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Abstract 

We perform a comprehensive integrative analysis of multiple structural MR-based brain features 

and find strong evidence relating inter-individual structural variations to demographic and 

behavioral variates across a large cohort of healthy human volunteers. In particular, our findings 

shed some light on functional & structural integration, as we find a mode of structural variation 

that relates to and extends the ‘positive-negative’ behavioral spectrum which was recently reported 

as being associated with variations in functional connectivity. 

 

Significance statement 

This work provides for the first-time strong evidence relating human brain structure variations to 

a wide range of demographic and behavioral measures. We show that several measures previously 

associated to variation in functional MRI connectivity are in fact already associated at the structural 

level, pointing towards structure-function integration. 

 

Introduction 

Understanding individual human behavior has attracted the attention of scientists and philosophers 

since antiquity. The first quantitative approach intended to deepen such understanding dates to the 

first half of the 19-th century when ‘phrenology’1,2 related human behavior or cognitive abilities 

to skull measures. Technical, intellectual and clinical advances in the last two centuries allow us 

to now accurately quantify brain structure and function3–7, and to summarize certain ‘aspects’ of 

human behavior by means of standardized tests. Such advances facilitate automatized exploratory 

statistical learning analyses to uncover previously hidden relationships between brain features and 

human behavior, demographics or pathologies8. These developments are expected to be pushed 

even further with the emergence of the big data MR imaging epidemiology phenomenon9,10, and 

some exponents of such expectations have already reported associations with blood-oxygen-level 

dependent (BOLD) brain function11,12; for example, functional connectivity patterns can be used 

to identify individuals11, predict fluid intelligence11, or describe a mode of functional connectivity 

variation that relates to lifestyle, happiness and well-being12. Although the brain’s function-

structure relationships are not yet fully understood, linking structure to behavior is essential for 

either type of imaging modality to be fully interpretable as an imaging phenotype. Further, given 

the long-term character of some demographic variables (e.g. overall happiness), we hypothesize 

that different brain structural features such as regional variation in the density of gray matter or 
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subject-dependent degree of cortical expansion should also, to some extent, reflect these 

relationships with behavior. To test these hypotheses, in this work we make use of the large 

quantity of high quality behavioral and neuroimaging data collected by one of the big data 

initiatives, the Human Connectome Project 9 (HCP). The HCP sample includes detailed structural 

imaging, diffusion MRI, resting-state and several different fMRI tasks for each subject. 

Furthermore, the availability of more than 300 behavioral and demographic measures allows the 

post-hoc exploration of a wide range of associations13. We further hypothesize that behavioral 

variations can be explained by more general brain structure variations than isolated single feature 

variations (e.g. cortical thickness variations); we consequently extract multiple structural features 

from the different MR modalities and perform a simultaneous analysis by linked independent 

component analysis (Linked ICA13,14). Such analyses increase statistical power by evidence 

integration across different features15,16 and have been shown to be powerful in identifying 

correlated patterns of structural and diffusion spatial variation that can then be studied in relation 

to individual behavioral and demographic measures17,18,16. Although similar analyses have been 

previously performed17, in this work we benefit from the unique characteristics of the data sample; 

we consider brain and behavioral data from close to 500 “healthy young adults” which reduces 

common pathology- and age-related variance and so increases the power to detect associations due 

to normal cross-sectional variability.  

 

Our results support the hypothesis that structural brain features are strongly associated with 

demographic and behavioral variates. Interestingly, the most relevant mode of structural variation 

identified through the multi-modal data fusion approach relates to recent findings obtained using 

functional MRI data from the same HCP cohort. In particular, our findings closely resemble the 

‘positive-negative’ set of behavioral measures identified in Smith et al.12 on the basis of functional 

(co-)variations, pointing towards structure-function integration. Indeed, they support the notion 

that it is the spatial configuration in functional parcels rather than cross-parcel connectivity19 that 

is driving the brain-behavior relationships.  

 

Methods 

In this work, we use data from the Human Connectome Project (HCP) N=500 release which 

contains data from healthy young adults including twins and their non-twin siblings. In addition to 

performing more than 300 behavioral/demographic tests, each subject participated in structural, 

diffusion and several functional MRI recordings20,21. A description of all MRI and 

behavioral/demographic measures included in our analysis can be found in van Essen et al.20 and 

we provide a summary of the latter in the supplemental information (SI), Table S1. Due to 

structure-function integration we hypothesize that different biological features such as regional 

variation in the density of gray matter, white matter connectivity or subject dependent degree of 

cortical expansion should reflect similar associations with behavior as the ones reported at 11,12. To 

investigate such hypothesis, the structural MRI T1-weighted images were used to extract gray 

matter densities and cortical measures, using a Voxel Based Morphometry (VBM)22,23 

(http://www.fil.ion.ucl.ac.uk/spm12) pipeline to extract cortical gray matter probability maps as 

well as maps of cortical thickness (CT) and pial area (PA)24,25 estimates by means of transforming 

all anatomical T1-weighted cortical surfaces through FreeSurfer v5.3 
(http://surfer.nmr.mgh.harvard.edu). Further, the diffusion-weighted MRI data were used to 

extract several features, i.e. fractional anisotropy (FA), anisotropy mode (MO) and mean 

diffusivity (MD) 26,27 (https://fsl.fmrib.ox.ac.uk/fsl/v5.0.9). In addition to these structural readouts 
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and in order to also include purely local morphometric differences across subjects, we also 

consider the images containing the Jacobian determinants (JD) of the warp fields defining the 

transformations of each subject’s structural image onto a reference brain. These feature extraction 

operations are schematically summarized in Figure 1 operation A, and full details on the data 

processing performed to achieve each feature are provided in the SI under the section ‘Individual 

features pre-processing’. From the initial N=500 participants, several subjects were excluded on 

the basis of abnormalities in any of the features. In total, N=448 subjects were entered into further 

analyses. We then use the Linked-ICA model13 to simultaneous factorize the considered N=448 

subjects’ VBM, FA, MO, MD, CT, PA and JD features into independent sources (or components) 

of spatial variation. In brief, Linked-ICA is an extension of Bayesian ICA28 to multiple input sets, 

where all individual ICA factorizations are linked through a shared common mixing matrix that 

reflect the subject-wise contribution to each component. This operation is represented in Figure 1 

operation B where we can also appreciate that such factorization provides - per component - a set 

of spatial maps (one per feature modality), a vector of feature loadings that describe the degree to 

which the component is ‘driven’ by the different modalities, and a vector that describes how each 

individual subject contributes to a given component. Importantly, the subject-loadings define the 

cross-subject variation of the multi-modal effects and can subsequently be used to study 

relationships to other behavioral or demographic cross-subject variations by means of simple 

correlations. Given our sample size and following13,14 we report full results from a 100 dimensional 

factorization. Different model order decompositions were also performed to demonstrate the 

robustness to the choice of dimensionality; further, we also performed an analogous multi-modal 

analyses where we excluded the JD features as well as an independent component analyses29 of 

the JD features in isolation to evaluate the dependency of the results on purely morphometric 

differences- these are reported in the SI. To perform the multi-modal analyses we developed a new 

implementation of the Linked ICA algorithm13 which will be made publicly available as part of 

the next release of the FSL toolbox27. 

 

Statistical analysis:  
To uncover relationships between the behavioral/demographic measures and the components 

obtained from the Linked-ICA decomposition we perform a correlation analysis between each 

independent component subjects’ contribution and each available behavioral measure. This 

operation is schematically summarized in Figure 1 operation C. To take into account the family 

structure present in the HCP sample while assessing significance we use the Permutation Analysis 

of Linear Models (PALM) 30,31 and use 106 permutations per tested correlation (Figure 1 operation 

D) . We define significance at p < 0.05 and address the multiple comparison by applying FDR 

correction32 as well as full Bonferroni correction (Figure 1 operation E). 
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Figure 1: Data processing pipeline and main results. (A) Structural and diffusion-weighted MRI data are used to 

extract relevant features i.e. Voxel-Based Morphometry (VBM), Fractional Anisotropy (FA), Mean Diffusivity (MD), 
Anisotropy Mode (MO), Cortical Thickness (CT), Pial Area (PA) and Jacobian Determinants (JD). (B) These features 
are used as input to the Linked ICA algorithm. (C) Subject loadings of each independent component are fed together 
with the behavioral/demographic measures into a correlation analysis.  The bottom left panel presents demographic 
and behavioral measures grouped by categories (y-axis), and a representative set of components reflecting 
significant correlation with at least one behavioral measure (x-axis). The color scale encodes the Pearson correlation 
coefficient and only significant correlations are color coded. In the bottom right panel we present a summary  of 
component number 6  significant correlations to behavioral and demographic variates, resampling a mode of 
structural variation that links to and extends the ‘positive-negative’ behavioral spectrum previously attributed to 
functional connectivity variations12. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/413104doi: bioRxiv preprint 

https://doi.org/10.1101/413104
http://creativecommons.org/licenses/by-nc-nd/4.0/


[Type here] 

 

Results 

The multimodal brain data analyses resulted in a total of 100 collections of component maps, each 

of which can be represented as 7 spatial maps covering the gray-matter space (VBM), diffusion 

skeleton space (DTI, MD, MO), cortical vertex space (CT and PA) and a voxel-wise map of the 

Jacobian deformation (JD). In addition, each collection of maps is associated with a single vector 

of contributions that describe the degree to which a given collection is ‘driven’ by the different 

modalities. Further, each collection is associated with a single vector that describes how each 

individual subject contributes to the component. Post-hoc linear correlation analyses of these 

subject contributions with behavioral measures identified, after FDR correction1,  a total of 155 

significant brain-behavior correlations, summarized by 30 components reflecting at least one 

significant relationship to behavior. We provide the full results in SI Table S2 and a brief summary 

in the bottom left panel of Figure 1 where we color code the significant Pearson correlation values 

for the components showing at least one Bonferroni corrected 2  significant correlation to a 

behavioral or demographic measure. 

A single component, number 6, shows strong associations with 48 measures across several 

behavioral domains and across all structural modalities (SI Figure S2). In Figure 1 bottom right 

panel we provide a summary of the behavioral measures significantly correlating with component 

6 as well as the corresponding Pearson correlation values. For interpretation, the behavioral 

measures are grouped and ordered according to a decreasing correlation value. Note that in the 

cases where several measures are grouped together we report their mean correlation value and full 

results can be again found in SI Table S2. We observe that component number 6 relates to various 

behavioral scores including working memory, language function and general wellbeing (life 

satisfaction, social support). In Figure 2 we present the associated spatial maps: VBM measures 

are most heavily weighted in bilateral orbitofrontal cortex, temporal pole, lingual gyrus and the 

putamen (first row). Morphometric differences (JD features) load into temporal lobes, caudate and 

brainstem (second row), and white matter tracts do most heavily weigh onto the internal capsule, 

anterior thalamic radiation and the anterior corona radiate (3rd, 4th, and 5th rows). Cortical effects 

(6th and 7th rows) are largely associations with multi-modal association cortex that show effects 

whereas primary sensory cortices are not implicated. Note that the involvement of areas such as 

the putamen and lingual gyrus are relevant to explain the behavioral relationships found with 

working memory and word processing. Further, the involvement of structural connections between 

subcortical and prefrontal areas as well as the orbitofrontal cortex and temporal poles could explain 

the link to more complex functions such emotional support or life satisfaction. 

Components 1 and 2 also show to be related to several measures: components 1 relates mainly to 

gender, physical strength and language and it is defined by significant changes in gray matter 

density (VBM measures) and cortical real expansion (PA measure). Similarly, component 2 is 

driven by VBM maps and correlates with variations in gender, age, height, weight and strength. 

Components 7, 24, 25, 29 and 55 are driven by at least 3 feature modalities and they map into 

gender, weight, body mass and height. Number 89 maps VBM and JD into hematocrit and 

component 20 maps VBM and JD into age. Details about the spatial extent of each of these 

components can be found in SI, section ‘spatial maps’. Another set of components show 

                                                 
1 FDR corrected, q < 2.2x10-4. 
2 Bonferroni corrected q < 1.4x10-6. 
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associations, albeit either being associated with only a single modality and/or with a small set of 

behavioral variates (SI Table S2). Many of these components show simple relationships to overall 

size measures, such as weight, body mass (BMI) or height, and the associations are weaker than 

the above reported; we consequently decided to not further discuss their spatial extent in this work 

and we provide full nifty images in the SI. 

 

To validate the robustness of the presented results to the model order choice we performed analyses 

at different dimensionalities and observe that especially lower indexed components are highly 

reproducible. In particular, component number 6 is recovered at dimensionalities 90 and 110 with 

a subject mode correlation value of around r~0.9 (details can be found in the SI section 

‘Robustness: model order’). Regarding the influence of purely morphometric differences in the 

analyses, a comparative analysis excluding the JC revealed essentially unaltered brain-behavior 

associations. Further, an analyses of only the JD feature showed that no fully corrected significant 

association to the reported positive-negative structural mode is found when considering uniquely 

morphometric differences, even if considering several components together. However, 

uncorrected statistics suggests that information of the positive-negative mode could already be 

present at the morphometric level. These results are presented in SI section ‘Robustness: analyses 

without Jacobians’, and ‘Robustness: Analyzing morphometric differences’.  
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Figure 2: Component number 6 feature sources of variation. From top to bottom we visualize the VBM (Voxel 

Based Morphometry), JD (Jacobian Determinants), FA (Fractional Anisotropy), MD (Mean Diffusivity), MO (Mode of 
Anisotropy), PA (Pial Area), and CT (Cortical Thickness) spatial maps. For improved visualization, each modality has 
been thresholded at a z-value of 2. This mode of structural variation, component 6, that strongly reflects a ‘positive-
negative’ behavioral spectrum, links to a wide range of brain regions across structural modalities and might reflect 
the structural multimodal foundation of a functional brain network linked to these variations that has been earlier 
identified. 
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Discussion 

We present a simultaneous analysis of brain structural measures that reveals how several types of 

behavior and demographics link to variations in such measures of brain structure. Several 

components detect simple associations between brain size (encoded in gray matter density and 

cortical area) being related to gender, strength, endurance or language function.  

More interestingly, we encounter a single pattern of gray and white matter covariation that is 

strongly associated with several measures relating to cognitive function including working 

memory and language function, while also being strongly related to several measures of wellbeing 

including life satisfaction or emotional support. Accordingly, the spatial organization of the 

component that relates to these measures predominantly includes regions and connections that are 

relevant to working memory and word processing such as the putamen and lingual gyrus 33,34. 

Additionally, the inclusion of regions such as the orbitofrontal cortex and temporal poles, as well 

as structural connections from subcortical to prefrontal regions, could explain the link to more 

complex functions such as emotional support and life satisfaction. Furthermore, the mode of 

structural variation we report here relates to several recently reported results obtained using 

functional MRI. In particular, our results relate to the ones presented in Finn et al.11 since it 

identifies fluid intelligence measures and it also shares many behavioral measures also identified 

by the ‘positive-negative’ mode reported in Smith et al.12. Clearly, the functional analyses 

presented in Smith et al.12 and the one we just presented here, while using entirely different MRI 

measurements, are both able to get at the core of the same behavioral spectrum; our analyses 

reliably augments the spectrum of behavioral variables reported by the functional analyses by 

extending it with many working memory, language, relational task, ASR and DSM measures 

(Figure 1 bottom right and SI Table S2). It is to note here that while the statistics reported in Smith 

et al.12 were obtained from a Canonical Correlation Analyses (CCA) between partial correlation 

matrices and all  behavioral measures at once, the statistics we present here involve simple linear 

correlations. While the former type of analysis can benefit from the multi-variate type of analysis 

through the application of CCA, ensuing results can be hard to interpret. The straight-forward 

individual linear correlation analysis against the behavioral/demographic measures separately 

instead affords simple interpretation, albeit possibly being over-conservative given the chosen 

significance level.  

These findings directly look into the relationship between brain structure and function. In fact, the 

functional mode of variation is strongly associated with connectivity in brain areas approximately 

resembling the Default Mode Network and, given the spatial extent and the strong weight of the 

DWI data in the structural mode we report, it seems reasonable to assume that these white matter 

structure variations could contribute to the functional connectivity changes reported in Smith et 

al.12. Further we found no clear spatial overlap between the reported structural mode and the 

cortical functional extent of the ‘positive-negative’ mode, suggesting that functional-structural 

simultaneous analyses should increase the sensitivity of both, functional and structural analyses.  

Further, these results might question whether group functional connectivity measures using fMRI 

provide direct measures of brain connectivity or are biased due to individual structural differences 

that have been taken into account inadequately. An analogous multimodal analysis excluding the 

JD feature provided equivalent results to the presented here (SI Table S3) and uni-modal analysis 

of uniquely the JD features (using simple ICA-based decomposition29 of the single JD modality) 

did not provide significant correlation to the behavioral mode at the level of fully corrected 
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statistics. These extra analyses confirm that the structural features relating to the behavioral mode 

are not uniquely driven by morphometric differences and consequently suggest that the behavioral 

associations found using functional MRI, although could be influenced, are not uniquely driven 

by the structural differences; these results seem to be aligned with recent findings  by Bijsterbosch 

et al.19 where it is shown that individual spatial configurations extracted from functional MRI 

rather than the connectivity profiles between areas seem to stronger relate to the positive-negative 

mode.  

In a future study, we will couple structural-functional modalities to investigate the link of these 

modalities more immediately. Here, we showed that a positive-negative mode of behavioral 

variation extends beyond the functional domain to also link to multimodal brain structure. This 

will have important implications in the future analyses of neuroimaging big data and will help 

improve our understanding over the functional-structural integration.   
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Supplemental information (SI) 

In Table S1 we provide a summary of the behavioral and demographic measures present in the Human 
Connectome Project (HCP) sample. For easier interpretation we grouped them here by categories and a 
full detailed description can be found in van Essen et al.20. 

Social  
& 

Demographics 

Gender 

Intoxication 

Total_Hard_Liquor_7days 

Reading 
& 

vocabulary 

ReadEng_Unadj 

Age 
Avg_Weekday_Hard_Liquor

_7days 
ReadEng_AgeAdj 

HasGT 
Avg_Weekend_Hard_Liquor

_7days 
PicVocab_Unadj 

Race Total_Other_Alc_7days PicVocab_AgeAdj 

Ethnicity 
Avg_Weekday_Other_Alc_7

days Processing 
speed 

ProcSpeed_Unadj 

Handedness 
Avg_Weekend_Other_Alc_7

days 
ProcSpeed_AgeAdj 

SSAGA_Employ SSAGA_Alc_D4_Dp_Sx 

Delay 
discount 

DDisc_SV_1mo_200 

SSAGA_Income SSAGA_Alc_D4_Ab_Dx DDisc_SV_6mo_200 

SSAGA_Educ SSAGA_Alc_D4_Ab_Sx DDisc_SV_1yr_200 

SSAGA_InSchool SSAGA_Alc_D4_Dp_Dx DDisc_SV_3yr_200 

SSAGA_Rlshp 
SSAGA_Alc_12_Drinks_Per_

Day 
DDisc_SV_5yr_200 

SSAGA_MOBorn SSAGA_Alc_12_Frq DDisc_SV_10yr_200 

Height SSAGA_Alc_12_Frq_5plus DDisc_SV_1mo_40K 

Weight SSAGA_Alc_12_Frq_Drk DDisc_SV_6mo_40K 

BMI SSAGA_Alc_12_Max_Drinks DDisc_SV_1yr_40K 

SSAGA_BMICat SSAGA_Alc_Age_1st_Use DDisc_SV_3yr_40K 

SSAGA_BMICatHeavi
est 

SSAGA_Alc_Hvy_Drinks_Per
_Day 

DDisc_SV_5yr_40K 

Blood_Drawn SSAGA_Alc_Hvy_Frq DDisc_SV_10yr_40K 

Hematocrit_1 SSAGA_Alc_Hvy_Frq_5plus DDisc_AUC_200 

BPSystolic SSAGA_Alc_Hvy_Frq_Drk DDisc_AUC_40K 

BPDiastolic 
SSAGA_Alc_Hvy_Max_Drink

s 

Gambling 

Gambling_Task_Perc_Larger 

Affective                                                                                                   

AngAffect_Unadj Total_Any_Tobacco_7days Gambling_Task_Perc_Smaller 

AngHostil_Unadj 
Times_Used_Any_Tobacco_

Today 
Gambling_Task_Median_RT_Larger 

AngAggr_Unadj 
Num_Days_Used_Any_Toba

cco_7days 
Gambling_Task_Median_RT_Smaller 

FearAffect_Unadj 
Avg_Weekday_Any_Tobacco

_7days 
Gambling_Task_Reward_Perc_Larger 

FearSomat_Unadj 
Avg_Weekend_Any_Tobacc

o_7days 
Gambling_Task_Reward_Median_RT_L

arger 

Sadness_Unadj Total_Cigarettes_7days Gambling_Task_Reward_Perc_Smaller 

LifeSatisf_Unadj 
Avg_Weekday_Cigarettes_7

days 
Gambling_Task_Reward_Median_RT_S

maller 
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Affective      

MeanPurp_Unadj 

Intoxication 

Avg_Weekend_Cigarettes_7
days 

Gambling 

Gambling_Task_Punish_Perc_Larger 

PosAffect_Unadj Total_Cigars_7days 
Gambling_Task_Punish_Median_RT_La

rger 

Friendship_Unadj Avg_Weekday_Cigars_7days Gambling_Task_Punish_Perc_Smaller 

Loneliness_Unadj Avg_Weekend_Cigars_7days 
Gambling_Task_Punish_Median_RT_S

maller 

PercHostil_Unadj Total_Chew_7days 

Emotion 

Emotion_Task_Acc 

PercReject_Unadj Avg_Weekday_Chew_7days Emotion_Task_Median_RT 

EmotSupp_Unadj Avg_Weekend_Chew_7days Emotion_Task_Face_Acc 

InstruSupp_Unadj Total_Snuff_7days Emotion_Task_Face_Median_RT 

PercStress_Unadj Avg_Weekday_Snuff_7days Emotion_Task_Shape_Acc 

SelfEff_Unadj Avg_Weekend_Snuff_7days Emotion_Task_Shape_Median_RT 

Personality 

NEOFAC_A Total_Other_Tobacco_7days 

Language 

Language_Task_Acc 

NEOFAC_O 
Avg_Weekday_Other_Tobac

co_7days 
Language_Task_Median_RT 

NEOFAC_C 
Avg_Weekend_Other_Tobac

co_7days 
Language_Task_Story_Acc 

NEOFAC_N SSAGA_TB_Smoking_History Language_Task_Story_Median_RT 

NEOFAC_E SSAGA_TB_Still_Smoking 
Language_Task_Story_Avg_Difficulty_L

evel 

DSM 

DSM_Depr_Raw SSAGA_Times_Used_Illicits Language_Task_Math_Acc 

DSM_Depr_Pct 
SSAGA_Times_Used_Cocain

e 
Language_Task_Math_Median_RT 

DSM_Anxi_Raw 
SSAGA_Times_Used_Halluci

nogens 
Language_Task_Math_Avg_Difficulty_L

evel 

DSM_Anxi_Pct 
SSAGA_Times_Used_Opiate

s 

Relational 

Relational_Task_Acc 

DSM_Somp_Raw 
SSAGA_Times_Used_Sedativ

es 
Relational_Task_Median_RT 

DSM_Somp_Pct 
SSAGA_Times_Used_Stimula

nts 
Relational_Task_Match_Acc 

DSM_Avoid_Raw SSAGA_Mj_Use Relational_Task_Match_Median_RT 

DSM_Avoid_Pct SSAGA_Mj_Ab_Dep Relational_Task_Rel_Acc 

DSM_Adh_Raw SSAGA_Mj_Times_Used Relational_Task_Rel_Median_RT 

DSM_Adh_Pct 

Senses 

Noise_Comp 

Social 

Social_Task_Perc_Random 

DSM_Inat_Raw Odor_Unadj Social_Task_Perc_TOM 

DSM_Hype_Raw Odor_AgeAdj Social_Task_Perc_Unsure 

DSM_Antis_Raw PainInterf_Tscore Social_Task_Median_RT_Random 

DSM_Antis_Pct Taste_Unadj Social_Task_Median_RT_TOM 

family history 

FamHist_Moth_Scz Taste_AgeAdj Social_Task_Random_Perc_Random 

FamHist_Moth_Dep 
Visual 
acuity 

EVA_Denom 
Social_Task_Random_Median_RT_Ran

dom 

FamHist_Fath_Dep Correction Social_Task_Random_Perc_TOM 
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family history 

FamHist_Moth_BP MMSE MMSE_Score 

Social 

Social_Task_Random_Perc_Unsure 

FamHist_Fath_BP 

Sleep 

PSQI_Score Social_Task_TOM_Perc_Random 

FamHist_Moth_Anx PSQI_Min2Asleep Social_Task_TOM_Perc_TOM 

FamHist_Fath_Anx PSQI_AmtSleep Social_Task_TOM_Median_RT_TOM 

FamHist_Moth_DrgAl
c 

PSQI_Latency30Min Social_Task_TOM_Perc_Unsure 

FamHist_Fath_DrgAlc PSQI_WakeUp 

Working 
memory 

WM_Task_Acc 

FamHist_Moth_Alz PSQI_Bathroom WM_Task_Median_RT 

FamHist_Fath_Alz PSQI_Breathe WM_Task_2bk_Acc 

FamHist_Moth_PD PSQI_Snore WM_Task_2bk_Median_RT 

FamHist_Fath_PD PSQI_TooCold WM_Task_0bk_Acc 

FamHist_Moth_None PSQI_TooHot WM_Task_0bk_Median_RT 

FamHist_Fath_None PSQI_BadDream WM_Task_0bk_Body_Acc 

ASR 

ASR_Anxd_Raw PSQI_Pain WM_Task_0bk_Body_Acc_Target 

ASR_Anxd_Pct PSQI_Other WM_Task_0bk_Body_Acc_Nontarget 

ASR_Witd_Raw PSQI_Quality WM_Task_0bk_Face_Acc 

ASR_Witd_Pct PSQI_SleepMeds WM_Task_0bk_Face_Acc_Target 

ASR_Soma_Raw PSQI_DayStayAwake WM_Task_0bk_Face_ACC_Nontarget 

ASR_Soma_Pct PSQI_DayEnthusiasm WM_Task_0bk_Place_Acc 

ASR_Thot_Raw PSQI_BedPtnrRmate WM_Task_0bk_Place_Acc_Target 

ASR_Thot_Pct 

Phisical 
fitnes 

Endurance_Unadj WM_Task_0bk_Place_Acc_Nontarget 

ASR_Attn_Raw Endurance_AgeAdj WM_Task_0bk_Tool_Acc 

ASR_Attn_Pct GaitSpeed_Comp WM_Task_0bk_Tool_Acc_Target 

ASR_Aggr_Raw Dexterity_Unadj WM_Task_0bk_Tool_Acc_Nontarget 

ASR_Aggr_Pct Dexterity_AgeAdj WM_Task_2bk_Body_Acc 

ASR_Rule_Raw Strength_Unadj WM_Task_2bk_Body_Acc_Target 

ASR_Rule_Pct Strength_AgeAdj WM_Task_2bk_Body_Acc_Nontarget 

ASR_Intr_Raw 

Spatial 
orientation 

VSPLOT_TC WM_Task_2bk_Face_Acc 

ASR_Intr_Pct VSPLOT_CRTE WM_Task_2bk_Face_Acc_Target 

ASR_Oth_Raw VSPLOT_OFF WM_Task_2bk_Face_Acc_Nontarget 

ASR_Crit_Raw 

Sustained 
attention 

SCPT_TP WM_Task_2bk_Place_Acc 

ASR_Intn_Raw SCPT_TN WM_Task_2bk_Place_Acc_Target 

ASR_Intn_T SCPT_FP WM_Task_2bk_Place_Acc_Nontarget 

ASR_Extn_Raw SCPT_FN WM_Task_2bk_Tool_Acc 

ASR_Extn_T SCPT_TPRT WM_Task_2bk_Tool_Acc_Target 

ASR_TAO_Sum SCPT_SEN WM_Task_2bk_Tool_Acc_Nontarget 

ASR_Totp_Raw SCPT_SPEC WM_Task_0bk_Body_Median_RT 
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ASR ASR_Totp_T 
Sustained 
attention 

SCPT_LRNR 

Working 
memory 

WM_Task_0bk_Body_Median_RT_T
arget 

SSGA - other 

SSAGA_ChildhoodCondu
ct 

verball 
episodic 
memory 

IWRD_TOT 
WM_Task_0bk_Body_Median_RT_N

ontarget 

SSAGA_PanicDisorder IWRD_RTC WM_Task_0bk_Face_Median_RT 

Intoxication 

Cocaine 

List sorting 

ListSort_Unadj 
WM_Task_0bk_Face_Median_RT_Ta

rget 

THC ListSort_AgeAdj 
WM_Task_0bk_Face_Median_RT_N

ontarget 

Opiates 

Emotion 
recognition 

ER40_CR WM_Task_0bk_Place_Median_RT 

Amphetamines ER40_CRT 
WM_Task_0bk_Place_Median_RT_T

arget 

MethAmphetamine ER40ANG 
WM_Task_0bk_Place_Median_RT_N

ontarget 

Oxycontin ER40FEAR WM_Task_0bk_Tool_Median_RT 

Total_Drinks_7days ER40HAP 
WM_Task_0bk_Tool_Median_RT_Ta

rget 

Num_Days_Drank_7days ER40NOE 
WM_Task_0bk_Tool_Median_RT_N

ontarget 

Avg_Weekday_Drinks_7
days 

ER40SAD WM_Task_2bk_Body_Median_RT 

Avg_Weekend_Drinks_7
days Picture 

sequence 

PicSeq_Unadj 
WM_Task_2bk_Body_Median_RT_T

arget 

Total_Beer_Wine_Cooler
_7days 

PicSeq_AgeAdj 
WM_Task_2bk_Body_Median_RT_N

ontarget 

Avg_Weekday_Beer_Win
e_Cooler_7days 

Card soritng 

CardSort_Unadj WM_Task_2bk_Face_Median_RT 

Avg_Weekend_Beer_Wi
ne_Cooler_7days 

CardSort_AgeAdj 
WM_Task_2bk_Face_Median_RT_Ta

rget 

Total_Malt_Liquor_7day
s 

Flanker 

Flanker_Unadj 
WM_Task_2bk_Face_Median_RT_N

ontarget 

Avg_Weekday_Malt_Liq
uor_7days 

Flanker_AgeAdj WM_Task_2bk_Place_Median_RT 

Avg_Weekend_Malt_Liq
uor_7days 

fluid 
inteligence 

 WM_Task_2bk_Place_Median_RT_T
arget 

Total_Wine_7days PMAT24_A_CR 
WM_Task_2bk_Place_Median_RT_N

ontarget 

Avg_Weekday_Wine_7d
ays 

PMAT24_A_SI WM_Task_2bk_Tool_Median_RT 

Avg_Weekend_Wine_7d
ays 

PMAT24_A_RTCR 
WM_Task_2bk_Tool_Median_RT_Ta

rget 

    
WM_Task_2bk_Tool_Median_RT_N

ontarget 

 

Table S1: Summary of the behavioral/demographic measures present in the HCP sample.  

 

Individual features pre-processing:   

Prior to gray matter volume estimation, all participants’ T1 images were rigidly aligned using statistical 
parametric mapping software (SPM-12). Subsequently, images were segmented, normalized, and bias-
field-corrected using ‘new segment’ from VBM-SPM12 (http://www.fil.ion.ucl.ac.uk/spm, 22,23), yielding 
images containing gray and white matter segments plus CSF. DARTEL 35 was then used to create a study-
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specific gray matter template to which all segmented images were normalized. Subsequently, all gray 
matter volumes were smoothed with a 9.4 mm FWHM Gaussian smoothing kernel (sigma=4 mm).  

Structural MRI images were fed into FreeSurfer v5.3 software to extract measures for cortical thickness 

and areal expansion 24,25 (http://surfer.nmr.mgh.harvard.edu). The standard FreeSurfer preprocessing 
pipeline (recon-all) was applied to these images, in which a reconstruction of the cortical sheet was 
estimated using intensity and continuity information. Cortical thickness was determined as the closest 
distance from the gray/white boundary to the gray/cerebrospinal fluid (CSF) boundary at each vertex 36. 
Surface area in FreeSurfer is estimated as relative amount of expansion or compression at each vertex 
when registering each participant's surface to a common atlas. Surface maps were resampled and mapped 
to a common coordinate system 37. During preprocessing, the data were registered onto the high-
resolution average participant surface space (fsaverage), and a 10 mm FWHM surface-based smoothing 
kernel was applied. 

Further, the Jacobian images for each subject are directly available from the HCP repository and the 
diffusion weighted data (DWI) was preprocessed using the DTIFIT routine from FSL 27,38 

((https://fsl.fmrib.ox.ac.uk/fsl) to create the FA, MO and MD images that were then feed into the TBSS 
pipeline 26. 

Finally, for computational reasons 13,14, the VBM images were spatially down sampled to 4mm isotropic 
and the DTI images to 2mm isotropic voxels.  

 

 

Main results 

In Table S2 we summarize the significant results obtained (FDR corrected q < 2.2x10-4). From left to 
right columns we present the component number, behavioral/demographical measure, correlation value, 
and the permutation p-value (PALM).  

 

Component Behavior/demographics correlation P value 

1 Gender -0.69181 1,00E-06 

1 SSAGA_Employ 0.18407 1,00E-05 

1 SSAGA_Income 0.20703 1,00E-06 

1 Height 0.62158 1,00E-06 

1 Weight 0.3008 1,00E-06 

1 Hematocrit_1 0.30331 1,00E-06 

1 Total_Beer_Wine_Cooler_7days 0.26895 1,00E-06 

1 Avg_Weekday_Beer_Wine_Cooler_7days 0.24248 1,00E-06 

1 Avg_Weekend_Beer_Wine_Cooler_7days 0.22384 1,00E-05 

1 SSAGA_Alc_12_Max_Drinks 0.26547 2,00E-05 

1 SSAGA_Alc_Hvy_Max_Drinks 0.31291 1,00E-06 

1 Taste_Unadj -0.22246 3,00E-05 

1 Taste_AgeAdj -0.22173 5,00E-05 
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1 Endurance_Unadj 0.31194 1,00E-06 

1 Endurance_AgeAdj 0.30377 1,00E-06 

1 Strength_Unadj 0.52027 1,00E-06 

1 Strength_AgeAdj 0.53415 1,00E-06 

1 VSPLOT_TC 0.25689 1,00E-06 

1 VSPLOT_OFF -0.25987 1,00E-06 

1 PMAT24_A_CR 0.22625 1,00E-05 

1 PMAT24_A_SI -0.20436 2,00E-05 

1 PMAT24_A_RTCR 0.1833 0.00018 

1 ReadEng_Unadj 0.30153 1,00E-06 

1 ReadEng_AgeAdj 0.30711 1,00E-06 

1 PicVocab_Unadj 0.27521 1,00E-06 

1 PicVocab_AgeAdj 0.29513 1,00E-06 

1 Language_Task_Acc 0.35065 1,00E-06 

1 Language_Task_Story_Avg_Difficulty_Level 0.24281 1,00E-05 

1 Language_Task_Math_Acc 0.3251 1,00E-06 

2 Gender 0.36923 1,00E-06 

2 Age -0.30654 1,00E-06 

2 Height -0.30887 1,00E-06 

2 Weight -0.28027 1,00E-06 

2 FamHist_Fath_None 0.19331 0.00012 

2 ASR_Rule_Raw -0.19904 8,00E-05 

2 Avg_Weekday_Drinks_7days -0.18167 0.00016 

2 SSAGA_Alc_Hvy_Frq 0.19232 0.00016 

2 SSAGA_Alc_Hvy_Frq_5plus 0.22835 1,00E-05 

2 SSAGA_Alc_Hvy_Max_Drinks -0.2049 3,00E-05 

2 SSAGA_TB_Smoking_History -0.20967 8,00E-05 

2 SSAGA_Mj_Use -0.21131 2,00E-05 

2 Strength_Unadj -0.28766 1,00E-06 

2 Strength_AgeAdj -0.33854 1,00E-06 

3 Weight -0.19881 0.00012 

3 Dexterity_Unadj 0.22919 7,00E-05 

3 Dexterity_AgeAdj 0.2275 5,00E-05 

3 Relational_Task_Acc 0.20415 0.00022 

3 Relational_Task_Match_Acc 0.20791 0.00013 

6 Gender 0.16981 3,00E-05 

6 SSAGA_Income 0.2709 1,00E-06 

6 SSAGA_Educ 0.34143 1,00E-06 

6 Weight -0.21022 8,00E-05 
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6 BPSystolic -0.18174 0.0002 

6 Sadness_Unadj -0.14847 7,00E-05 

6 LifeSatisf_Unadj 0.3216 1,00E-06 

6 Loneliness_Unadj -0.20117 4,00E-05 

6 EmotSupp_Unadj 0.22221 0.00013 

6 PercStress_Unadj -0.18487 1,00E-05 

6 DSM_Antis_Raw -0.23362 1,00E-05 

6 DSM_Antis_Pct -0.2283 3,00E-05 

6 FamHist_Fath_DrgAlc -0.25365 0.00019 

6 ASR_Witd_Raw -0.24438 1,00E-05 

6 ASR_Witd_Pct -0.22928 1,00E-05 

6 ASR_Thot_Raw -0.29199 1,00E-05 

6 ASR_Thot_Pct -0.28879 1,00E-05 

6 ASR_Rule_Raw -0.2399 1,00E-06 

6 ASR_Rule_Pct -0.22106 2,00E-05 

6 ASR_Crit_Raw -0.20969 8,00E-05 

6 ASR_Extn_Raw -0.19428 2,00E-05 

6 ASR_Extn_T -0.18827 1,00E-05 

6 ASR_Totp_Raw -0.1787 0.00017 

6 THC -0.33929 1,00E-06 

6 MMSE_Score 0.21061 2,00E-05 

6 Strength_Unadj -0.18765 8,00E-05 

6 Strength_AgeAdj -0.17876 0.00018 

6 PicSeq_AgeAdj 0.25965 0.00012 

6 PMAT24_A_CR 0.25373 0.00016 

6 PMAT24_A_SI -0.25185 0.00014 

6 PicVocab_Unadj 0.35269 1,00E-06 

6 PicVocab_AgeAdj 0.34436 1,00E-05 

6 Language_Task_Acc 0.28331 3,00E-05 

6 Language_Task_Story_Avg_Difficulty_Level 0.26322 8,00E-05 

6 Language_Task_Math_Avg_Difficulty_Level 0.2667 1,00E-06 

6 Relational_Task_Acc 0.37603 1,00E-06 

6 Relational_Task_Match_Acc 0.29481 1,00E-05 

6 Relational_Task_Rel_Acc 0.33171 1,00E-06 

6 Social_Task_Random_Perc_Random 0.21119 7,00E-05 

6 Social_Task_Random_Perc_Unsure -0.18456 0.00021 

6 WM_Task_Acc 0.29494 2,00E-05 

6 WM_Task_2bk_Acc 0.29779 8,00E-05 

6 WM_Task_0bk_Place_Acc 0.23687 1,00E-05 
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6 WM_Task_0bk_Place_Acc_Nontarget 0.26853 1,00E-05 

6 WM_Task_2bk_Face_Acc 0.29316 1,00E-05 

6 WM_Task_2bk_Face_Acc_Nontarget 0.24898 0.0001 

6 WM_Task_2bk_Place_Acc 0.2858 1,00E-05 

6 WM_Task_2bk_Place_Acc_Target 0.21687 0.0002 

7 Gender 0.26174 1,00E-06 

7 Weight -0.21795 2,00E-05 

7 BMI -0.17141 0.00016 

7 Hematocrit_1 -0.20108 8,00E-05 

10 Gender -0.19515 6,00E-05 

10 Hematocrit_1 0.17642 3,00E-05 

10 DSM_Adh_Pct 0.18715 3,00E-05 

10 ASR_Rule_Raw 0.18359 1,00E-05 

10 ASR_Rule_Pct 0.16697 2,00E-05 

11 ProcSpeed_Unadj -0.18789 0.0001 

11 ProcSpeed_AgeAdj -0.19773 2,00E-05 

12 SSAGA_Alc_12_Frq 0.18331 0.00018 

17 SSAGA_Alc_Hvy_Drinks_Per_Day -0.20727 5,00E-05 

20 Age 0.21502 1,00E-06 

20 SSAGA_Rlshp 0.1886 0.00022 

21 Gender -0.20289 4,00E-05 

21 Height 0.19968 0.0001 

23 FearSomat_Unadj -0.11051 0.00016 

24 Weight -0.37271 1,00E-06 

24 BMI -0.3416 1,00E-06 

24 SSAGA_BMICat -0.32902 1,00E-06 

24 SSAGA_BMICatHeaviest -0.34354 1,00E-06 

24 BPSystolic -0.18895 1,00E-05 

24 Opiates -0.18117 0.00014 

24 ER40SAD 0.19129 0.00015 

25 Gender 0.2001 7,00E-05 

25 Height -0.27496 1,00E-06 

29 Height 0.25654 2,00E-05 

29 Endurance_Unadj 0.21448 1,00E-05 

29 Endurance_AgeAdj 0.20108 1,00E-05 

30 PSQI_Other 0.18811 6,00E-05 

38 Strength_Unadj 0.18989 0.00014 

38 Strength_AgeAdj 0.20355 4,00E-05 

39 BMI -0.18183 0.00011 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/413104doi: bioRxiv preprint 

https://doi.org/10.1101/413104
http://creativecommons.org/licenses/by-nc-nd/4.0/


[Type here] 

 

48 Weight 0.21292 5,00E-05 

48 BMI 0.20723 5,00E-05 

48 SSAGA_BMICat 0.20286 9,00E-05 

52 Avg_Weekend_Hard_Liquor_7days -0.17451 5,00E-05 

55 Weight 0.23069 1,00E-06 

55 BMI 0.20218 2,00E-05 

55 SSAGA_BMICat 0.17109 0.00016 

55 SSAGA_BMICatHeaviest 0.17351 0.00011 

58 Social_Task_Random_Perc_TOM -0.15964 0.00021 

63 FearAffect_Unadj 0.18134 3,00E-05 

63 NEOFAC_N 0.17647 0.00018 

63 PSQI_Score 0.1634 4,00E-05 

64 SSAGA_Alc_D4_Ab_Sx -0.15831 0.00015 

65 Gender -0.18439 0.00014 

68 AngAggr_Unadj -0.16719 0.00022 

68 WM_Task_0bk_Place_Acc 0.15269 0.00022 

87 WM_Task_2bk_Face_Acc 0.16711 0.00018 

89 Gender -0.22058 1,00E-06 

89 Hematocrit_1 0.24688 1,00E-06 

89 SSAGA_Alc_12_Drinks_Per_Day 0.20449 2,00E-05 

89 SSAGA_Alc_12_Frq -0.16777 4,00E-05 

89 SSAGA_Alc_12_Frq_5plus -0.19288 1,00E-06 

89 SSAGA_Alc_Hvy_Frq -0.18465 2,00E-05 

91 WM_Task_2bk_Body_Median_RT_Target -0.13267 0.00015 

96 Relational_Task_Acc -0.15622 0.00017 

 

Table S2: Significant results. First column presents the component number, second the 
behavioral or demographic measure it correlates with and third and fourth columns present the 
correlation value and the permutation p-value. Significance is defined at p<0.05 and we used FDR 
correction for multiple correction (q < 2.2x10-4).   

 

Spatial maps 

In Figure S1 we report spatial maps associated with the components showing at least one 
Bonferroni corrected significant relationship with any behavioral measure (q < 1.4 x 10-6), which 
are not fully reported in the main text. The left column shows the independent component 
number. For components 1, 2 and 89 we show spatial maps for all modalities contributing to that 
component (Figure S2) i.e. VBM and PA for component number 1 and just VBM for components 
number 2 and 89. To provide a clearer interpretation we decided to show a selection of the  
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Figure S1: Summary of spatial maps associated with the components indicated in the most left column. 
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relevant modalities for the other components and full nifty maps will be separately uploaded as 
SI. Here, we provide VBM, FA and CT for components number 7 and number 24; VBM and JD for 
component number 20 and finally VBM and FA for 25, 29 and 55. 

Component number 1 mainly relates to gender, physical strength and language and it is defined 
by voxel based morphometry and cortical area. Its associated spatial pattern appears to reflect 
brain size and cortical area differences in both temporal lobes. Component 2 is driven by VBM 
and maps into gender, age, height, weight and strength. Its spatial extent includes the 
paracingulate gyrus and bilateral insular and opercular cortex. Components 7 maps into gender 
and shows cingulate gyrus and insular cortex. Component 20 maps grey matter density in the 
posterior midline into age and relationship status. Components 24 maps into weight and body 
mass and its mapped into putamen, intracalcarine cortex and thalamus. Components 25 and 29 
relate height with the inferior temporal gyrus and the cerebellum together with strong DWI 
weightings in the brainstem. Component 55 relates to weight and maps into the precentral gyrus 
and asymmetric differences in DWI measures. Component 89 maps into hematocrit and the 
lingual and occipital fusiform gyrus.  

 

 Feature modalities relative contribution to components 

In Figure S2 we color code the relative contribution of each feature modality to the 
components that show at least one Bonferroni corrected significant relationship to behavior or 
demographics measures (q < 1.4 x 10-6). 

 

Figure S2: Relative contributions of each feature modality to the most relevant components. 
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Robustness: model order 

In this section we assess the robustness of the results with respect to the model order choice.  To that 
end we perform a correlation analyses between the reported 100 dimensional factorization subjects-
mode and that of a 90 and a 110 dimensional factorizations. In the top row of Figure S3 we present 
correlation matrices between a 100 dimensional factorization (y-axis) and a 90 and 110 dimensional 
factorizations (top left and right panels respectively). Only significant correlations after Bonferroni 
correction are reported (i.e. p-value smaller than 0.05 /(100x90) and 0.05/(100x110) respectively). For 
each component of the 100 dimensional factorization we present in the bottom row of Figure S3 the 
absolute correlation value with each of the components of the different dimensionality factorization.  
We appreciate that most components are recovered with high accuracy (r close to 1) independently of 
the order of the factorization. The black dashed lines represent the most relevant of the reported 
components, independent component number 6. 

 

Figure S3: Top: Significant correlations between the reported (100 dimensional) factorization and a 90 
dimensional (left panel) and 110 dimensional (right panel). Bottom: sorted absolute correlations for 
each of the components of the reported factorization with the other model orders components. The 
black discontinuous line represents component number 6. 
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Robustness: analyses without the Jacobians 

We present results summarizing the significant findings when performing an analogous analysis to the 
one reported in the main manuscript without the use of the JD feature.  In Table S3 we present a 
comparison between the positive-negative mode as reported in the main text, and the set of behavioral 
measures significantly associated to component number 9 on the new analysis.  

Behavioral and 
demographics 

Linked ICA component 6 - 
correlations  

Linked ICA (no JD) - correlations  

Relational Task  0,35 0,29 

Picture Vocabulary 
test 

0,35 0,29 

Life Satisfaction 0,32 0,3 

Years of Education 
and Income 

0,3 0,3 

Working Memory  0,27 0,27 

Language 0,27 0,26 

Picture Sequence 0,26 0,23 

Fluid intelligence 
(correct responses) 

0,25 0,24 

Emotional Support 0,22   

Social Task (Random 
Perc. Random) 

0,21   

MMSE_Score 0,21   

Gender 0,16   

      

Sadness -0,15   

Perceived Stress -0,18   

Social Task (Random 
Perc. Unsure) 

-0,18   

BPSystolic -0,18   

Weight and Strength -0,19 -0,23 

Loneliness -0,20   

DSM -0,23 -0,25 

ASR -0,23 -0,24 

Family History Drugs 
& Alcohol 

-0,25   

Fluid intelligence 
(skipped responses) 

-0,25 -0,25 

Positive test for THC 
(cannabis) 

-0,34 -0,31 

Table S3: Comparison between the positive-negative mode presented in the main text and the multi-
modal analyses excluding the JD feature (right column).  
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Note that component number 9 in this analysis (without the JD feature) corresponds to the component 
number 6 reported in the main text and it recovers the strongest behavioral associations. Further, this 
component presented other significant relationships not appearing significant in the main reported 
mode, e.g. personality related measures (NEOFAC-C). 

 

Robustness: Analyzing morphometric differences 

In this section we perform an independent component analyses (ICA) factorization29 only of the Jacobian 
determinant matrices followed by post-hoc correlation analyses with the behavioral and demographic 
measures.  We performed a 100-dimensional factorization and found a set of 9 components significantly 
correlating (Bonferroni corrected) with the component number 6 obtained from the multi-modal Linked 
ICA analyses. In Table S4 we present the correspondence between the positive-negative mode we found 
through the multimodal Linked ICA analyses and these 9 components.  As before, for the multimodal 
analyses we only report correlations to behavior significant after FDR correction and for the JD analyses 
we mark with double asterisk the significant relationships after FDR correction and with a single asterisk 
the nominal or uncorrected significant relations (p<0.01). We appreciate that although sub FDR 
significance threshold we observe some correspondence between the purely morphometric differences 
and the positive-negative mode, these relationships disappear after statistical correction for multiple 
comparisons.  

Behavioral and 
demographics 

Linked ICA component 6 - 
correlations  

ICA in JD  (9 components) - 
correlations  

Relational Task  0,35 0,17* 

Picture Vocabulary 
test 

0,35 0,23 

Life Satisfaction 0,32 0,15* 

Years of Education 
and Income 

0,3 0,17 

Working Memory  0,27 0,2 

Language 0,27 0,17* 

Picture Sequence 0,26   

Fluid intelligence 
(correct responses) 

0,25 0,2* 

Emotional Support 0,22 0,13* 

Social Task (Random 
Perc, Random) 

0,21 0,14* 

MMSE_Score 0,21 0,12* 

Gender 0,16 0,14* 

      

Sadness -0,15 -0,14* 

Perceived Stress -0,18 -0,15* 
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Social Task (Random 
Perc. Unsure) 

-0,18 -0,11* 

BPSystolic -0,18 -0,12* 

Weight and Strength -0,19 -0,15* 

Loneliness -0,20   

DSM -0,23 -0,09* 

ASR -0,23 -0,17* 

Family History Drugs 
& Alcohol 

-0,25 -0,17* 

Fluid intelligence 
(skipped responses) 

-0,25 -0,22* 

Positive test for THC 
(cannabis) 

-0,34 -0,17* 

 

Table S4: Summary of the uni-modal analyses using the JD feature. In the second row all relationships 
are significant after multiple comparison correction. For the uni-modal analysis (the third row), 
significant associations after multiple comparison correction are denoted with a double asterisk and 
nominal significant but not significant after multiple comparison correction are marked with a single 
asterisk. 
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