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Abstract 

Understanding the dynamics between communicating cell assemblies is essential for 

deciphering the neural code and identifying the mechanism underlying memory 

formation. In this work, in order to unveil possible emergent intrinsic memory 

phenomena in the communication between cell assemblies, we study the spontaneous 

dynamics of in vitro spatially confined inter-connected neuronal circuits grown on 

multi-electrode arrays. The spontaneous dynamics of the global network was 

characterized by the coupling of the activity independently generated by each circuit. 

The asymptotic functional connectivity of the network reflected its modular 

organization. Instantaneous functional connectivity maps on ten seconds epochs, 

revealed more complex dynamical states with the simultaneous activation of distinct 

circuits. When looking at the similarity of the generated network events, we observed 
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that spontaneous network events occurring at temporal distances below two dozens of 

seconds had an average higher similarity compared to randomly played network events. 

Such a memory phenomenon was not observed in networks where spontaneous events 

were less frequent and in networks topologically organized as open lines. These results 

support the hypothesis that dynamical instantaneous memory, characterized by drifting 

network dynamics with decaying degree of similarity, is an intrinsic property of 

neuronal networks.  
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Introduction 

The nature of cortical representations is central for understanding how memory and 

cognitive operations are implemented by the brain. In 1949, Donald O. Hebb [1] 

introduced the concept of ‘cell assembly’ to describe a functional unit composed by a 

group of cells connected through excitatory synapses. Nowadays, thanks to more 

advanced techniques [2] evidences for the existence of Hebbian cell assemblies and the 

underlying associative learning mechanisms [3-5] have been provided. Indeed, multiple 

single-unit recordings revealed that the coordination of cell firing in cortical networks 

is more complex than postulated with an important role also played by the precise 

relative firing times and temporal correlations in neural ensembles [6-10]. All these 

observations led to a renewed wider vision of the neural coding problem, widening the 

rate coding to spike based coding mechanisms. Experimental and theoretical evidences 

support the possibility that the brain operates through coordinated activation of cell 

assemblies [11-15], which can be regarded as dynamic functional units that transiently 

interact with each other, shaping and underlying different brain states.  
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Despite the very recent technological progress [16-19], monitoring with high spatio-

temporal resolution the structure and the dynamics of in vivo neuronal networks is still 

challenging. To this end, the development of in vitro neuronal networks is of significant 

interest due to their easy accessibility, monitoring, manipulation and modeling [20]. 

Moreover, in the last decades, many studies proposed advanced substrate patterning 

methods to support in vitro technologies, able to induce neuronal networks to grow 

according to an imposed topology: surface modification by silane chemistry [21], 

photolithographic techniques [22], deep-UV lithography [23], soft lithography [24] and 

spot-arrays of adhesion molecules [25, 26]  

Thanks to those different patterning techniques, it has been possible to provide 

simplified but plausible representations of interacting cell assemblies through 

engineering inter-connected neuronal sub-populations [11, 12, 14, 27-30]. These 

experimental models constitute a valid alternative to widely studied 2D homogenous 

cultures which lack any spatial constraints on the self-organized emergent wiring of the 

circuits, a constraint that is definitely present in in-vivo architectures. Notably, using 

such inנvitro structural modularity approach it has been shown how richer repertoires 

of spontaneous synchronizations emerge compared to 2D homogenous cultures [29-

31].  

Using such structured in vitro networks, it has been shown how different 

spontaneous motifs of activity can be found [32] and how memory can be imprinted by 

using focal chemical stimulations inducing local disinhibition on cultured neuronal 

networks. In [32], after an initial characterization of the network motifs and their 

initiation sites, the authors reported how a new motif starting at the site of chemical 

stimulation could be imprinted and played spontaneously without erasing preexisting 

motifs.  
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Similarity between spontaneous and evoked activity patterns was previously 

described in a number of in vivo studies [33] [34] and a recent study has confirmed such 

observation in vitro [35]. In this work, similarly to what previously described  [12, 27, 

29, 30] we employed polymeric structures made of polydimtheylsiloxane (PDMS) for 

confining neurons (Mata et al., 2005; Liu et al., 2005; del Campo & Greiner, 2007 

Jackman et al., 1999) to induce the self-organization of networks into inter-connected 

spatially defined neuronal assemblies. The developed modular networks have been 

cultured on conventional Micro Electrode Arrays in order to monitor their 

electrophysiological activity [36-39]. Focusing on the spontaneous occurrence of the 

network motifs in order to unveil possible emergent intrinsic memory phenomena in 

the communication between cell assemblies, we provide evidence about the existence 

of a short-term memory window lasting about two dozens of seconds within which 

motifs share high similarity. These results support the idea that instantaneous dynamical 

memory in brain networks represents an intrinsic capability of interconnected cell 

assemblies to maintain similar coordinated activation, and therefore holding the same 

information content, over time courses which have been typically reported in in-vivo 

working memory studies [40].  

Methods 

Ethics Statement. As experimental model for this research, primary cortical 

cultures from embryonic rats have been used in view of their large diffusion as animal 

model in neuroscience, in particular electrophysiology and MEA research. All 

procedures involving experimental animals were approved by the Italian Ministry of 

Health and Animal Care (authorization ID 023, April 15th, 2011).  
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Primary cell culture. Cultures were prepared as described previously [12, 41]. 

Briefly, the entire neo-cortex of Sprague Dawley rat embryos (E18-19) was removed, 

chopped with scissors in a Trypsin EDTA solution. Dissociated cells were suspended 

in a growth medium (5% FCS, 2% B27, 1% L-Gln, 0.5% Pen- Strep in Neurobasal A 

medium).  Cell suspension was diluted to reach the desired concentration. 

Neuronal network patterning using poly-d-lysine (PDL) stencils. The process of 

PDL patterning was detailed in previous publications [42] [29]. Briefly, PDL (Sigma, 

Cat. No. p7405) islands on top of MEAs were prepared with a soft lithography process 

using polydimethylsiloxane (PDMS) stencils. PDMS is an elastomer widely used for 

biomedical applications because of its well-known properties of highly temperature, 

chemical and oxidation resistance, biocompatibility, transparency and permeability to 

gases [43]; plus it is an electrical insulating and not toxic, making it  suitable to the 

culture of primary neurons [44]. In addition, it can be easily micro-structured by soft 

lithography, thus obtaining several low-cost replicas from a single master [45-47]. An 

SU8-2075 (Micro Chem) mold was patterned on a silicon wafer. The pattern was 

identical to the negative pattern of the electrode array. The stencil was prepared by spin 

coating the wafer with PDMS. After detaching the PDMS substrate from the mold, the 

stencil was placed on commercial MEAs and the stencil's pattern is aligned with the 

electrode locations. The PDL solution is dripped onto the PDMS stencil and incubated 

overnight at 37°C. The PDMS stencil is removed and MEAs were washed twice before 

cell plating.  Once cells are plated, they spontaneously assemble to the coated islands 

and self-organize into active inter-connected circuits. For obtaining monolayers or 

clustered circuits as well as to impose and shape their connectivity, three parameters 

are required; cell plating density, distance between circuits, and circuits’ size. These 

parameters are not independent since, given a fixed distance between two circuits, the 
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probability that they spontaneously establish a connection increase with the circuits’ 

size, by increasing the distance between the squares it was possible to change the 

probability to establish spontaneously generated inter-connections among the modules, 

passing from highly connected modules to isolated ones [42]. 

The cultures were maintained at 37°C with 5% CO2. The growth medium was 

partially replaced every 4 day. By increasing the distance between the squares it was 

possible to change the probability to establish spontaneously generated inter-

connections among the modules, passing from highly connected modules to isolated 

ones. 

Electrical recordings. In this work, the commercial system purchased from Multi 

Channel Systems (MCS, Reutlingen, Germany) has been used. MCS provides different 

types  of MEAs (in terms of electrode size and inter-electrode spacing), and the ones 

used here consist of 59 round electrodes made of TiN with three different layouts: i) 

Standard MEA, where electrodes are equidistantly positioned in an 8x8 layout grid, 

whose inter-electrode distance is 200 µm and microelectrode diameter 30 µm; ii) 

4QMEA1000, which has a layout composed of four quadrants of microelectrodes with 

electrode spacing equal to 200 µm inside the quadrants and inter-quadrants distance of 

1000 µm, with an additional central line of 7 microelectrodes (the electrodes diameter 

is 30 µm); and iii) 60MEA500, in which electrodes are equidistantly positioned in a 

6x10 grid, whose inter-electrode spacing is 500 µm, and the electrode diameter 30 µm 

(Figure 1). For this study, we recorded and studied the activity of 21 networks between 

21 DIV to 28 DIV. The number of neuronal assemblies per network were: 3 (N=3), 4 

(N=10), 5 (N=6) and 6 (N=2). 

Experimental Protocol. The adopted experimental protocol was the following: i) 1-

hour recording of spontaneous activity; ii) stimulation session, consisting of 5 minutes 
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of stimulation (50 positive-then-negative pulses are delivered at 0.2 Hz, amplitude 1.5 

Vpp, duration 500 µs and duty cycle 50%) delivered to each module (i.e. two channels 

per module) followed by 10 minutes of rest. For each assembly, a random electrode 

producing clear within-module evoked activity, was chosen for studying the evoked 

network response. The purpose of the stimulation was not to imprint memory, rather to 

evaluate the effective connectivity (i.e. propagation of activity) between the circuits. 

Data analysis. All data analysis has been performed using MATLAB (MathWorks, 

Natick, MA).  

High-pass filtering, spike extraction, active electrodes (AEs) and multi-unit activity 

(MUA). Electrical recordings were first pre-processed using a zero-phase digital 

filtering (“filtfilt” function) with high-pass cut-off set at 100 Hz. All analysis steps 

described below were applied to the filtered signals. For each electrode, the noise level 

was estimated by fitting the probability density function of the signal with a Gaussian, 

in the 5th to 95th percentile interval, over the initial ten minutes’ recordings. A threshold 

of 4 standard deviations below the mean was used to extract the timing of the negative 

peak of the spikes with an imposed refractory time between spikes of 1 ms. In this work, 

no spike sorting was applied and all the spikes, i.e. multi-unit activity (MUA), recorded 

by each electrode were considered. In particular, only electrodes recording spikes with 

a total average frequency higher than 0.001 Hz were included in the analysis, and they 

are referred in the text as active electrodes (AEs). 

Instantaneous firing rate and functional connectivity. The instantaneous firing rate 

vectors (IFR(t)) representing the activity recorded by the AEs in a giving time frame t, 

was calculated in time bins of 250 ms, and each scalar of the vector (IFRn(t), with 

1<=n<=N where N is the total number of AEs) represented the number of spikes 

detected in the corresponding electrode. The asymptotic functional connectivity (a-FC) 
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matrix was calculated electrode-wise as the Pearson correlation between IFR time series 

of the electrodes. Specifically, given a pair of electrodes (i,j), the correlation between 

IFRi(t) and IFRj(t) was computed. The same procedure was applied for computing the 

instantaneous functional connectivity matrix (i-FC), but subdividing the time series into 

consecutive windows of ten seconds duration.  

The IFR similarity matrix was calculated as the cosine between the IFR vectors. For 

a given set of T time frames, the IFR matrix had a size of TxT. The k-order diagonal 

(with k positive integer) of the IFR matrix was defined as the set of elements (j,j+k) 

with j>=1 and j<=T-k.  

Bimodal lognormal distribution of inter-spike interval and inter-spike interval cut-

off threshold (COT). For each network, the global inter-spike interval sequence was 

calculated by pooling all the inter-spike intervals of each active electrode. The 

distribution of the decimal logarithm of the global inter-spike intervals (in ms), 

calculated in bins of 0.05 in the interval 0 (corresponding to 1 ms) to 5 (corresponding 

to 10000 ms), was fitted by the sum of two lognormal distributions. The time 

corresponding to the minimum in between the two lognormal was applied as cut-off 

threshold (COT) to remove “isolated” spikes, i.e. preceded or followed by spikes with 

an interval larger than COT. 

Detection of network events (NEs) and conversion into activation-order matrixes 

(AOM). In order to detect NEs, a binary time-series with a time resolution of one 

millisecond was built for each electrode. In order to mark time windows with neuronal 

firing bursts, epochs of inter-spike intervals below COT were marked with ones. A NE 

was considered to start when more than one electrode was firing at the same time and 

stopped when less than two electrodes were simultaneously firing. Each NEm 

(1<=m<=M, where M is the total number of NEs) was represented by an activation 
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order matrix (AOM) of size NxN, where N are the number of AEs in the experimental 

recording. The element AOM(m)ij was set to 1 (-1) if, in the NEm, the firing of electrode 

i (j) preceded the one of electrode j (i). If either i or j did not participate in NEm, the 

elements AOM(m)ij and AOM(m)ji were set to zero. 

NEs similarity and average similarity of NEs as function of temporal distance 

(SNE). For every pair (i,j) of NEs, the similarity matrix Sij (1<=i,j<=M, where M is the 

total number of NEs) was calculated according to the following: 

𝑆𝑖𝑗 =
|𝐴𝑖 ∩ 𝐴𝑗|

|𝐴𝑖 ∪ 𝐴𝑗|
⋅ (

|𝐶|

|𝐴𝑖 ∩ 𝐴𝑗| ⋅ (|𝐴𝑖 ∩ 𝐴𝑗| − 1)  2⁄
) 

where Ai is the set of electrodes that participate in event i, Aj is the set of electrodes 

that participate in event j, C is the number of identical non-zero elements in AOM(i) 

and AOM(j), |⋅| denotes the cardinality of a set, and B is the cardinality of the 

intersection of Ai and Aj (i.e. B=| Ai ∩ Aj |). This definition of similarity which varies 

between 0 (no similarity) and 1 (identical NEs), quantifies in a unique parameter the 

similarity of the patterns of electrodes recruited in the NEs (spatial component) and the 

amount of identical pair-wise activations (temporal components). When dendrogram 

analysis on the similarity matrix was performed, Euclidean distance and Ward’s linkage 

criteria were applied. 

In order to calculate the average similarity between pair (i,j) of NEs as a function 

of their temporal distance t (SNE(t), where t=|ti-tj|, and ti and tj are the time in 

seconds of NEi and NEj), the time window [0 ÷ 50sec] was binned in one second 

intervals and the average similarity of every pair of NEs with t falling within a given 

bin was calculated.  
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In order to calculate the SNE on randomized sequence of NEs, the order of the NEs 

was randomized while keeping the AOM and time of NE occurrence ti (1<=i<=M) 

unchanged. The average and standard deviation of the mean.  

Assembly-pooled PSTHs and latency of response. Assembly-pooled PSTHs (Post 

Stimulus Time Histogram) with ten milliseconds bins were obtained by pooling all the 

spikes recorded within a given assembly in response to electrical stimuli. The latency 

of the PSTH peak was evaluated in sliding windows for obtaining higher temporal 

accuracy. Z-score was used to asses which neuronal assembly responded reliably to the 

stimulation.  

Results 

Spatially confined inter-connected neuronal circuitries: spontaneous dynamics 

and structural – functional match 

We used in vitro cultured neuronal circuitries with predefined architectures (see 

Methods).   

In this work, we used networks with different architectures grown on MEAs with 

the electrode layout optimizing the interface of the networks (Figure 1). In all the 

experiments described in this work, the spontaneous activity was first recorded one 

hour, followed by a stimulation session where at least one of the electrodes recording 

from each module was used to evoke intra-circuit activity and to test the effective 

connectivity (i.e. propagation of activity) between the circuits (see Methods and Figure 

2). All engineered neuronal networks used in this work behave as weakly coupled 

neuronal circuitries capable of independently sustaining synchronizations and 

occasionally synchronizing between them (Figure 3).  
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Figure 1. MEA layouts used and three representative network structures. (A) 60-4QMEA composed 

by four quadr

B -

electrode distance. (C -electrode distance. Blue areas marks recording 

electrodes beneath the cultured neuronal assemblies.  Blue lines mark fiber bundles connecting distinct 

neuronal assemblies as visually detected by bright field microscopy.   Self-organization of networks into 

inter-connected spatially defined neuronal assemblies was obtained using PDMS stencils (see Methods). 

Networks were composed by 6 neuronal assemblies or less. 
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Figure 2. Assembly-pooled PSTHs for probing effective connectivity. (A1-A2) Assembly-pooled 

PSTHs (with ten milliseconds bins) were obtained by pooling all the spikes recorded within a given 

assembly in response to electrical stimuli. A sequence of fifty stimuli (see Methods) was applied to each 

neuronal assembly and the response of the different assemblies was measured by PSTHs.  For each 

assembly, a random electrode producing clear within-module evoked activity, was chosen for studying 

the evoked network response. In the panels A1 and A2, the PSTHs are organized as the network topology, 

where lines mark the connections between assemblies.  Vertical red lines mark the time of stimulation. 

Gray PSTHs mark the module where the stimulaiton was applied. Note that modules directly connected 

to the stimulated one respond more reliably and with an average shorter time latency. (B) The latency of 

the PSTH peak (evaluated in sliding windows for obtaining higher accuracy) is plotted against the path 

length, i.e. the number of links separating pairs of assemblies. The vertical bars represent mean ± SEM. 
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Figure 3. Structure and dynamics of a representative patterned network. (A) Bright field image of 

the network grown on 6x10 multi-electrode array with 500 inter-electrode distance. The large colored 

circles highlight the spatially confined interconnect, self-organized neuronal circuits. Electrical traces of 

500 ms duration recorded from the different electrodes located under the assemblies are shown with the 

same color code. Black arrows links traces to the few electrodes that were located out of the circuits but 

still capturing neuronal signals. (B) Raster plot of the activity shown in panel A. Note the network activity 

pattern is composed by synchronous firing in each neuronal assembly. 

 

 

In order to characterize the spontaneous synchronizations, we first calculated the 

instantaneous electrode firing rate (IFRn(t), where 1<=n<=N, N is the number of active 

electrodes and t is the time frame of the recording; active electrodes abbreviated as AEs, 

are electrodes capturing the activity of the neurons recorded in different location of the 

networks, through the MEA. In particular, for each electrode we considered the multi-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 10, 2018. ; https://doi.org/10.1101/412320doi: bioRxiv preprint 

https://doi.org/10.1101/412320
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

unit activity (MUA) possibly originating from a few neurons, and we counted the 

number of spikes in time windows of 250 ms, i.e. the characteristic temporal duration 

of network synchronizations [48]. Next, we reconstructed the functional connectivity 

(FC) of the network, i.e. the statistical dependency of the activity fluctuations, by 

computing the Pearson correlation between the IFRn(t) for every possible pair of active 

electrodes. When the correlation was calculated over the entire session of spontaneous 

recording (about one hour), the FC organization fully reflected the structural 

organization of the network (Figure 4A), with a significant difference (Kolmogorov-

Smirnov test, p<0.01) between the average intra-circuit FC of 0.35 +/- 0.08 and inter-

circuit FC of 0.22 +/- 0.05 (N=21, standard deviation of the mean; for DIV and neueonal 

assemblies per network see Methods). We can consider this as an asymptotic or static 

representation of the FC of the network (a-FC), where the modular organization of the 

a-FC matrix reflects the modular organization of the neuronal network, with higher 

structural and functional connectivity within each circuitry, and lower connectivity 

between them. Note that the order of the electrodes in the FC matrix of Figure 4A has 

been appositely arranged so that electrodes recording from the same circuit are close to 

each other in the electrode sequence.  

When instantaneously computing the FC on shorter time epochs, i.e. in the order of 

seconds, which is the characteristic temporal scale of the inter-burst events [48], the 

instantaneous FC matrix (i-FC) displayed very different characteristics (Figure 4B). The 

i-FC shows that the network spontaneously explores different states composed by the 

correlated activation of distinct electrodes and circuits. Specifically, when looking at 

the inter-circuit FC, the ratio between i-FC and a-FC was in average 1.5+/-0.2 (N=21).  

When looking at the similarity of the IFRn(t) at different time frames, we observed 

the presence of similar profile of network activity in closer time frames (i.e. next to the 
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diagonal of the similarity matrix shown in Figure 4B, see Figure 5) but also at much 

larger time windows. Figure 4D reports the average network IFR for the different time 

frames considered in Figure 4B. The average along different diagonals shows an initial 

higher similarity transient in the first two dozens of seconds before decaying to baseline 

levels (Figure 5). This observation is the rationale of the analysis reported below, aimed 

at dissecting the dynamics in the similarity of the spontaneous events as a function of 

their temporal distance, prompting the existence of a temporal window lasting dozens 

of seconds where the network shows a memory of the previously displayed events. 
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Figure 4. Asymptotic and instantaneous functional organization. (A) Asymptotic functional 

connectivity matrix between the instantaneous firing rate recorded by the electrodes. The IFR was 

estimated in time bins of 250 ms and the Pearson correlation between the IFR time series was calculated 

over an entire session of spontaneous activity lasting about an hour. The network is the same shown in 

Figure 3 and the black squares mark the electrode beneath the same neuronal assembly, with the same 

labeling used in Figure 3. (B) Similarity matrix between the IFR vectors (where each element represents 

a recording electrode) for a representative period of about 220 s. The cosine similarity was used (see 

Methods). (C) Same as panel A but the functional connectivity has been calculated instantaneously in 

time windows of 10 seconds. Note both the different dynamical states, composed by functionally 

connected modules, explored by the network and the consistent high functional connectivity within each 

module. (D) Average network IFR, i.e. obtained by summing the elements of the IFR vector in each time 

bin, for the time window reported in B.  
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Figure 5. Average similarity between IFR vectors separated by a given time interval. Given the IFR 

similarity matrix of size SxS (as shown in Figure 4B), the k-order diagonal (with k positive integer) was 

defined as the set of elements (j,j+k) with j>=1 and j<=S-k. The average of the elements in the k-order 

diagonal represents the average similarity of all IFR vectors separated by a fixed time interval of k*250ms 

(since the IFR is calculated in 250ms time bins, see Methods). The average of the diagonals of the matrix 

shown in Figure 4B is here plotted. 

 

Network events: identification and similarity. 

In order to get deeper into the instantaneous spatial – temporal organization of the 

network activity and its dynamics over the entire recording, we first focused on the 

temporal features of the MUA (Figure 6A). When looking at the inter-spike-interval 

over the entire spontaneous activity recording pooled across all electrodes, we observed 

that it is distributed as a bimodal lognormal distribution (Figure 6A), which highlight 

the existence of two characteristic temporal scales, a fast scale in the order of 10 ms 

(100 Hz fast firing) occurring during network synchronizations [29] and a slow 

temporal scale in the order of 1 sec (1 Hz slow firing) reflecting the interval between 

network synchronizations. As previously reported in literature, the fast temporal scale 

dynamic corresponds to network bursts or neuronal synchronizations while the slow 

one characterizes the inter-burst epochs [49]. In order to identify network events (NEs) 
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composed by neuronal bursts and synchronizations recruiting more than one circuit, we 

first discarded out-of-burst spikes (see Methods) by applying the cut-off-threshold 

(COT) identified as the minimum between the two lognormal distributions (Figure 6), 

on the inter-spike-intervals.  Once out-of-burst spikes were discarded, neuronal bursts 

epochs were identified in each electrode (Figure 6B; see Methods) by binarizing the 

time windows during which the inter-spike-interval was lower than the COT. A time 

resolution of one millisecond was used in the binary electrode time series where ones 

marked the bursting windows. According to the definition used in this work, a NE 

started when more than one electrode was bursting and stopped when less than two 

electrodes were bursting simultaneously. Every NE was represented by a NxN 

activation-order matrix (AOM, Figure 6C), where N was the number of AEs in the 

experiment and where every element (i,j) (with i,j<=N) reported the pair-wise order of 

activation in the NE (one if i anticipated j, minus one if j anticipated i and zero if either 

i or j did not participate in the NE; AOM is antisymmetric by definition).  
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Figure 6. Representing network events as activation-matrix order. (A) Pooled inter-spike distribution 

for a representative network (the same show in Figure 3). All inter-spike intervals recorded by all 

electrode over an entire session of spontaneous activity have been pooled into the statistic. Note the use 

of the logarithmic time scale (x-axis). The fit with the sum of two lognormal distributions is shown with 

the gray line. The vertical black line highlight the time of the minimum between the lognormal fit, which 

has been used low pass cut-off. (B1) Spike trains of a representative network events. Red lines mark the 

spikes discarded by the cutoff procedure.  (B2) Binarization of the spiking activity for the network event 

reported in B1. Period of firing bursts (i.e. with an inter-spike interval below the threshold marked in 

panel A) are marked as ones (black horizontal bars). (C) The activation order of the network event shown 

in the panels B is represented by the activation-matrix order. Gray rows and columns correspond to non-

firing electrodes. A black (white) square for the element (i,j) corresponding to the firing of electrode i 

anticipating (following) the firing of electrode j based on the binarized activity of panel B2. 

 

 

Given the above NE temporal representations we calculated the pair-wise similarity 

between all NEs (Figure 7). The similarity index used in this work (see methods) takes 

into account the similarity of the spatial components of the NEs (given by the Jaccard 

index, i.e. the size of the intersection over the union of the sets of electrodes recruited 

in the NE pair) and the similarity of the temporal components of the NEs (i.e. the 
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normalized number of matching elements in the AOMs). Figure 7 shows the similarity 

matrix for a representative network, where the NE indexes are reordered after clustering 

similar NEs (using dendrogram analysis, see methods). The clustering reveals the 

existence of groups of similar NEs (squared structures along the diagonal of the matrix), 

i.e. NEs with both high spatial and temporal similarity spontaneously appear. 

 

 

Figure 7. Similarity between network events. Similarity between network events (see Methods) 

recorded in the schematized network shown on the right side. Groups of similar events appear as squares 

in the diagonal of the matrix. 

 

 

Finally, we investigated how NEs similarity evolves in time. Therefore, we 

calculated the average NEs similarity as a function of their temporal distance (SNE(t)). 

The results of this analysis revealed the existence (in 15 out of a total 21 networks) of 

a time window of 22.7+/-3.4 seconds within which the similarity of the NEs is higher 

than what expected by randomly reordering NEs. This memory-like phenomenon 

occurred only in networks whose structural topology was not chain-like, i.e. organized 
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as an open one-dimensional line (5 out of 21 studied networks) (Figure 8). In addition, 

this phenomenon did not occur on one network with an average inter-NE interval larger 

than 30 seconds.  
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Figure 8. High similarity between close-in-time spontaneous events in non-chain networks. (A1) 

Emergence of instantaneous dynamical memory for a representative non-chain network. In black is 

shown the average similarity between events as a function of the inter-event distance. In grey the same 

analysis performed on randomly reshuffled events. (A2) The same as panel A1 but for a network 

organized as an open chain. (B) Electrical traces ad raster plots of three similar events played 

consecutively by the network shown in A1. Note the time delay of about 2.5 seconds between them. In 

these events, only four out of five neuronal assemblies participated with the same activation order. The 

bottom traces correspond to the non-participating assembly. 
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DISCUSSION 

In this paper, interconnected neuronal sub-populations have been used in order to 

investigate how their spontaneous dynamics (i.e. motifs of activity) relates to their 

particular topology, and to test the hypothesis of a memory mechanism in which similar 

spatiotemporal dynamical patterns are observed. 

Although very informative, in vivo experiments do not allow a controlled 

manipulation of the spatio-temporal dynamics of neuronal networks. On the contrary, 

in vitro systems, constitute a successful experimental model of neuronal dynamics 

(Orlandi Nature Physics 2013), and can be easily accessed, manipulated and monitored 

(Bonifazi et al., 2013). Therefore, in order to provide a simplified but plausible 

representation of the intrinsic modularity of the nervous system, we realized a multi-

modular system, thus reproducing in vitro a group of ‘neuronal assemblies’, defined, 

similarly to Hebb’s view [1], as a set of anatomically and functionally connected 

neurons [5]. 

Several methodologies have been recently presented in the literature to drive the 

growth of neuronal cells according to pre-defined topologies. More specifically, 

substrate patterning methods were introduced with different aims: i) for selective 

positioning of cells through, e.g. chemical and mechanical guiding of their extensions 

[50] [51] and the use of physical constraints [52]; ii) for selective control of neurites 

guidance through, e.g. un-modified collagen scaffolds [53] or by controlling the 

direction of signal propagation at single-cell resolution [54]; and iii) for studying the 

functional properties of networks with imposed topologies [11, 55, 56] by inducing 

neuronal networks to develop a range of predefined modular structures [14]. 

Indeed, the networks realized in the context of this work can be defined as ‘multi-

modular’ and were composed of spatially confined neuronal circuits. The rationale of 
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this approach originates from the following argument. Uniform, i.e. spatially un-

constrained, neuronal cultures generate stereotyped synchronized events recruiting the 

all neuronal population [48, 57]. Such spontaneous synchronizations are also present 

when the network scales down to a population size of few dozens of cells [27, 30]. 

Therefore, when in vitro self-organized networks of different population sizes do not 

experience any connectivity constraints, being axons and dendrites capable to grow 

freely also over long-distances, they naturally display stereotyped globally 

synchronized dynamics [48, 57]. Indeed, in the culturing two dimensional space, there 

is not any a-priori imposed economy principle of connectivity between cells, and this 

represents a very different condition compared to in-vivo where spatial constraints 

affect networks’ topology. By imposing spatial constraints on the two-dimensional 

space, spatially distinct circuits are created, and can independently generate 

spontaneous synchronizations while their mutual synchronization is strictly dependent 

on their connectivity strength. Specifically, poorly connected circuits occasionally 

synchronize while strongly connected circuits generate synchronized events recruiting 

the entire neuronal population as observed in uniform networks [58]. Therefore, the 

patterning design was mostly affected by two parameters, the circuit area and the inter-

circuit distance, whose combination allowed to maintain the mutual synchronization 

between the spatially defined neuronal circuitries while preserving their independent 

local spontaneous dynamics [42].  

Different structural layouts composing multi-modular networks (e.g. chain-like and 

feedforward networks) have been experimentally used to investigate how the layout 

influences the spontaneous activity. Furthermore, these networks have the capability of 

self-organizing forming spontaneous connections among the modules with the 

possibility to study how dynamics changes compared to uniform networks and to 
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networks composed of well-known anatomical layouts [59]. Multi-modular networks 

can be electrically stimulated with the possibility to have a better control over the 

evoked activity, thanks to the structural and functional confinement ensured by the 

neuronal circuits. Several studies have been conducted within this framework, in 

particular, for investigating the relationship between structural and functional 

connectivity [60], and for understanding the role played by each circuit in processing 

neural information [61] [62]. 

Therefore, the multi-modular modular neuronal networks adopted in this work 

provided a powerful tool for investigating the dynamics of communications among 

neuronal assemblies and the capability of structurally defined neuronal networks to 

generate large repertoire of dynamical motifs. 

When looking at the similarity of the spontaneously generated NEs over time, we 

observed that network events displayed higher similarity within a time window of about 

twenty seconds, compared to randomly played (i.e. reshuffled) network events. This 

instantaneous memory-like phenomena shares similarity with the working memory 

(WM) process studied in-vivo in intact neuronal circuitries [40]. Although the dynamics 

described in this work are spontaneous and not elicited by stimulations, the endogenous 

instantaneous memory and the WM mechanisms share important similarities; Network 

models trying to reproduce WM phenomena have shown that network activity behaves 

as a continuous attractor, where the bump of the population firing rate survives the 

disappearance of the stimulus [65], in a sort of sustained spontaneous activity shaped 

by the experienced stimulation and ii) a localized persistent activity pattern elicited by 

the stimulation tends to drift randomly as a diffusion process during the delay period 

[66], coding for a distinct but similar stimulus (specifically with slightly drifted spatial 

location). 
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The drift of the population activity bump observed in WM models [65] is 

conceptually similar to the decay of similarity between network events reported in this 

work. In analogy to the instantaneous memory phenomenon reported in our research, 

the variability of discharges from single neurons and the level of correlation between 

neurons recorded simultaneously during the WM tasks, vary consistently with the 

drifting bump model [65] and contrary to the idea that inaccuracy in WM is primarily 

due to the slow decaying of the bump of neuronal activity itself.  

The fact that spontaneous dynamics can be a grounding mechanism for working 

memory is furtherly supported by the evidence that similarity between spontaneous and 

evoked stimulated activity patterns has been reported in a variety of in vivo [33, 34, 68-

70] and in vitro [71] studies.  

This work describes memory emerges in a non-chain like networks, this matter is 

interpretable by the need of recurrent connectivity allowing the reverberation of 

activity. 

We propose that the spontaneous activity of a network reflect the current state of 

the network which slightly change and naturally drift over a time course of two dozens 

of seconds, and suggest an interesting future approach that the state of the network, 

which shape the spontaneous activity, might be shaped by external stimulations 

(environment). 
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