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Abstract 

Bioinformatics	 workflows	 for	 analyzing	 genomic	 data	 obtained	 from	

xenografted	 tumor	 (e.g.,	 human	 tumors	 engrafted	 in	 a	mouse	 host)	must	

address	 several	 challenges,	 including	 separating	 mouse	 and	 human	

sequence	reads	and	accurate	identification	of	somatic	mutations	and	copy	

number	 aberrations	 when	 paired	 normal	 DNA	 from	 the	 patient	 is	 not	

available.	 	 We	 report	 here	 data	 analysis	 workflows	 that	 address	 these	

challenges	and	result	 in	reliable	 identification	of	somatic	mutations,	copy	

number	 alterations,	 and	 transcriptomic	 profiles	 of	 tumors	 from	 patient	

derived	 xenograft	models.	 	We	 validated	our	 analytical	 approaches	using	

simulated	data	and	by	assessing	concordance	of	the	genomic	properties	of	

xenograft	 tumors	 with	 data	 from	 primary	 human	 tumors	 in	 The	 Cancer	

Genome	Atlas	(TCGA).	The	commands	and	parameters	for	the	workflows	are	

available	 at	 https://github.com/TheJacksonLaboratory/PDX-Analysis-

Workflows.		
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Introduction 

Patient-Derived	Xenograft	(PDX)	models	are	in	vivo	preclinical	models	of	human	
cancer	 for	 translational	 cancer	 research	and	personalized	 therapeutic	 selection	

[1-7].	Previous	 studies	have	demonstrated	engrafted	human	 tumors	 retain	key	

genomic	 aberrations	 found	 in	 the	 original	 patient	 tumor	 [3,	 8,	 9]	 and	 that	

treatment	 responses	 of	 tumor-bearing	 mice	 typically	 reflect	 the	 responses	

observed	in	patients	[6,	10].	PDXs	have	been	used	successfully	as	a	platform	for	

pre-clinical	 drug	 screens	 [6,	 7,	 10],	 to	 facilitate	 the	 development	 of	 potential	

biomarkers	of	drug	response	and	resistance	[6,	7,	11],	and	to	select	appropriate	

therapeutic	regimens	for	individual	patients	[8].		

	

The	Jackson	Laboratory	(JAX)	PDX	Resource	has	over	400	PDX	models	from	more	

than	20	different	types	of	cancer.	A	schematic	summarizing	the	processes	used	for	

model	generation,	quality	control,	and	characterization	process	for	the	resource	

is	 shown	 in	 Figure	 1.	 Genome	 characterization	 of	 PDX	 tumors	 includes	 the	

identification	of	somatic	mutations,	copy	number	alterations,	and	transcriptional	
profiles.	 Over	 100	 of	 the	models	 have	 been	 assessed	 to	 date	 for	 responses	 to	

various	 therapeutic	 agents.	The	 integration	of	results	 from	dosing	studies	with	

genomic	data	for	the	models	has	been	successfully	applied	to	the	identification	of	

novel	genomic	biomarkers	associated	with	treatment	responses	[12].	

	

To	generate	accurate	 calls	 for	mutations	and	copy	number	variants	 for	human	

tumors	engrafted	in	a	mouse	host,	several	challenges	had	to	be	addressed.	First,	

because	 human	 stroma	 is	 replaced	 by	 mouse	 cells	 and	 tissues	 during	 tumor	

engraftment,	sequence	data	generated	for	PDX	tumors	includes	both	mouse	and	

human	 sequences.	 As	 the	 protein-coding	 regions	 of	 the	 mouse	 and	 human	

genomes	are	85%	identical	on	average,	 there	 is	a	high	risk	of	 introducing	 false	

positive	 variants	 in	 functional	 regions	 and	 erroneous	 gene	 expression	 [13-15].	

Second,	 because	 the	 tumor	 material	 used	 to	 create	 models	 in	 the	 JAX	 PDX	

Resource	 consisted	 of	 material	 that	 remained	 following	 clinical	 pathology	
assessment	 (i.e.	 material	 was	 not	 collected	 specifically	 for	 xenograft	 model	

creation),	 paired	 normal	 samples	were	 not	 available	 for	 the	majority	 of	 tumor	

samples	used	to	generate	the	PDXs.	The	absence	of	normal	tissue	complicates	the	
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ability	to	distinguish	germline	variants	from	somatic	alterations	(point	mutations,	

indels	and	copy	number	aberrations)	in	the	tumor	[16-19].	Third,	false	positive	

(FP)	variants	due	to	errors	in	sequencing	and	mapping	require	additional	filtering	

steps	 in	 the	 computational	 workflow	 [20-22].	 Finally,	 it	 has	 been	 reported	

previously	that	the	immunodeficient	host	mice	are	susceptible	to	forming	B-cell	

human	 lymphomas	 during	 engraftment	 due	 to	 Epstein-Barr	 virus	 (EBV)-

associated	 lymphomagenesis	 [23-27].	 	 Systematic	 screening	 of	 PDX	 tumor	
samples	for	EBV	transformation	is	an	important	step	in	quality	assurance	for	the	

integrity	of	PDX	repositories.	

	

Here,	 we	 describe	 bioinformatics	 analysis	 workflows	 and	 guidelines	

(https://github.com/TheJacksonLaboratory/PDX-Analysis-Workflows)	 that	 we	

developed	for	 the	 for	 the	analysis	of	genomic	data	generated	 from	PDX	tumors	

(http://www.tumor.informatics.jax.org/mtbwi/pdxSearch.do).	These	workflows	

incorporated	established	tools	and	public	databases	and	were	tailored	to	address	

the	 specific	 challenges	mentioned	 above	 by	 tuning	 parameters	 and	 addition	 of	

filters.	We	demonstrate	how	our	methods,	using	simulated	and	experimental	data,	

improve	the	accuracy	in	the	detection	of	somatic	alterations	in	PDX	models.		We	

also	developed	a	classifier	based	on	expression	data	to	systematically	identify	and	

filter	 out	 EBV	 transformed	 samples.	 Finally,	 to	 verify	 the	 effectiveness	 of	 our	

workflows,	we	show	the	overall	concordance	of	the	genomic	and	transcriptomic	
profiles	of	the	PDX	models	in	the	JAX	PDX	resource	with	relevant	tumor	types	from	

The	Cancer	Genome	Atlas	(TCGA).	

	

Results 

Workflow for calling somatic point mutations and indels in PDX tumors 

A	schematic	of	the	variant	calling	workflow	we	implemented	for	human	tumors	

engrafted	in	mice	is	shown	in	Figure	2A	and	2B	(see	Methods).		

	

Preprocessing	and	removal	of	mouse	reads.	Human	and	mouse	DNA	reads	were	

classified	 by	 Xenome	 [13],	 which	 had	 shown	 reliable	 performance	 in	 separate	

studies	[28],	and	only	human	reads	were	used	for	subsequent	variant	calling.	The	

percentage	 of	mouse	 reads	within	 the	 PDX	 samples	 in	 the	 JAX	 resource	 has	 a	
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median	value	of	5.30%	(range:	0.00163%	-	65.1%)	(Figure	3A).	Using	simulated	

CTP	datasets,	we	verified	that	omitting	the	Xenome	step	to	filter	the	mouse	reads	

resulted	in	very	low	precision	(Figure	3B),	i.e.	large	number	of	FPs,	in	the	absence	

of	the	quality	hard	filters	(Supplementary	Table	S1).	These	FPs	were	due	to	mouse	

reads	being	aligned	to	the	reference	genome	with	mismatches	and	subsequently	

called	as	variants	with	low	quality	scores	(QD).		

	
While	the	default	thresholds	for	GATK	hard	filtering	parameters	[29]	removed	a	

large	proportion	of	 the	FPs,	applying	Xenome	to	 filter	 for	human	reads	yielded	

superior	 performance	 in	 terms	 of	 substantially	 higher	 precision,	 as	 well	 as	

improvement	 in	recall.	 In	addition,	Xenome	filtering	maintained	the	correlation	

between	 the	predicted	versus	actual	 allele	 frequencies,	which	would	otherwise	

decrease	with	higher	mouse	contamination	(Supplementary	Table	S2).	

		

Filtering	 germline	 variants.	 To	 enhance	 filtering	 out	 germline	 variants	 from	

somatic	mutations,	we	sequenced	and	analyzed	20	normal	blood	samples	using	

the	CTP	targeted	panel.	As	shown	in	Supplementary	Figure	S1A	and	S1B,	87%	of	

the	variants	 identified	 in	normal	blood	had	allele	 frequencies	of	40%	-	60%	or	

>90%	 across	 all	 the	 samples,	 indicating	 the	 presence	 of	 heterozygous	 or	

homozygous	common	variants,	respectively.	Ninety-one	percent	of	 the	variants	

identified	in	these	20	samples	were	annotated	in	the	public	germline	databases.	
4%	 of	 these	 variants	 were	 not	 found	 in	 public	 germline	 databases,	 but	 were	

recurrent	 in	 these	 normal	 samples	 or	 across	 the	 PDX	 tumors	 in	our	 collection	

(Supplementary	Figure	S1C)	and	so	were	added	to	our	list	of	putative	germline	

variants.	Only	5%	of	 all	of	 the	variants	 in	 the	20	 samples	were	private	events.	

Based	 on	 these	 observations,	 the	 variants	 in	 each	 PDX	 tumor	 with	 an	 allele	

frequency	of	40%	-	60%	or	>90%,	and	present	in	either	public	germline	database	

or	our	list	of	putative	germline	variants	(Supplementary	Table	S3)	were	filtered	

out	as	germline	variants	(Supplementary	Table	S3).	This	was	a	more	conservative	

approach	given	 that	 these	known	germline	variants	 in	 regions	of	 copy	number	

alterations	where	the	ratio	of	both	alleles	were	not	balanced	would	not	be	filtered.	

Figure	 3C	 shows	 that	 the	 germline	 filters	 effectively	 rectified	 the	 estimated	

somatic	mutational	load	in	the	PDX	tumors	(Supplementary	Table	S5)	by	about	
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four-fold	reduction	(Supplementary	Table	S4),	which	was	reasonable	as	a	 large	

proportion	of	the	variants	were	expected	to	be	germline.		

	

Filtering	false	positives	due	to	systematic	errors.	Putative	somatic	variants	with	

no	known	effects	in	cancer	that	recur	across	large	numbers	of	PDX	samples	are	

potentially	FPs	arising	from	sequence	assembly	based	error	in	the	reference	the	

genome,	sequencing	errors	or	alignment	errors	in	low	mappability	regions	[30].	
To	detect	these,	we	filtered	out	the	variants	at	loci	that	were	recurrently	mutated	

in	≥25%	of	PDX	tumors	(Figure	2C).	The	distribution	of	tumor	types	for	each	of	

these	 recurrently	 mutated	 positions	 (n=52)	 was	 highly	 similar	 to	 the	 overall	

distribution	of	tumor	types	in	the	PDX	resource	(Supplementary	Figure	S2A)	with	

Pearson	correlation	coefficient	>0.9	(Supplementary	Figure	2B).	This	implies	that	

these	mutations	were	systematic	errors	and	were	not	selected	for	any	tumor	type,	

and	 thus,	 biologically	 irrelevant.	 Filtering	 these	 highly	 recurrent	 loci	 did	 not	

significantly	 reduce	 the	 predicted	 mutational	 load	 per	 tumor	 (Figure	 3C	 and	

Supplementary	Table	S4).	

	

Rescuing	variants.	The	germline	filters	might	filter	out	actual	somatic	events	in	

each	 PDX	 sample,	 leading	 to	 false	 negatives.	 However,	 retaining	 all	 variants	

represented	in	cancer	variant	databases	such	as	COSMIC	would	lead	to	excess	FPs.	

For	example,	46%	of	the	variants	in	the	normal	samples	are	present	in	the	COSMIC	
database	(Supplementary	Figure	S1A).	To	address	the	balance	of	false	positive	and	

false	negative	mutation	calls,	we	“rescued”	variants	that	were	initially	filtered	out	

based	on	curated	annotations	available	in		the	JAX-Clinical	Knowledgebase	(CKB,	

https://ckb.jax.org/)	[31].	The	criteria	for	rescuing	variants	included	those	with	

1)	 known	or	 predicted	 gain	 or	 loss	 of	 protein	 function,	 2)	 potential	 treatment	

approach	 for	 any	 cancer	 type	 and	 3)	 drug	 sensitivity	 and	 resistance	 effects	 in	

clinical	 or	 preclinical	 studies	 (Supplementary	 Table	 S4).	 We	 also	 included	 an	

additional	 indel	 caller,	 Pindel	 [32],	 in	 the	 workflow	 in	 order	 to	 increase	 the	

sensitivity	of	indel	prediction.	As	Pindel	results	contained	a	large	number	of	FPs,	

we	only	 included	 those	 that	were	present	 in	 the	 JAX-CKB	by	 the	same	criteria.	

Overall,	127	unique	variants	from	52	genes	(1.03%	of	the	total	and	2.21	%	of	the	

filtered	unique	variants	detected	by	 the	CTP	platform)	were	 rescued	 from	381	

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2018. ; https://doi.org/10.1101/414946doi: bioRxiv preprint 

https://doi.org/10.1101/414946
http://creativecommons.org/licenses/by-nc/4.0/


	 6	

PDX	CTP	samples.	Nine	of	these	mutations	have	been	validated	to	be	present	in	

the	PDX	model	(Figure	3D).	Almost	all	were	initially	filtered	as	germline	events,	as	

many	well-known	actionable	cancer	mutations	(e.g.	BRAF	V600E	and	KRAS	G12C)	

are	present	in	the	dbSNP	database	and	were	filtered	if	they	fall	within	the	germline	

allele	 frequency.	Two	other	variants	 that	were	not	 called	by	GATK	 initially	but	

were	detected	by	Pindel	were	rescued	as	they	were	annotated	clinically	relevant.	

	
Optimized	workflow	achieves	high	performance	in	somatic	mutation	calling.	

Figure	3B	shows	that	our	full	feature	workflow	on	the	simulated	datasets	achieved	

the	 highest	 precision	 in	 variant	 calling,	 with	 insignificant	 compromise	 on	 the	

recall	(Supplementary	Table	S1).	We	observed	that	the	allele	frequencies	of	the	

true	positive	(TP)	variants	correlates	well	(Pearson	correlation	coefficient	>0.99)	

with	the	 input	allele	 frequencies	 for	all	samples	(Supplementary	Figure	S3	and	

Figure	 S4,	 and	 Supplementary	 Table	 S2).	 Although	 the	 estimated	 allele	

frequencies	 were	 lower	 than	 the	 true	 allele	 frequencies,	 this	 difference	 was	

marginal	and	could	be	attributed	to	the	reads	carrying	the	variants	being	classified	

as	non-human	reads	by	Xenome	or	not	mapped	to	the	genome.	Moreover,	all	(20	

out	 of	 20)	 clinically	 relevant	 mutations	 experimentally	 validated	 or	 clinically	

reported	in	the	corresponding	patient	tumors	were	detected	in	the	PDX	tumors	

(Figure	3D).	

	
Gene expression analysis in PDXs 

A	schematic	overview	of	the	PDX	gene	expression	workflow	is	provided	in	Figure	

4A	(see	Methods).	

	

Screening	 of	 EBV-associated	 lymphomas	 by	 RNA-Seq	 expression	 data.	 	 We	

observed	 that	 the	EBV-associated	 lymphoma	 tumors	that	 arise	 in	PDX	samples	

display	a	distinct	and	highly	reproducible	expression	pattern,	regardless	of	 the	

platforms	 in	which	the	expression	was	measured	(RNA-Seq,	Affymetrix	Human	

Gene	 1.0	 ST	 arrays	 and	Human	Gene	 133	Version	 2	 arrays).	 	 The	 PDX	 tumors	
identified	as	EBV-associated	 routinely	showed	higher	 correlation	 in	expression	

profiles	than	distinct	pairs	of	PDX	models	derived	from	common	original	tumor	

materials	 (Supplementary	 Figure	 S5).	 This	 expression	 profile	 was	 also	

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2018. ; https://doi.org/10.1101/414946doi: bioRxiv preprint 

https://doi.org/10.1101/414946
http://creativecommons.org/licenses/by-nc/4.0/


	 7	

independent	of	the	tissue	of	origin	of	the	tumors	from	which	the	EBV-associated	

lymphomas	 were	 derived.	 Given	 the	 high	 similarity	 in	 expression	 profiles,	 we	

identified	 a	 gene	 signature	 based	 on	 the	 most	 differentially	 expressed	 genes	

between	EBV-associated	 lymphomas	and	non-EBV-associated	 tumors	 (data	not	

shown).	 Using	 gene	 set	 analysis,	 we	 observed	 that	 genes	 associated	 with	 B-

lymphocytes	and	other	immune	processes	were	over-expressed,	while	cell-to-cell	

communication	 and	 adherence	 genes	 were	 suppressed	 (data	 not	 shown).	 We	
developed	a	classifier	that	scored	each	PDX	sample	based	on	the	expression	levels	

of	 the	genes	 in	 the	gene	signature	(Supplementary	Table	S6).	This	single	score,	

when	applied	on	RNA-Seq	data,	was	able	 to	effectively	distinguish	PDX	 tumors	

that	were	 either	EBV-transformed	or	originated	 from	human	 lymphomas	 from	

non-lymphoma	PDX	tumors	(Figure	4B).	Overall,	8.5%	(32	out	of	376)	of	the	non-

lymphoma	PDX	samples	with	RNA-Seq	data	 in	 the	PDX	resource	progressed	 to	

EBV-associated	 lymphomas.	 These	 tumors	were	 further	 confirmed	 to	 be	 CD45	

positive	by	immunohistochemistry	(IHC)	staining,	which	is	the	primary	tool	at	JAX	

to	identify	PDX	tumors	that	are	EBV-transformed.		

	

Copy Number Variant (CNV) analysis in PDXs 

A	 schematic	overview	of	 the	 PDX	CNV	workflow	 is	 provided	 in	Figure	 5A	 (see	

Methods).	

	

Effect	of	mouse	DNA	on	CNV	calls.	We	studied	the	effect	of	mouse	contamination	

on	array	data	by	hybridizing	DNA	of	the	NSG	mouse	on	the	human	SNP	array,	and	

observed	that	the	signal	intensity	from	mouse	DNA	is	negligible	(Supplementary	

Figure	S6).	Samples	with	higher	mouse	content	are	more	likely	to	result	in	failure	

of	 the	 standard	 array	 quality	 control	 or	 the	 analysis	 workflow,	 due	 to	 lower	

amount	of	human	DNA	to	give	sufficient	probe	signal,	thus	enabling	samples	with	

substantial	mouse	contamination	to	be	screened	out.	

	

Absence	 of	 matched	 normal	 to	 call	 somatic	 copy	 number	 aberrations.	 We	
compared	 the	 results	 of	 the	 single-tumor	 CNV	 analysis	with	 the	 tumor-normal	

CNV	analysis	to	access	the	reliability	of	the	single-tumor	CNV	analysis	results.	For	

the	 limited	 number	of	 PDX	samples	with	 paired	 normal	 samples,	we	 observed	
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overall	 high	 similarity	 between	 the	 segmented	 copy	 number	 profiles	 analyzed	

with	and	without	the	paired-normal	sample	(Supplementary	Figure	S7).	The	gene-

based	log2(total	CN/ploidy)	showed	good	correlation	between	the	single-tumor	

and	tumor-normal	CNV	analysis	(Pearson	correlation	>0.81,	n=9),	with	8	out	of	9	

PDX	samples	having	a	correlation	of	>0.93	(Supplementary	Table	S7),	indicating	

that	the	single-tumor	CNV	analysis	was	sufficiently	robust. 

	
Establishing	the	appropriate	baseline	to	call	copy	number	gains	and	losses.	

We	analyzed	the	effects	of	using	different	baselines	for	“normal	state”	to	compute	

copy	number	gains	and	losses	using	a	 list	of	significantly	amplified	and	deleted	

genes	 from	TCGA	(Supplementary	Figure	S8).	When	the	overall	cancer	genome	

ploidy	 was	 used	 as	 the	 normal	 baseline,	 we	 observed	 a	 balance	 of	 a	 larger	

proportion	 of	 the	 significantly	 amplified	 being	 called	 copy	 number	 gain,	 and	

similarly	a	larger	proportion	of	the	significantly	deleted	genes	being	called	copy	

number	loss	among	the	PDX	samples	(Supplementary	Figure	S9).	However,	more	

of	 both	 significantly	 amplified	 and	 deleted	 genes	 were	 being	 classified	 as	

amplified	when	copy	number	aberrations	were	calculated	relative	to	the	diploid	

state.	While	the	average	ploidy	could	be	estimated	differently	across	the	samples	

for	 the	 same	 model,	 the	 copy	 number	 changes	 relative	 to	 ploidy	 remained	

consistent	(Figure	5B	and	Supplementary	Figure	S7).		

	
Effects	copy	number	aberrations	on	expression	changes.	We	observed	that	the	

estimated	copy	number	gains	and	losses	of	known	oncogenes	(n=23)	and	tumor	

suppressor	 genes	 (n=40)	 [33],	 relative	 to	 the	 average	 ploidy	 per	 PDX	 sample,	

generally	results	in	expression	fold	change	(relative	to	the	average	expression	at	

copy	number	normal	state)	in	the	same	direction	(Supplementary	Table	S8)	[11,	

34,	35].	Most	of	these	genes	show	significant	over-expression	with	copy	number	

gain	 and	 significant	 under-expression	 with	 copy	 number	 loss	 across	 the	 PDX	

samples	(p<0.05)	(Figure	5C	and	Supplementary	Figure	S10).	This	shows	that	the	

baselines	to	call	copy	number	gain	and	loss,	and	over	and	under-expression,	were	

correctly	established.	This	significant	observation,	however,	did	not	hold	when	we	

did	a	global	 analysis	 across	all	 genes	 instead	of	 selected	oncogenes	and	 tumor	

suppressor	 genes.	 This	 was	 because	 many	 genes	 were	 not	 expressed	 in	 the	
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respective	tissue	types	even	though	they	were	in	regions	affect	by	copy	number	

alterations,	and	the	expression	of	many	genes,	despite	being	non-altered	regions,	

could	be	regulated	by	other	mutations	or	epigenetic	mechanisms	in	the	tumors.		

	

Comparison of genomic and transcriptomic profiles of PDX models and TCGA patient 

tumors 

Due	 to	 the	 lack	 of	 paired-normal	 samples	 for	 the	 PDX	models	 in	 the	 JAX	 PDX	

Resource,	we	were	unable	to	experimentally	validate	the	somatic	calls	predicted	

from	the	various	workflows.	To	determine	if	the	results	of	our	genomic	analysis	

workflows	were	similar	 to	known	somatic	profiles	of	 the	same	 tumor	 type,	we	

compared	 the	 overall	 genomic	 and	 transcriptomic	 profiles	 for	 selected	 tumor	
types	between	the	JAX	PDX	resource	and	patient	tumor	cohorts	in	the	TCGA.		

 

Frequently	mutated	genes	in	primary	patient	tumors	in	TCGA	detected	in	the	

PDX	resource.	The	distribution	of	somatic	coding	non-silent	mutational	 load	of	

the	 CTP	 genes	 for	 each	 tumor	 type	 was	 comparable	 between	 PDX	 and	 TCGA	

(Figure	6A).	Despite	the	much	smaller	sample	size	for	each	PDX	tumor	type,	we	

still	 observed	 higher	 mutational	 load	 in	 colorectal	 cancer	 and	 melanoma.	

Nonetheless,	the	overall	mutational	load	remained	higher	in	PDX	tumors,	which	
could	be	possibly	due	to	the	fact	that	the	PDX	tumors	were	sequenced	at	a	higher	

coverage	 (>900X)	 using	 the	 CTP	 targeted	 panel,	 and	 thus	more	 variants	were	

detected	per	base	pair	compared	to	exome	sequencing	(~100X)	of	TCGA	tumors.	

Moreover,	 known	germline	 variants	with	 allele	 frequency	 outside	 the	 range	 of	

40%	-	60%	and	>90%,	possibly	due	to	errors	in	allele	 frequency	estimation	or	

copy	 number	 aberrations	 at	 the	 variant	 position,	 as	 well	 as	 private	 germline	

variants,	 were	 not	 filtered.	 The	 mutations	 in	 TCGA	 were	 curated	 with	 partial	

experimental	validations,	hence	the	mutation	count	and	FP	rate	were	expected	to	

be	lower.	Given	that	there	were	more	samples	in	the	TCGA	cohorts,	we	compared	

the	genes	that	were	mutated	at	5%	frequency	with	genes	that	were	mutated	in	at	

least	one	sample	within	the	same	tumor	type	in	the	PDX	resource.	Almost	all	genes	

mutated	at	high	frequencies	in	TCGA	tumors	were	mutated	in	PDX	tumors,	with	

significant	p-values	(p	<	1´10-4)	by	Fisher’s	exact	test	(Figure	6B,	Supplementary	
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Table	S9).	This	indicates	that	the	key	drivers	by	mutation	within	each	cancer	type	

were	preserved	in	PDX	tumors.		

 

Expression	signatures	of	primary	patient	tumors	in	TCGA	recapitulated	in	the	

PDX	resource.	The	top	1000	most	varying	genes	by	expression	z-scores	in	6	TCGA	

tumor	types	(Supplementary	Table	S10)	were	able	to	independently	cluster	both	

TCGA	 samples	 and	 the	 PDX	 samples	 by	 their	 tumor	 types	 (Figure	 6C).	 We	

observed	clusters	of	genes	that	were	highly	expressed	in	specific	tumor	types	in	

TCGA	were	recapitulated	in	the	PDX	expression	data	(hypergeometric	p-value	<	

1´10-8),	which	demonstrated	the	replicability	of	TCGA	expression	signatures	 in	

the	 PDX	 resource.	 The	 frequencies	 of	 over-	 and	 under-expression	 for	 the	 top-

varying	genes	for	each	tumor	type	displayed	better	correlation	for	the	same	tumor	

type	 for	 PDX	 versus	 TCGA	 compared	 to	 other	 tumor	 types	 (Figure	 6D).	 The	

varying	level	of	concordance	between	different	tumor	types	in	TCGA	data	was	also	

maintained	 in	 the	 PDX	 versus	 TCGA	 comparison	 (Supplementary	 Figure	 S11).	

Alternatively,	 the	 differentially	 expressed	 genes	 of	 each	 tumor	 type	 versus	 all	

other	 tumors	 within	 the	 TCGA	 or	 PDX	 samples	 displayed	 significant	 overlaps	

(p<1´e-6),	despite	different	sample	sizes	and	different	proportion	of	tumor	types	

(Supplementary	Table	S11).	

 

Copy	number	profiles	of	primary	patient	tumors	in	TCGA	recapitulated	in	PDX	

resource.	 We	 showed	 that	 the	 frequency	 of	 genome-wide	 copy	 number	

aberrations	for	each	tumor	type	in	the	PDX	resource	(Supplementary	Table	S12,	

Supplementary	 Figure	 S12)	 were	 similar	 to	 the	 primary	 tumors	 in	 TCGA	

(Supplementary	 Figure	 S13).	 Moreover,	 the	 PDX	 tumors	 had	 the	 highest	

correlation	 in	 gain	 and	 loss	 frequencies	 of	 significantly	 amplified	 and	 deleted	

genes	for	the	same	tumor	type	in	TCGA	compared	to	other	tumor	types	(Figure	6E	
and	 Supplementary	 Figure	 S14A).	 The	 varying	 levels	 of	 correlation	 between	

different	tumor	types	were	preserved	between	the	TCGA	versus	TCGA	tumors	and	

the	 TCGA	 versus	 PDX	 tumors	 (Figure	 6E	 and	 Supplementary	 Figure	 S15B).	

Consistent	with	the	earlier	observations,	 there	was	a	weaker	concordance	with	

TCGA	data	when	amplification	and	deletion	was	called	relative	to	the	diploid	state	

(Supplementary	Figure	S14B).		
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Discussion 

The	application	of	PDX	models	in	pre-clinical	research	and	personalized	therapy	

requires	that	the	engrafted	human	tumors	are	accurately	characterized	for	tumor-

specific	 mutations	 [3].	 The	 development	 of	 bioinformatics	 workflows	 to	 call	

somatic	mutations	(SNVs,	Indels),	copy	number	aberrations	and	gene	expression	

from	PDX	sequencing	or	array	data	requires	balancing	sensitivity	and	specificity	

[22,	 30],	 especially	when	paired	 normal	 samples	 for	 engrafted	 tumors	 are	 not	

available.	 Using	 genomic	 and	 transcriptomic	 data	 from	models	 in	 the	 JAX	PDX	

Resource,	we	conducted	a	systematic	analysis	to	address	several	key	data	analysis	

challenges	and	tailored	our	workflows	to	optimize	the	sensitivity	and	specificity	
of	the	results.		

	

Our	recommendations	for	the	somatic	mutation	calling	from	PDX	DNA	sequencing	

data	in	the	absence	of	paired-normal	samples	are	as	follows:	

• Remove	mouse	reads	with	Xenome	(or	equivalent)	to	eliminate	variants	called	

from	mouse	reads	mapping	to	the	human	reference	genome	

• Filter	with	germline	variant	databases	to	improve	somatic	mutation	calling	

• Filter	 highly	 recurrent	 mutations	 to	 remove	 false	 positives	 arising	 from	

sequencing	or	analysis	related	errors	

• Rescue	clinically	relevant	variants	which	were	filtered	in	the	upstream	steps	

as	they	were	likely	to	be	present	as	important	mutations	in	the	tumor	

	

Despite	implementing	multiple	filters	to	remove	putative	germline	and	other	FP	

mutations,	the	mutation	rate	remains	higher	in	PDX	tumor	types	when	compared	
to	 TCGA.	 One	 possible	 reason	 for	 this	 difference	 that	 is	 not	 related	 to	 the	

informatics	challenges	described	in	this	paper	is	that	many	of	the	human	tumor	

samples	used	 to	generate	 PDX	models	 arose	 from	metastatic	 lesions	 and	 from	

patients	with	prior	treatment	whereas	many	of	the	tumor	samples	used	for	TCGA	

were	 early	 stage	 tumors.	 PDX	 tumors	 were	 thus	 expected	 to	 harbor	 more	

mutations	 due	 to	 longer	 tumor	 evolution	 [36,	 37].	 Also,	 previous	 studies	 have	

noted	that	PDX	engraftment	success	is	better	for	late	stage	tumors	that	are	likely	

to	have	more	aggressive	phenotypes	than	early	stage	tumors	[38,	39].	As	such,	
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there	 is	 a	 likelihood	 for	 biased	 selection	 towards	 such	 tumor	 subtypes	 in	 the	

engrafted	 tumors	 that	 are	known	 to	harbor	more	mutations	 than	 tumors	 from	

early	stages.		

	

For	 evaluation	 of	 gene	 expression	 differences	 in	 individual	 tumors,	 matched	

normal	tissue	is	ideal	but	not	available	for	PDX	models	in	the	JAX	PDX	Resource.	

To	compare	gene	expression	among	the	engrafted	tumors,	we	used	expression	z-
scores	 across	 all	 tumor	 types	 as	 the	 best	 proxy	 for	 calling	 over-	 and	 under-

expression.	In	a	subset	of	PDX	samples	in	which	both	expression	and	copy	number	

data	are	available,	we	estimated	the	“normal”	expression	of	each	gene	with	the	

average	 expression	 for	 samples	 with	 normal	 copy	 number	 state,	 given	 that	

sufficient	samples	are	available	for	the	tumor	type.	While	this	approach	neglects	

other	mechanisms	of	gene	regulation,	we	were	able	to	better	estimate	the	normal	

expression	for	some	genes	like	MYC	which	tends	to	be	frequently	amplified	and	

over-expressed	 across	 many	 tumor	 types.	 For	 copy	 number,	 we	 defined	 the	

“normal”	state	of	each	PDX	tumor	using	the	estimated	ploidy	to	call	relative	gain	

and	losses	as	this	takes	into	account	errors	in	ploidy	estimation.		

	

As	 one	 approach	 to	 assessing	 the	 results	 of	 our	 genomic	 characterization	

workflows,	we	compared	the	JAX	PDX	models	with	patient	cohorts	in	TCGA	at	the	

genomic	 and	 transcriptomic	 level.	 Other	 than	 small	 differences	 in	 genomic	
mutations,	the	engrafted	PDX	tumors	reflected	the	human	tumors	in	copy	number	

variations	 and	 gene	 expression.	 Using	 colorectal	 cancer	 as	 an	 example,	 we	

demonstrated	 that	 the	 integration	 of	 different	 data	 types	 showed	 that	 known	

perturbed	pathways	in	cancer	were	altered	in	a	consistent	manner	across	PDX	and	

TCGA	 tumors	 (Supplementary	 Figure	 S16),	 with	 similar	 combinations	 of	

alterations	occuring	at	comparable	frequencies.	Taken	together,	we	have	created	

a	set	of	workflows	for	the	analysis	of	genomic	and	transcriptomic	data	from	PDX	

tumors	 that	 have	 no	 paired	 normal	 sample	 to	 reliably	 identify	 true	 somatic	

mutations	and	expression	changes.		
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Methods 

Genomic and transcriptomic profiling of samples 

DNA	 sequencing.	 Flash	 frozen	 tissues	were	 pulverized	 using	 a	 Bessman	 Tissue	

Pulverizer	 (Spectrum	 Chemical)	 and	 homogenized	 in	 Nuclei	 Lysis	 Buffer	

(Promega)	using	a	gentleMACS	dissociator	(Miltenyi	Biotec	Inc).	DNA	was	isolated	

using	 the	 Wizard	 Genomic	 DNA	 Purification	 Kit	 (Promega)	 according	 to	

manufacturer’s	protocols.	DNA	quality	and	concentration	were	assessed	using	a	

Nanodrop	2000	spectrophotometer	(Thermo	Scientific),	a	Qubit	dsDNA	BR	Assay	

Kit	on	a	Qubit	Fluorometer	(Thermo	Scientific),	and	the	Genomic	DNA	ScreenTape	

on	a	4200	TapeStation	(Agilent	Technologies).	Libraries	were	prepared	using	the	

Hyper	Prep	Kit	(KAPA	Biosystems)	and	SureSelectXT	Target	Enrichment	System	

with	 the	 JAX	 Cancer	 Treatment	 Profile	 (CTP)	 targeted	 panel	 (Agilent	
Technologies),	according	to	the	manufacturer’s	instructions.	Briefly,	the	protocol	

entails	 shearing	 the	 DNA	 using	 the	 Covaris	 E220	 Focused-ultrasonicator	

(Covaris),	 ligating	 Illumina	 specific	 adapters,	 and	 PCR	 amplification.	 Amplified	

DNA	 libraries	 are	 then	 hybridized	 to	 the	 CTP	 probes,	 amplified	 using	 indexed	

primers,	 and	 checked	 for	 quality	 and	 concentration	 using	 the	 High	 Sensitivity	

D5000	 ScreenTape	 (Agilent	 Technologies)	 and	 Qubit	 dsDNA	 HS	 Assay	 Kit	

(Thermo	Scientific).	Libraries	were	pooled	and	sequenced	150	bp	paired-end	on	

the	NextSeq	500	(Illumina)	using	NextSeq	v2	reagents	(Illumina).	

	

RNA	 sequencing.	 Tissues	 preserved	 in	 RNAlater	 were	 homogenized	 in	 TRIzol	

(ThermoFisher	Scientific)	using	a	gentleMACS	dissociator	 (Miltenyi	Biotec	 Inc).	

Total	 RNA	 was	 isolated	 using	 the	 miRNeasy	 Mini	 kit	 (Qiagen)	 according	 to	

manufacturer’s	protocols,	including	the	optional	DNase	digest	step.	RNA	quality	

and	concentration	were	assessed	using	the	RNA	6000	Nano	LabChip	assay	on	the	
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2100	Bioanalyzer	 instrument	and	Nanodrop	2000	spectrophotometer	 (Thermo	

Scientific).	Prior	to	2016,	non-stranded	libraries	were	constructed	using	TruSeq	

RNA	 Library	 Prep	 Kit	 v2	 (Illumina).	 Starting	 in	 2016,	 stranded	 libraries	 were	

prepared	 by	 the	 Genome	 Technologies	 core	 facility	 at	 The	 Jackson	 Laboratory	

using	 the	 KAPA	 mRNA	 HyperPrep	 Kit	 (KAPA	 Biosystems),	 according	 to	 the	

manufacturer’s	 instructions.	 Briefly,	 the	 protocol	 entails	 isolation	 of	 polyA	

containing	mRNA	using	 oligo-dT	magnetic	 beads,	 RNA	 fragmentation,	 first	 and	
second	strand	cDNA	synthesis,	ligation	of	Illumina-specific	adapters	containing	a	

unique	barcode	sequence	for	each	library,	and	PCR	amplification.	Libraries	were	

checked	 for	 quality	 and	 concentration	 using	 the	 DNA	 1000	 assay	 (Agilent	

Technologies)	 and	 quantitative	 PCR	 (KAPA	 Biosystems),	 according	 to	 the	

manufacturers’	instructions.	Libraries	were	pooled	and	sequenced	75	bp	paired-

end	on	 the	NextSeq	500	 (Illumina)	using	NextSeq	High	Output	Kit	 v2	 reagents	

(Illumina),	or	100	bp	paired-end	on	the	HiSeq2500	(Illumina)	using	TruSeq	SBS	

v3	reagents	(Illumina).	

	

SNP	 array.	 DNA	 samples	 were	 sent	 to	 the	 Genotyping	 Core	 at	 the	 Hussman	

Institute	 for	 Human	 Genomics	 (University	 of	 Miami)	 for	 genotyping	 on	 the	

Genome-Wide	Human	SNP	Array	6.0	(Affymetrix).	Quality	control	on	the	CEL	files	

was	 carried	 out	 using	 the	 standard	 Contrast	 QC	 metric	 from	 the	 Affymetrix	

Genome	Wide	SNP	6.0	array	manual.	
 

Somatic point mutation and indel calling workflow 

Preprocessing	 and	 removal	 of	mouse	 reads.	 DNA	 sequence	 data	 generated	 from	

PDX	tumors	underwent	initial	data	processing	as	follows:	(i)	sequence	reads	with	
70%	of	the	bases	having	a	quality	score	<30	(Q30)	were	discarded,	(ii)	bases	with	

quality	 scores	 less	 than	 Q30	 were	 trimmed	 from	 the	 3’	 end	 of	 the	 read,	 (iii)	

sequence	reads	with	<70%	of	bases	remain	after	trimming	were	discarded,	(iv)	

both	reads	from	pair-end	sequencing	were	discarded	if	either	read	was	discarded.	

If	<50%	of	the	total	reads	remained	following	the	preprocessing	steps,	the	sample	

was	 removed	 from	 the	 analysis.	 Following	 the	 initial	 data	 processing	 step	

described	 above,	 mouse	 reads	 were	 identified	 and	 filtered	 out	 using	 Xenome	
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v1.0.0		[13].	Only	read	pairs	with	both	reads	classified	as	human	were	included	in	

further	analyses.		

Sequence	reads	that	passed	all	pre-processing	steps	were	mapped	to	the	

reference	 human	 genome	 (build	 GRCh38.p5	with	 262	 alternate	 loci)	 using	 the	

BWA-MEM	alignment	tool	with	ALT-Aware	mapping	(Supplementary	Figure	S14)	

[40,	 41].	 Because	 low	 sequence	 coverage	 leads	 to	 poor	 sensitivity	 in	 variant	

calling,	samples	with	less	than	75%	of	the	target	region	covered	at	least	at	³100X	

by	human	reads	were	excluded	from	further	analysis.		
	

Variant	 calling.	 The	 GATK	 best	 practices	 workflow	

(https://gatkforums.broadinstitute.org/gatk/categories/best-practices-

workflows)	using	the	UnifiedGenotyper,	was	used	for	variant	discovery	analysis	

[42-44],	which	is	comprised	of	the	following	steps:	(i)	sorting	the	SAM/BAM	file	

by	coordinate,	 (ii)	removing	duplicates	 to	mitigate	biases	 introduced	by	 library	

preparation	 steps	 such	 as	 PCR	 amplification	 by	 Picard	

(https://broadinstitute.github.io/picard/),	and	(iii)	recalibrating	the	base	quality	

scores	as	the	variant	calling	algorithms	rely	heavily	on	the	quality	scores	assigned	

to	 the	 individual	 base	 calls	 in	 each	 sequence	 read.	 Pindel	 [32]	 was	 also	

incorporated	into	the	workflow	to	call	indels	that	have	been	missed	by	the	GATK	

UnifiedGenotyper.	

	

Quality	 filtering	 of	 variants	 for	 targeted	 sequencing.	 High	 quality	 variants	 from	
both	 variant	 callers	 in	 the	 PDX	 samples	 were	 obtained	 based	 on	 GATK	 hard	

filtering	 (see	below),	 and	have	a	 read	depth	 (DP)	of	≥140	and	allele	 frequency	

(ALT_AF)	of	≥5%.	These	DP	and	ALT_AF	thresholds	were	optimized	using	a	set	of	

known	 and	 validated	mutations	 and	 samples	 reported	 earlier	 for	 the	 JAX	 CTP	

targeted	panel	sequencing	at	high	coverage	(average	941X)	[45].	The	parameters	

for	GATK	hard	filtering	[29]	were	set	as	default	as	recommended	by	GATK	best	

practices	

(https://software.broadinstitute.org/gatk/documentation/article.php?id=6925,	

https://software.broadinstitute.org/gatk/documentation/article.php?id=3225,	

https://gatkforums.broadinstitute.org/gatk/discussion/2806/howto-apply-

hard-filters-to-a-call-set):		
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(i)	 for	 point	mutations,	 QD	 <	 2.0,	 FS	 >	 60.0,	 MQ	 <	 40.0,	MQRankSum	 <	 -12.5,	

ReadPosRankSum	<	-8.0	

(ii)	for	indels,	QD	<	2.0,	FS	>	200.0,	ReadPosRankSum	<	-20.0.		

In	addition,	we	verified	that	these	default	thresholds	were	able	to	detect	all	the	

known	mutations	in	the	CTP	samples	[45].	The	average	number	of	variants	before	

and	after	quality	filtering	across	the	CTP	samples	is	shown	Supplementary	Table	

S4.	
	

Annotation	 of	 variants.	 Variants	 were	 annotated	 for	 their	 effect	 (gene,	

consequence,	 amino	 acid	 change,	 etc.)	 using	 SnpEff	 v4.3	 [46]	 based	 on	 gene	

annotations	 from	Ensembl	 (version	GRCh38.84)	and	 information	 from	COSMIC	

version	80	[47],	dbSNP	build	144	[48].	The	observed	variant	allele	frequency	in	

1000	Genomes	Project	[49]	and	ExAC	version	0.3	[45,	50]	database	were	obtained	

using	SnpSift	tool	by	utilizing	dbNSFP3.2a.txt	database.	We	further	annotated	each	

variant	with	1)	known	or	predicted	gain	or	loss	of	protein	function,	2)	potential	

treatment	approach	 for	any	 cancer	 type	and	3)	drug	 sensitivity	and	 resistance	

effects	in	clinical	or	preclinical	studies,	based	on	curated	clinical	information	from	

the	 JAX	 clinical	 knowledge	 base	 (CKB,	 https://ckb.jax.org/)	 [31].	 The	 average	

number	of	variants	annotated	to	be	clinically	relevant	across	the	CTP	samples	is	

shown	in	Supplementary	Table	S4.			

	
Filtering	of	germline	variants.	Since	normal	samples	were	unavailable	for	patients	

whose	tumors	were	used	to	generate	the	PDX	models,	we	generated	a	dataset	of	

putative	human	germline	variants	using	data	 from	several	public	resources:	(i)	

dbSNP,	(ii)	1000	Genomes	Project,	(iii)	ExAC	database	with	MAF	≥1%,	and	(iv)	a	

compendium	of	variants	from	20	normal	blood	samples	that	were	prepped	and	

sequenced	on	the	CTP	panel	using	the	same	protocol	as	the	PDX	samples,	with	a	

frequency	of	2/20	in	normal	samples	or	1/20	in	normal	samples	and	2/20	in	PDX	

models.	 The	 number	 of	 variants	 in	 each	 of	 these	 databases	 are	 shown	 in	

Supplementary	Table	S3.	The	variants	identified	via	GATK	and	Pindel	in	the	PDX	

model	tumors	were	annotated	as	germline	and	filtered	out	of	the	model’s	somatic	

mutation	calls	if	they	were	present	in	our	aggregated	dataset	of	putative	germline	

variants	and	had	allele	frequencies	between	40%	to	60%	or	more	than	90%.			
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Filtering	putative	false	positives.	Variants	not	in	our	aggregated	dataset	of	putative	

germline	variants	described	above	but	occurred	at	a	frequency	of	25%	or	greater	

across	all	PDX	models	(n=236)	were	considered	to	be	putative	false	positive	(FP)	

mutations.	The	rationale	for	this	data	filtering	step	was	based	on	our	observation	

that	the	maximum	recurrent	frequency	of	somatic	mutated	base	positions	was	6%	

across	a	compendium	of	TCGA	tumor	samples	(n=3576,	9	tumor	types	that	were	
also	represented	in	the	PDX	model).	Thus,	we	would	expect	that	any	mutated	loci	

recurring	 across	 PDX	 samples	 at	 significantly	 higher	 rates	 to	 likely	 be	 FP.	

Systematic	 technical	 errors	 in	 sequencing	 and/or	 mapping	 are	 possible	

explanations	 for	 the	 common	 recurrent	 non-somatic	mutations	 identified	 PDX	

models.	

 

Rescuing	 the	 false	 negative	 variants.	 An	 exception	 to	 the	 germline	 and	 false	

positives	 exclusion	 process	was	made	 for	 variants	 (from	GATK	or	 Pindel)	 that	

were	annotated	as	clinically	relevant	in	JAX	CKB.	We	rescued	any	filtered	variants	
that	 were	 curated	 into	 the	 proprietary	 JAX-Clinical	 Knowledgebase	 (CKB,	

https://ckb.jax.org/)	 [31]	 with	 1)	 known	 or	 predicted	 gain	 or	 loss	 of	 protein	

function,	 2)	 potential	 treatment	 approach	 for	 any	 cancer	 type	 and	 3)	 drug	

sensitivity	and	resistance	effects	in	clinical	or	preclinical	studies.	

 

Benchmarking of PDX somatic mutation workflow 

To	 benchmark	 the	 PDX	 somatic	 mutation	 workflow,	 a	 simulated	 dataset	 (45	

samples)	was	generated	that	included	sequenced	reads	that	includes	sequencing	

errors	of	an	Illumina	HiSeq	were	generated	in-silico	for	different	samples	with,	1)	

varying	 sequencing	 coverage,	 2)	 spiked-in	 mutations	 to	 the	 reference	 human	

sequence	representative	of	different	tumor	types,	and	3)	different	proportions	of	

spiked-in	mouse	reads	(Supplementary	Table	S1).		

	

Generation	of	simulated	sequence	reads.	SeqMaker	was	used	to	generate	simulated	

sequencing	 data	 based	 on	 human	 genome	 assembly	 GRCh38	 with	 varying	

sequencing	depth,	read	length,	duplication	rate,	sequencing	error	and	base	quality	

range	 [51].	 Reference	 sequences	were	 extracted	 from	 target	 region	of	 the	 CTP	
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panel.	Sequence	reads	 for	5	samples	were	simulated	using	predicted	mutations	

from	 PDX	models	 of	 different	 cancer	 types	 from	 the	 CTP	 dataset	 to	 represent	

different	 spectrum	 of	 mutations,	 with	 a	 range	 of	 allele	 frequency	 to	 mimic	

germline	and	somatic	mutations.	For	each	simulated	sample,	we	generated	three	

technical	replicates	at	500X,	1000X	and	1500X	coverage.	

	

Addition	of	mouse	reads.	Mouse	sequencing	reads	were	added	in	different	fractions	
to	the	human-specific	simulated	dataset	to	mimic	mouse	contamination	observed	

in	 PDX	models.	 The	mouse	 reads	were	 extracted	 from	 the	 sequencing	 data	 of	

mouse	DNA	isolated	from	fresh	spleen	tissue	of	NSG	mice	on	the	CTP.	For	each	

simulated	 human-specific	 sample,	we	 added	mouse	 reads	 in	 three	 proportions	

(10,	15	and	25%	of	the	total	coverage).		

	

Calculate	sensitivity	and	specificity	of	mutation	results	based	on	different	workflow	

filters.	To	evaluate	the	effect	of	each	filter	used	in	our	workflow,	we	modified	the	

somatic	mutation	workflow	by:	(i)	omitting	Xenome	to	filter	mouse	reads,	and	(ii)	

mapping	 to	 the	 reference	 sequence	 using	BWA-MEM.	 Each	modified	workflow	

was	used	to	process	each	PDX	simulated	library	and	each	set	of	results,	with	and	

without	quality	filters,	was	used	to	compute	the	lists	of	true	positive,	false	positive,	

true	negative	and	false	negative	variants.	As	such,	we	can	calculate	the	range	of	

sensitivities	and	specificities	of	the	predicted	variants	for	all	the	simulated	PDX	
models.	 We	 compared	 the	 distributions	 of	 precision,	 recall	 and	 F1-score	

(2*(Recall*Precision)/(Recall+Precision))	 for	different	 variations	 of	 the	 variant	

calling	 workflow	 on	 the	 simulated	 datasets.	 Furthermore,	 we	 compared	 the	

predicted	allele	frequencies	of	the	true	positives	of	each	sample	with	the	input	by	

correlation.	

	

RNA-Seq expression workflow 

Data	 processing	 and	 expression	 estimation.	 Prior	 to	 alignment	 to	 the	 human	

transcriptome,	sequences	from	PDX	tumors	were	processed	for	sequence	quality.	
Only	sequences	with	base	qualities	≥30	over	70	percent	of	read	length	were	used	

in	 downstream	 analyses.	 Quality	 trimmed	 reads	 were	 then	 analyzed	 using	

the	default	parameters	of	Xenome	v1.0.0	(k=25)	[13]	to	separate	human,	mouse,	
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and	 ambiguous	 sequences	 (i.e.,	 sequences	 that	 cannot	 be	 reliably	 classified	 as	

mouse	or	human).	Sequence	reads	that	passed	the	quality	and	Xenome	screening	

were	aligned	to	a	human	transcriptome	dataset	(ENSEMBL	version	GRCh38.84)	

using	Bowtie	v2.2.0	[52,	53].	Only	 samples	with	at	 least	1	million	human	reads	

were	 retained	 for	 expression	 analysis.	 Gene	 expression	 estimates	 were	

determined	 using	 RSEM	 v1.2.19	[54]	 (rsem-calculate-expression)	 with	 default	

parameters.	 We	 further	 normalized	 the	 expression	 estimate	 (expected_count	
from	RSEM)	using	upper	quantile	normalization	of	non-zero	expected	counts	and	

scaling	to	1000.		

	

Classifier for EBV-associated PDX lymphomas 

A	gene	signature	for	differentiating	EBV-associated	lymphomas	was	derived	from	

the	 most	 highly	 differentially	 expressed	 genes	 between	 20	 EBV-associated	

lymphomas	and		100	non-EBV	tumors	based	on	upper-quantile	normalized	RNA-

Seq	 counts	 (RSEM).	 	 Gene	 set	 analysis	 on	 the	 resulting	 expression	 vector	was	

performed	with	GSEA	using	the	GenePattern	webserver	and	default	parameters	
(data	not	shown).	24	up-regulated	and	24	downregulated	genes	from	the	set	of	

differentially	 expressed	 genes	 were	 used	 to	 define	 the	 list	 of	 classifier	 genes	

(Supplementary	Table	S10).	For	each	PDX	sample,	the	upper-quantile	normalized	

counts	from	RSEM	of	the	classifier	genes	were	transformed	into	z-scores	using	the	

mean	 and	 standard	 deviation	 computed	 across	 all	 PDX	 samples	 for	 each	 gene.	

Subsequently,	a	sign	corresponding	to	the	direction	of	regulation	in	the	classifier	

table	 was	 multiplied	 to	 each	 z-score	 and	 the	 sum	 of	 these	 modified	 z-scores	

resulted	in	a	single	score	for	each	PDX	sample.	A	classifier	score	of	>3.0	was	used	

to	identify	a	PDX	tumor	sample	as	a	potential	EBV-associated	lymphoma.	

	

Copy Number Variant (CNV) workflow 

Assessing	 the	 effects	 of	 mouse	 DNA	 on	 SNP	 array.	 DNA	 of	 the	 NSG	mouse	 was	

hybridized	on	the	Affymetrix	SNP	6.0	array,	and	the	signal	intensity	was	extracted	

from	 the	 CEL	 files	 using	 Affymetrix	 Power	 Tools	 (apt-cel-extract).	 The	 mouse	

content	 for	 each	 PDX	 sample	 was	 estimated	 by	 the	 mouse	 reads	 proportion	

computed	by	Xenome	of	the	mutation	calling	pipeline	for	the	CTP	sequencing	of	

the	same	PDX	sample.			
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Single-tumor	 CNV	 analysis.	 PennCNV-Affy	 and	 Affymetrix	 Power	 Tools	 [55-57]	

were	used	to	extract	the	B-allele	frequency	(BAF)	and	Log	R	Ratio	(LRR)	from	the	

resulting	CEL	files	of	the	Affymetrix	Human	SNP	6.0	array.	Due	to	the	absence	of	

paired-normal	 samples,	 the	 allele-specific	 signal	 intensity	 for	 each	 PDX	 tumor	

were	 normalized	 relative	 to	 300	 randomly	 selected	 sex-matched	 Affymetrix	

Human	SNP	6.0	array	samples	obtained	from	the	International	HapMap	project	
[58].	 The	 single	 tumor	 version	 of	 ASCAT	 2.4.3	 [59]	 was	 then	 used	 for	 GC	

correction,	 predictions	 of	 the	 heterozygous	 germline	 SNPs	 and	 estimation	 of	

ploidy,	 tumor	 content	 and	 copy	 number	 segments	 with	 allele-specific	 copy	

number.		

	

	Annotation	 of	 CNV	 segments.	 The	 resultant	 copy	 number	 segments	 were	

annotated	with	loss	of	heterozygosity	(LOH)	and	log2	ratio	of	total	copy	number	

relative	 to	 diploid	 state	 (copy	 number	 2)	 and	 predicted	 ploidy	 from	ASCAT.	 A	

segment	was	defined	as	LOH	when	the	major-allele	copy	number	was	≥	0.5	and	

the	minor-allele	copy	number	was	≤	0.1.	Gene-level	copy	number	and	LOH	were	

estimated	by	intersecting	the	genome	coordinates	of	copy	number	segments	with	

genome	 coordinates	 of	 genes	 (Ensembl	 annotation	 version	 84	 for	 genome	

assembly	GRCh38).		In	cases	where	a	segment	boundary	was	contained	within	a	

gene’s	coordinates,	the	most	conservative	(lowest)	estimate	of	copy	number	was	
used	and	the	gene	was	annotated	with	the	number	of	overlapping	segments.		

	

Defining	copy	number	gain	and	loss.	The	low-level	copy	number	gain	or	loss	of	a	

gene	was	 defined	 by	 the	 log2	 ratio	of	 the	 copy	 number	 relative	 to	 the	 average	

ploidy	of	 the	 sample	or	diploid	 state	with	a	 threshold	of	±0.4	 respectively.	We	

compiled	a	list	of	genes	with	focal	copy	number	aberrations	that	were	significantly	

amplified	(n=273)	or	deleted	(n=820)	in	the	8	tumor	types	(Supplementary	Table	

S8)	 from	 the	 GISTIC	 2.0	 analysis	 from	 the	 TCGA	 FireBrowse	 website	

(http://firebrowse.org/).	Using	this	set	of	genes,	we	compared	the	proportion	of	

genes	 that	would	 be	 classified	 as	 gain	 and	 loss	when	 using	 different	 baselines	

(diploid	 state	 2	 or	 ASCAT	 predicted	 ploidy)	 for	 PDX	 models	 listed	 in	

Supplementary	Table	S12.		
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Comparison	of	copy	number	aberrations	with	gene	expression.	Using	annotations	

from	the	Cancer	Census	resource	[33]	we	analyzed	the	relationship	between	copy	

number	 aberrations	 and	 gene	 expression	using	 a	 list	 of	 23	oncogenes	 that	 are	

commonly	amplified	in	cancers	and	a	list	of	40	tumor	suppressor	genes	that	are	

commonly	deleted	in	cancers.	These	genes	were	classified	into	copy	number	states	

of	high-level	loss	(log2(CN/ploidy)	<	-1),	normal	(-1	≤	log2(CN/ploidy)	≤	+1)	and	
high-level	gain	(log2(CN/ploidy)	>	+1).	The	expression	fold	change	of	each	gene	

was	 calculated	as	 the	 log2(TPM+1)	 relative	 to	 the	mean	expression	across	PDX	

samples	with	a	stringent	normal	copy	number	state	(-0.4	≤	log2(CN/ploidy)	≤	0.4).	

The	significance	of	expression	changes	of	each	gene	for	the	entire	PDX	resource	

with	copy	number	gain	or	loss	relative	to	the	normal	state	was	calculated	using	

the	Student’s	t-Test.		

	

Comparison between PDX and TCGA data 

Somatic	mutations.	We	calculated	the	distribution	of	mutational	load	(number	of	
non-silent,	coding	mutations	in	exonic	regions	per	sample)	of	the	CTP	genes	for	6	

tumor	types	with	at	least	10	models	in	the	PDX	resource	(colorectal	cancer,	lung	

adenocarcinoma,	 lung	 squamous	cell	 carcinoma,	melanoma,	bladder	 carcinoma	

and	triple-negative	breast	cancer	,	Supplementary	Table	S5).	MAF	files	for	somatic	

mutations	 based	on	whole-exome	 sequencing	of	 the	TCGA	samples	 of	6	 tumor	

types	[60-64]	were	obtained	from	TCGA	Data	Portal	and	were	used	to	compute	

the	mutation	frequency	for	CTP	genes	only.	The	Fisher’s	exact	test	was	used	to	test	

the	significance	of	overlap	of	mutated	genes	between	the	PDX	resource	and	TCGA	

patient	 cohorts	 for	 each	 tumor	 type.	 The	 genes	 in	 each	 PDX	 resource	 were	

considered	if	they	were	mutated	in	at	least	one	sample,	while	the	genes	in	each	

TCGA	 tumor	 cohort	 were	 considered	 if	 they	 were	 mutated	 with	 at	 least	 5%	

frequency,	due	to	a	much	larger	sample	size.	

	

RNA-Seq	 gene	 expression.	 6	 tumor	 types	 with	 at	 least	 10	 models	 in	 the	 PDX	
resource	 were	 selected	 for	 comparison	 with	 TCGA	 (colorectal	 cancer,	 lung	

adenocarcinoma,	 lung	 squamous	cell	 carcinoma,	melanoma,	bladder	 carcinoma	

and	triple-negative	breast	cancer,	Supplementary	Table	S10).	The	scaled	estimate	
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(TPM	 ´	 10-6)	 from	 the	 RNA-Seq	 data	 of	 6	 tumor	 types	 in	 TCGA	 [60-65]	 were	

obtained	 from	 the	 TCGA	 FireBrowse	 website	 (http://firebrowse.org/).	 Non-

expressed	genes	across	all	tumor	types	were	removed	(log2(TPM+1)	<	2),	and	the	

top	1000	most	varying	genes	based	on	their	z-scores	of	 log2(TPM+1)	across	all	

tumor	types	were	selected	to	cluster	the	samples	by	hierarchical	clustering.	The	

frequencies	of	over-expression	and	under-expression	of	each	gene	is	defined	by	

the	z-scores	of	log2(TPM+1)	of	±1.	Correlation	of	the	gene	expression	frequencies	

in	each	tumor	type	was	computed	using	Pearson	correlation.	The	differential	gene	

expression	of	each	tumor	type	compared	to	all	other	tumor	types	was	computed	
using	limma	[66]	based	on	log2(TPM+1)	values.	Up-regulated	(adjusted	p-value	<	

0.05,	log	(fold	change	of	TPM+1)	>	1	by	limma)	or	down-regulated	(adjusted	p-

value	<	0.05,	log	(fold	change	of	TPM+1)	<	-1	by	limma)	genes	were	obtained	for	

the	PDX	resource	and	TCGA	patient	cohorts	separately.	The	significance	of	overlap	

of	each	set	of	genes	between	PDX	and	TCGA	RNA-Seq	data	was	determined	using	

hypergeometric	p-value.	

	

Copy	 number	 aberrations.	 8	 tumor	 types	 with	 at	 least	 10	 models	 in	 the	 PDX	

resource	(colorectal	cancer,	lung	adenocarcinoma,	lung	squamous	cell	carcinoma,	

melanoma,	 glioblastoma	multiforme,	 bladder	 carcinoma,	 triple-negative	 breast	

cancer	 and	 ovarian	 carcinoma,	 Supplementary	Table	 S12)	 selected	 to	 compare	

with	corresponding	primary	tumors	in	the	TCGA	[60-65,	67-69].	For	PDX	samples,	

the	low-level	copy	number	gain	or	loss	of	a	gene	was	defined	by	the	log2	ratio	of	

the	copy	number	relative	to	 the	average	ploidy	of	 the	sample	(or	copy	number	

state	2)	with	a	threshold	of	±0.4	respectively.	The	amplification	or	deletion	calls	

of	each	gene	for	the	TCGA	samples	were	provided	(loss=-1,	normal=0,	gain=1)	by	

FireBrowse	 (http://firebrowse.org/).	 Using	 the	 list	 of	 genes	 with	 focal	 copy	

number	aberrations	that	were	significantly	amplified	(n=273)	or	deleted	(n=820)	

in	 the	 8	 tumor	 types	 from	 the	 GISTIC	 2.0	 analysis	 from	 the	 TCGA	 FireBrowse	

website,	we	calculated	the	copy	number	gain	and	loss	frequencies	of	these	genes	

for	each	tumor	type	in	the	PDX	resource	and	TCGA	cohorts	using	the	respective	

gain	and	loss	calls.	
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Figure 1
(A) The Jackson Laboratory (JAX) has generated, clinically annotated, and genomically characterized more than 450 patient-derived xenograft (PDX) cancer 

models from about 20 different types of cancer using the immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (aka, NSGTM) mouse as the host strain 
(http://tumor.informatics.jax.org/mtbwi/index.do). This figure shows the workflow of PDX model generation from patient tumor, the process of 
engraftment and passaging that supplies to the JAX PDX resource, and the generation of genomic and transcriptomic data to profile the PDX models. 

(B) The PDX models are profiled by: 1) DNA mutations from capture sequencing using the JAX Cancer Treatment ProfileTM (CTP, 
https://www.jax.org/clinical-genomics/clinical-offerings/jax-cancer-treatment-profile), the Illumina Truseq panel or whole-exome sequencing, 2) DNA 
copy-number variations using Affymetrix SNP 6.0 arrays, and 3) gene expression profiles from Affymetrix microarrays or RNA sequencing (Illumina 
HiSeq). The analysis of the genomic and transcriptomic data of PDX models poses several challenges which we have developed several strategies to 
circumvent these issues.
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Figure 2
(A) This flow chart describes the variant calling pipeline for PDX DNA sequencing data. 
(B) This figure shows the different filters used the variant calling pipeline for PDX DNA sequencing data applied to the CTP panel sequencing (see Methods 

for details). MTB is the Mouse Tumor Biology Database in JAX, PDX models in the JAX PDX resource can be searched in 
http://tumor.informatics.jax.org/mtbwi/pdxSearch.do. (RD: Read depth, AF: Allele-frequency, FP: False positives

(C) The recurrent frequencies of the mutated positions (after germline filtering) for various genes that were found to be recurrent in more than 25% of 
PDX samples. These were identified as additional false positive variants due to sequencing errors or mapping issues. 
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Figure 3

(A) Proportion of mouse reads detected by Xenome for CTP and RNA sequencing data of PDX models.

(B) This figure shows the benchmarking of the CTP variant calling pipeline using 45 simulated sequencing datasets different samples, sequencing coverages, 

and mouse DNA content (see Supplementary Table S2) using precision, recall and F1 score based on the input variants for each sample. Complete: 

variant calling pipeline with all steps included; NoXenome: variant calling pipeline with Xenome omitted; all: all variants called by the pipeline; pass: 

variants annotated as “PASS” in the pipeline which pass the hard filters, minimum read depth and minimum alternate allele frequency of the variant.

(C) Distribution of mutational load per sample of non-silent coding somatic mutations of CTP genes from exome sequencing TCGA samples and from CTP-

panel sequencing of PDX models. TCGA somatic: TCGA somatic mutations reported in maf files; PDX: all variants annotated as “PASS” (pass the hard 

filters, minimum read depth and minimum alternate allele frequency of the variant); PDX filter germline: all variants annotated as “PASS” and filtered 

from putative germline variants; PDX filter germline & FP: all variants annotated as “PASS” and filtered from putative germline variants and false 

positives.

(D) Mutations in PDX models that were detected by CTP-panel sequencing and experimentally validated in the corresponding patient tumor. Some of these 

variants were rescued after initial filtering.
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Figure 4
(A) This flow chart describes the RNA expression pipeline and fusion gene prediction for PDX RNA sequencing data.
(B) Distribution of lymphoma classification scores of PDX tumors.
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Figure 5
(A) This flow chart describes the CNV and LOH prediction pipeline for PDX SNP array data.
(B) Comparison of copy number relative to the estimated overall ploidy of the PDX sample or the diploid state between analyses with and 

without matched normal.
(C) Mean expression fold change of genes with copy number normal, gain and loss state for a selected list of known oncogenes that are amplified 

in cancers and known tumor suppressor genes that are deleted in cancers from the Cancer Census [34]. Overexpressed and under-expressed 
genes marked with * indicates significant differences in expression fold change with copy number gain or loss state respectively relative to the 
normal state across all PDX samples.
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Figure 6
(A) Distribution of mutational load per sample of non-silent coding somatic mutations of CTP genes from exome sequencing of TCGA samples and from 

CTP-panel sequencing of PDX models (all filters included). 
(B) Overlap of CTP genes that have non-silent coding somatic mutations with >5% mutation frequency in TCGA data with genes that have at least one non-

silent coding somatic mutation in PDX CTP data (all filters and rescue of clinically relevant variants included) for each tumor type. Fisher’s exact test is 
used to compute the significance of the overlap. 

(C) Hierarchical clustering of z-score of expression (log2(TPM+1)) of top 1000 most varying genes of TCGA RNA-Seq samples across different tumor types. 
The same set of genes (omitting non-expressed genes) is used to cluster the expression z-score by Hierarchical clustering of PDX RNA-Seq models across 
different tumor types. Gene sets were identified to be high expression in specific tumor types TCGA and PDX separately and were found to share 
significant overlap.

(D) Correlation frequency of genes that are over-expressed (z-score of log2(TPM+1) > 1, green) or under-expressed (z-score of log2(TPM+1) < -1, orange) 
across each tumor type between PDX models and TCGA samples.

(E) Correlation of frequency of copy number gain (red) or loss (blue) of selected genes frequently amplified or deleted in TCGA tumors predicted by GISTIC 
analysis for each tumor type between PDX and TCGA datasets.
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Supplementary Figure S1 
(A) This figure shows the annotation of variants of the 20 normal samples in JAX using public 
databases (dbSNP Build 144, 1000 Genomes, ExAC version 0.3, and COSMIC version 80) 
(B) The allele frequencies and recurrent frequencies of the variants. 
(C) Recurrent frequency of variants (> 1 sample) found in 20 normal samples and the 
corresponding recurrent frequency across 236 PDX models of different tumor types. 
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Supplementary Figure S2 
(A) Top left (dark blue): Distribution of tumor types across 236 PDX models; Others (grey): 

Frequency of tumor types for each frequently mutated position normalized by the 
recurrent frequency of the mutation. 

(B) Correlations of tumor type frequency for the 236 PDX models (dark blue in B) with the 
tumor type frequency for each frequently mutated position (grey in B). 
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Supplementary Figure S3 
(A) Correlation of alternate allele frequencies between input and true positive variants for 
one of the simulated samples for the complete feature pipeline. ALL: all variants called by the 
pipeline; PASS: variants annotated as “PASS” in the pipeline which pass the hard filters, 
minimum read depth and minimum alternate allele frequency of the variant. The correlation 
coefficient for all simulated samples are found in Supplementary Table S3. 
(B) Difference in alternate allele frequencies between input and true positive variants for one 
of the simulated samples (J000093572_1000X_10percent) for the complete feature pipeline. 
ALL: all variants called by the pipeline; PASS: variants annotated as “PASS” in the pipeline 
which pass the hard filters, minimum read depth and minimum alternate allele frequency of 
the variant. 
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Supplementary Figure S4 
This figure shows the benchmarking of the CTP variant calling pipeline using 45 simulated 
sequencing datasets different samples, sequencing coverages, and mouse DNA content (see 
Supplementary Table S2) using precision, recall and F1 score based on the input variants for 
each sample. Complete: variant calling pipeline with all steps included; NoXenome: variant 
calling pipeline with Xenome omitted; NoAltaware: variant calling pipeline using hg38 
reference with alternate sequences but using standard BWA for mapping instead of BWA-
ALT-Aware; all: all variants called by the pipeline; pass: variants annotated as “PASS” in the 
pipeline which pass the hard filters, minimum read depth and minimum alternate allele 
frequency of the variant. 
 
Presence of alternate loci in the genome assembly. The GRCh38.p5 human genome assembly 
includes 262 regions of alternate loci to account for human chromosomal regions that exhibit 
sufficient variability to prevent adequate representation by a single sequence [29]. As such, 
we aligned the reads to both primary and alternate chromosomal reference sequences using 
BWA-MEM with ALT-aware. When alignment is performed using BWA-MEM only, the recall 
of the variants is much lower (~30%) than the standard pipeline with or without hard-filtering 
(Supplementary Figure S14 and Supplementary Table S2). This shows that using an alignment 
tool not catered for alternate loci mapping reduces the overall sensitivity of the variant calling 
due to lesser reads being correctly mapped. The correlation of allele frequencies also 
decreases and the reduction in median allele frequency increases up to 15% (Supplementary 
Table S3).    
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Supplementary Figure S5 
(A) Hierarchical clustering of the pairwise correlations of microarray expression between 

pairs of models, with red representing perfect correlation (+1), and blue perfect anti-
correlation (-1). The two largest red blocks (highlighted in white and yellow) show the 
mouse introgressed and EBV transformed models. The other blocks, which much lower 
average correlation, typically show related tumor types (e.g., the lower right block is all 
neurological tumors). 

(B) A small fraction of tumors, highlighted in white in (A), that were heavily introgressed by 
mouse tissues were clustered with expression of NSG mouse (skin sample). 

(C) EBV Lymphoma models, highlight in yellow in (A), show an extremely highly correlated 
expression pattern regardless of the original tissue or tumor type. 
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Supplementary Figure S6 
(A) Distribution of probe intensity of the SNP array for PDX samples with different mouse DNA 
content (using the percentage of human reads estimated from the CTP sequencing as a proxy 
for human DNA content on the SNP array): > 99% human DNA (green), < 50% human DNA 
with QC failure of SNP array CEL file (red), and 100% NSG mouse DNA (black).  
(B) Human DNA content of PDX samples classified by successful CNV prediction (black 
squares), failure in QC of CEL files (orange circles), and failure in ASCAT analysis red triangles). 
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Supplementary Figure S7 
(A) And (B): CNV profiles of PDX models with matched models and multiple samples from the 

corresponding patient tumor, multiple passages or multiple samples (mouse) of same 
passage. 
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Supplementary Figure S8 
Frequency of copy number gain (red) or loss (blue) of selected genes frequently amplified or 
deleted in TCGA tumors predicted by GISTIC analysis for each tumor type in TCGA SNP array 
datasets. 
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Supplementary Figure S9 
Distribution of log2 ratio of gene copy number relative to the estimated overall ploidy of each 
individual PDX sample or the diploid state for selected frequently amplified or deleted genes 
in TCGA tumors predicted by GISTIC analysis across all PDX samples. The threshold of low-
level gain and loss is defined as log2(CN/ploidy) > +0.4 and log2(CN/ploidy) < -0.4 respectively. 
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Supplementary Figure S10 

Expression fold change of each gene across all PDX samples, defined by fold change of 

log2(TPM+1) relative to the mean expression of samples with a stringent normal copy number 

state (-0.4 < log2(CN/ploidy) < 0.4). Here, a higher-level copy number gain and loss is defined 

as log2(CN/ploidy) > +1 and log2(CN/ploidy) < -1 respectively. The normal copy number state 

is defined as -1 < log2(CN/ploidy) < +1. Significance in differences in expression by Student’s 

t-test (*: p-value < 0.005, NS: non-significant). 
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Supplementary Figure S11 
Correlation frequency of genes that are over-expressed (z-score of log2(TPM+1) > 1, green) or 
under-expressed (z-score of log2(TPM+1) < -1, orange) between each tumor type in TCGA 
RNA-Seq samples. 
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Supplementary Figure S12 
Frequency of genome-wide copy number gain, loss and LOH across PDX models for 8 tumor 
types.  
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Supplementary Figure S13 
Frequency of genome-wide copy number gain and loss across TCGA samples for 8 tumor types. 
(Compiled from UCSC Cancer Browser, https://genome-cancer.ucsc.edu/) 
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Supplementary Figure S14 
(A) Comparison of frequency of copy number gain (red) or loss (blue) of selected genes 

frequently amplified or deleted in TCGA tumors predicted by GISTIC analysis for each 
tumor type between PDX and TCGA datasets using predicted ploidy as a reference state. 

(B) Comparison of frequency of copy number gain (red) or loss (blue) of genes frequently 
amplified or deleted in TCGA tumors predicted by GISTIC analysis for each tumor type 
between PDX and TCGA datasets using diploid as a reference state. 
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Supplementary Figure S15 
(A) Correlation of frequency of copy number gain (red) or loss (blue) of selected genes 

frequently amplified or deleted in TCGA tumors predicted by GISTIC analysis between 
each tumor type in TCGA SNP array datasets. 

(B) Ranked correlation coefficients based on Figure 4b and Supplementary Figure S6. 
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Supplementary Figure S16 
Frequency of genes altered PDX and TCGA tumors for each genomic datatype for colorectal 
cancer. These genes are identified by commonly affected pathways in colorectal cancer 
reported in TCGA studies. For both PDX and TCGA cohorts of colorectal cancer, we observed 
high frequencies in the 1) mutation of APC and over-expression of AXIN2 in the WNT signaling 
pathway, 2) amplification of IRS2 in the PI3K signaling pathway, 3) copy number loss of 
SMAD2 and SMAD4 in the TGF-β signaling pathway, 4) under-expression of BRAF in the RTK-
RAS signaling pathway, and 5) copy number loss of TP53 in the TP53 signaling pathway.  
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Supplementary Table S1 
This table summarizes the results from the benchmarking studies of the CTP variant calling 
pipeline using 45 simulated sequencing datasets different samples, sequencing coverages, 
and mouse DNA content. 
 
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2018. ; https://doi.org/10.1101/414946doi: bioRxiv preprint 

https://doi.org/10.1101/414946
http://creativecommons.org/licenses/by-nc/4.0/


 22 

 
 

 
 
 
Supplementary Table S2 
This table shows the correlation and difference in median of alternate allele frequencies 
between input and true positive variants for all the simulated samples. ALL: all variants called 
by the pipeline; PASS: variants annotated as “PASS” in the pipeline which pass the hard filters, 
minimum read depth and minimum alternate allele frequency of the variant. 
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Supplementary Table S3  
Number of variants in each germline databases. 
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Supplementary Table S4  
Number of unique variants in each CTP sample (n=383), represented by mean, median and 
standard deviation, called by GATK and after each filtering or rescue step. The last row shows 
the average number of variants annotated as clinically relevant. 
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Supplementary Table S5 
Number of PDX and TCGA samples for 5 tumor types used for analysis of variant calling. 
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Supplementary Table S6 
Classifier gene table to classify EBV-associated PDX lymphomas versus other tumors. Up-
regulation: +1; Down-regulation: -1. 
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Supplementary Table S7 
Pearson correlation coefficient of gene-based log2(total CN/ploidy) between the single-tumor 
and tumor-normal CNV analysis. 
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Supplementary Table S8 
Mean expression fold change of genes with copy number normal, gain and loss state for genes 
found in the Cancer Census that is listed as oncogenes affected by amplification and tumor 
suppressor genes affected by deletions (refer to Supplementary Figure S16). The p-value, 
calculated by Student’s t-test, measures if the difference in expression for each gene between 
the copy number loss models versus normal models, and between the copy number gain 
models versus normal models is significant. 
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Supplementary Table S9 
Contingency table for Fisher’s Exact Test for CTP genes with coding, non-silent mutations for 
different tumor types in the PDX and TCGA cohort. For PDX, the number of CTP genes with 
and without coding, non-silent mutations in each tumor type cohort was counted. For TCGA 
data with more samples than PDX, the number of CTP genes with coding, non-silent mutations 
at ³5% and <5% frequency in each tumor type cohort was counted. 
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Supplementary Table S10 
Number of PDX and TCGA samples for 6 tumor types used for analysis of RNA-Seq expression 
profiling. 
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Supplementary Table S11 
Number of genes that are up-regulated (adjusted p-value < 0.05, log (fold change of TPM+1) > 
1 by limma) or down-regulated (adjusted p-value < 0.05, log (fold change of TPM+1) < -1 by 
limma) for each tumor types versus all other tumor types for PDX and TCGA RNA-Seq data 
respectively. This table shows the overlap of each set of genes between PDX and TCGA RNA-
Seq data. 
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Supplementary Table S12 
Number of PDX and TCGA samples for 8 tumor types used for analysis of copy number and 
LOH predicted from SNP array. 
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