-values from the truly null features should follow

a uniform distribution on (0, 1), whereas those for the truly alternative features concentrate

near zero [23]. Both the histograms (Figs 2d-i) and Q-Q plots (Figs. 2j-o) show that the

p-value distribution of HIRE is the best fit to the underlying truth—there are only a small

proportion of signals, followed by RefFreeEWAS and ReFACTor. EWASHer easily overcorrects
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signals with its p-value density having a dip near zero (Figure 2h), thus failing to detect the

true associations. In contrast, the unadjusted analysis and SVA generate very small p-values

clustered near zero, resulting in inflated type I errors.

In addition to the traditional association detection at the aggregated level, HIRE is able to

identify the association for each CpG site with the phenotypes under each cell type. Table 2

shows the FPR and TPR of HIRE in each cell type for different simulation settings. Such fine

analysis is not available from the other methods. Consistent with the association detection at

the aggregated level, HIRE always controls the FPR well. When K = 3 and n = 180, HIRE

accurately detects the risk-CpG sites associated with the disease status with the TPR more

than 83% and the FPR less than or equal to 0.01% in all of the three cell types. Similarly,

most of the CpG sites affected by age are also correctly identified in each cell type. HIRE’s

learned cell-type-specific association patterns closely matches the underlying true associations

(see Figs. 2b-c and Supplementary Figs. 18-26). Once again, HIRE’s power decreases with

the number of cell types and increases with the sample size. When the samples consist of 7

cell types and the proportion of the least abundant cell type is as low as 4.2%, given a typical

current EWAS with around 600 samples, HIRE can detect most cell-type-specific risk-CpG

sites reasonably well. Moreover, HIRE’s estimates for the cellular compositions and phenotype

effects have little bias (Supplementary Figs. 27-62). Therefore, HIRE can provide accurate

estimates and is powerful in detecting cell-type-specific risk-CpG sites.

To further evaluate HIRE’s performance on experimentally mixed samples, we conducted

another semi-simulated dataset, which includes six samples mixed with six purified cell types

at pre-determined proportions [24]. Once again, HIRE successfully recovers the six underlying

reference cell types and estimates the cellular compositions well (see Methods).
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Figure 3: (Caption next page.)
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Figure 3: The application of HIRE and the commonly used methods to two real methylation

datasets: RA and GALA II. (a) The cell-type-specific association pattern with RA status

detected by HIRE in the RA dataset. The darkness represents the − log10(p − value). (b)

The cell-type-specific association pattern with gender detected by HIRE in the GALA II

dataset. The darkness represents the − log10(p− value). (c-h) The p-value density plots for

association with RA status in the RA dataset for (c) HIRE, (d) unadjusted analysis, (e) SVA,

(f) RefFreeEWAS, (g) EWASHer, and (h) ReFACTor. (i-n) The Q-Q plots for association with

RA status in the RA dataset for (i) HIRE, (j) unadjusted analysis, (k) SVA, (l) RefFreeEWAS,

(m) EWASHer, and (n) ReFACTor.

Real data analysis. HIRE also provides more insights into real data than the previous

studies. The rheumatoid arthritis (RA) dataset [3] contains methylation profiles collected from

the whole blood of 354 RA patients and 335 normal participants. Besides the RA status, other

attributes such as gender, smoking history, age, and batch information are also available. We

first corrected the batch effects and then applied HIRE to the dataset (Methods). Fig. 3a

displays the p-values regarding the association to the RA status for each CpG site in each

cell type, where HIRE selected six cell types (Supplementary Fig. 63a), consistent with the

cell type number in [13]. Despite any potential batch effects and biological variability, three

out of the six cell types can be matched to known blood cell references—cell type 1 to CD4+

T cells, cell type 2 to neutrophils, cell type 4 also to neutrophils, and the remaining three

cell types cannot be aligned to the references (Methods and Supplementary Fig. 64). HIRE

detected 63 risk-CpG sites in cell type 3—the largest number of associations across all of the

cell types—but 0 risk-CpG sites in cell type 1 (Supplementary Table 1). Therefore, the disease

status affected some but not necessarily all of the cell types. Note that the significant CpG site

cg06373940 called by HIRE is located on gene ERCC3. The level of ERCC3’s corresponding

protein has been reported to increase in RA synovium [25]. Moreover, we found five CpG sites

to be significantly associated with smoking history (Supplementary Fig. 65 and Supplementary

Table 2). One of them is cg05575921, which has recently been linked to smoking in two other

independent studies with blood samples [26, 27]. However, these findings were missed by the

association detection at the aggregated level in the previous analyses of the same dataset

[11, 13]. The p-value density plots and Q-Q plots for the commonly used methods are also

displayed in Figs. 3c-n; they present patterns similar to those observed in the simulation study

except that there is obvious overcorrection by ReFACTor.
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The high resolution provided by HIRE makes it a powerful tool for EWAS studies. Rahmani

et al. analyzed the GALA II blood methylation dataset [28] with ReFACTor [13]. The dataset

consists of 573 samples collected from a pediatric Latino population. Each sample has the

gender information and belongs to one of the following four populations: “Mexican,”“Mixed

Latino,”“Puerto Rican,” and “Other Latino.” We applied HIRE to the dataset to investigate

whether there were any cell-type-specific CpG sites associated with gender and ethnicity. We

created three dummy variables to represent the four ethnic groups. By taking indicators

of ethnicity as phenotypes in the model, HIRE automatically accounts for the population

differences in cell compositions and cell-type-specific methylation levels simultaneously. HIRE

correctly selected the number of cell types as six as reported in [13] (Supplementary Fig. 63b).

According to cell-type alignment, cell types 1 and 5 can be annotated as CD4+ T cells; cell

types 2, 3, and 4 belong to neutrophils; and cell type 6 was annotated as CD56+ natural killer

cell (CD56+ NK) using the references (Supplementary Fig. 66). HIRE found 1936 CpG sites to

be associated with ethnicity across all of the cell types (Supplementary Fig. 67) and identified

14, 52, 155, 15, 18, and 14 risk-CpG sites of the gender in cell types 1-6, respectively (Fig. 3b).

The gene set enrichment analysis showed that the genes that harbored the risk-CpG sites for

gender were significantly enriched in seven canonical pathways (Supplementary Table 3), of

which PID CMYB PATHWAY was ranked the highest. The transcription factor c−MYB in

PID CMYB PATHWAY enhances the progression of breast cancer [29]. Therefore, the different

occurrence rates of breast cancers between males and females may be linked to the differences

at the epigenome level. In comparison, only one pathway was found to be enriched with the

genes hosting the risk-CpG sites claimed by ReFACTor at the aggregated level (Supplementary

Table 4). All of these observations highlight the importance of the finer-scale resolutions of

HIRE.

Discussion

In reality, the phenotype may affect a risk-CpG site in some but not all of the cell types. As far

as we know, HIRE is the first tool to detect the cell-type-specific association pattern with each

phenotype for EWAS. The identification of cell-type-specific risk-CpG sites will help epigenetic

therapies to target the affected cell types more effectively.

Statistically, instead of assuming a fixed reference methylomes for all the samples as the
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existing methods do [9, 13, 16], HIRE allows each sample’s cell-type-specific methylation profiles

to depend on its phenotypes. Consequently, HIRE correctly models the multiplicative effects of

the cellular compositions on the observed methylation levels, whereas the existing approaches

all misspecify the cellular compositions as additive effects (Methods). As a result, HIRE

enables the detection of cell-type-specific risk-CpG sites infeasible by existing state-of-the-art

methods. As a byproduct, HIRE also improves the statistical power of the association detection

at the aggregated level over existing state-of-the-art methods. Computationally, the time

complexity of one iteration by HIRE is O(nmKp+ nK3), thus providing a fast convergence

when K is moderate. The statistical and computational advantages equip HIRE to scale up for

large-cohort EWAS.

So far, in the EWAS community, there is no gold-standard dataset to compare different

methods of detecting associations. Ideally, we would like to have epigenetic spike-in experiments

where purified cell types are first isolated, then CpG-sites are epigenetically edited on a per

cell type basis, and finally cell types are mixed in predetermined proportions. Given such

experiments, we know the underlying truth about which CpGs are differentially methylated

in each cell type and the cell mixing proportions for each sample. However, biotechnologies

for epigenetic editing, such as CRISPR-Cas, are still not mature at this stage, with many

off-targets modifications [30]. Therefore, most computational EWAS papers refer to numerical

simulation studies rather than to experimental studies when evaluating the performance of their

algorithms [12, 13]. Here, we follow previous comparative studies and design our simulation

studies to serve as the computational counterpart of experimental spike-in studies. With the

rapid advancement in epigenetic editing, we hope the community can devote more effort in the

near future to creating a gold-standard dataset, such as those generated in the early years for

gene expression microarray studies [31].

The beta-values representing methylation levels are always between zero and one. As

previous approaches to EWAS often assume normal distribution for the beta-values and show

good performances in real applications [9, 13], in HIRE, we also assume that the beta-values

follow normal distributions. Consequently, there is a chance that the fitted methylation level is

out of the range of [0, 1]. Nevertheless, we do in fact constrain the baseline methylation profiles

µjks to the closed interval [0, 1] and force the cellular compositions pkis to be non-negative and

sum up to one:
∑K

k=1 pki = 1. As a result, as the phenotypes have no effect on most CpG

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415109doi: bioRxiv preprint 

https://doi.org/10.1101/415109
http://creativecommons.org/licenses/by-nc-nd/4.0/


sites, most observations, Ojis, have their means
∑K

k=1 µjkpkis in [0, 1]. In fact, for both the

RA dataset and the GALA II dataset, more than 99.99% of the fitted methylation values Ôjis

based on HIRE estimates are between zero and one. Therefore, the normal assumption fits the

data reasonably well and does not have a large effect on the performance of HIRE.

One major issue for all of the cell-type deconvolution methods is that deconvolution cannot

be achieved if there is no variation of cellular compositions among samples. For example,

assuming that the samples are mixtures of two cell types and pi = p for all of the samples,

then the observed methylation profile Oi equals ui1p1 + ui2p2 = (ui1 + p2C)p1 + (ui2 − p1C)p2

:= ũi1p1 + ũi2p2 for any constant C. As a result, ui1 and ui2 are not estimable. As HIRE is

also a deconvolution-based method, it suffers from the same problem. However, for tissues with

large cellular heterogeneity such as blood, deconvolution-based methods are applicable, and

HIRE can accurately estimate cellular compositions.

HIRE requires a moderate sample size to obtain precise estimates as HIRE needs to learn

(1 + 2K + qK)m+ (K − 1)n parameters with a total of mn observed values. Our simulation

studies show that with 180 samples, HIRE performs very well at the aggregated level (Table

1). Suppose the sample sizes drop below 150, say to 120, HIRE can still control the FPR well

but begins to lose power (Supplementary Table 5). Like the two datasets analyzed in the real

application, a typical sample size for a current EWAS is over 500, thus guaranteeing a high

TPR for HIRE. Given the decreasing cost of EWAS, we recommend that researchers collect at

least 200 samples for their studies for association detection at the aggregated level and 600

samples for identifying cell-type-specific risk-CpG sites. A larger sample sizes can further boost

the power.

With the popularity of EWAS, we believe that HIRE will be widely applied, and we hope

that HIRE can motivate more researchers to mine out finer-scale results from EWAS.

Methods

Multiplicative effects of cellular composition on methylation. In this section, we

illustrate that the effects of the cell-type composition are actually multiplicative. Let us assume

that the beta-values representing the methylation levels are observed across m CpG sites for n

samples. As the measured sample is composed of cells from different cell types, the observed

beta-value is a weighted average of the mean methylation levels of distinct cell types, and the
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weights correspond to the proportions of each cell type. Let Oji denote the measurement at

CpG site j for sample i. If we assume that there exist K cell types in all of the samples and

the mean methylation level for CpG site j in cell type k is µjk, then

Oji =
K∑
k=1

µjkpki + εji,

where pki is the proportion of cell type k in sample i with a natural constraint
∑K

k=1 pki = 1,

and εji is a random error.

Let us consider a case-control EWAS. Without loss of generality, we assume that CpG site

j is differentially methylated between cases and controls in cell type 1 with a mean shift δj1

and it is not differentially methylated in the rest of the cell types. As a result, for case samples,

Oji = (µj1 + δj1)p1i +
K∑
k=2

µjkpki + εji = δj1p1i +
K∑
k=1

µjkpki + εji.

Subsequently, if we use Zi to indicate the case-control status of sample i, the observed

methylation level becomes

Oji = δj1p1iZi +
K∑
k=1

µjkpki + εji. (3)

Therefore, the proportions of cell type 1—p1i, i = 1, · · · , n—have multiplicative effects rather

than additive effects on the mean difference between the case and the control samples.

The existing methods, either estimating the cell type proportions explicitly or approximating

them with surrogate variables implicitly, add the estimated proportions and the case-control

indicator Zi as the covariates to the regression as follows:

Oji = αj + τjZi +
K−1∑
k=1

bjkp̂ki + εji, (4)

where bjks are the regression coefficients. As a result, CpG site j is called differentially

methylated on the basis of hypothesis test for τj = 0. In general, τj in Equation (4) is not equal

to δj1 in Equation (3). Please see the Supplementary Note for a numerical example. Moreover,

testing for τj = 0 loses the information about the cell type in which the CpG site j may be at

risk. Accounting for the multiplicative effects, we propose the HIRE model that conserves the

individual cell-type level information, which is introduced in the next section.

The HIRE model. HIRE employs a hierarchical model to closely follow the data generation

process for the EWAS data. To begin with, we assume that the baseline methylation level for

18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/415109doi: bioRxiv preprint 

https://doi.org/10.1101/415109
http://creativecommons.org/licenses/by-nc-nd/4.0/


CpG site j in cell type k is µjk. For sample i with phenotypes xi = (xi1, . . . , xiq), the mean

methylation value for CpG site j in cell type k is assumed to be µjk +
∑q

`=1 βjk`xi`. In other

words, the phenotypes have linear effects where βjk` characterizes the influence of phenotype `

on CpG site j in cell type k. Let uijk represent the signal from CpG site j in cell type k for

sample i with xi. We assume that uijk is normally distributed with mean µjk +
∑q

`=1 βjk`xi`

and standard deviation σjk,

uijk ∼ N(µjk +

q∑
`=1

βjk`xi`, σ
2
jk). (5)

After uijks are generated for all of the K cell types, the observed methylation value Oji is

sampled as follows:

Oji ∼ N(
K∑
k=1

uijkpki, σ
2
εj). (6)

Collectively, O = {Oji : 1 ≤ j ≤ m, 1 ≤ i ≤ n} denote the observed data; u = {(uij1, . . . , uijK)T :

1 ≤ i ≤ n, 1 ≤ j ≤ m} are the missing data; and µj = (µj1, . . . , µjK)T , B(j) = (βjk`)K×q, σ
2
εj,

the diagonal matrix Σj = diag(σ2
j1, . . . , σ

2
jK) for j = 1, . . . ,m, and pi = (p1i, . . . , pKi)

T for

i = 1, . . . , n are the parameters. With Θ = {pi,µj,B
(j),Σj, σ

2
ε,j : 1 ≤ j ≤ m, 1 ≤ i ≤ n}, the

complete data log-likelihood function, lc, can be expressed as follows:

lc(Θ|O,u) =
n∑
i=1

m∑
j=1

{ − 1

2
logσ2

ε,j −
(Oji − uTijpi)

2

2σ2
ε,j

− 1

2

K∑
k=1

logσ2
jk−

1

2
(uij − µj −B(j)xi)

TΣ−1j (uij − µj −B(j)xi)}+ Constant.

Accordingly, we develop a generalized expectation-maximization algorithm [32] to estimate

the parameters. In expectation-maximization algorithm, a good initialization can lead to faster

convergence than random starts. We adopt the cellular composition estimations from the

methylation matrix decomposition algorithm [16] with slight modifications as the initializations.

The initial values for the baseline methylation profiles µjk are accordingly estimated by simple

linear regressions. As the number of risk-CpG sites is often small, all of the phenotype effects

βjk` are set to zero at the beginning. For the standard deviations, the initial values are randomly

sampled from inverse gamma distributions with small means. We choose the number of cell

types K by using a variant of the penalized Bayesian information criterion (pBIC) [20] (see

details in Supplementary Note).
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For each phenotype `, we can conduct the hypothesis test H0 : βjk` = 0 versus H1 : βjk` 6= 0

for any cell type k and any CpG site j. Combining Equations (5) and (6), we obtain the

following equations:

E [Oji] = µj1 +
K∑
k=2

(µjk − µj1)pki +
K∑
k=1

q∑
`=1

βjk`xi`pki, i = 1, . . . , n. (7)

Subsequently, we can take (Oj1, . . . , Ojn) as the response vector and concatenate 1n, (pk1, . . . , pkn)

(k = 2, . . . , K) and (x1`pk1, . . . , xn`pkn) (` = 1, . . . , q; k = 1, . . . , K) to a n× (p+ 1) ·K design

matrix in the linear regression. We plug in the estimated cellular compositions p̂ki` and conduct

the hypothesis test for βjk` = 0 using the t-tests in the linear models. We claim that CpG site

j has association with phenotype ` at the aggregated level if phenotype ` affects CpG site j

in at least one of the K cell types. Note that in the regression we incorporate the estimated

cellular compositions into the linear model as multiplicative effects rather than additive effects.

More technical details of the method and the algorithm are available in the Supplementary

Note.

Data simulation. We compared the performance of HIRE with five previous methods—

unadjusted analysis, SVA, RefFreeEWAS, EWASHer, and ReFACTor—in 18 simulation settings.

We set the sample size n to 180, 300, and 600 and let the underlying cell type number K be 3,

5, and 7. For each pair of (n,K), we investigated the “true null ” case and the “true alternative”

case. As a result, we have in total 3 (the number of sample sizes) × 3 (the number of cell types)

× 2 (the “true null” case and the “true alternative” case) = 18 simulation settings. For each

setting, we considered 10,000 CpG sites and simultaneously accounted for the following factors.

Cell lineage. We first constructed the baseline methylation matrix µ = (µjk)m×K , where each

column corresponds to the baseline methylation levels of a cell type. To mimic the phenomenon

that cell types from the same lineage have similar methylation profiles, we assumed that Ksim

out of the total K cell types were similar. Specifically, without loss of generality, we assumed

that the first Ksim cell types were from the same cell lineage and the rest K −Ksim cell types

are irrelevant to one another. We set Ksim to 2, 2, and 3 for K = 3, 5, and 7, respectively.

We generated µjk for cell types k = 1, Ksim + 1, . . . , K from the beta distribution beta(3, 6)

on each CpG site j independently. For each of the remaining cell types k′ = 2, . . . , Ksim, we

randomly selected 20% of the CpG sites and drew their µjk′s independently from beta(3, 6);

and for the remaining 80% of CpG sites, we let their µjk′ be µj1 plus a very small randomness,
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thus inducing the similarities among cell types 1 to Ksim.

Discrete and continuous phenotypes. We further generated a discrete and a continuous phe-

notype x = (x1,x2)
T for each individual i (i = 1, . . . , n). We let the first n/3 individuals be the

control samples with xi1 = 0 for i = 1, . . . , n/3 and the remaining 2n/3 individuals serve as cases

with xi1 = 1 for i = n/3 + 1, . . . , n. The continuous phenotypes x2 = (x12, . . . , xi2, . . . , xn2)
T

were independently drawn from a Unif(20, 50) to act as age.

Phenotype effects with different magnitudes and directions. Subsequently, we simulated the

phenotype effect βjk` of each phenotype ` on CpG site j in cell type k. For the “true null”

cases, all of the βjk`s are zero. For a “true alternative” setting, we set nonzero phenotype

effects as follows.

For phenotype 1—the case/control status, we let it affect the first 10 CpG sites in all of

the cell types: βjk1 6= 0 for j = 1, . . . , 10 and k = 1, . . . , K. Then, we assumed that the next

10 CpG sites were influenced by the disease status in the first Ksim cell types which come

from the same lineage but not the other cell types: βjk1 6= 0 (k = 1, . . . , Ksim) and βjk1 = 0

(k = Ksim+ 1, . . . , K) for any j = 11, · · · , 20. Furthermore, for cell type k ∈ {Ksim+ 1, . . . , K},

we let the disease status affect CpG sites j = 20 + 10(k −Ksim − 1) + 1, . . . , 20 + 10(k −Ksim)

only in cell type k. We generated the cell-type-specific effects of age in a similar fashion for

CpG site loci 21 to 40 + 10(K −Ksim).

For each nonzero βjk1, we let βjk1 = rjk · ωjk, where ωjk ∼ Unif(0.07, 0.15) and rjk

takes values at 1 and −1 with equal probabilities. Thus, βjk1s can have both positive and

negative effects. In the same spirit, we generated nonzero βjk2s with r′jks and ω′jks where

ω′jk ∼ Unif(0.007, 0.015).

The association between phenotypes and cellular compositions. Notice that the phenotypes

may be associated with the cellular compositions. Therefore, when K = 3, we drew pi =

(p1i, . . . , pKi) from a Dirichlet distribution Dir(4, 4, 2 + 0.1xi2) if sample i is a control and

pi ∼ Dir(4, 4, 5 + 0.1xi2) if it is a case; when K = 5, we let pi ∼ Dir(3, 3, 3, 3, 2 + 0.1xi2) for

a control sample and pi ∼ Dir(3, 3, 3, 3, 5 + 0.1xi2) for a case sample; and when K = 7, we

sampled pi ∼ Dir(1, 3, 3, 3, 2, 2, 2 + 0.1xi2) for controls and pi ∼ Dir(1, 3, 3, 3, 2, 2, 5 + 0.1xi2)

for cases.

Finally, we generated the observed value Oji for CpG site j of sample i as follows:

sample uijk from N(µjk + βjk1xi1 + βjk2xi2, 0.012) for k = 1, . . . , K; and sample Oji from
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N(
∑K

k=1 uijkpki, 0.012). In case Oji is out of the interval (0, 1), we truncate it to zero if Oji is

lower than zero and to one if Oji is greater than one.

A semi-simulated dataset including samples with known cell mix proportions. The

GEO dataset GSE110554 [24] contains purified cell-type-specific methylation profiles for six

cell types: neutrophils, monocytes, B cells, CD4+ T, CD8+ T, and NK. Moreover, GSE110554

includes mixed samples, whose methylation signals were aggregated from the six cell types with

pre-determined cell mix proportions. Therefore, because of the known cell type and cellular

proportion information, GSE110554 is an ideal dataset with which to test HIRE’s performance.

In GSE110554, the number of mixed samples is much smaller than the typical size of an

EWAS and, as discussed in the manuscript, HIRE usually requires hundreds of samples to

obtain accurate and stable results. Therefore, to increase the sample size, we first generated a

simulated methylation dataset with 600 samples using the purified methylation profiles. We

focused on 10k CpG sites including the 450 IDOL CpG sites, which were previously identified

as the optimal library of CpG sites for estimating leukocyte subtype proportions [24], and

another 9550 CpG sites whose methylation values across the purified cell types were in the

range of [0.2, 0.8] and had large standard deviations [11]. Subsequently, we combined the 600

samples and 6 mixed samples (generated by method A) [24] available in GSE110554 to compose

a semi-simulated dataset.

After applying HIRE to the semi-simulated data, we annotated the estimated cell types

based on the methylation profiles from GSE110554. Supplementary Fig. 69 shows the heatmap

for the Pearson correlation matrix between inferred cell types and the underlying truth. The

correlation signals on the diagonal are the strongest in each row. HIRE successfully recovers

the six underlying cell types. We also compared the estimated cellular compositions with

the underlying true proportions for the 6 mixed samples. In Supplementary Fig. 70, each

panel displays the scatter plot between the cellular proportion estimates and the true mix

proportions for a given cell type, all of which indicate that HIRE obtains good estimates for

cellular compositions.

Cell type matching protocol. Assume that we have the reference methylation profiles for the

H annotated cell types. We denote the methylation profile for cell type h as φh = (φ1h, . . . , φmh).

We aim to annotate µk using the references. Following [33], first, we calculate the cosine

similarity, the Pearson correlation, and the Spearman correlation between µk and φh for each
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cell type h ∈ {1, . . . , H}. Notice that the three similarity measures are between −1 and 1

and a high positive value indicates a high similarity between two vectors. Second, for each

similarity measure ` (` = 1, 2, 3), we identify the cell type h` that has the maximal similarity

degree with µk. If at least two out of the three similarity measures identify the same reference

cell type h̃ and their corresponding similarity values are greater than 0.5, then we annotate µk

with the reference cell type h̃. Otherwise, µk is believed to belong to a “new” cell type that is

not included in the references. We repeat the above process for each methylation profile µk

estimated from HIRE.

The blood cell references. The two real data sets analyzed in our applications were obtained

from whole blood. Therefore, we prepared the references from a whole blood methylation

study [34] with GEO accession code GSE35069. The study collected seven isolated blood cell

subpopulations—CD4+ T cells, CD8+ T cells, CD14+ monocytes, CD19+ B cells, CD56+

NK cells, neutrophils, and eosinophils—for six individuals. Accordingly, we define the reference

profile φh for cell type h as the average methylation profile of these individuals, i.e., φh :=

1
6

∑6
i=1 φhi.

Data preprocessing. The RA dataset is publicly available in GEO with accession number

GSE42861. The dataset measures the methylation levels of the whole blood. The methylation

data have been normalized by Illumina’s control probe scaling procedure (see Liu et al. [3]

“Illumina 450K microarray data preprocessing” section for details). There are in total 689

samples. For each sample, his or her RA status, age, gender, smoking history, and batch

information are also available. We removed two samples “GSM1051535” and “GSM1051691”

as their smoking information is missing. CpG sites with a high methylation mean (> 0.8)

and a low methylation mean (< 0.2) were discarded [11, 13]. We adjusted the data for batch

effects using COMBAT [35]. The correction process was justified as we did not observe a high

co-linearity between the RA status and the batches (Supplementary Fig. 68). Subsequently,

the 10,000 most variable CpG sites were kept. For the RA status, we denoted the RA patient

by 1 and the normal by 0; we represented male with 1 and female with 0; for the smoking

history, we used (0, 0, 0) to refer to “never,” (1, 0, 0) to “ex,” (0, 1, 0) to “current,” and (0, 0, 1)

to “occasional” smokers.

We downloaded the GALA II dataset from Gene Expression Omnibus (GEO) with accession

number GSE77716. The dataset contains the whole blood DNA methylation beta-values from
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573 samples. The beta-values have been normalized by SWAN [36] and corrected for batch

effects by COMBAT [35]. There are two types of covariates, the gender and the ethnicity. The

ethnicity includes “Mexican,” “Mixed Latino,” “Puerto Rican,” and “Other Latino.” Out of

the 573 samples, one sample “GSM2057284” has no gender information, so we removed it.

As suggested by previous studies [11, 13], CpG sites with a mean methylation value of less

than 0.2 or higher than 0.8 were filtered out. Among the remaining CpG sites, we selected the

10,000 most variable CpG sites. For gender, we denoted male by 1 and female by 0. For the

ethnicity variables, we used three dummy variables to represent the four ethnicity categories. In

particular, (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) corresponded to “Mexican,” “Mixed Latino,”

“Puerto Rican,” and “Other Latino,” respectively.

For ReFACTor and EWASHer, according to their rules, we first filtered out CpG sites that

were consistently hypomethylated or consistently hypermethylated and then regressed out the

known covariates. We finally used the residuals to perform their analysis. Note that in their

software these steps are processed automatically. For RefFreeEWAS, SVA, and the unadjusted

analysis, the phenotypes and the covariates were regarded as the fixed effects in the regression

model. In detail, for ReFACTor, in both GALA II and RA datasets, the cell type number

“K” was specified to be six, which was the same as in their paper [13]. For RefFreeEWAS, we

fixed the dimensionality of latent space “d” at six in the real data. For SVA, we also fixed the

number of surrogate variables to six.

The gene enrichment analysis was carried out on the broad institute website http://

software.broadinstitute.org/gsea/msigdb/annotate.jsp. The canonical pathways were

selected as the basis gene sets, and only pathways with a false discovery rate of less than 0.05

were reported.

Code availability. The R package to implement HIRE is available on GitHub: https:

//github.com/XiangyuLuo/HIREewas.

Data availability. The RA whole blood methylation dataset is available in the Gene Expression

Omnibus (GEO) with the accession number GSE42861. The GALA II whole blood methylation

dataset can be downloaded from GEO with the accession number GSE77716. The accession

number for the blood cell references is GSE35069. The purified methylation data and mixed

samples used to generate the semi-simulated dataset are from GSE110554.
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