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Abstract

With faithful sample preservation and direct imaging of fully hydrated biological material,
cryo-electron tomography (cryo-ET) provides an accurate representation of heterogeneous cellular
constituents in their native environment. However, detection and precise localization of complexes
within a cellular environment is aggravated by their large number and heterogeneous nature.
We developed a template-free image processing procedure that allows an accurate tracing of
complex networks of biological densities, as well as a comprehensive and automated detection,
and an unsupervised classification of heterogeneous membrane-bound complexes in cryo-electron
tomograms. Applying this procedure to tomograms of membrane vesicles from rough endoplasmic
reticulum (ER), we detected and classified small protein complexes like the ER protein translocons,
which were not detected by other methods. This classification provided sufficiently homogeneous
particle sets for further processing by the currently available subtomogram averaging methods.
Furthermore, we present structural evidence that different ribosome-free translocon species are
present at the ER membrane, determine their 3D structures, and show that they have different
localization patterns and form nanodomains.

Introduction

The cellular environment is characterized by a large number of heterogeneous molecular components.
Stable and transient complexes form basic units that perform distinct steps comprising cellular func-
tions. Many biochemical cascades like signaling and protein synthesis depend on the composition and
the precise location of the relevant complexes.

In cryo-electron tomography (cryo-ET), biological samples are faithfully preserved by rapid freez-
ing, which prevents water crystallization and rearrangements of the biological material. Importantly,
samples are imaged in transmission electron microscopy in the same vitrified, fully hydrated state [1].
Therefore, cryo-ET is uniquely suited for high resolution, direct three-dimensional (3D) imaging of
fully hydrated, unperturbed cellular complexes within their native environment [2, 3].

The potential of cryo-ET to yield a cellular map of molecular complexes is hampered by the noisy
and heterogeneous cellular environment. Because visual detection is limited to large complexes of
characteristic shapes [4], image processing methods gained prominence. In template matching a high
resolution structure of a protein or complex of interest is used to computationally search for similar
structures in a tomogram or on projection images [5, 6, 7, 8, 9]. This approach is particularly suited
for complexes that are not embedded in larger assemblies and critically depends on the existence of
higher resolution 3D structures of complexes large enough to be detected in cellular cryo-tomograms.
Similarly, automated methods were developed for segmentation of membranous structures [10, 11].
In a different approach, pleomorphic complexes are detected by an automated procedure, based on
their membrane attachment [12]. Their molecular identification is complicated because it requires a
functional characterization of the detected complexes [13] and may involve an array of different genetic
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Algorithm 1 Complete procedure.

1. Density tracing and particle picking

� Tracing of biological densities by the Discrete Morse theory based algorithm (DisPerSe)

� Simplification by topological persistence

� Spatially embedded graph representations of the biological density

� Selection of complexes - particle picking

2. General classification

� Determination of membrane normal vectors

� Constrained refinement (Relion)

� Unsupervised classification of rotationally averaged complexes by Affinity propagation

3. Spatial analysis and averaging

� Standard 3D classification and constrained refinement (Relion)

� Spatial distribution analysis within or between classes

conditions, particularly for higher eukaryotic systems [14]. Subtomogram averaging can yield 3D
structures at high resolution, but requires biological systems containing a high number of homogeneous
proteins or complexes of interest [15, 16, 17].

To allow a more comprehensive processing of complex cryo-tomograms, we developed a software
procedure for template-free detection and classification of heterogeneous membrane-bound molecular
complexes imaged by cryo-ET of cellular systems. It is based on methods from other fields that
we adapted and further developed, such as the discrete Morse theory based segmentation, affinity
propagation and spatial point processes, and includes custom-made software. The classes obtained
are sufficiently homogeneous to allow further processing by standard subtomogram averaging methods
[18, 17]. Validations were performed on both phantom and real datasets.

Results

Procedure overview

Our procedure consists of three major parts (Algorithm 1). First, complexes are detected in a com-
prehensive, template-free manner. Then, they are classified into classes containing structurally similar
complexes, rendering them suitable for further processing. Finally, the spatial distribution of com-
plexes and their average densities are determined.

Density tracing and simplification

Detection of complexes in a tomogram, that is the determination of their location, is analogous to
particle picking in single particle analysis and subtomogram averaging. However, our goal is to detect
heterogeneous complexes in a comprehensive manner.

For an automated tracing of the biological material density in cryo-tomograms, we adapted Dis-
PerSE, a software package based on the discrete Morse theory, which was developed for the identifi-
cation of astrophysical structures in 3D images of the large-scale matter distribution in the Universe
[19]. In general, Morse theory is used to calculate topological indices (invariants) of a given manifold,
while the discrete Morse theory is applied to simplicial complexes [20, 21].

Here, we used tomogram greyscale values to define a Morse function. Using DisPerSE software,
the critical points of the Morse function (where its gradient is 0), some higher dimensional manifolds
and their inter-relations were determined. Together, these form Morse complexes. In order to allow
tracking of biological density in cryo-electron tomograms, we selected the following manifolds for
further processing: (i) Minimum points (termed 0-critical points), (ii) Saddle points that have minima
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Algorithm 2 Simplification by topological persistence

For each pair of connected minima and saddle points (pi, sa) whose values differ by less than a specified
persistence value:

1. Find the other minimum (pk) connected to the saddle point sa and connect it to all saddle points
connected to pi

2. Remove pi, saand all their arcs

3. Add ascending manifold associated with minimum pi to the one associated with minimum pk

4. Remove arcs associated with saddle points of low density

in two and a maximum in one direction (1-critical points), (iii) Arcs that connect minima and saddle
points defined as maximum gradient curves between these points (descending 1-manifolds), (iv) 3-
manifolds associated with minima (ascending 3-manifolds). To present the detection in a more intuitive
way, we processed a (2D) tomographic slice of a neuronal synapse (Figure 1 A, C). The minima and
the arcs visually corresponded well to the distribution of the bio-material.

A high level of noise present in cryo-tomograms causes the detection of many closely spaced local
minima that have only slightly smaller values than their neighborhood, resulting in an overly complex
structure of the calculated Morse complexes. Because of a highly complex network of densities present
in cellular cryo-tomograms, we could not use the Morse complex simplification procedure implemented
in DisPerSE. To solve this problem, we implemented a modified version of the simplification by
topological persistence [19]. In essence, pairs of a minimum and its connected saddle point that
had similar grayscale values were removed, and the affected Morse complex elements were reassigned.
(Algorithm 2, Figure 2). Alternatively, one can consider this method as introducing small changes in
the greyscale values so that some pairs of minima and saddle points disappear, effectively reducing
the contribution of noise.

The simplification by topological persistence resulted in a greatly simplified Morse complex, and
a faithful tracing of biological material by minima, saddle points and the connecting arcs (Figure
1D). These form a skeleton that provides an intuitive representation of the biological density and
its constituents, protein complexes. All together, the choice of manifolds provided by the discrete
Morse theory, combined with the custom-made implementation of the simplification procedure, made
it possible to accurately trace biological density.

Graph embedding and detection of complexes (particle picking)

We implemented a graph representation of Morse complexes, where minima are assigned to graph
vertices and edges to saddle points (Figure 1B). Because a saddle point is connected to two minima,
the edge corresponding to the saddle point connects the corresponding vertices. Vertices keep the
information about their spatial location, while edges contain the full information about the underlying
arcs, thus forming a spatially embedded graph. Additionally, greyscale values of minima are associated
with vertices, while greyscale values of saddle points, euclidean distances between connected minima
and geodesic length of arcs are associated with edges.

These graphs may also contain external information provided by segmentation of large cellular
structures, such as lipid membranes, organelles or cytoskeleton. The Morse complexes and their cor-
responding graphs represent the distribution of the biological material visualized in a tomogram. The
spatially embedded graphs occupy the central part in the software we developed, because they combine
precise geometrical, topological and biological information and allow computationally efficient queries
that can extract specific information used to detect individual complexes (particles). For example,
the yellow and the orange star-bound paths in Figure 1D represents an extracellular presynaptic
membrane-bound and a transcleft complex, respectively, while the brown path shows a complex com-
posed of transcleft and pre- and postsynaptic intracellular components. Therefore, subgraphs can be
selected starting from vertices belonging to a previously defined membrane or another cellular struc-
ture and extending by a specified length. Greyscale values and geometrical information associated
with vertices and edges can be used as further constraints. Subgraphs containing few vertices and
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Figure 1: Tracing biological material at a synapse. A Tomographic slice of 1.37 nm thickness. B
Graph representation of the Morse complex shown in D. C Morse complex obtained by application of
DisPerSE on the slice shown in A. D Morse complex obtained from C after simplification by topological
persistence. B-D Images superimposed on the slice from A. C, D Color insets show ascending 2-
manifolds, labeled by different colors. Red circles represent greyscale minima (graph vertices, larger
size denotes minima of higher density) and the blue ones the saddle points. White lines are arcs
and blue lines graph edges (darker shade denote saddle points of higher density). Yellow, orange
and brown paths represent possible extracellular presynaptic, trans-cleft and extended trans-cleft
complexes. Stars are intersection points between the selected paths and membrane faces. Black
dashed lines outline synaptic membranes. Scale bar 10 nm.

Figure 2: Simplification by topological persistence in 2D. A The initial Morse complex is shown on
the density map. The minimum to be removed by the simplification is labeled by an asterisk. B Arcs
that are to be modified are indicated by dashed lines and the saddle point that is to be removed is
indicated by an asterisk. C Morse complex after the simplification. On all panels minima are shown
by red and saddle points as blue points, arcs are shown as black lines and the white lines denote
borders between ascending 2-manifolds.
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Figure 3: Validation of the density tracing and the simplification on phantom data. A Tomographic
slices of the phantom data set. B Detected minima and arcs at SNR = 0.025 in the graph representation
superposed on a slice of the simulated tomogram. Red spheres denote detected minima (vertices) and
blue lines detected arcs (edges). The yellow arrow points to a FP minimum, blue to a FN minimum,
dark blue to a double minimum, pink to a FP arc and red to a FN arc. C Normalized number of
TP, FP and FN minima (labeled as TP, FP and FN), and TP and FP for arcs (mean ± std, N=10
simulations per SNR).

edges may represent molecular complexes and define their positions. Hence, the procedure described
so far corresponds to particle picking in the single particle analysis.

Detection of density in phantom data

To validate the density tracing and the simplification procedures, we created a phantom dataset
comprising a rectangular grid having higher density at the intersections, and added variable amounts
of Gaussian noise (Figure 3A). Densities in all phantom datasets were detected by applying the discrete
Morse theory and the topological simplification as outlined above. Grid intersections and grid bars
were taken as the ground truth features for the detection of minima and arcs, respectively. We detected
the minima and arcs that matched the ground truth (true positives, TP), did not match the ground
truth (false positives, FP), as well as the unmatched ground truth features (false negatives, FN)
(Figure 3B). We did not consider multiple minima occurring at the same grid intersection, because
these are eliminated by imposing an exclusion distance between particles during particle picking.

Numbers of TPs, FPs and TNs were normalized to the total number of the corresponding ground
truth features. For SNR above 0.05, the FPs and FNs were below 10% and TP minima was above
90%, however for SNR between 0.05 and 0.1 TP arcs was between 80% and 90% (Figure 3C). To
a large extent, this failure to detect some of the ground truth arcs (these constitute FN arcs) was
caused by the minima that were not detected (FN minima). This was confirmed by normalizing TP
arcs to the total number of ground truth arcs that could be formed given the detected minima (TP
arcs corrected in Figure 3C).

General classification

The application of the procedure described in the previous section is expected to yield a set of
membrane-bound complexes possessing high compositional and conformational heterogeneity. There-
fore, it was essential to develop a general classification procedure capable of separating highly hetero-
geneous complexes into groups (classes) of similar complexes.

Particle (complex) positions were used to generate particle subtomograms and calculate the di-
rection of vectors perpendicular to the membrane. These normal vectors specify two of the angles
that determine the orientation of the particles, while the third angle is left undetermined. To opti-
mize particle positions and normal vectors, we performed particle refinement where during alignment
the angles defined by the normal vectors were allowed only small changes around the initial values,
while the third angle was not constrained (here termed constrained refinement). In addition, a high
symmetry was imposed on the third angle (around the normals), diminishing its importance for the
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alignment. To reduce the influence of the missing wedge, the initial model for this refinement was
obtained by randomizing the third angle and averaging all particles (without alignment).

We classified particles using the affinity propagation clustering [22], whereby nodes (particles)
exchange information between each other to reach the optimal partitioning. Compared to the standard
clustering methods, this algorithm has the advantage that it is unsupervised, the number of classes is
not specified in advance but obtained from the clustering and the algorithm can handle cases where
classes have a very different number of particles.

The success of a clustering procedure critically depends on the manner the clustering distance
(similarity) is defined. Here, we represented particles as 2D images obtained by computing rotational
averages (of particle subtomograms) around their normal vectors and defined the distance between
two particles as the dot product of their rotational averages. In this way, the 2D averages used for
clustering were aligned to each other, and there were no degrees of freedom that could hinder the
clustering. This is in contrast to clustering based on the 3D particle subtomograms, where the angle
around the normal vector is not known.

Detection and classification on microsomal membranes

For validation of the particle picking and general classification methods, we used a subset (26%) of
previously analyzed cryo-ET data depicting canine pancreatic microsomes [23]. This work estab-
lished the basic architecture of the translocon complex and structure of its constituents: the Sec61
protein-conducting channel, the translocon-associated protein complex (TRAP) and the Oligosaccha-
ryltransferase complex (OST) [24, 25].

Biological material was detected using our procedure, as explained above (Figure 4A, Video 1).
The persistence simplification allowed tomogram normalization, by setting the persistence threshold to
obtain a fixed density of greyscale minima on the microsomal membranes on all tomograms. Particles
at the cytoplasmic and lumenal faces of the ER membrane were picked independently of each other,
based on minima that satisfied certain geometrical constraints (see the Methods).

The cytosolic and lumenal particle positions and the membrane normal vectors were optimized by
the constrained refinement using C10 symmetrization. A well-positioned density and a resolved lipid
bilayer obtained by the refinement (Figure 4B) argue that particle positions and membrane normals
were determined precisely.

Classification of cytosolic particles by affinity propagation yielded more than 100 classes (Fig-
ure S2A). Constrained refinement of these classes, using internal initial references, showed different
species of ribosome-translocon complexes (Figure 4C, D). Constrained refinement of the best class
that contained both cytosolic and lumenal density was used to generate an initial reference for further
processing. All cytosolic particles were subjected to three rounds of 3D classification. The first round
was applied to each class separately, to remove suboptimal particles. The other two 3D classification
rounds focused on the lumenal segments and the small ribosomal subunit, respectively, resulting in
structures comparable to those previously reported (Figure 4E) [24, 23]. These included fully assem-

bled ribosomes bound to the fully assembled and partial translocon complexes, resolved to 18 Å and
22 Å, respectively, as well as ribosomal large subunits resolved to 21 Å (Figure S2C). This confirms
that sufficiently homogeneous particle sets were generated by our procedure, which could be further
processed by standard external reference-free subtomogram classification and averaging.

Alternatively, the first 3D classification was performed on all particles together (termed “bulk
cleaning”, as opposed to the above “AP cleaning” variant). Bulk cleaning variant yielded similar 3D
averages. However, using the AP cleaning variant, TRAP was better resolved in the partial translocon
complex class, the number of particles was increased and the resolution obtained was slightly higher
(Figure S3). In addition to providing an internal initial reference, the affinity propagation classification
thus contains information that can be exploited by subsequent processing.

The best of over 100 affinity propagation classes of lumenal particles (Figure S2B) was refined
to yield a 3D density of the translocon. The bulk cleaning variant, using the translocon density as
the reference, yielded a well resolved ribosome-translocon class and classes representing two different
ribosome-free translocon states (Figure 4F). Among the particles that contained a defined lumenal
density, 15% had an associated ribosome and thus corresponded to the ribosome-translocon complex.
Among the ribosome-free complexes, 68% corresponded to fully assembled translocon (TRAP, OST
and Sec61) and 17% likely represented individual OST complexes. The resolution was determined to
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Figure 4: Processing of ER membrane-associated complexes. A Tracing of biological density. Den-
sity minima are shown as small spheres (left) and particles as spheres with arrows representing the
associated membrane normal vectors (right). Position of the spheres is color-coded: Red cytosol; blue
membrane; green lumen. B Average of all cytosolic particles obtained without alignment (above) and
with constrained refinement with C10 symmetry (below). C, 3D class averages of the representative
affinity propagation classes of cytosolic particles (ribosomes), obtained without alignment. D Refine-
ment of the same classes shown in (C) obtained using the averages shown in (C) as initial models. E
3D classification and refinement of cytosolic particles (ribosomes). Densities of ribosomes bound to the
fully assembled (red) and partial translocon complex (yellow), as well as the large ribosomal subunit
bound to the fully assembled translocon (blue) are shown. F 3D classification and refinement of lume-
nal particles (translocon). Densities of the ribosome-translocon complex (light red), the ribosome-free
fully assembled translocon (light blue) and the non-translocon associated individual OST complex
(light yellow) are shown. In both (E) and (F) initial references obtained from the affinity propagation
classes (top row, left) and densities obtained by the first classification of all particles (top row, right)
are shown together with the classes obtained by the second (middle row) and the third round of
classification (bottom row). Transparent blue regions correspond to the masks used for classification.
Refined and post-processed densities are shown in color. ’Cyto’, ’Mem’ and ’Lum’ denote cytosolic,
membrane and lumenal regions, respectively. Scale bars A 100 nm, B-F 10 nm.
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22 Å, 14 Å and 16 Å, respectively (Figure S2D). The same 3D classification procedure failed without
the initial translocon density.

Therefore, our procedure is capable of picking small complexes, like the translocon or even smaller
individual OST complexes (≈200 kDa lumenal mass). The unsupervised classification by affinity
propagation was instrumental to carry the processing to a level where the standard 3D classification
and refinement procedures could be used.

Spatial distribution analysis

Methods available for the analysis of spatial point processes can provide further information about
the biological system of interest and assist with classification. Specifically, monovariate distribution
functions analyze the distribution and clustering of particles within a class. Among these, the first
order functions are based on the distance to the closest point, either from other points (nearest neighbor
distribution) or from arbitrary locations (spherical contact function), or both (J-function) [26]. A more
detailed description is obtained by Ripley’s second order functions, which evaluate the distribution
at different length scales, by considering distances between all pairs of points [27, 28]. Furthermore,
bivariate versions of the nearest neighbor and Ripley’s functions characterize colocalization and co-
clustering of particles between two classes.

To assess the statistical significance, the above functions are evaluated with respect to the random
distribution (null hypothesis). Due to the restricted and irregular shape of the region where the
particles are located, analytical models cannot be used. Instead, many random point distributions
need to be generated within the particle region. To this end, we implemented a Monte-Carlo method
that generates random distributions of a specified number of particles within an arbitrary space (see
Methods).

Spatial organization of microsomal complexes

As an example of using spatial point distribution methods to address biological questions, we in-
vestigated the spatial organization of the microsomal particle classes obtained above. Upon visual
inspection, some classes showed distinct distributions (Figure 5A, Video 2). In order to quantitatively
determine whether the complexes were clustered and at which length scales, we calculated the univari-
ate Ripley’s function for the particle classes and compared them with results obtained for simulated
particles.

The ribosome-free translocon complex showed a significant clustering at length scales from about
8 nm to more than 50 nm, while the non-translocon associated OST was borderline significant (at
p=0.05 level) at 10-20 nm in respect to the random distribution (Figure 5B,C). We confirmed these
results by using the first order functions: the nearest neighborhood, spherical contact distribution and
J-functions all showed significant clustering distribution of the ribosome-free translocon complexes
(Figure S4).

As expected, the distribution of ribosomes, comprising all three final classes of the cytosolic par-
ticles (Figure 4E), also showed significant clustering (Figure 5D) likely induced by polyribosome for-
mation. In addition, using the bivariate Ripley’s L function, we did not detected a significant colo-
calization between ribosomes and ribosome-free translocon complexes (Figure 5E, F). These examples
show that spatial point process methods allow a quantitative characterization of the organization of
molecular complexes.

Discussion

Cellular cryo-electron tomograms contain large amounts of unexplored information due to the hetero-
geneity and complex spatial organization of their molecular constituents. To solve this problem, we
used and modified existing computational methods and developed new software to create a template-
free procedure that can classify pleomorphic membrane-bound molecular complexes, so that the result-
ing classes are sufficiently homogeneous for further processing by the currently available subtomogram
averaging methods.

In order to trace densities in biological cryo-electron tomograms, it was necessary to adapt a discrete
Morse theory-based procedure and modify topological persistence simplification [19]. Applications on
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Figure 5: Spatial distribution of microsomal particles. A Distribution of the particles is shown on one
microsome (all three cytosolic ribosome classes red, ribosome-free full translocon: cyan, non-translocon
associated OST: yellow). B-D Univariate Ripley’s L function of the three classes, the same color code
as in A. E Bivariate Ripley’s L function between the cytosolic ribosome classes and the ribosome-free
translocon complex. In B-E Black lines show the median of the Ripley’s L function for a set of random
particle distributions (≈1200) and the gray areas represent regions of p>0.05 confidence.

both phantom and biological data showed accurate tracing of densities at low signal-to-noise condi-
tions. We developed software to convert the tracing data into spatially embedded graphs that allowed
us to use geometrical, connectivity, and external information to extract complexes (pick particles) and
determine their orientation in respect to local membranes. This rather comprehensive particle picking
yields highly heterogeneous particles, thus making their structural classification a challenging task.
We found that 2D particle rotation averages around an axis perpendicular to the membrane provide
a representation that allows an efficient, unsupervised classification by affinity propagation [22]. To-
gether, these steps provide a template-free procedure that can accurately trace complex networks of
biological densities, and localize and classify heterogeneous membrane-bound molecular complexes.

The application of our template-free procedure on a previously reported dataset depicting micro-
somes [23] resulted in a direct, ribosome-independent detection of translocons, small ER membrane-
resident complexes with domains projecting into the lumenal side of microsomes (≈260 kDa total
lumenal mass). We obtained 3D densities of ribosome-free translocon and even smaller individual
OST (≈200 kDa lumenal mass) complexes, which were not previously detected by template-matching.
Focusing on the cytosolic side, we detected 3D structures of ribosomes associated with different translo-
con species, consistent with previous template-matching ribosome localization approaches [24, 23]. In
both cases, the unsupervised classification by affinity propagation was instrumental to generate ini-
tial references and particle sets that were sufficiently homogeneous for the subsequent standard 3D
classification and refinement procedures.

These results demonstrate that the procedure presented here can be applied to small complexes
that were beyond the reach of template-matching. Furthermore, being template-free, our procedure
can be applied to localize heterogeneous complexes, or complexes in different compositional and con-
formational states. Obviously, a template-free approach is not limited by the availability of higher
resolution structures and, unlike template-based approaches, does not introduce an initial bias that
might affect subtomogram classification and averaging.

The rotational averaging of membrane-bound complexes eliminates the only unknown rotational
orientation, thus removing the problem of incorrect alignment that can hinder classification. Never-
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theless, it keeps sufficient information available for classification, in the form of 2D rotational averages.
The combination of these may be the reason why we successfully applied the affinity propagation clas-
sification on large datasets (more than 60 000 particles). The previous template-free approaches, based
on 3D rotation-invariant properties, automated pattern mining or difference of Gaussians picking were
successful only on large complexes, and did not reach a resolution comparable to ours, neither on sim-
ulated nor on real datasets [29, 30, 31]. Because the ability to determine normal vectors is the only
membrane-related requirement, our procedure can be applied to complexes attached to any cellular
membrane and also larger structures such as the cytoskeleton.

The results obtained from the microsomal data provide structural proof for the presence of ribosome-
free translocon complexes in the ER membrane that either await binding of ribosome-nascent chain
complexes for co-translational protein transport and membrane insertion, or are engaged in post-
translational processes. Notably, the majority of these ribosome-free translocon complexes already
comprise all constituents known to be present in the ribosome-associated translocon, arguing against
a step-wise assembly of the translocon complex on the ribosome. In metazoans, the STT3A type
OST complex is stably integrated into the translocon complex for co-translational glycosylation of
nascent proteins, while the STT3B type OST complex is excluded from the translocon and takes care
of glycosylation sites skipped by STT3A [32, 33]. Thus, the individual, not translocon-associated OST
complexes we localized in the ER membrane likely correspond to STT3B type OST complexes.

Finally, we implemented and adapted functions required to characterize spatial distribution of
point-particles for application to spatial regions of arbitrary shape. These can be used to provide
further information about the biological system under study and to assist particle processing. Using
these functions, we observed a significant clustering of ribosome-free translocon complexes. This
suggests the presence of nanodomains in the ER membrane for post-translational protein transport
and membrane insertion, established by direct or indirect interactions between these complexes.

In conclusion, the procedure described here, based on the template-free detection and unsupervised
classification of pleomorphic macromolecular complexes, extends the applicability of cryo-ET to small
and heterogeneous membrane-bound molecular complexes and therefore makes possible a large-scale,
non-invasive detection, localization and averaging of molecular complexes in-situ.

Methods

Synaptosomal preparation

Cerebrocortical synaptosomes were extracted from 6–8 week old male Wistar rats as described pre-
viously [34, 35, 36] in accordance with the procedures accepted by the Max Planck Institute for
Biochemistry. In brief, anesthetized animals were sacrificed, and the cortex was extracted and homog-
enized in homogenization buffer (HB; 0.32 M sucrose, 50 mM EDTA, 20 mM DTT, and one tablet of
Complete mini EDTA-free protease inhibitor cocktail (Roche; 10 ml, pH 7.4) with up to seven strokes
at 700 rpm in a Teflon glass homogenizer. The homogenate was centrifuged for 2 min at 2000 g,
and the pellet was resuspended in HB and centrifuged for another 2 min at 2 000 g. Supernatants
from both centrifugations were combined and centrifuged for 12 min at 9500 g. The pellet was re-
suspended in HB and loaded onto a three-step Percoll gradient (3%, 10%, and 23%; Sigma-Aldrich)
in HB without protease inhibitor cocktail. The gradients were spun for 6 min at 25 000 g, and the
material accumulated at the 10/23% interface was recovered and diluted to a final volume of 100 ml
in Hepes-buffered medium (HBM; 140 mM NaCl, 5 mM KCl, 5 mM NaHCO3, 1.2 mM Na2HPO4,
1 mM MgCl2, 10 mM glucose, and 10 mM Hepes, pH 7.4). Percoll was removed by an additional
washing step with HBM by centrifugation for 10 min at 22 000 g, and the pellet was resuspended in
HBM and immediately used in the experiments. All steps were performed at 4°C.

Cryo-ET of synaptosomes

For vitrification, a 3-μl drop of 10-nm colloidal gold (Sigma-Aldrich) was deposited on plasma-cleaned,
holey carbon copper EM grids (Quantifoil) and allowed to dry. A 3-μl drop of synaptosomes was placed
onto the grid, blotted with filter paper (GE Healthcare), and plunged into liquid ethane.

Tilt series were collected under a low dose acquisition scheme [37] on Titan Krios [FEI] equipped
with a field emission gun operated at 300 kV, with a post-GIF energy filter (Gatan) operated in the
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zero-loss mode and with a computerized cryostage designed to maintain the specimen temperature
at <-150°C. Images were recorded on a direct electron detector device (K2 Summit operated in the
counting mode). Tilt series were typically recorded from -60° to 60° with a 2° angular increment.
Pixel sizes was 0.34 nm at the specimen level. Volta phase-plate with nominal defocus of -1 μm [38]

was used. The total dose was kept <100 e-/Å2. Tilt series were aligned using gold beads as fiducial
markers, and 3D reconstructions were obtained by weighted back projection (WBP) using Imod [39].
During reconstruction, the projections were binned once (final voxel size of 0.68 nm) and low pass
filtered at the post-binning Nyquist frequency.

Computational methods

DisPerSE software package was used for the tracing of biological densities [19]. Tomogram greyscale
values were used to define a Morse function, while the simplicial complex was defined as the 3D
voxel-based Cartesian grid. The processing of a Morse function on a simplicial complex by DisPerSE
yields manifolds that form a Morse complex and describe critical points and their inter-relations.
Importantly, 1-critical points are always connected by arcs to two minima.

We modified the topological persistence simplification method and implemented it in PySeg package
(Algorithm 2). The procedure first removes the pairs consisting of a minimum and a connected saddle
point whose greyscale values differ by an amount smaller than a specified persistence threshold. Then,
the arcs and ascending manifolds related to removed points are reassigned. Because this procedure
may leave multiple arcs linking the same pair of minima, arcs associated with low-density saddle points
are removed.

Creation of spatially embedded graphs from Morse complexes and their manipulation was embed-
ded in PySeg. For some of the standard graph tasks, the graph-tool library was used [40]. Methods to
query properties associated with graph vertices, and edges and methods to extract particles were also
implemented in PySeg. All together, representing biological density by spatially embedded graphs
significantly increased the computational efficiency.

Radial averaging of subtomograms around the membrane normal vectors and an interface for the
scikit-learn [41] implementation of the affinity propagation algorithm [22] are provided in PySeg. We
also implemented contrast limited adaptive histogram equalization in Pyseg.

The software developed for the work presented here (as mentioned above, together with the spatial
distribution functions, below) was developed in the object-oriented manner in Python as PySeg pack-
age. The package contains installation and usage instructions, examples on real biological data and
more than 66 000 lines (instructions and examples excluded). It is open-source and available upon
demand.

PySeg uses Numpy package, surface meshes were stored using VTK [42] and graphs are plotted
using matplotlib library [43]. We parallelized the most intensive operations in order to provide a
software package able to effectively process big datasets with many particles and tomograms,

For visualization, Paraview [44] and the UCSF Chimera package from the Computer Graphics
Laboratory, University of California, San Francisco (supported by NIH P41 RR-01081) [? ] software
packages were used.

All computations were done on Linux clusters at the computer center of the Max Planck Institute
of Biochemistry.

Processing of phantom data

The phantom dataset contained a 6x6x3 grid with variable amount of Gaussian noise (SNR between
0.005 and 5). For each SNR, 10 datasets were generated. The size of intersections was 2x2x2 voxels
and of grid bars 8x2x2 voxels. These datasets were processed in 3D by DisPerSE and simplified
by topological persistence. The parameters were set using our standard procedure. That is, the
persistence threshold was set so that the number of minima was 20% higher than the number of grid
intersections. The low-density saddle points were removed to obtain 20% more arcs than grid bars,
resulting in a higher ratio of arcs to minima (2.3) than the default (2.0), which better captured the
high connectivity of the phantom grid. TPs, FPs and FNs were normalized to the total number of
ground truth features (grid intersections and arcs). In order to remove the influence of the detection
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of minima on arc detection, we also normalized the TP arcs to the corrected number of ground truth
arcs, that is the number of arcs that could be formed given only the detected minima.

Processing of microsomal ribosomes

The processing work-flow is schematically shown in Figure S1.
55 out of 210 the tomograms previously obtained from canine pancreatic microsomes [23] were used

in this study. From these tomograms (1.048 nm pixel size), 122 microsomal membranes were segmented
using an automated procedure [45]. For tracing of densities, persistence simplification and particle
picking, tomograms were smoothed by Gaussian filtering at σv= 2 / 0.8 pixels (for the cytoplasmic
/ lumenal sides). Density tracing and the initial topological simplification were performed in 3D
by DisPerSE [19], and the resulting skeleton was simplified by the topological persistence procedure
choosing the persistence threshold automatically in a way that the density of vertices (minima) on all
microsomal membrane was 0.0025 nm-3 and the number of arcs was two times higher than the number
of vertices.

To localize cytoplasmic / lumenal particles, we selected vertices that were located at 25-75 nm /
3-15 nm Euclidean and 25-50 nm / 3-30 nm geodesic distance (length of the shortest path composed
of arcs) from the membrane and had up to 2.5 sinuosity (ratio of geodesic and euclidean distances).
For each selected vertex, the closest membrane vertex was detected, and these membrane vertices
were chosen to represent particles, resulting in 64 000 and 62 000 cytosolic and lumenal particles,
respectively. A particle exclusion distance of 5 nm was imposed. These particle positions were used to
reconstruct particles in Imod [39] at a pixel size 0.524 / 0.262 nm and with a box size 120 / 160 pixels
(for the cytoplasmic / lumenal sides).

For classification by affinity propagation, particles were rotationally averaged by computing mean
greyscale values of 2 pixel-wide rings around the particle normal vectors and the resulting rotational
averages were normalized to a density mean of 0 and standard deviation of 1. Unless noted otherwise,
the masks used here and for the following classification and refinement steps were cylindrical, for
cytoplasmic particles 40x120 pixels (radius x height) containing both cytosolic and lumenal space,
and for lumenal particles 25x110 pixels, containing lumenal and only little cytoplasmic space just
above the membrane.

The other 3D classification steps, as well as all 3D particle refinement steps were performed in
Relion [18]. During the refinement, particle half-datasets were processed independently according to
the “gold-standard” procedure, as implemented in Relion. The resolution was determined by Fourier
shell correlation at the FSC = 0.143 criterion. The constrained refinement was carried out by initially
aligning particles according to the direction of their normal vectors. The alignment was then optimized
by allowing small changes in the two normal vector angles and small spatial displacements. The
alignment around the third angle (around the normal vector) was not constrained to explore the
entire angular range, except when a high symmetry is used (typically C10). Specifically, we used the
two angles defining particle normals to the membrane to set the prior values for angles tilt and psi
in Relion particle star files and specified small values (3.66) for the standard deviations of these two
angles as the refine command options. Unless noted otherwise, the initial reference was obtained by
aligning all particles according to the two angles determined from normals and randomizing the third
angle (around the normal direction), that is no external reference was used.

Further processing was done essentially in the same way for the cytoplasmic and lumenal particles,
as follows. We obtained 2D averages of the affinity propagation classes (by averaging the rotational
averages of individual particles belonging to a class) and visually inspected them to select the cytosolic
class showing the best cytoplasmic and lumenal densities and the lumenal class showing the best
lumenal density. These classes were averaged by constrained refinement to yield densities to be used
as initial references for the further processing.

We then performed three rounds of 3D classification by Relion. False positive particles were re-
moved by the first 3D classification round, with constrained alignment, using all cytosolic / lumenal
particles and starting from the previously obtained initial references. In the bulk cleaning variant,
all particles were classified together and the best class (resembling the initial reference the most) was
selected for further processing (2600 cytosolic and 21 000 lumenal particles). In the AP cleaning
variant, each affinity propagation class was subjected to 3D classification and the best classes were
selected (7100 cytosolic particles from 15 affinity propagation classes). The second 3D classification
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round was focused on the opposite sides of the particles (lumenal / cytosolic) and the third round
on the smaller regions. Both classification steps were performed without alignment, using the align-
ment parameters from the first 3D classification round (the masks used are shown in Figure 4 E,
F). Specifically, for the cytosolic particles, the second 3D classification was focused on the ER lu-
men and generated ribosome class bound to different translocon species (fully assembled translocon:
3400 particles; partially assembled: 1800 particles), while the third round of 3D classification focused
on the cytosolic face of the ER membrane to separate translocon-bound ribosome (1064 particles)
from translocon-bound large ribosomal subunits (873 particles) (Figure 4 E). For the lumenal parti-
cles, ribosome-bound (1800 particles) and the ribosome-free translocon (11 000 particles) classes were
generated during the second 3D classification step focused on the cytosolic side, while the third 3D
classification round focused on the ER lumen yielded two classes representing different ribosome-free
states (separate OST complexes and full translocon complexes, 2200 and 8600 particles, respectively)
(Figure 4F). An exclusion distance of 15 nm was imposed in order to remove overlapping particles,
likely originating from translation shifts during the alignment steps. The final classes were averaged
by the constrained refinement, post-processed and the FSC curves were generated.

Spatial distribution functions

We implemented the following spatial distribution functions. The nearest neighbor distribution func-
tion G(r) of a particle set is defined as a probability that the nearest neighbor of a particle is found at
a distance ≤ r. The spherical contact distribution F(r) is a probability that the closest particle from
an arbitrary point is found at a distance ≤ r. Consequently, G(r) primarily describes the organization
within particle clusters, while F(r) the empty space. The J-function is a combination of the two:

J(r) =
1− F (r)

1−G(r)

Ripley’s L function is calculated considering the region within which the particles are detected (particle
region), which can have an arbitrary shape, as follows:

L(r) = r
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where λ is the overall concentration of particles, Nk(r) is number of points (particles) within a distance
≤r to point k, and Vk(r) is the volume of the intersection of the particle region and a sphere of radius
r centered on the point k [27, 28]. The bivariate versions of functions G(r) and L(r) characterize the
colocalization of two particle sets. They differ from the univariate functions specified above in that
the distances are calculated from particles of one set to the particles of the other set.

We calculated Ripley’s L function for particles on each microsome and obtained the mean. For
the determination of the statistical significance of Ripley’s L function, we generated multiple random
distributions (10 for each microsome, that is ≈1200 total) that had the same number of particles and
were located within the same spatial region as the particle set. Random points were given real particle
size and were not allowed to overlap among the same class, effectively imposing an exclusion distance
within a class. The envelope within which 95% of the curves were located was then used to determine
whether the distribution of the particle set was significantly different from the random distribution
(at the p<0.05 significance level).
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