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Abstract 
Markers of biological ageing have potential utility in primary care and public health. We 
developed an elastic net regression model of age based on untargeted metabolic profiling 
across multiple platforms, including nuclear magnetic resonance spectroscopy and liquid 
chromatography-mass spectrometry in urine and serum (almost 100,000 features assayed), 
within a large sample (N= 2,239) from the UK occupational Airwave cohort. We investigated 
the determinants of accelerated ageing, including genetic, lifestyle and psychological risk 
factors for premature mortality.  The metabolomic age model was well correlated with 
chronological age (r = 0.85 in independent test set) and DNA methylation age. Increased 
metabolomic age acceleration (p < 0.05) was associated with high alcohol use, overweight 
or obesity, low income, and depression. We also observed increases in DNA methylation 
age acceleration associated with anxiety, post-traumatic stress disorder and low income that 
were of a greater size than for metabolomic age acceleration.  

Introduction 
Ageing can be defined as the “time-dependent decline of functional capacity and stress 
resistance, associated with increased risk of morbidity and mortality” 1. Environmental 
stressors, including social adversity 2,3 , psychological disorders 4,5, and genetic factors6 may 
influence the ageing process , leading to differing ageing rates. Traditionally, quantitative 
assessment of “the rate of ageing” relies on the analysis of mortality curves of populations. 
However, at the level of a living individual, this method does not allow assessment of the 
state of ageing (i.e. the state of the functional decline) and a prediction of the risk of 
morbidity and remaining life expectancy. Therefore, markers of ‘biological age’ (the ageing 
state typical of one’s chronological age) that can be assessed at any point in the lifespan 
therefore, may have enormous potential in both personalised medicine and public health.  
Since ageing is a process that affects almost all tissues and organs of the body and involves 
cross-talk between multiple physiological systems, there has been increased research into 
composite markers of ageing, involving multiple parameters 7. Levine 8 employed 10 
biomarkers representing multiple systems to develop a biological age score, that could better 
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predict mortality than chronological age. Belsky et al. 9 used a similar selection of biomarkers 
measured longitudinally in young adults to develop a biological age score and found that 
increased pace of ageing was associated with measures of functional decline such as 
cognitive ability. However, a synthetic indicator of biological age is still lacking. Modern 
‘omics’ platforms have provided new opportunities for the systematic assessment of 
biological ageing. For example, Horvath 10 and Hannum et al. 11 employed genome-wide 
DNA methylation to develop highly predictive models of age based on multiple methylated 
CpG loci. Furthermore, it has been shown that ‘age acceleration’, defined as having a 
greater DNA methylation age than chronological age, is associated with multiple risk factors 
of mortality such as low social class, smoking, and alcohol use 3 and is predictive of mortality 
12,13. Agnostic metabolomics is a promising candidate technology to develop biomarkers of 
ageing. Several metabolomic studies have found strong associations between numerous 
metabolites and age, although in a limited sample size 14,15 or through employing targeted 
analyses that give limited coverage of the full metabolome 16 17,18. Only the study of Hertel et 
al. 18 combined a small set of markers to provide an overall assessment of biological ageing, 
observing that the predicted metabolomic age was associated with time to death, after 
adjustment for chronological age and other risk factors. 

In the present study, we have employed untargeted metabolomics across multiple analytical 
platforms, providing unprecedented metabolome coverage (almost 100,000 features 
assayed), to develop a predictive model of age, within a large sample from the UK 
occupational Airwave cohort. A second cohort was used for longitudinal validation of 
selected metabolic age predictors. We explore the relationship between metabolomic age 
and DNA methylation age and lifespan associated genetic factors. Furthermore, we 
investigate the determinants of accelerated ageing, focussing on risk factors of premature 
mortality, and show that psycho-social risk factors including depression and low income are 
associated with accelerated metabolomic ageing.   

Results 
Building and validation of the metabolomic age model 
The study population included 2,238 participants of the AIRWAVE cohort that had full 
metabolomic data. 60.5% of participants were male and mean age was 41.24 years (SD:  
9.1, range: 19.2 – 65.2 years). Most participants (97.5%) were of white British ethnicity and 
27.8% of participants were educated to degree level. The demographic characteristics of this 
sample are representative of the wider cohort (Elliott et al 2014). Further covariate 
information is provided in table 1. Metabolomic data were acquired from both urine and 
serum samples using multiple Nuclear Magnetic Resonance Spectroscopy (NMR) and Ultra-
Performance Liquid Chromatography - Mass Spectrometry (UPLC-MS) platforms, providing 
in total nine different metabolomic data types (table s1). For purposes of constructing the 
main predictive model of age through elastic net regression, these data types were 
combined into one metabolomic dataset, giving a total of 98,824 metabolic features.  

In the first stage of model building, an analysis by metabolomic platform (sequentially leaving  
on platform out each time) indicated that predictive performance (minimisation of mean 
squared error in 10-fold cross validation) was improved through using only the four following 
platforms (figure s1): Bruker IVDr Lipoprotein Subclass Analysis derived from NMR in serum 
(“sBiLISA”), lipid-targeted reverse-phase UPLC-MS in positive mode in serum (“sLPOS”), 
reverse-phase UPLC-MS in positive mode in urine (“uRPOS”) and hydrophilic interaction 
UPLC-MS in positive mode in urine (“uHPOS”) to give a total of 28941 metabolic features. 
The final predictive model selected 525 predictors from across this set (see table s2 for list of 
predictors along with table s3 annotation information), including 8 lipoprotein subclasses 
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from sBiLISA and 219, 104 and 194 features (retention time-m/z pairs) from the sLPOS, 
uHPOS and uRPOS platforms respectively. The model predicted age with high accuracy 
(mean absolute error, (MAE) = 1.47 years)  in the building data set (80% of data n= 1790), 
with a correlation between chronological age and predicted age of 0.96 (figure 1a). When 
this model was applied to the independent validation dataset, consisting of the remaining 
20% of study participants (N = 448), the MAE was 3.80 years and the correlation between 
predicted age and chronological age was 0.85 (figure 1a). 

Pathway enrichment analysis, using the Mummichog algorithm performed across the UPLC-
MS derived model predictors, identified enrichment (p < 0.05) in eleven metabolic pathways 
(table 2): Vitamin E metabolism, Tryptophan metabolism, CoA Catabolism, Urea cycle/amino 
group metabolism, Lysine metabolism, Carnitine shuttle, Vitamin B5 - CoA biosynthesis from 
pantothenate, Biopterin metabolism, Drug metabolism - cytochrome P450, Tyrosine 
metabolism, and Aspartate and asparagine metabolism. 

We examined concentration changes of nine metabolites included in our age prediction 
model, that were available in an independent cohort, the Northern Finnish Birth Cohort 1966, 
that had serum NMR metabolomic data measured at two ages, 31 and 46 yrs, among 2144 
individuals. Eight of these metabolites (89%) changed significantly with age, in the same 
direction as predicted in the metabolomic age model (table 3). 

Metabolomic age, DNA methylation and genetic predictors of longevity 
DNA methylation age was assessed for 1102 participants. Demographic characteristics for 
this sample were similar to those for participants with metabolomic age available (table s4). 
DNA methylation age predicted chronological age with a MAE of 4.37 years. DNA 
methylation age was strongly correlated with chronological age (r=0.91, figure 2a) and 
metabolomic age (n = 837, r = 0.85, figure 2b). Age acceleration scores were derived for 
both DNA methylation age acceleration (DNAmAA) and metabolomic age acceleration 
(mAA), as the difference, at a given age, between actual and predicted age. However, no 
correlation was observed between DNAmAA and mAA (r = 0.02, figure 2c). 

Table 4 shows mean age acceleration scores by genotype for 11 single nucleotide 
polymorphisms (SNPs), that have robust and replicated associations with lifespan 6. 
Directions of association between genotype and mAA that were consistent with effects on 
lifespan (e.g. age acceleration increases with number of effect alleles associated with 
shorter lifespan or visa versa) were observed for SNPs in the BSND, TRAIP, FTO and 
APOC1 genes. Only SNPs in the FTO and APOC1 genes were nominally significant (p= 
0.05 for both). For DNAmAA, directions of association with each genotype that were 
consistent with effects on lifespan were noted for SNPs in genes BSND and APOC1, with a 
nominally significant association observed for APOC1 (p= 0.03).  

Risk factors of age acceleration 
In bivariate analyses (table 1) we observed increased mAA (p < 0.05) among participants 
who were diabetic, heavy drinkers, overweight or obese, former smokers, or were suffering 
from depression, anxiety or PTSD. Clinical biomarkers associated with mAA included 
creatinine, total cholesterol, γ-glutamyl transferase (GGT) apolipoprotein B and glycated 
haemoglobin (%HBa1C). Regarding dietary intake in the week prior to sampling, those who 
reported high fish consumption and those in the second or fourth quintiles of the DASH 
score (compared to the first quintile, the least healthy dietary pattern) also had increased 
mAA. In bivariate analyses with DNAmAA (table s4), sex was associated at p<0.05, with an 
increase in DNAmAA of 0.89 (interpretable as years of increase in DNA methylation age, 
95% CI:  0.47, 1.30) in men compared to women. Clinical biomarkers associated with 
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DNAmAA in bivariate analyses included creatinine, high density lipoproteins, GGT and 
apolipoprotein A. 

Table 5 shows adjusted associations with mAA and DNAmAA for non-communicable 
disease and psychological risk factors (adjusted for sex, ethnicity, study centre, income, 
hypertension, diabetes, BMI, smoking, alcohol intake, physical activity, DASH score and fish 
consumption). We observed significant increases (p<0.05) in mAA with overweight, obesity, 
heavy drinking, lower income, depressive symptoms and depression, ranging from 0.35 
(95% confidence interval (CI): 0.01, 0.69) for low income compared to those with high 
income, to 0.97 (95% CI: 0.57, 1.37) for obesity compared to those of normal weight. 
Significant increases in DNAmAA were observed with heavy drinking, anxiety and PTSD, 
ranging 0.92 (95% CI: 0.03, 1.80) for anxiety compared to those without anxiety symptoms, 
to 2.15 (95% CI: 0.31, 4.00) for PTSD compared to those who had not experienced trauma 
in the past six months. 

Discussion 
In an important proof of principle study, we have demonstrated in a large nationwide cohort 
study of working age adults that metabolomic profiling may be used to predict chronological 
age with high accuracy. We employed a wide range of metabolomic platforms to provide the 
broadest metabolome coverage yet presented in population based studies. We found that 
metabolomic age acceleration, defined as having a greater predicted metabolomic age than 
chronological age, was associated with NCD risk factors including low income, overweight 
and obesity and high alcohol intake. Mental well-being, particularly when assessed through 
reported symptoms of depression, was also strongly associated with metabolomic age 
acceleration. We did not observe an association between epigenetic age acceleration and 
metabolomic age acceleration, suggesting these measures capture separate aspects of the 
ageing process. We observed a different pattern of risk factors associated with epigenetic 
accelerated ageing including being male, heavy drinking, anxiety and PTSD. 

The correlation between chronological and predicted age, of our measure of metabolomic 
ageing (r= 0.86 in the validation dataset), was somewhat lower than that of the Hannum 
epigenetic age clock in our cohort (r= 0.91) but greater than reported for other biological 
ageing markers, including the measure based on urinary NMR data 18(r = 0.53 in men and  
0.61 in women in validation dataset), the blood transcriptomic clock 19 (r = 0.35- 0.74 
depending on cohort) and telomere length (r ~ 0.3,  20). Biological ageing markers aim to 
better capture the body’s rate of decline or physiological breakdown than chronological age 
itself, and should therefore also be more predictive of mortality and age-related disease. The 
associations we observed between accelerated metabolomic ageing and factors known to 
increase risk of mortality, suggest that metabolomic age may capture this physiological 
decline.  

Strong associations with mAA were observed with overweight and obesity. These conditions 
are forms of metabolic dysregulation and their additional metabolic burden may increase the 
rate of decline of the metabolic systems of the body. Genetic predisposition to longevity is 
associated with low levels of abdominal visceral fat 21 and many different conditions that 
prolong lifespan in animal models also improve obesity-related conditions. Furthermore, 
obesity has been linked to telomere shortening, and drastic measures to combat morbid 
obesity like bariatric surgery can actually cause a recovery in telomere length 22.  Much is 
now known about the ageing process at the molecular level primarily from experimental 
work. López-Otín et al.23 proposed nine ‘hallmarks of ageing’ that may all be expected to 
have detectable effects on the metabolome and overlap significantly with the effects of 
metabolic disorders 24. For instance, the hallmark ‘deregulated nutrient signalling’ refers to 
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pathways that sense and respond to nutrient availability such as “insulin and IGF1 signalling” 
(IIS) pathway, which is altered among diabetics.  

We observed multiple metabolomic pathways enriched among the predictors of our 
metabolomic clock that reflect fundamental metabolic processes and are closely related to 
these hallmarks.  We observed enrichment of the pathway related to metabolism of Vitamin 
E, a potent anti-oxidant and anti-inflammatory agent that protects cell membranes from 
oxidative damage that can induce genome instability 25. As a primary hallmark, genome 
instability has far-reaching and complex consequences including altered nutrient sensing, 
energy metabolism and redox balance 26. Many human progerias are disorders 
accompanied by the hyperactivation of DNA repair machinery dependent on nicotinamide 
adenine dinucleotide (NAD+). This hyperactivation leads to NAD+ depletion, resulting in 
inhibition of the NAD+-dependent nutrient sensor sirtuin 1 (SIRT1) 27. Levels of NAD+ are 
also affected by other factors including circadian rhythm disruption, chronic inflammation 28 
and tryptophan metabolism (also enriched among the metabolomic clock predictors). The 
functional impairment of SIRT1 29, which limits expression of nuclear genes encoding 
mitochondrial proteins, leads directly to the hallmark mitochondrial dysfunction. We observed 
enrichment among the metabolomic clock predictors of the pathways CoA catabolism, 
Vitamin B5 - CoA biosynthesis from pantothenate and lysine metabolism, which all maintain 
acetyl-coA levels necessary for mitochondrial reactions, and carnitine shuttle, which is 
required for the transport of fatty acids for beta-oxidation in the mitochondria. The 
enrichment of these pathways suggests the importance of the mitochondrial dysfunction 
hallmark in our metabolomic ageing model. SIRT1 also contributes to regulating the 
circadian oscillation of acetyl-coA levels 30 which has been linked to the ageing process 31 
and epigenetic alterations through acetylation 32. Mitochondrial fitness further has impact on 
other ageing hallmarks 24, including genomic instability (dysfunctional mitochondria are major 
sources of genotoxic ROS), altered intercellular communication (ROS overgeneration is 
connected to the secretion of inflammatory mediators) and stem cell exhaustion (which are 
particularly sensitive to ROS 33). The observed enrichment of the urea cycle and aspartate 
and asparagine metabolism pathways will also result from perturbation to the Krebs and 
urea cycles following changes in mitochondrial fitness. 

The enrichment of the tryptophan, tyrosine and biopterin metabolic pathways appear to 
relate to the hallmark ‘altered intercellular communication’. Tyrosine is required for signal 
transduction through incorporation into protein kinases, while tryptophan and biopterin are 
necessary for synthesis of neurotransmitters including dopamine, norepinephrine, 
epinepherine, serotonin and melatonin. Alterations to neurotransmitter levels may underlie 
the associations we observed between mAA with depressive symptoms and depression. 
Both psychological distress and major depression had similar hazard ratios for mortality in a 
recent prospective study 4, which would be consistent with the observed increases in mAA 
for both  depressive symptoms and depression. Anxiety was also associated with increased 
mAA, albeit a smaller increase than observed for depression. This is again consistent with 
the relative hazard ratios for mortality observed for anxiety and depression in a nation-wide 
prospective cohort, even after taking suicides and accidental deaths into account 34. While in 
this cross-sectional study we cannot disentangle the causal direction between depression 
and mAA, a study of biological ageing among elderly people found that accelerated 
biological age was associated with depressive symptoms at baseline and was also predictive 
of depressive symptoms at follow-up 35. Consistent evidence demonstrates a bi-directional 
association between depression and so-called metabolic syndrome, suggesting common 
pathological roots 36. Proposed pathophysiological commonalities include abnormal 
activation of the hypothalamic–pituitary–adrenal (HPA) axis and altered levels of circulating 
leptin and ghrelin, two peripheral hormones that are classically implicated in the homeostatic 
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control of food intake. A large body of research has investigated the concept of ‘allostatic 
load’ whereby repeated activation of the HPA axis leads to biological ‘wear and tear’ or 
physiological decline of downstream metabolic, immune and cardiovascular systems 37. 
Many studies have demonstrated a link between social adversity 38,39 and allostatic load and 
it is theorised that chronic stress associated with low socio-economic position leads to 
prolonged activation of the HPA axis. We observed that lower income was associated with 
increased mAA, which may similarly be considered to capture physiological decline.  

We observed increases in DNAmAA associated with anxiety, PTSD and low income that 
were generally of greater size than for mAA. Meta-analyses have shown that both PTSD 5 
and low socio-economic position 3 to be associated with increases in DNAmAA. We did not 
observe any evidence for an association between depression and DNAmAA, suggesting the 
two ageing measures may be sensitive to separate dimensions of mental health. The DNA 
methylation clock has been shown to perform well as marker of biological age since it is 
predictive of all-cause mortality, even after adjusting for chronological age and a variety of 
known risk factors, and is associated with physical measures of ageing such as frailty and 
cognitive decline 40. However, other biological ageing markers may add value in capturing 
different aspects of the ageing process. Peters et al. 19 reported that transcriptomic age was 
only moderately correlated with DNA methylation age and the different measures were 
associated with different ageing phenotypes. Similarly, Belsky et al. 41 report only weak 
correlations between telomere length, DNA methylation age, and a composite biomarker-
based measure of biological ageing among young adults. While metabolomic and DNA 
methylation age were correlated in our study, there was no association between mAA and 
DNAmAA. DNAmAA has been shown to be predictive of cancer related mortality but not 
CVD 13,40 while the risk factors associated with mAA suggest it may be predictive of cardio-
metabolic related disease. Accelerated transcriptomic age was found to be similarly 
associated with CVD risk factors, although it was not related to mental health 19. Further 
research into biological ageing may consider combining markers at different levels of 
biological organisation to provide a more complete picture of the ageing process. 

To provide further external validation of the biological ageing markers we explored 
associations with genetic factors, selected from SNPs found to be robustly associated with 
lifespan 6. The strongest associations were observed for the FTO and APOC1 genes with 
mAA and the APOC1 gene for DNAmAA. APOC1 encodes a member of the apolipoprotein 
C1 family and plays a key role in lipoprotein metabolism and has been associated with 
multiple are-related disordered including cognitive decline 42, Alzheimer’s disease 43 and 
heart disease 44. FTO encodes an alpha-ketoglutarate-dependent hydroxylase and is best 
known for its associations with BMI 45 and obesity 46. While these findings suggest the role of 
genetic predisposition to longevity in our biological age markers, they require confirmation in 
larger, independent populations. 

This study had some important limitations. The study was cross-sectional, based on a single 
biological sampling from participants at a wide range of ages over a single sampling period. 
It is therefore difficult to separate processes relating to the ageing itself from cohort effects 
associated with the different environment of people at different ages. This is particularly a 
problem for analyses of the metabolome which contains both endogenous metabolites 
related to physiological processes such as ageing and short-lived exogenous metabolites 
related to factors such as diet and medication. Indeed, we observed that fish consumption, 
which is associated with reduced risk of mortality 47, actually increased mAA, likely due to 
the confounding of our model by cohort effects. We addressed these points in two ways: 
Firstly, we validated some of the metabolomic age predictors that were available in an 
independent cohort at two timepoints (15 years apart) in the early adult life of the same 
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individuals. We found that there were highly significant changes in levels of the majority of 
metabolites we checked, in the same direction as predicted by the metabolomic age model. 
Secondly, we adjusted associations with mAA for diet that had been assessed through a 
food diary in the week prior to sampling. Pathways that were enriched in our model were 
generally related to physiological processes known to be related to ageing, with the possible 
exception of the drug metabolism pathway. However, medication history was unavailable in 
this study.  

The second limitation was the use of untargeted metabolomics. This limits the potential to 
apply the full model in separate metabolomic datasets due to differences in retention time 
and mass accuracy in different runs of spectral acquisition. Furthermore, full laboratory 
annotation of all predictors was outside the scope of the present study, and may not even be 
possible for some predictors without current database matches. However, the aim of the 
study was to develop an overall predictive model to assess metabolic ageing rather than 
identify individual predictors. Indeed, the nature of the variable selection method used 
means that an equally valid predictive model can be built on different sets of predictors. We 
used the Mummichog pathway analysis tool to extract information at the pathway level, as 
the algorithm bypasses laboratory annotation based on the assumption that misidentification 
will apply equally both to the feature set (metabolites included in the age prediction model) 
and the reference set (metabolites not selected into the model). The tool has been validated 
in separate datasets that have also undergone full laboratory annotation 48. 

The main strengths of this study also relate to its use of untargeted metabolomics. We 
incorporated a range of MS platforms able to detect both lipophilic and hydrophilic molecules 
at low concentrations and NMR platforms able to detect larger structures such as 
lipoproteins that would be destroyed during MS acquisition. We also analysed both serum 
and urine that contain different sets of metabolites – more lipophilic molecules in serum and 
more polar molecules that are present at higher concentrations in urine. Together, we were 
able to assay a large portion of the metabolome that would not be possible with current 
targeted methods. Other strengths include the incorporation of genomic and DNA 
methylation data, the wide age range of participants including those in early adult life where 
ageing interventions may be most effective 49, and the use of validated psychological 
instruments. Future work will assess the effects of mAA on functional ageing measures and 
other health endpoints and assess metabolomic age in longitudinal, repeat samples. 

In conclusion, we have developed a predictive indicator of aging based on broad 
metabolomic analysis among working age adults. We found that while mAA, the difference 
between metabolomic and chronological age, was not related to DNAmAA, it was associated 
with mortality risk factors including obesity, diabetes, heavy alcohol use and psycho-social 
factors including depression, anxiety and lower income. Biological age acceleration may be 
an important mechanism linking psycho-social stress to age-related disease. Advances in 
life expectancies have led to an increased prevalence of age-related morbidities. Targeting 
the process of ageing itself, through changes in living conditions, behaviours or therapeutic 
interventions, may help more people experience healthy ageing. 

Methods 
Cohort and covariate information 
The Airwave Health Monitoring Study is an occupational cohort of employees of 28 police 
forces from across Great Britain. Full details of the cohort and methods are available in 
Elliott et al 50. The study started recruitment in 2006 and now contains 53,280 participants. 
The study received ethical approval from the National Health Service Multi-Site Research 
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Ethics Committee (MREC/13/NW/0588). At the baseline health screening, participants 
underwent health examination, self-completed a computer questionnaire and provided urine 
and blood samples. Blood samples were spun at the health clinic and the biological samples 
were stored in a Thermoporter (LaminarMedica) and sent overnight from the clinics for next-
day analysis of standard clinical chemistry tests or were frozen at -80 °C long term storage. 
DNA samples and plasma for metabolomic analysis were extracted from blood collected in 
EDTA tubes. 

Important covariates in the analysis were categorised from self-report or clinical data as 
follows: Ethnicity was defined as ‘white’ or otherwise. Marital status was defined as living 
with partner or otherwise. Income was defined as low, medium or high, based on terciles of 
total net household income after adjustment for the number of dependant household 
members. Education was defined as low (completed GCSEs or equivalent only), medium 
(completed ‘A’ levels or equivalent only) or high (completed university or higher degree).  
Alcohol use was classed as non-drinker, moderate drinker (≤ 14 alcohol units/week for 
women and ≤ 21 alcohol units/week for men) or heavy drinker (> 14 alcohol units/week for 
women and >21 alcohol units/week for men) .  Hypertension was defined as ether reported 
diagnosis or systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg. 
Diabetic status was defined as normal (no diagnosis and HbA1c < 6.5%), or diabetic 
(diagnosis or HbA1c ≥ 6.5%). Physical activity was defined as low, moderate or high based 
on the scoring protocol of the International Physical Activity Questionnaire 51 . 

Psychological instruments 
The Patient Health Questionnaire – 9 depression questionnaire was used to define 
participants as “normal (i.e. no depression)”, “minimal symptoms of depression” or as a 
“depression case” 52. The Hospital Anxiety and Depression Scale questionnaire was used to 
assess anxiety levels as “normal (i.e. no anxiety)”, “borderline” and “anxiety case” 53. 
Participants were defined as job strained if they had levels of ‘job demand’ above the median 
of the whole cohort and levels of ‘job latitude’ below the median of the cohort based of a 
subset of six items from the Job Content Questionnaire 54.  Subjective feelings of chronic 
fatigue were assessed as “low”, “medium” or “high” according to the questionnaire of 55. 
Participants were asked if they had experienced a work-related traumatic incident in the 
previous six months. Those who reported a traumatic incident were then asked to complete 
a brief screening instrument for post-traumatic stress disorder (PTSD) 56. Participants were 
thus classed into three categories: “not experienced traumatic incident in past 6 months”, 
“experienced traumatic incident in past 6 months without leading to PTSD”, and 
“experienced traumatic incident in past 6 months leading to PTSD”, 

Assessment of Diet 
Dietary intake was measured using validated 7-day estimated weight food diaries as fully 
described previously 57. Nutritional intake was calculated using Dietplan6.7 software 
(Forestfield Software, Horsham, UK) which is based on the McCance and Widdowson's 6th 
Edition Composition of Foods UK Nutritional Data set (UKN) by a team of trained coders 
trained to match food and drink items to the UKN database code and a portion size. 

Energy adjusted average consumption of fruit, vegetables, red meat, processed meat, 
wholegrain and dairy over the week was categorised into tertiles. For fish, consumption was 
divided into none, medium (below median consumption among consumers) and high (above 
median consumption). Total average energy consumption was categorised as low, medium 
and high based on separate tertiles for men and women. Two overall dietary scores were 
calculated: The Dietary Approaches to Stop Hypertension (DASH) diet score divided into 
quintiles 58 and the Mediterranean Diet score as a continuous measure 59.  
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Metabolomic data acquisition  
Metabolomic analysis of serum and urine was performed at the National Phenome Centre, 
based at Imperial College London. Samples were randomly sorted into batches of 80 and 
thawed to 4°C, centrifuged to remove particulate matter, and the supernatant dispensed 
across dedicated 96-well plates for each assay. Study-Reference (SR) samples, a pool of all 
samples for each matrix in the study, and Long-Term Reference (LTR) samples, a pool of 
samples external to study, were included in each analytical run to allow for quantification and 
correction of technical variation. Samples are prepared and analysed daily in batches of 80 
study samples with the addition of 4 quality controls (2 SR and 2 LTR). Samples were 
maintained at 4°C during preparation for, and while awaiting, acquisition. 

Acquisition of Nuclear Magnetic Resonance Spectroscopy (NMR) profiles (the NOESY 
experiment in urine and the CPMG experiment in serum) was conducted as described in 60. 
Lipoprotein parameters were generated by the Bruker B.I.-LISA (Bruker IVDr Lipoprotein 
Subclass Analysis platform, derived from NMR of serum. Spectra were acquired at 600 MHz 
with Bruker Ascend 600 magnets and Avance III HD consoles configured to the Bruker IVDr 
specification (Bruker Corporation, Billerica, MA, USA). 

Ultra-Performance Liquid Chromatography - Mass Spectrometry (UPLC-MS) acquisitions 
were conducted in batches of up to 1000 study-samples, interleaved with alternating SR and 
LTR samples every five injections (16 per 80 samples), each batch was flanked by a serial 
dilution of the SR sample to assess linearity of response.  Multiple analytical experiments 
were performed to increase metabolomic coverage. Hydrophilic interaction chromatography 
was performed in both urine and serum as described in 61. Reversed-phase chromatography 
was performed on urine samples in both positive and negative modes as described in 61. 
Lipid-targeted reverse-phase chromatography was applied in serum ionised in both positive 
and negative modes as described in 62. All UPLC-MS profiling assays were acquired on 
Waters G2-S ToF mass spectrometers, with Acquity UPLC chromatography systems 
(Waters Corporation, Milford, MA, USA). 

Metabolomic data processing 
NMR spectra were automatically processed in TopSpin 3.2, followed by a suite of in house 
scripts 60. Each spectrum was automatically checked, before all spectra were aligned to a 
common reference scale. Analytical quality was further assessed manually on four factors:  
Line width of less than 0.9 Hz, quality of water-suppression, even baseline signal and 
accurate chemical shift referencing. Urine samples were referenced to an internal spiked 
standard 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid (TSP) at 0 ppm. Plasma 
samples were referenced to the α-anomeric glucose doublet at 5.233 ppm. Spectra were 
aligned to a common reference scale, running from 10 to -1 ppm, and interpolated onto a 
common 20,000 point grid.  Lipoprotein parameters were validated according to Bruker's 
B.I.-LISA protocols. 

Chromatograms and mass spectra instrument raw files were imported into Progenesis QI 
(Waters Corp. Milford, MA, USA) for retention-time alignment and feature detection. 
Progenesis QI was configured to align retention time to the central LTR sample of the 
acquisition. Peak detection was configured with a minimum chromatographic peak width of 
0.01 minutes, and automatic noise detection set to the minimum threshold of 1. Peaks 
arising from isotopes and chemical adducts were automatically resolved according to the 
observed m/z and chromatographic peak shape, and peaks areas integrated. Further 
processing and filtering of UPLC-MS profiling datasets was conducted with in-house scripts, 
and used to account for analytical run-order effects and remove noise from each dataset. 
Analytical run-order effects were accounted for with an adaption of the method described in 
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63. A robust LOWESS regression was generated per-feature, based on the SR samples, in 
run-order, with the window scaled to include 21 SR samples. The smoothed response values 
for each feature were then interpolated to the intermediate study sample injections using 
simple linear interpolation. Finally, the median intensity of each feature in each analytical 
batch was aligned. Extracted features spuriously arising from analytical noise were removed 
from the dataset by a pair of approaches, both applied on a per-feature basis. First, a serial 
dilution of the study reference sample was used to assess the linearity of responses of each 
feature. Detected features were correlated to their expected intensity in the dilution series, 
and those features showing a Pearson’s r of less than 0.7 were excluded from further 
analysis. Second, the relative standard deviation (RSD) of each feature across the study 
reference samples was calculated, and those features where the RSD exceeded 30%, or the 
observed biological variance was less than 1.5 times the RSD, were excluded. 

Metabolomic age model 
Untargeted NMR datasets were glog-transformed 64, the quantified BiLISA data was log-
transformed, and the UPLC-MS data were log transformed, following unit addition to every 
value to allow transformation of zero values. Data were then mean centred and scaled to 
unit variance.  

A predictive model of metabolomic age was constructed using elastic net regression 65 in the 
“glmnet” package 66 in R.  The model was fitted on metabolic features from across all 
metabolomic datasets, using a multi-step process on 80% of the data (the training dataset). 
The remaining 20% was reserved for assessment of the predictive ability (Pearson’s 
correlation between predicted and chronological age) of the model in an independent 
dataset (the test dataset). The steps were as follows: 

Step 1 Parameterisation:  Elastic net model parameters, α (that defines mixing between 
lasso and ridge penalties) and λ (overall strength of penalty), were found following 10-fold 
cross validation. A line search across α, between 0 and 1 in 0.01 increments, was performed 
to find the minimum mean cross-validated error (MSE) using the optimal value of λ found 
using the ‘cvfit’ command for each α value. 

Step 2 Leave platform out analysis: Due to potential redundancy between metabolomic 
datasets, we performed the parameterisation step above on data with one metabolomic 
platform left out each time. Platforms were removed from further analysis if model performed 
better (lower MSE) with their exclusion. We continued this process leaving further platforms 
out each time until no improvement in MSE was observed. 

Step 3 Stability analysis: Using the selected metabolomic datasets, we repeated elastic net 
regression on 100 subsamples of the training dataset (a random selection of 80% each 
time).  The metabolic features selected in each model was stored for each iteration.  

Step 4 Metabolomic data restriction: On the same subsample for 101 iterations, the number 
of metabolic features available to build an elastic net model was restricted by the percentage 
of iterations in step 3 that a feature was selected, moving from 100% to 0%, in 1% 
decrements for each subsequent iteration. The correlation between predicted and 
chronological age in remaining 20% of training set was stored for each iteration and the 
percentage restriction value that gave the best correlation, was chosen for the final 
metabolic feature restriction in step 5. 

Step 5 Final model building: On the complete training dataset, a final elastic net model was 
constructed using metabolic features restricted to those present in a set percentage of 
models, as found in step 4. 
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Metabolomic age acceleration (metAA) was defined as the difference between chronological 
age and predicted age, adjusted on actual age as previously defined for DNA methylation 
age acceleration 10. That is, we define mAA as the residuals of a linear regression between 
the chronological age and predicted age difference, with chronological age itself.  

Metabolic feature and pathway annotation 
Tentative annotations were provided for mass-spectrometry based metabolic features bases 
on m/z searches across the Human metabolome database 67, for the ion forms M+2H, 
M+H+NH4, M+NH4, M+H, M+ACN+H, M+CH3OH+H, M+Na, M+K, 2M+H at ±�8�ppm 
mass tolerance.  

For five UPLC-MS based metabolic features that were both tentatively annotated by exact 
mass within our metabolomic age model and also available in repeat measurements within 
the Northern Finnish Birth Cohort dataset, we performed further annotation procedures. Two 
of these annotations, for citrate (as in-source fragmentation product) and leucine (M+Na 
ionic form), were supported by matching retention times and accurate mass to an internal 
reference standard database.  

Significantly enriched metabolic pathways were predicted using the mummichog program 48. 
The algorithm searches tentative compound lists from metabolite reference databases 
against an integrated model of human metabolism to identify functional activity. Fisher’s 
exact tests and permutation are used to infer p-values for likelihood of pathway enrichment 
among significant features as compared to pathways identified among the entire compound 
set present in reference list (the entire metabolome dataset), considering the probability of 
mapping the significant m/z features to pathways. Mummichog parameters were set to 
match against ions included in the ‘generic positive mode’ setting at ±�8�ppm mass 
tolerance. 
 

Metabolite validation in the Northern Finnish Birth Cohort 1966 
The Northern Finnish Birth Cohort 1966 is a prospective birth cohort that sampled 12,058 
live births in 1966, including 96.3% of all births in the regions of Oulu and Lapland in Finland 
68. Fasting blood samples were collected at follow-up of participants at ages 31 and 46 yrs 
and stored at -80�°C for subsequent biomarker profiling. A high-throughput NMR 
metabolomics platform was used for the analysis of 87 metabolic measures 69. This 
metabolomics platform provides simultaneous quantification of routine lipids and lipid 
concentrations of 14 lipoprotein subclasses and major sub-fractions, and further quantifies 
abundant fatty acids, amino acids, ketone bodies and gluconeogenesis-related metabolites 
in absolute concentration units. 

We assessed changes of nine metabolites, that were available in this dataset and also 
included in our predictive model, between these two sampling points using 1-tailed t-tests. 

DNA methylation analysis 
For the microarray, bisulphite conversion of 500 ng of each DNA sample was performed 
using the EZ DNA Methylation-Lightning™ Kit according to the manufacturer’s protocol 
(Zymo Research, Orange, CA). Then, bisulfite-converted DNA was used for hybridization on 
the Infinium HumanMethylation EPIC BeadChip, following the Illumina Infinium HD 
Methylation protocol. Briefly, a whole genome amplification step was followed by enzymatic 
end-point fragmentation and hybridization to HumanMethylation EPIC BeadChips at 48°C for 
17 h, followed by single nucleotide extension. The incorporated nucleotides were labelled 
with biotin (ddCTP and ddGTP) and 2,4-dinitrophenol (DNP) (ddATP and ddTTP). After the 
extension step and staining, the BeadChip was washed and scanned using the Illumina 
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HiScan SQ scanner. The intensities of the images were extracted using the GenomeStudio 
(v.2011.1) Methylation module (1.9.0) software, which normalizes within-sample data using 
different internal controls that are present on the HumanMethylation EPIC BeadChip and 
internal background probes. The methylation score for each CpG was represented as a β-
value according to the fluorescent intensity ratio representing any value between 0 
(unmethylated) and 1 (completely methylated). 

DNA methylation (DNAm) data were pre-processed and normalized using in-house software 
written for the R statistical computing environment, including background and color bias 
correction, quantile normalization, and Beta MIxture Quantile dilation (BMIQ) procedure to 
remove type I/type II probes bias, as described elsewhere 3. DNAm levels were expressed 
as the ratio of the intensities of methylated cytosines over the total intensities (β values). 
Cross-reactive and polymorphic probes - with minor allele frequency greater than 0.01 in 
Europeans 70 - were excluded. Methylation measures were set to missing if the detection p-
value was greater than 0.01. Samples with the bisulfite conversion control fluorescence 
intensity lower than 10,000 for both type I and type II probes and those with total call rate 
lower than 95% were excluded. Finally, samples were excluded if the predicted sex (based 
on chromosome X methylation) did not match that self-reported. 

DNA methylation age was computed according to the algorithm described by Hannum et al. 
11 based on a set of 71 blood-specific age-associated CpG sites. We used this algorithm, 
rather than the  algorithm of Hovarth, since it was developed specifically for blood samples 
and found to be the most predictive of mortality 12. Age acceleration (AA) was defined as the 
difference between epigenetic and chronological age. Since AA could be correlated with 
chronological age and WBC percentage, we computed the so-called intrinsic epigenetic age 
acceleration 12, which is defined as the residuals from the linear regression of AA with 
chronological age and blood cell counts (measured using flow cytometry) for neutrophils, 
lymphocytes, monocytes and eosinophils. 

Genotyping 
Genotyping was performed on the Illumina Infinium HumanCoreExome-12v1-1 BeadChip 
and quality control filters including call rate (>=97%), heterozygosity rate (<=3SD from the 
mean) were applied on the samples. Duplicated and second-degree relatives were further 
excluded and 14,062 samples of European ancestry based on principle component analysis 
remained. Markers were removed for high missing rate (>2%), deviation from Hardy-
Weinberg equilibrium (P<1E-5) or minor allele frequency below 1%, resulting in 254,027 
high-quality and common markers. Imputation was performed using the Haplotype 
Reference Consortium (HRC) panel (version r1.1 2016). 

We selected 11 SNPs, previously associated with lifespan 6, and tested their associations 
with both DNAmAA and mAA, in bivariate linear models. DNAmAA or mAA was used as the 
dependent variable and the dosage of the effect allele for each SNP (i.e. 0,1 or 2) was used 
as the independent variable. 

Analysis of risk factors of biological age acceleration 
We analysed associations between mortality risk factors, including psychosocial factors, and 
age acceleration scores in separate adjusted linear regression models.  The adjustment set, 
chosen a priori and included in all models was: sex, ethnicity, study centre, income, 
hypertension, diabetes, BMI, smoking, alcohol intake, physical activity, DASH score and fish 
consumption. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/411603doi: bioRxiv preprint 

https://doi.org/10.1101/411603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 
OR was supported by a MRC Early Career Fellowship. This study was partly supported by 
the European Commission grant to the LIFEPATH project (Horizon 2020 grant number 
633666). The Airwave Health Monitoring Study is funded by the Home Office (grant number 
780- TETRA) with additional support from the National Institute for Health Research (NIHR) 
Biomedical Research Centre. The Airwave Study uses the computing resources of the UK 
MEDical BIOinformatics partnership (UK MED-BIO supported by the Medical Research 
Council (MR/L01632X/1). We thank all Airwave participants for their contributions. We thank 
the late professor Paula Rantakallio (launch of NFBC1966), the participants in the 31 yrs and 
46 yrs studies and the NFBC project center. NFBC1966 received financial support from 
University of Oulu Grants no. 24000692, Oulu University Hospital Grant no. 24301140, 
ERDF European Regional Development Fund Grant no. 539/2010 A31592, University of 
Oulu Grant no. 65354, Oulu University Hospital Grant no. 2/97, 8/97, Ministry of Health and 
Social Affairs Grant no. 23/251/97, 160/97, 190/97, National Institute for Health and Welfare, 
Helsinki Grant no. 54121, Regional Institute of Occupational Health, Oulu, Finland Grant no. 
50621, 54231. I.K. acknowledges support from the EU PhenoMeNal project (Horizon 2020, 
654241). 

References 
 

1 Burkle, A. et al. MARK-AGE biomarkers of ageing. Mechanisms of Ageing and 
Development 151, 2-12, doi:10.1016/j.mad.2015.03.006 (2015). 

2 Stringhini, S. et al. Socioeconomic status and the 25 x 25 risk factors as 
determinants of premature mortality: a multicohort study and meta-analysis of 1.7 
million men and women. Lancet (London, England) 389, 1229-1237, 
doi:10.1016/s0140-6736(16)32380-7 (2017). 

3 Fiorito, G. et al. Social adversity and epigenetic aging: a multi-cohort study on 
socioeconomic differences in peripheral blood DNA methylation. Scientific reports 7, 
16266, doi:10.1038/s41598-017-16391-5 (2017). 

4 Chiu, M. et al. Mortality risk associated with psychological distress and major 
depression: A population-based cohort study. Journal of Affective Disorders 234, 
117-123, doi:10.1016/j.jad.2018.02.075 (2018). 

5 Wolf, E. J. & Morrison, F. G.  Vol. 19   (Current Psychiatry Reports, 2017). 
6 McDaid, A. F. et al. Bayesian association scan reveals loci associated with human 

lifespan and linked biomarkers. Nature Communications 8, 
doi:10.1038/ncomms15842 (2017). 

7 Jylhävä, J., Pedersen, N. L. & Hägg, S.  Vol. 21   29-36 (The Authors, 2017). 
8 Levine, M. E. Modeling the rate of senescence: Can estimated biological age predict 

mortality more accurately than chronological age? Journals of Gerontology - Series A 
Biological Sciences and Medical Sciences 68, 667-674, doi:10.1093/gerona/gls233 
(2013). 

9 Belsky, D. W. et al. Quantification of biological aging in young adults. 
Proc.Natl.Acad.Sci.U.S.A 112, E4104-E4110, doi:10.1073/pnas.1506264112 (2015). 

10 Horvath, S. DNA methylation age of human tissues and cell types. Genome biology 
14, R115-R115, doi:10.1186/gb-2013-14-10-r115 (2013). 

11 Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of 
human aging rates. Molecular cell 49, 359-367, doi:10.1016/j.molcel.2012.10.016 
(2013). 

12 Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis 
predicting time to death. Aging 8, 1844-1865, doi:10.18632/aging.101020 (2016). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/411603doi: bioRxiv preprint 

https://doi.org/10.1101/411603
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 Dugue, P. A. et al. Association of DNA Methylation-Based Biological Age With Health 
Risk Factors and Overall and Cause-Specific Mortality. American journal of 
epidemiology 187, 529-538, doi:10.1093/aje/kwx291 (2018). 

14 Chaleckis, R., Murakami, I., Takada, J., Kondoh, H. & Yanagida, M. Individual 
variability in human blood metabolites identifies age-related differences. Proceedings 
of the National Academy of Sciences of the United States of America 113, 4252-
4259, doi:10.1073/pnas.1603023113 (2016). 

15 Rist, M. J. et al. Metabolite patterns predicting sex and age in participants of the 
Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS ONE 12, 1-21, 
doi:10.1371/journal.pone.0183228 (2017). 

16 Auro, K. et al. A metabolic view on menopause and ageing. Nature Communications 
5, 1-11, doi:10.1038/ncomms5708 (2014). 

17 Yu, Z. et al. Human serum metabolic profiles are age dependent. Aging Cell 11, 960-
967, doi:10.1111/j.1474-9726.2012.00865.x (2012). 

18 Hertel, J. et al. Measuring Biological Age via Metabonomics: The Metabolic Age 
Score. Journal of Proteome Research 15, 400-410, 
doi:10.1021/acs.jproteome.5b00561 (2016). 

19 Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. 
Nature Communications 6, doi:10.1038/ncomms9570 (2015). 

20 Muezzinler, A., Zaineddin, A. K. & Brenner, H. A systematic review of leukocyte 
telomere length and age in adults. Ageing research reviews 12, 509-519, 
doi:10.1016/j.arr.2013.01.003 (2013). 

21 Sala, M. L. et al. Genetically determined prospect to become long-lived is associated 
with less abdominal fat and in particular less abdominal visceral fat in men. Age and 
Ageing 44, 713-717, doi:10.1093/ageing/afv063 (2015). 

22 Laimer, M. et al. Telomere length increase after weight loss induced by bariatric 
surgery: results from a 10 year prospective study. International Journal Of Obesity 
40, 773, doi:10.1038/ijo.2015.238 (2015). 

23 López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G.  Vol. 153   
(2013). 

24 López-Otín, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G.  Vol. 166   
802-821 (2016). 

25 Claycombe, K. J. & Meydani, S. N. Vitamin E and genome stability. Mutation 
research 475, 37-44 (2001). 

26 Garinis, G. A., van der Horst, G. T. J., Vijg, J. & H.J. Hoeijmakers, J. DNA damage 
and ageing: new-age ideas for an age-old problem. Nature Cell Biology 10, 1241, 
doi:10.1038/ncb1108-1241 (2008). 

27 Fang, Evandro F. et al. Defective Mitophagy in XPA via PARP-1 Hyperactivation and 
NAD+/SIRT1 Reduction. Cell 157, 882-896, 
doi:https://doi.org/10.1016/j.cell.2014.03.026 (2014). 

28 Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 350, 1208-
1213, doi:10.1126/science.aac4854 (2015). 

29 Gomes, Ana P. et al. Declining NAD+ Induces a Pseudohypoxic State Disrupting 
Nuclear-Mitochondrial Communication during Aging. Cell 155, 1624-1638, 
doi:https://doi.org/10.1016/j.cell.2013.11.037 (2013). 

30 Sahar, S. et al. Circadian Control of Fatty Acid Elongation by SIRT1 Protein-
mediated Deacetylation of Acetyl-coenzyme A Synthetase 1. Journal of Biological 
Chemistry 289, 6091-6097, doi:10.1074/jbc.M113.537191 (2014). 

31 Chang, H.-C. & Guarente, L. SIRT1 Mediates Central Circadian Control in the SCN 
by a Mechanism that Decays with Aging. Cell 153, 1448-1460, 
doi:https://doi.org/10.1016/j.cell.2013.05.027 (2013). 

32 Su, X., Wellen, K. E. & Rabinowitz, J. D. Metabolic control of methylation and 
acetylation. Current Opinion in Chemical Biology 30, 52-60, 
doi:https://doi.org/10.1016/j.cbpa.2015.10.030 (2016). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/411603doi: bioRxiv preprint 

https://doi.org/10.1101/411603
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of 
hematopoietic stem cells. Nature Medicine 12, 446, doi:10.1038/nm1388 

https://www.nature.com/articles/nm1388#supplementary-information (2006). 
34 Meier, S. M. et al. Increased mortality among people with anxiety disorders: total 

population study. The British Journal of Psychiatry 209, 216-221, 
doi:10.1192/bjp.bp.115.171975 (2016). 

35 Brown, P. J. et al. Biological Age, Not Chronological Age, is Associated with Late Life 
Depression. The Journals of Gerontology: Series A 00, 1-7, 
doi:10.1093/gerona/glx162 (2017). 

36 Marazziti, D., Rutigliano, G., Baroni, S., Landi, P. & Dell'Osso, L.  Vol. 19   293-304 
(2014). 

37 McEwen, B. S. & Seeman, T. Protective and damaging effects of mediators of stress. 
Elaborating and testing the concepts of allostasis and allostatic load. Annals of the 
New York Academy of Sciences 896, 30-47 (1999). 

38 Castagne, R. et al. Allostatic load and subsequent all-cause mortality: which 
biological markers drive the relationship? Findings from a UK birth cohort. European 
journal of epidemiology, doi:10.1007/s10654-018-0364-1 (2018). 

39 Dowd, J. B., Simanek, A. M. & Aiello, A. E. Socio-economic status, cortisol and 
allostatic load: a review of the literature. International journal of epidemiology 38, 
1297-1309, doi:10.1093/ije/dyp277 (2009). 

40 Horvath, S. et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary 
heart disease. Genome Biology 17, 0-22, doi:10.1186/s13059-016-1030-0 (2016). 

41 Belsky, D. W. et al. Telomere, epigenetic clock, and biomarker-composite 
quantifications of biological aging: Do they measure the same thing? bioRxiv, 
071373-071373, doi:10.1101/071373 (2016). 

42 De Jager, P. L. et al. A genome-wide scan for common variants affecting the rate of 
age-related cognitive decline. Neurobiology of aging 33, 1017.e1011-1015, 
doi:10.1016/j.neurobiolaging.2011.09.033 (2012). 

43 Marioni, R. E. et al. GWAS on family history of Alzheimer's disease. Translational 
psychiatry 8, 99, doi:10.1038/s41398-018-0150-6 (2018). 

44 van der Harst, P. & Verweij, N. Identification of 64 Novel Genetic Loci Provides an 
Expanded View on the Genetic Architecture of Coronary Artery Disease. Circulation 
research 122, 433-443, doi:10.1161/circresaha.117.312086 (2018). 

45 Akiyama, M. et al. Genome-wide association study identifies 112 new loci for body 
mass index in the Japanese population. Nature genetics 49, 1458-1467, 
doi:10.1038/ng.3951 (2017). 

46 Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for 
anthropometric traits and provides insights into genetic architecture. Nature genetics 
45, 501-512, doi:10.1038/ng.2606 (2013). 

47 Zhao, L. G. et al. Fish consumption and all-cause mortality: a meta-analysis of cohort 
studies. European journal of clinical nutrition 70, 155-161, doi:10.1038/ejcn.2015.72 
(2016). 

48 Li, S. et al. Predicting Network Activity from High Throughput Metabolomics. PLOS 
Computational Biology 9, e1003123, doi:10.1371/journal.pcbi.1003123 (2013). 

49 Moffitt, T. E., Belsky, D. W., Danese, A., Poulton, R. & Caspi, A. The Longitudinal 
Study of Aging in Human Young Adults: Knowledge Gaps and Research Agenda. 
The journals of gerontology. Series A, Biological sciences and medical sciences 72, 
210-215, doi:10.1093/gerona/glw191 (2017). 

50 Elliott, P. et al. The Airwave Health Monitoring Study of police officers and staff in 
Great Britain: Rationale, design and methods. Environmental research 134C, 280-
285, doi:10.1016/j.envres.2014.07.025 (2014). 

51 The IPAQ group. International Physical Activity Questionnaire, 
<http://www.ipaq.ki.se/> (2016). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/411603doi: bioRxiv preprint 

https://doi.org/10.1101/411603
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: validity of a brief depression 
severity measure. Journal of general internal medicine 16, 606-613 (2001). 

53 Zigmond, A. S. & Snaith, R. P. The hospital anxiety and depression scale. Acta 
psychiatrica Scandinavica 67, 361-370 (1983). 

54 Karasek, R. et al. The Job Content Questionnaire (JCQ): an instrument for 
internationally comparative assessments of psychosocial job characteristics. Journal 
of occupational health psychology 3, 322-355 (1998). 

55 Vercoulen, J. H. et al. Dimensional assessment of chronic fatigue syndrome. Journal 
of psychosomatic research 38, 383-392 (1994). 

56 Brewin, C. R. et al. Brief screening instrument for post-traumatic stress disorder. The 
British journal of psychiatry : the journal of mental science 181, 158-162 (2002). 

57 Gibson, R. et al. Dietary assessment of British police force employees: a description 
of diet record coding procedures and cross-sectional evaluation of dietary energy 
intake reporting (The Airwave Health Monitoring Study). BMJ open 7, e012927, 
doi:10.1136/bmjopen-2016-012927 (2017). 

58 Fung, T. T. et al. Adherence to a DASH-style diet and risk of coronary heart disease 
and stroke in women. Archives of internal medicine 168, 713-720, 
doi:10.1001/archinte.168.7.713 (2008). 

59 Trichopoulou, A., Costacou, T., Bamia, C. & Trichopoulos, D. Adherence to a 
Mediterranean diet and survival in a Greek population. The New England journal of 
medicine 348, 2599-2608, doi:10.1056/NEJMoa025039 (2003). 

60 Dona, A. C. et al. Precision high-throughput proton NMR spectroscopy of human 
urine, serum, and plasma for large-scale metabolic phenotyping. Anal Chem 86, 
9887-9894, doi:10.1021/ac5025039 (2014). 

61 Lewis, M. R. et al. Development and Application of Ultra-Performance Liquid 
Chromatography-TOF MS for Precision Large Scale Urinary Metabolic Phenotyping. 
Analytical Chemistry 88, 9004-9013, doi:10.1021/acs.analchem.6b01481 (2016). 

62 Sarafian, M. H. et al. Objective set of criteria for optimization of sample preparation 
procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra 
performance liquid chromatography-mass spectrometry. Anal Chem 86, 5766-5774, 
doi:10.1021/ac500317c (2014). 

63 Zelena, E. et al. Development of a robust and repeatable UPLC-MS method for the 
long-term metabolomic study of human serum. Anal Chem 81, 1357-1364, 
doi:10.1021/ac8019366 (2009). 

64 Parsons, H. M., Ludwig, C., Gunther, U. L. & Viant, M. R. Improved classification 
accuracy in 1- and 2-dimensional NMR metabolomics data using the variance 
stabilising generalised logarithm transformation. BMC bioinformatics 8, 234, 
doi:10.1186/1471-2105-8-234 (2007). 

65 Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. Journal 
of the Royal Statistical Society: Series B (Statistical Methodology) 67, 301-320, 
doi:doi:10.1111/j.1467-9868.2005.00503.x (2005). 

66 Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear 
Models via Coordinate Descent. Journal of statistical software 33, 1-22 (2010). 

67 Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic 
acids research 46, D608-d617, doi:10.1093/nar/gkx1089 (2018). 

68 Rantakallio, P. The longitudinal study of the northern Finland birth cohort of 1966. 
Paediatric and perinatal epidemiology 2, 59-88 (1988). 

69 Soininen, P., Kangas, A. J., Wurtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum 
nuclear magnetic resonance metabolomics in cardiovascular epidemiology and 
genetics. Circulation. Cardiovascular genetics 8, 192-206, 
doi:10.1161/circgenetics.114.000216 (2015). 

70 Chen, Y. A. et al. Discovery of cross-reactive probes and polymorphic CpGs in the 
Illumina Infinium HumanMethylation450 microarray. Epigenetics 8, 203-209, 
doi:10.4161/epi.23470 (2013). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/411603doi: bioRxiv preprint 

https://doi.org/10.1101/411603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables 
Table 1: Demographic and covariate information of participants with metabolomic 
data, and bivariate associations with metabolomic age acceleration 

   BIVARIATE ASSOCIATION 
WITH METABOLOMIC AGE 

ACCELERATION 

  N (%) or Mean (SD) β (95% CI) p value 

DEMOGRAPHIC AND NCD RISK FACTORS 

AGE years 41.24 (9.1) - - 

SEX Female 884 (39.5) - - 

 Male 1354 (60.5) -0.01 (-0.26, 0.24) 0.94 

MARITAL STATUS Married/cohabiting 1751 (80.2) - - 

 other 431 (19.8) 0.11 (-0.2, 0.41) 0.5 

ETHNICITY White 2181 (97.5) - - 

 other 56 (2.5) -0.37 (-1.14, 0.4) 0.35 

BODY MASS INDEX <25 731 (32.7) - - 

 >=25 & < 30 (overweight) 1041 (46.5) 0.5 (0.23, 0.77) 0.00035 

 >=30 (obese) 466 (20.8) 1.01 (0.67, 1.34) 4.6E-09 

DIABETIC STATUS Normal 2157 (96.4) - - 

 Diabetic 80 (3.6) 0.78 (0.13, 1.42) 0.019 

HYPERTENSION No 1540 (68.8) - - 

 Yes 697 (31.2) 0.2 (-0.06, 0.46) 0.13 

INCOME High 879 (39.4) - - 

 Medium 812 (36.4) 0.26 (-0.01, 0.54) 0.062 

 Low 538 (24.1) 0.2 (-0.11, 0.51) 0.2 

EDUCATION LEVEL High 622 (27.8) - - 

 Medium 710 (31.7) 0.22 (-0.09, 0.53) 0.16 

 Low 906 (40.5) 0.12 (-0.18, 0.41) 0.44 

ALCOHOL 
CONSUMPTION 

None 174 (7.8) - - 

 Moderate 1876 (83.9) 0.13 (-0.32, 0.58) 0.57 

 Heavy 187 (8.4) 1.02 (0.42, 1.62) 0.00085 

SMOKING Non-smoker 1539 (68.8) - - 

 Former smoker 477 (21.3) 0.41 (0.11, 0.7) 0.0077 

 Current smoker 221 (9.9) -0.23 (-0.64, 0.18) 0.28 

PHYSICAL 
ACTIVITY 

High 1305 (58.3) - - 

 Moderate 585 (26.1) -0.21 (-0.5, 0.07) 0.14 

 Low 348 (15.5) 0.21 (-0.13, 0.56) 0.23 

PSYCHOLOGICAL FACTORS 

DEPRESSION 
DIAGNOSIS 

Normal 1545 (69.1) - - 

 Minimal symptoms 501 (22.4) 0.45 (0.16, 0.74) 0.0023 

 Depression 191 (8.5) 0.91 (0.47, 1.34) 0.00004
5 

ANXIETY 
DIAGNOSIS 

Normal 1733 (79) - - 

 Borderline 274 (12.5) 0.2 (-0.17, 0.56) 0.3 

 Anxiety case 188 (8.6) 0.52 (0.09, 0.96) 0.019 
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SUBJECTIVE 
FATIGUE 

Low 620 (27.7) - - 

 Medium 685 (30.6) 0.1 (-0.21, 0.42) 0.52 

 High 930 (41.6) 0 (-0.29, 0.3) 0.99 

JOB STRAIN No 1701 (76) - - 

 Yes 536 (24) -0.04 (-0.33, 0.24) 0.76 

EXPERIENCED 
TRAUMA IN LAST 6 

MONTHS 

No 1896 (84.7) - - 

 Yes, without PTSD 261 (11.7) 0.14 (-0.24, 0.51) 0.47 

 Yes, with PTSD 81 (3.6) 0.42 (-0.22, 1.07) 0.2 

DIETARY VARIABLES 

FISH 
CONSUMPTION 

None 541 (28.6) - - 

 Medium 697 (36.8) 0.25 (-0.08, 0.58) 0.14 

 High 654 (34.6) 0.51 (0.17, 0.84) 0.0029 

FRUIT 
CONSUMPTION 

Low 634 (33.5) - - 

 Medium 637 (33.7) 0.11 (-0.22, 0.43) 0.51 

 High 621 (32.8) 0.11 (-0.21, 0.44) 0.5 

RED MEAT 
CONSUMPTION 

Low 580 (30.7) - - 

 Medium 704 (37.2) 0.21 (-0.11, 0.54) 0.2 

 High 608 (32.1) 0.12 (-0.22, 0.45) 0.49 

VEGETABLE 
CONSUMPTION 

Low 23 (1.2) - - 

 Medium 627 (33.1) 0.17 (-0.16, 0.5) 0.31 

 High 617 (32.6) 0.08 (-0.24, 0.41) 0.61 

WHOLE GRAIN 
CONSUMPTION 

Low 648 (34.2) - - 

 Medium 604 (31.9) 0.23 (-0.1, 0.56) 0.17 

 High 661 (34.9) 0.17 (-0.15, 0.49) 0.3 

DASH SCORE <20 (least healthy) 344 (18.2) - - 

 ≥20 and <23 357 (18.9) 0.54 (0.1, 0.97) 0.015 

 ≥23 and <25 297 (15.7) 0.18 (-0.28, 0.63) 0.45 

 ≥25 and <28 396 (20.9) 0.67 (0.24, 1.09) 0.002 

 > 28 (most healthy) 498 (26.3) 0.23 (-0.17, 0.64) 0.26 

MEDITERRANEAN 
DIET SCORE 

continuous (1-10) 4.73 (1.82) -0.03 (-0.11, 0.04) 0.35 

CLINICAL BIOMARKERS 

SYSTOLIC BLOOD 
PRESSURE 

mmHg 130.85 (15.21) 0.01 (0, 0.01) 0.082 

DIASTOLIC BLOOD 
PRESSURE 

mmHg 79.67 (10.1) 0.01 (-0.01, 0.02) 0.28 

PULSE beats/minute 70.37 (11.44) 0 (-0.01, 0.01) 0.76 

FIBRINOGEN g/L 3.87 (0.88) 0.02 (-0.12, 0.16) 0.75 

PROTHROMBIN 
TIME 

seconds 13.64 (1.41) -0.08 (-0.17, 0) 0.058 

C-REACTIVE 
PROTEIN 

mg/l 1.92 (3.1) 0.02 (-0.02, 0.06) 0.4 

CREATININE µmol / L 92.35 (12.73) 0.01 (0, 0.02) 0.017 

TOTAL 
CHOLESTEROL 

mmol/l 5.25 (1.01) 0.41 (0.29, 0.53) 9.6E-12 

HIGH DENSITY 
LIPOPROTEIN 

mmol/L 1.5 (0.39) 0.06 (-0.24, 0.37) 0.68 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/411603doi: bioRxiv preprint 

https://doi.org/10.1101/411603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Γ-GLUTAMYL 
TRANSFERASE 

U/L 31.35 (24.06) 0.01 (0.01, 0.02) 0.00001
7 

APOLIPOPROTEIN 
A 

g/L 1.35 (0.3) -0.14 (-0.54, 0.25) 0.48 

APOLIPOPROTEIN 
B 

g/L 0.93 (0.23) 1.55 (1.04, 2.07) 3.9E-09 

% GLYCATED 
HAEMOGLOBIN 

% 5.63 (0.48) 0.32 (0.07, 0.57) 0.013 

UREA µmol / L 5.04 (1.17) 0.08 (-0.02, 0.18) 0.12 
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Table 2: Significantly enriched metabolic pathways among metabolomic age 
predictors 

PATHWAYS OVERLAP 
SIZE 

PATHWAY 
SIZE P-VALUE 

VITAMIN E METABOLISM 15 37 0.00128 
TRYPTOPHAN METABOLISM 23 69 0.00165 

COA CATABOLISM 4 6 0.00255 
UREA CYCLE/AMINO GROUP METABOLISM 17 52 0.0027 

LYSINE METABOLISM 10 29 0.00452 
CARNITINE SHUTTLE 11 33 0.00476 

VITAMIN B5 - COA BIOSYNTHESIS FROM 
PANTOTHENATE 5 11 0.00492 

BIOPTERIN METABOLISM 6 15 0.00563 
DRUG METABOLISM - CYTOCHROME P450 15 52 0.00942 

TYROSINE METABOLISM 24 91 0.0146 
ASPARTATE AND ASPARAGINE METABOLISM 18 71 0.03215 
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Table 3: Validation of selected metabolomic age predictors in the Northern Finnish 
Birth Cohort 

PLATFORM FEATURE 
NAME MOLECULE 

SD 
CHANGE 
IN AGE 

MODEL IN 
AIRWAVE 

MEAN 
CHANGE 
FROM 31 

TO 46 
YEARS IN 

NFBC 
(SD) 

P 
VALUE 

IN NFBC 

 
U_RPOS 

1.49_154.0
844m/z 

L-Leucine -0.24 -0.05 
(0.19) 

2.20E-
12 

U_RPOS 1.10_147.0
285m/z Citrate 0.20 0.11 (0.21) 

2.20E-
12 

S_BILISA IDPL 
Phospoholipids in intermediate density 

lipoproteins -0.20 0.09 (0.23) 1 

S_BILISA HDTG 
Triglycerides in high density 

lipoproteins 0.20 0.01 (0.36) 0.08 

S_BILISA L3TG Triglycerides in low density lipoproteins 
(medium size  subclass) 0.12 0.01 (0.46) 2.20E-

12 

S_BILISA V6TG Triglycerides in very low density  
lipoproteins (smallest size 6 subclass) -0.37 -0.02 

(0.35) 0.004 

S_BILISA V6CH Cholesterol in very low density 
lipoproteins (smallest size 6 subclass) -0.44 -0.03 

(0.23) 
9.60E-

10 

S_BILISA TPA1 Apo-A1 in total plasma 0.31 0.05 (0.15) 2.20E-
12 

S_BILISA H1TG Triglycerides in high density  
lipoproteins (largest size 1 subclass) 0.20 0.02 (0.46) 5.00E-

02 
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Table 4: Associations between longevity-associated genotypes and age acceleration 
scores  

RS 
NUMBER GENE 

UK 
BIOBANK 
EFFECT  

(MONTHS 
LIFE LOST) 

GENO
-

TYPE* 

METABOLOMIC AA DNA METHYLATION AA 

N (%) Mean AA 
(SD) 

p 
value N ( %) Mean AA 

(SD) 
p 

value 

RS12117661 BSND 5.6 

CC 847 (55.9) 0.04 (3) 

0.77 

587 
(55.1) 

0.09 (3.56) 

0.49 CG 582 (38.4) 0.02 (2.9) 
413 

(38.8) 
-0.04 (3.16) 

GG 87 (5.7) 
-0.09 
(3.02) 

65 (6.1) -0.13 (3.71) 

RS646776 
CELS

R2 -1.1 

CC 72 (4.7) 
-0.21 
(3.48) 

0.91 

46 (4.3) 0.13 (3.38) 

0.95 CT 562 (37.1) 0.07 (3.03) 
387 

(36.3) 0.01 (3.42) 

TT 882 (58.2) 0.01 (2.87) 
632 

(59.3) 
0.03 (3.43) 

RS2352974 TRAIP -3.2 

CC 373 (24.6) -0.05 
(3.22) 

0.53 

265 
(24.9) 

0.09 (3.41) 

0.08 CT 783 (51.6) 0.03 (2.86) 544 
(51.1) 

-0.28 (3.46) 

TT 360 (23.7) 0.08 (2.9) 256 (24) 0.61 (3.27) 

RS3936510 
C5OR
F67 -3.4 

GG 977 (64.4) 0.02 (2.79) 

0.98 

667 
(62.6) 

-0.06 (3.47) 

0.26 GT 480 (31.7) 0.05 (3.3) 
353 

(33.1) 
0.13 (3.36) 

TT 59 (3.9) 
-0.07 
(2.77) 

45 (4.2) 0.4 (3.11) 

RS6904450 
FTH1P

S -6.9 

AA 
1033 
(68.1) 

0 (3.02) 

1 

713 
(66.9) 

0.17 (3.41) 

0.05 AT 439 (29) 0.14 (2.81) 
324 

(30.4) 
-0.28 (3.43) 

TT 44 (2.9) 
-0.57 
(3.11) 

28 (2.6) -0.27 (3.43) 

RS10455872 LPA -6.1 

AA 1289 (85) 0.02 (3.02) 

0.95 

909 
(85.4) 

0.03 (3.47) 

0.59 AG 220 (14.5) 0.14 (2.55) 151 
(14.2) 

0.05 (3.12) 

GG 7 (0.5) 
-1.98 
(3.01) 5 (0.5) -2.66 (3.03) 

RS1333045 
CDKN
2BAS -3.7 

TT 354 (23.4) 0 (3.39) 

0.64 

252 
(23.7) 0.08 (3.47) 

0.82 CC 767 (50.6) -0.01 (2.9) 
551 

(51.7) 
-0.06 (3.44) 

CC 395 (26.1) 0.1 (2.66) 
262 

(24.6) 
0.15 (3.34) 

RS951266 
CHRN

A5 -5.7 

GG 693 (45.7) 0.05 (2.86) 

0.66 

493 
(46.3) 

-0.02 (3.39) 

0.31 GA 657 (43.3) 
-0.09 
(3.09) 

456 
(42.8) 

-0.05 (3.39) 

AA 166 (10.9) 0.35 (2.84) 
116 

(10.9) 
0.49 (3.65) 

RS2008514 
NPIPB

8 -1.1 

GG 539 (35.6) 
-0.06 
(2.68) 

0.67 

391 
(36.7) 

0.03 (3.61) 

0.86 GA 711 (46.9) 0.11 (3.1) 
497 

(46.7) 
-0.01 (3.35) 

AA 266 (17.5) 
-0.02 
(3.12) 

177 
(16.6) 

0.11 (3.2) 

RS9939973 FTO -1.1 

GG 501 (33) 
-0.12 
(2.88) 

0.052 

370 
(34.7) 0.09 (3.11) 

0.85 GA 728 (48) 0.01 (2.9) 
506 

(47.5) -0.04 (3.47) 

AA 287 (18.9) 0.32 (3.22) 189 
(17.7) 

0.08 (3.87) 

RS4420638 
APOC

1 -4.8 

AA 970 (64) -0.04 
(2.88) 

0.054 

681 
(63.9) 

-0.14 (3.23) 

0.03 AG 490 (32.3) 0.02 (2.86) 
342 

(32.1) 
0.28 (3.8) 

GG 56 (3.7) 1.16 (4.57) 42 (3.9) 0.59 (3.05) 
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*Ordered by increasing dosage of effect allele  
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Table 5: Adjusted associations between disease risk factors and age acceleration 
scores 

  ADJUSTED ASSOCIATIONS 
WITH METABOLOMIC AGE 

ACCELERATION 

ADJUSTED ASSOCIATIONS 
WITH DNA METHYLATION 

AGE ACCELERATION 
  β (95% CI) p value β (95% CI) p value 

DIABETIC STATUS Normal - - - - 

 Diabetic 0.34 (-0.41, 1.1) 0.37 0.54 (-0.75, 1.83) 0.41 

HYPERTENSION No - - - - 

 Yes -0.05 (-0.36, 0.25) 0.73 -0.12 (-0.66, 0.42) 0.66 

INCOME High - - - - 

 Medium 0.36 (0.06, 0.67) 0.019 -0.01 (-0.55, 0.54) 0.98 

 Low 0.35 (0.01, 0.69) 0.042 0.50 (-0.10, 1.10) 0.10 

ALCOHOL 
CONSUMPTION 

None - - - - 

 Moderate 0.08 (-0.42, 0.58) 0.75 0.67 (-0.28, 1.61) 0.17 

 Heavy 0.91 (0.23, 1.58) 0.008 1.37 (0.09, 2.64) 0.036 

BMI <25 - - - - 

 >=25 & < 30 
(overweight) 

0.57 (0.26, 0.89) 0.00042 0.04 (-0.51, 0.6) 0.88 

 >=30 (obese) 0.97 (0.57, 1.37) 2.1E-06 0.11 (-0.61, 0.82) 0.77 

SMOKING Non-smoker - - - - 

 Former smoker 0.29 (-0.04, 0.62) 0.086 -0.13 (-0.69, 0.42) 0.64 

 Current smoker -0.32 (-0.77, 0.13) 0.17 -0.6 (-1.41, 0.2) 0.14 

PHYSICAL ACTIVITY High - - - - 

 Moderate -0.28 (-0.59, 0.03) 0.074 -0.28 (-0.83, 0.27) 0.32 

 Low 0.22 (-0.16, 0.6) 0.26 -0.11 (-0.77, 0.56) 0.75 

 DEPRESSION 
DIAGNOSIS 

Normal - - - - 

 Minimal 
symptoms 

0.38 (0.05, 0.7) 0.023 0.20 (-0.38, 0.78) 0.5 

 Depression 0.74 (0.26, 1.22) 0.0024 0.14 (-0.71, 0.99) 0.75 

 ANXIETY DIAGNOSIS Normal - - - - 

 Borderline 0.11 (-0.29, 0.51) 0.59 0.03 (-0.67, 0.74) 0.92 

 Anxiety case 0.49 (-0.01, 0.98) 0.055 0.92 (0.03, 1.8) 0.043 

EXPERIENCED 
TRAUMA IN LAST 6 

MONTHS 

No - - - - 

 Yes, without 
PTSD 

0.29 (-0.11, 0.7) 0.16 -0.22 (-0.9, 0.45) 0.51 

 Yes, with PTSD 0.59 (-0.13, 1.31) 0.11 2.15 (0.31, 4) 0.022 

SUBJECTIVE 
FATIGUE 

Low - - - - 

 Medium 0.31 (-0.03, 0.66) 0.074 -0.28 (-0.89, 0.33) 0.37 

 High 0.11 (-0.21, 0.44) 0.5 -0.08 (-0.66, 0.5) 0.78 

JOB STRAIN No - - - - 

 Yes 0.05 (-0.26, 0.35) 0.77 0.39 (-0.16, 0.94) 0.17 

*Models adjusted for sex, ethnicity, study centre, income, hypertension, diabetes, BMI, 
smoking, alcohol intake, physical activity, DASH score and fish consumption 
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Figures 

 

Figure 1: Summary of metabolomic age prediction model. A: Predicted age plotted 
against chronological age in training set. Pearson’s correlation coefficient (r) is 
shown. B: Predicted age plotted against chronological age in test set. Pearson’s 
correlation coefficient (r) is shown  
 

Figure 2: Relationships between different age measures. A. DNA methylation age 
plotted against chronological age. B: metabolic age plotted against DNA methylation 
age. C. MetAA plotted against DNAmethAA. Pearson’s correlation coefficients (r) are 
shown 
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