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Abstract

GABAergic interneurons play an important role in shaping the activity of
excitatory pyramidal cells (PCs). How the various inhibitory cell types contribute
to neuronal information processing, however, is not resolved. Here, we propose a
functional role for a widespread network motif consisting of parvalbumin- (PV),
somatostatin- (SOM) and vasoactive intestinal peptide (VIP)-expressing interneu-
rons. Following the idea that PV and SOM interneurons control the distribution
of somatic and dendritic inhibition onto PCs, we suggest that mutual inhibition
between VIP and SOM cells translates weak inputs to VIP interneurons into large
changes of somato-dendritic inhibition of PCs. Using a computational model,
we show that the neuronal and synaptic properties of the circuit support this
hypothesis. Moreover, we show that the SOM-VIP motif allows transient inputs to
persistently switch the circuit between two processing modes, in which top-down
inputs onto apical dendrites of PCs are either integrated or canceled.

1 Introduction

GABAergic interneurons are essential for maintaining normal brain activity (Isaacson
and Scanziani, 2011; Maŕın, 2012; Tremblay et al., 2016), although they are outnumbered
by excitatory cells throughout the brain (Meyer et al., 2011). They present a large
number of distinct types that differ in their anatomical, physiological and biophysical
properties (Markram et al., 2004; Gentet, 2012; Tremblay et al., 2016; Naka and Adesnik,
2016; Wamsley and Fishell, 2017). This has led to the hypothesis that individual types
are optimized to perform specific computations in neuronal microcircuits (Silberberg and
Markram, 2007; Adesnik et al., 2012; Kvitsiani et al., 2013; Hangya et al., 2014; Kepecs
and Fishell, 2014; Tremblay et al., 2016). The functional roles of these interneuron
classes and how they are supported by their individual characteristics, however, are still
largely unknown.

One conspicuous difference between interneuron types is the location of their synapses
onto their postsynaptic targets: Parvalbumin-expressing (PV) interneurons preferably
inhibit the perisomatic regions and the basal dendrites of excitatory pyramidal cells
(PCs), as well as other PV neurons (Rudy et al., 2011; Avermann et al., 2012; Pfeffer
et al., 2013; Hu et al., 2014; Jiang et al., 2015; Tremblay et al., 2016). In contrast,
somatostatin-expressing (SOM) neurons mainly target the apical dendrites of PCs, and
strongly inhibit other interneuron types (Pfeffer et al., 2013; Jiang et al., 2015; Yavorska
and Wehr, 2016; Urban-Ciecko and Barth, 2016). A third group expressing vasoactive
intestinal peptide (VIP) mainly connects to the dendrite-targeting SOM neurons. In
addition to these distinct connectivity motifs, different interneuron types also differ
in their intrinsic and synaptic properties. For instance, PV neurons hardly exhibit
spike-frequency adaptation (Rudy et al., 2011; Hu et al., 2014; Tremblay et al., 2016), a
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neuronal characteristic that has been observed both for SOM (Urban-Ciecko and Barth,
2016; Tremblay et al., 2016) and VIP cells (Tremblay et al., 2016).

As a consequence of the interneuron-specific, spatially distinct distribution of synapses
onto PCs and the direct connection from SOM to PV neurons, it has been hypothesized
that the SOM-PV motif plays a key role in the redistribution of somatic and dendritic
inhibition (Pouille and Scanziani, 2004; Pfeffer et al., 2013). Inhibiting specific com-
partments of PCs may have wide-ranging functional and computational consequences,
because their somata and dendrites are the target of two distinct information streams.
Top-down input originating from higher cortical areas and non-specific thalamocortical
pathways (Felleman and Van, 1991; Cauller et al., 1998; Diamond, 1995) selectively aims
at apical dendrites (Larkum, 2013). At the same time, feedforward bottom-up input
from lower cortical areas and the core thalamic nuclei arrives at perisomatic regions and
basal dendrites (Larkum, 2013). While top-down feedback is associated with internal
predictions, bottom-up connections are thought to carry information from the external
world (Larkum, 2013). Hence, control of the different input streams – and consequently,
information processing modes – is of fundamental importance.

Here, we hypothesize that a different subnetwork consisting of SOM and VIP neurons
is optimized to efficiently control the PV/SOM-mediated redistribution of somatic and
dendritic inhibition. In order to support our hypothesis, we perform mathematical
analyses and extensive simulations of a microcircuit consisting of these three interneuron
types and excitatory PCs. We show that mutual inhibition between SOM and VIP cells
leads to an amplification of weak signals targeting VIP neurons, which in the extreme
case of strong mutual inhibition turns the SOM-VIP motif into a switched-mode amplifier.
Furthermore, we reveal how frequently reported connectivity, neuronal and synaptic
properties underpin the amplification abilities of the microcircuit, such as the lack of
recurrent connections among both SOM and VIP cells, their prominent spike-frequency
adaptation and short-term facilitation. Moreover, we show that the circuit can display
slow oscillations ranging from Delta to Alpha bands as a consequence of spike-frequency
adaptation and strong mutual inhibition in SOM and VIP neurons.

Functionally, strong mutual inhibition between SOM and VIP neurons enables a
switch between two distinct processing modes in which top-down inputs arriving at the
apical dendrites of PCs are either integrated or obliterated via VIP cell modulation. The
transition between these operating modes can be triggered by either weak and persistent
input or strong and transient pulses.

2 Results

We study a rate-based network model consisting of excitatory PC and inhibitory PV,
SOM and VIP cells (see Figure 1 A). The ratio of excitatory and inhibitory neurons
and the strength and probability of their connections are constrained by experimental
findings (Bartley et al., 2008; Fino and Yuste, 2011; Packer and Yuste, 2011; Avermann
et al., 2012; Pfeffer et al., 2013; Lee et al., 2013; Pi et al., 2013; Jiang et al., 2015;
Jouhanneau et al., 2015; Pala and Petersen, 2015; Urban-Ciecko et al., 2015, see Tables
1-3 in Models and Methods). While GABAergic neurons are described by point neuron
models (Wilson and Cowan, 1972), PCs are modeled as two compartments, to capture
both somatic activity and active processes in their apical dendrites (Murayama et al.,
2009, see Models and Methods).

All neurons receive background input to ensure similar firing rates as observed in
vivo (see e.g. Gentet, 2012; Pala and Petersen, 2015; Urban-Ciecko and Barth, 2016).
PC input is divided into two separate information streams: top-down feedback arriving
at the apical dendrite and bottom-up input targeting the perisomatic region.

VIP cells receive an additional, modulatory input that regulates the distribution
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Figure 1. Amplifying the redistribution of inhibition along PC neurons by
the SOM-VIP motif.
(A) Connectivity of the circuit model, inspired by experimentally observed connectivity
of excitatory pyramidal cells (PCs) and inhibitory PV, SOM and VIP neurons (see main
text). VIP neurons receive an additional, modulatory input. (B) Population rates of
all neuron types as a function of the modulatory input onto VIP cells. The PC rate
follows a sigmoid function, the slope of which characterizes the gain of the redistribution
of somato-dendritic inhibition upon a change in the modulatory input. (C) Reference
network without VIP neurons, in which modulatory input targets SOM neurons instead.
(D) The firing rate curve of the PCs in the full network (A) exhibit a larger slope than
in the reference network without VIP neurons (C). Parameters (A-D): Mutual inhibition
strength ŵ = 0.7, adaptation strength b = 0.2, initial synaptic efficacy Us = 0.4.

of somatic and dendritic inhibition onto PCs as follows (see Figure 1 B): When the
modulatory VIP input is sufficiently small or even inhibitory, VIP neurons remain
inactive. As this relieves the SOM neurons from VIP inhibition, they can in turn inhibit
the apical dendrites of the PCs and thereby suppress potential top-down inputs. At the
same time, the amount of somatic inhibition in PCs is reduced, because SOM cells inhibit
PV neurons. Once VIP cells are fully deactivated, further reducing the modulatory
input has no effect on the PCs, as the modulatory input acts through VIP neurons only
(Figure 1 A). The opposite scenario is a strong and excitatory modulatory input that
renders VIP cells sufficiently active to silence SOM neurons. Silencing SOM cells removes
dendritic inhibition, so that PCs are receptive to both bottom-up input and top-down
feedback. In turn, the perisomatic compartments of PCs experience more inhibition,
because PV neurons are released from SOM neuron inhibition. Once the VIP cells
are sufficiently active to silence SOM neurons, further increasing the modulatory input
has no effect on the PCs, because VIP cells act through SOM neurons only (Figure 1
A). VIP neurons then effectively decouple from the microcircuit. In between these two
extremes of inactive VIP or SOM neurons, respectively, the ratio of somatic and dendritic
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inhibition can be controlled by adjusting the modulatory signal. This is reflected by the
relationship between modulatory VIP input and PC activity, which resembles a sigmoid
function (Figure 1 B), the slope of which characterizes the gain of the redistribution of
somatic and dendritic inhibition upon a change in the modulatory input.

In principle, a similar somato-dendritic redistribution of inhibition could also be
achieved by modulatory input directly to SOM neurons. To understand the role of VIP
neurons in the circuit, we considered a ’reference network’ without VIP neurons (Figure
1 C), in which the modulatory input targets SOM cells instead (with inverted sign for
comparability). We found that in this reference network, the slope of the corresponding
sigmoid function decreases (Figure 1 D) for a large parameter range, indicating that
inputs onto VIP neurons in the SOM-VIP motif are more effective modulators than
inputs onto SOM neurons. This observation led us to the hypothesis that the SOM-VIP
motif serves to translate weak signals onto VIP neurons into large changes of the somato-
dendritic distribution of inhibition. We therefore wondered whether the connectivity
and the neuronal and synaptic properties of the circuit are optimized to support this
function, and which computational purpose the circuit could fulfill. To address these
questions, computational modeling is well suited, because it allows to study the effect of
arbitrary manipulations and variations of the circuit.

Mutual inhibition between SOM and VIP neurons creates an
amplifier

To gain a deeper understanding of the circuit mechanisms and the interplay of the
interneuron types, we next studied a simplified microcircuit consisting only of the three
interneuron classes expressing PV, SOM and VIP (Figure 2 A, left). The advantage of
this simpler model is that it bypasses the nonlinearities of dendritic integration in PCs,
thereby allowing an in-depth mathematical analysis of the parameter dependences of the
network. All results are later verified in the full circuit. In the simplified network, the
local PC input onto the GABAergic interneurons is replaced by additional excitatory
inputs to maintain realistic firing rates. Compartment-specific inhibition onto PCs is
represented by the population firing rate of the respective interneuron type: the rate of
SOM neurons reflects the strength of dendritic inhibition and the rate of PV neurons
the strength of somatic inhibition. Similar to the PC rate in the full microcircuit,
the difference of the PV and SOM neuron rates shows a sigmoidal dependence on the
modulatory VIP cell input (Figure 2 B), whose slope quantifies the system’s sensitivity
to changes in the modulatory input.

Again, we compared the circuit to a reference network without VIP neurons (Figure 2
A, right), in which modulatory inputs impinged directly onto the SOM neurons. In
line with the full model, we observed that the removal of the VIP neurons led to a
prominent reduction of the sensitivity to modulatory inputs, i.e., a reduced slope of the
somato-dendritic difference of inhibition (cf. Figure 1 D and Figure 2 B). To quantify
the effect of the SOM-VIP motif, we introduced an amplification index A, defined as
the logarithm of the ratio of slopes in the two networks with and without VIP neurons
(cf. Figure 2 B solid and dashed lines, and see Models and Methods for more details).
An amplification index larger than zero indicates that the interneuron network amplifies
weak input onto VIP neurons in comparison to the reference network.

The simplified circuit allows to derive a mathematical expression for the amplification
index, which shows that the amount of amplification depends critically on two circuit
properties (see Models and Methods for a detailed derivation). Firstly, it increases with
the effective VIP→SOM connection strength, reflecting the monosynaptic effect of VIP
inputs onto SOM neurons. Secondly, it depends in a highly nonlinear way on the product
of the connection strengths from SOM→VIP and VIP→SOM. This second dependence
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Figure 2. Mutual inhibition between SOM and VIP neurons enhances an
amplification of weak input.
(A) Reduced network of inhibitory PV, SOM and VIP neurons that allows a mathematical
analysis, and a corresponding reference network without VIP neurons. (B) The difference
of PV and SOM neuron rates (somatic and dendritic inhibition, respectively) follows
a sigmoid function, the slope of which characterizes the gain of the redistribution of
somato-dendritic inhibition upon a change in the modulatory input. The difference of
PV and SOM neuron rates in the full interneuron network (A, left) exhibits a larger
slope than a corresponding reference network without VIP neurons (A, right) (mutual
inhibition strength ŵ = 0.9). (C) Amplification index depends strongly on the mutual
inhibition strength. Positive values denote an amplification, negative values indicate an
attenuation. An infinitely large amplification index corresponds to a winner-take-all
(WTA) regime. When the connections from SOM to VIP neurons are knocked-out (red),
the amplification index rises slowly and stays in the attenuation regime for a large range
of total mutual inhibition strengths.

is a consequence of the mutual inhibition between SOM and VIP neurons: an increase
in VIP firing rate not only inhibits SOM neurons, but also further disinhibits the VIP
neurons themselves, which in turn increase their rate, further inhibiting the SOM neurons
etc.. As this mutual inhibition approaches a critical strength, the amplification index
increases rapidly. Beyond the critical strength, the circuit transitions into a competitive
winner-take-all regime, in which either the SOM or the VIP neurons are silenced by the
other population. Our mathematical analysis is confirmed by simulations, which also
show a rapid increase of the amplification index as the mutual inhibition between VIP
and SOM neurons increases (see Figure 2 C for symmetric mutual inhibition strengths,
and Figure S1 for asymmetric weights). Much stronger VIP→SOM connection strengths
are required to achieve an amplification (A > 0) when the back-projection SOM→VIP
is knocked out, effectively eliminating the mutual competition between VIP and SOM
neurons (red line in Figure 2 C). These results demonstrate that mutual inhibition is a
key player in the amplification of weak inputs onto VIP cells.

Connectivity and short-term plasticity support the amplification

If the SOM-VIP motif were to serve as an amplifier of weak modulatory signals, other
circuit properties should also support this function. A candidate mechanism that
would further enhance the competition between SOM and VIP is synaptic short-term
faciliation (STF). Although short-term plasticity between different types of GABAergic
interneurons has received limited attention, STF has indeed been demonstrated for
the mutual connections between SOM and VIP neurons (Karnani et al., 2016). We
therefore enhanced the network model by a Tsodyks-Markram type model of short-term
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Figure 3. Connectivity properties of the SOM-VIP motif support the am-
plification in the interneuron network.
(A) Network of inhibitory PV, SOM and VIP neurons with short-term facilitation (STF)
of SOM→VIP and VIP→SOM connections (left). STF increases the amplification index.
Smaller mutual inhibition strengths are sufficient to achieve an amplification index above
the amplification threshold A = 0 (right). STF parameters are equal for SOM and VIP
neurons: Us = 0.1 (strong STF), Us = 0.5 (weak STF), Us = 1 (no STF) and τf = 100
ms. (B) Network of inhibitory PV, SOM and VIP neurons with artificially introduced
recurrent connections among both SOM and VIP neurons (left). Recurrence leads to a
decrease of the amplification index (right). Recurrence strengths are equal for SOM and
VIP neurons. Mutual inhibition strength ŵ = 0.8.

plasticity (Tsodyks and Markram, 1997; Markram et al., 1998, see Models and Methods
for more details). For the sake of simplicity, SOM→VIP and VIP→SOM synapses had
equal facilitation parameters (Figure 3 A). The overall STF strength was varied by
changing the initial release probability, while adjusting the synaptic weight in order to
keep the initial postsynaptic response constant (see Models and Methods for further
details). As expected, STF causes an increase of the amplification index, such that
smaller mutual inhibition strengths are sufficient to achieve an amplification index above
the amplification threshold A = 0 (Figure 3 A).

In contrast to PV neurons, which show strong inhibitory connections onto other
PV cells (Pfeffer et al., 2013; Hu et al., 2014; Tremblay et al., 2016), SOM and VIP
neurons only very rarely inhibit other neurons of the same class (Pfeffer et al., 2013;
Jiang et al., 2015; Tremblay et al., 2016). To investigate whether this lack of recurrent
inhibition supports the amplification properties of the network, we artificially introduced
recurrent connections among both SOM and VIP neurons. We systematically varied their
strength, while keeping the strength of mutual inhibition between the two populations
constant. For simplicity, we considered a symmetric situation in which the strength of
the recurrent inhibition is the same among VIP and SOM neurons (see Figure 3 B), but
similar results are obtained in asymmetric situations (see Figure S2). We found that
recurrent connections among SOM and VIP neurons lead to a strong reduction of the
amplification index (Figure 3 B), even for relatively weak recurrent connections (see
Models and Methods for a mathematical analysis). The strongest amplification was
always observed for a connection strength of zero, that is, when recurrent inhibition is
absent.

In summary, connectivity properties like short-term facilitation and the absence of
recurrent connections among both VIP and SOM neurons support the effective translation
of small stimuli onto VIP cells into large changes of somato-dendritic inhibition.
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Spike-frequency adaptation introduces a frequency-selective am-
plification

Both SOM and VIP neurons show an absence of recurrent inhibition within the same
population, but they make use of a different negative feedback mechanism: spike-
frequency adaptation (SFA). SFA is a prominent feature observed in many cortical
neurons (La Camera et al., 2006; Tremblay et al., 2016). Upon stimulation, adapting
cells decrease their firing rate gradually, and consequently exhibit a difference between
steady-state and onset firing rate. SOM neurons feature salient SFA (Rudy et al., 2011;
Gentet, 2012; Tremblay et al., 2016; Urban-Ciecko and Barth, 2016; Wamsley and Fishell,
2017), whereas VIP neurons claim a broad spectrum from weak to strong adaptation.
To study the effect of SFA, we augmented the rate dynamics of SOM and VIP neurons
by an additional rate adaptation variable (see Models and Methods). For simplicity, we
again assumed the same adaptation parameters for SOM and VIP neurons.

While we expected both adaptation and recurrent inhibition to weaken the ampli-
fication, they differ with respect to the time scales on which they operate. Recurrent
inhibition acts on the rapid time scale of synaptic transmission (e.g, of 5 - 10 ms for
GABAA receptor-based transmission). In contrast, adaptation operates on a wide range
of time scales from tens to thousands of milliseconds (La Camera et al., 2006; Lundstrom
et al., 2008; Pozzorini et al., 2013). Consequently, adaptation allows a gradual transition
over time from amplification to attenuation.

To characterize the time dependence of the amplification properties, we performed
a frequency response analysis (Figure 4 A-B), by stimulating VIP neurons with oscil-
lating inputs of varying frequency. The difference of the population firing rates of PV
and SOM neurons – as a reflection of the somato-dendritic distribution of inhibition
– oscillates in response to this stimulation. The magnitude of this output oscillation,
normalized by the amplitude of the input oscillation yields a frequency-resolved measure
of amplification. We found that increasing recurrent inhibition among SOM and VIP
neurons systematically reduces the output amplitude across all frequencies (Figure 4
A), confirming the steady-state analysis (cf. Figure 3 B). In contrast, spike-frequency
adaptation introduces a prominent frequency selectivity: For low-frequency oscillations,
the output amplitude decreases with increasing adaptation strength. For high-frequency
oscillations, it increases (Figure 4 B-C). Furthermore, the circuit exhibits a preferred
frequency (resonance frequency), for which it yields a maximal response. Neuronal adap-
tation hence introduces a frequency-selective amplification that preferentially transmits
specific neuronal rhythms within the broad spectrum of oscillations in the brain (Buzsáki
and Draguhn, 2004).

Spike-frequency adaptation and recurrent inhibition also have distinguishable conse-
quences for the correlation structure of the interneuron network. Karnani et al. (2016)
demonstrated that both SOM and VIP neurons are cooperatively active as populations
rather than individually. We studied this co-activity by stimulating both interneuron
populations with shared and individual noise on top of a constant background input.
The shared noise between members of the same interneuron class introduced strong
correlations between both VIP/VIP and SOM/SOM neurons as described by Karnani
et al. (2016). We then studied how recurrent inhibition and adaptation differentially
affect the co-activity of the populations, quantified by the averaged pairwise correlation
coefficient. We found that recurrent inhibition strongly decreases the correlation between
members of the same interneuron class (Figure 4 D; Renart et al., 2010), while adaptation
introduces only a marginal reduction, and thereby preserves the high correlations seen
by Karnani et al. (2016).

As for any amplifier, it would be useful to allow a dynamic adjustment of the
amplification in the circuit. Very strong amplification would lead to small ranges of
effective modulatory signals and a rapid saturation of the system, and hence to potential
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Figure 4. spike-frequency adaptation enables frequency-selective amplifica-
tion and preserves co-activity.
(A) Frequency response analysis of the interneuron network with recurrent connections
among both SOM and VIP neurons. Increasing recurrence reduces the oscillation ampli-
tudes across all stimulation frequencies. (B) Same as in A, but with spike-frequency
adaptation instead of recurrence. The circuit yields a maximal response at a resonance
frequency. With increasing adaptation strength, this resonance frequency increases.
(C) The normalized amplitude decreases with increasing adaptation strength for low-
frequency oscillations, but increases for high-frequency oscillations (frequency-selective
amplification, cf. markers in (B)). (D) Neurons show stronger correlations (positive
or negative) with spike-frequency adaptation (left, upper panel) than with recurrent
inhibition among SOM and VIP neurons (left, lower panel). Mean SOM-SOM neuron
correlation is more sensitive to increasing recurrence strength than to adaptation strength
(right). (E) While strengthening mutual inhibition leads to an increase of the maximal
frequency-resolved measure of amplification, it does not change the resonance frequency
(top, adaptation strength b = 0.8). In contrast, increasing the adaptation strength allows
to adjust the resonance frequency, with a weak impact on the maximum of the oscillation
amplitude (bottom, recurrence strength ŵr = 0.8). (F) Schematic representation of both
separate ”knobs” (mutual inhibition and adaptation) and their independent control of
the amount and frequency-selectivity of the amplification. Parameter (A-E): Mutual
inhibition strength ŵ = 0.8.

distortions in the translation of the modulatory signal into somatic and dendritic
inhibition. Similarly, it could be beneficial to allow an adjustable frequency-based
selection of the modulatory input. A neuronal mechanism that is suitable to tune these
two properties could be a neuromodulatory control of circuit parameters (Hasselmo,
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1995). In simulations, we found that a strengthening of mutual inhibition increases the
overall amplification, while leaving the resonance frequency largely unaltered (Figure 4 E,
top). At the same time, changes of the adaptation strength allow to tune the resonance
frequency, while leaving the maximum of the frequency-resolved measure of amplification
largely unchanged (Figure 4 E, bottom). In summary, the circuit seems to display
separate ”knobs”, which offer an independent control of the amount and frequency-
selectivity of the amplification through separate neuromodulatory channels (Figure 4
F).

These results demonstrate that spike-frequency adaptation, though similar in its
steady-state properties to recurrent inhibition within SOM and VIP populations, enables
a frequency-selective amplification with well-separated target parameters for neuromod-
ulatory control.

The computational repertoire of the SOM-VIP motif

Our simulations indicate that the SOM-VIP subnetwork supports different computa-
tional functions, ranging from signal amplification and frequency selection to switching
behavior for strong mutual inhibition between the populations. To understand how these
computational states are determined by the parameters of the system, we ran extensive
simulations of the SOM-VIP motif alone, accompanied by mathematical analyses of a
linearized network without rate rectification.

We first investigated a network of VIP and SOM neurons that is consistent with
experimentally observed characteristics, i.e., with adaptation and inhibitory connections
exclusively between neurons of different type. Simulations reveal four operating modes
for such a network (Figure 5 A). For weak mutual inhibition, the two interneuron
populations can be active at the same time, and modulatory VIP signals are attenuated
(Figure 5 A, region a). As the inhibition between the two populations increases, the
amplification index increases and leads the circuit into an amplification domain (Figure 5
A, region b). Beyond a critical strength of mutual inhibition, the network then transitions
into a switch-like winner-take-all domain (Figure 5 A, regions c & d), in which one of the
two populations silences the other. Notably, this state comes in two variants: For weak
adaptation, the winning population silences the other permanently, or until an external
event switches the network to a different winner (Figure 5 A, region c). We will show
later that this allows transient VIP inputs to persistently switch the operating mode in
the full microcircuit. For strong adaptation, the network shows oscillatory switching
(Figure 5 A, region d), because adaptation gradually decreases the firing rate of the
winning interneuron population. This releases the other population from inhibition until
it can no longer be silenced and becomes the new winner and in turn starts to adapt. A
mathematical analysis of the linearized network predicts the parameter ranges of the
four computational states almost perfectly (see black lines in Figure 5 A, and Models
and Methods for more details). The observed oscillations comprise a wide spectrum of
frequencies that depend non-linearly on the strength and time constant of adaptation and
on the strength of mutual inhibition (Figure 5 B, see also Figure S3 and S4 for networks
with asymmetric adaptation parameters for SOM and VIP neurons). Deviations between
the frequencies observed in simulations and those predicted by the mathematical theory
are caused by the omission of the rate rectification in the theory. The four computational
states of the network are also observed when short-term plasticity is introduced into
the network, although the transition boundaries change such that the switch-like state
is reached for weaker mutual inhibition and the oscillatory switch requires stronger
adaptation (Figure 5 C).

Two inhibitory populations that mutually inhibit each other may well be a common
network motif in cortical circuits, and the absence of recurrent inhibitory connections
within the two populations – as observed in the SOM-VIP motif – may not always hold.
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Figure 5. Dynamical states of the SOM-VIP motif.
(A) Left: Bifurcation diagram reveals distinct operation modes: all interneurons are
active (divided into amplification (a) and attenuation regime (b)), a winner-take-all
(WTA) regime implementing a switch (c) and an oscillatory WTA regime leading to an
oscillating switch (d). Regime boundaries (black lines) are obtained from a mathematical
analysis (see Appendix). Right: Example firing rate traces for all SOM (blue) and
VIP (green) neurons for four network settings taken from the bifurcation diagram (cf.
markers). Adaptation time constant τa = 50 ms. (B) The oscillation frequency in the
oscillatory switch mode depends on the adaptation strength (left), the adaptation time
constant (right) and the total mutual inhibition strength (black: ŵ = 1.3, gray: ŵ =
1.4). Left: τa = 50 ms, right: b = 1. The frequencies cover a broad range from Delta to
Alpha oscillations. (C) When short-term facilitation (STF) is present, the WTA (switch)
regime is enlarged and the switch-like oscillation mode requires stronger adaptation.
Initial synaptic efficacy Us = 0.1, facilitation time constant τf = 100 ms.

We therefore also performed an analysis of the computational states of a network with
recurrent inhibition. Simulations reveal five operating modes for such networks (see
Figure S5). When mutual inhibition and recurrent inhibition is weak, we again found
that both interneuron populations can be active at the same time. Depending on the
strength of the mutual inhibition, we again observed attenuation and amplification,
respectively. For sufficiently strong mutual inhibition between SOM and VIP cells, the
amplification regime transitions into the switch-like state where only one population is
active. In contrast to adapting neurons, the network did not show an oscillatory state.
Instead, very strong recurrent inhibition introduces strong competition between the
neurons within the interneuron populations, leading to pathological states where either
one single cell per cell type is active (if mutual inhibition is weak) or only one single
neuron at all is active (if mutual inhibition is strong). Again, these dynamical states and
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Figure 6. The full microcircuit with excitatory PC and inhibitory PV, SOM
and VIP neurons shows the same phenomena as the reduced interneuron
network.
(A) PCs in the full microcircuit (left) exhibit a steeper firing rate slope with increasing
mutual inhibition strength (ŵ = 0.7 and 0.9), increasing short-term facilitation (STF)
(Us = 0.4 and 0.25, τf = 200 ms), but a reduced slope for increasing recurrence strength
(ŵr = 0 and 0.3) and adaptation (b = 0.2 and 0.5, τa = 100 ms). (B) With adaptation,
the frequency response analysis reveals a frequency-selective amplification. (C) Mean
SOM-SOM neuron correlation is more sensitive to increasing recurrence strength than
to adaptation strength (right). Parameter (B & C): Mutual inhibition strength ŵ = 0.8.

their transitions are predicted almost perfectly by a mathematical eigenvalue analysis
(see black lines in Figure S5, and Models and Methods for derivation). The mathematical
analysis also unveils that for sufficiently large populations, the pathological states require
very strong synapses (ultimately, a single cell must silence all others) and are hence
unlikely to be observed in the nervous system.

In summary, the SOM-VIP network motif allows different computational states,
covering attenuation, amplification, switching and – for adapting neurons – oscillatory
switching in a frequency range of Delta (1-4 Hz), Theta (4-8 Hz) or Alpha (8-12 Hz)
oscillations.

Switch between distinct processing modes in local microcircuits

To investigate the computational consequences of the SOM-VIP circuit, we returned to
the full microcircuit comprising PCs and inhibitory PV, SOM and VIP cells (Figure 6 A
left). We first verified that all results observed in the simplified interneuron networks
still hold for the larger circuit. Again, stronger mutual inhibition and the presence of
STF increase, while negative feedback mechanisms like recurrent inhibition or adaptation
decrease the system’s sensitivity the modulatory input (Figure 6 A right). Furthermore,
adaptation leads to a frequency-selective amplification for which the processing of rapidly
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Figure 7. Integration or cancelation of top-down signals by modulatory VIP
input.
(A) PCs of the full microcircuit are stimulated at the soma and the apical dendrites
with two oscillations with different frequencies, emulating bottom-up (orange, xE) and
top-down (blue, xD) input, respectively. PC rate reflects the two inputs xE and xD
with different coefficients α and β, depending on the modulatory input. (B) In an
amplification regime (ŵ = 1.1), weak, permanent modulatory VIP input is sufficient
to switch between two operation modes, in which top-down input is either integrated
(β > 0) or canceled (β = 0). In the WTA regime, the network exhibits hysteresis, that is,
the level of modulatory input needed to cause a switch depends on the network state. For
a range of inputs, the circuit is bistable. (C) In the bistable regime (ŵ = 1.2), persisting
transitions between the states can be triggered by strong, short pulses delivered to VIP
neurons (10 ms duration, amplitude 8.4/s, timing denoted by green arrows). Parameters
(A-C): Weight between SOM neurons and dendrites ŵDS = 2.8, External stimulation
xE = 25/s + 0.5 sin(5 t)/s, xD = 7/s + 0.1 sin(30 t)/s, xPV = 12/s, xSOM = xVIP = 3.5/s.

changing input signals benefits from powerful spike-frequency adaptation in SOM and
VIP neurons (Figure 6 B). Finally, the experimentally observed elevated correlation
between members of the same interneuron class is also preserved for adaptation and
decreases strongly for recurrent inhibition (Figure 6 C). In summary, the results obtained
in the simplified interneuron network also hold in the full circuit.

What is the computational impact of a somato-dendritic redistribution of inhibition
on PCs? It is well established that on their apical dendrites, many pyramidal cells
receive top-down input from higher cortical areas (Felleman and Van, 1991; Cauller
et al., 1998) and matrix thalamic nuclei (Diamond, 1995). On their basal dendrites and
the perisomatic domain, they receive bottom-up input from lower cortical areas and
core thalamic nuclei (Larkum, 2013). Although inputs at the electrically distant apical
dendrites have a small impact on initiating spikes at the axon initial segment (Stuart
and Spruston, 1998; Williams and Stuart, 2002), they can initiate long-lasting calcium
spikes when they coincide with back-propagating action potentials from the soma (Yuste
et al., 1994; Larkum et al., 1999b; Larkum and Zhu, 2002), leading to a significant gain
increase of L5 pyramidal cells (Larkum et al., 2004). How the two streams of information
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are integrated is not fully resolved (Naud and Sprekeler, 2018). In particular, it is
conceivable that top-down inputs are only used when they provide useful and reliable
information, and are ignored otherwise. Given that calcium spikes in apical dendrites are
very sensitive to inhibition (Larkum et al., 1999a), dendrite-targeting interneurons are
well suited to control the integration of top-down inputs, and, consequently, the switch
between distinct modes of operation. We therefore simulated the full microcircuit with
top-down and bottom-up inputs, in a ”switch” configuration of strong mutual inhibition
between VIP and SOM, and without spike-frequency adaptation. For illustration, we
chose as inputs two sinusoidal oscillations with different frequencies (Figure 7 A & C),
and determined how strongly these two input streams are represented in the firing rate of
PCs (Figure 7 A & B). When the network is in the ”switch” regime, we found that small
changes in VIP input are sufficient to switch the network between two computational
states in which top-down inputs are either transmitted or cancelled entirely (Figure 7 B).
Interestingly, transitions between those two computational states can also be triggered
by transient modulatory pulses. The evoked change of the processing mode persists
even after the end of the pulse (Figure 7 C), reflecting a bistability of the system. As a
consequence, the current processing mode of the network depends on the recent history
of the input to the SOM-VIP motif (Figure S6).

In summary, we demonstrate that the integration of top-down feedback from higher
cortical areas can be induced or prevented by persistent, weak input or short, strong
input pulses onto VIP cells. As the network exhibits hysteresis, the switching depends
on the collective state of SOM and VIP neurons.

Amplification of small mismatch signals

The switching property of the circuit relies on a competition between VIP and SOM
neurons. Hence, which of the two populations dominates should not be determined by
the input to VIP neurons alone, but rather by the (potentially weighted) difference
between the inputs to SOM and VIP neurons (Wong and Wang, 2006). By systematically
varying both inputs in an amplification regime, we indeed found that the somato-dendritic
distribution of inhibition is determined by the difference between the two inputs (Figure 8
A). The SOM-VIP circuit can hence be interpreted as an amplifier for small differences
between two input streams that impinge onto SOM and VIP neurons.

This observation is interesting in the context of a recent study of Attinger et al.
(2017). The authors suggested a conceptual model for layer 2/3 of mouse V1, in which
SOM neurons receive visual inputs, while VIP neurons and the apical dendrites of the
PCs receive an internal (motor-related) prediction of the expected visual input. When
properly tuned, the excitatory top-down input to the PC dendrites is then cancelled by
SOM inhibition, as long as the internal prediction matches the sensory data. Deviations
between sensory inputs and internal predictions, however, change the level of dendritic
inhibition and thereby generate mismatch responses, as observed in a subset of PCs in
V1 (Keller et al., 2012; Attinger et al., 2017) and in other systems (Keller and Hahnloser,
2009; Eliades and Wang, 2008).

To test this hypothesis in silico, we stimulated our full circuit model with visual
inputs – impinging onto PV and SOM neurons and the somata of PCs – and motor
feedback – impinging onto VIP neurons and the apical compartment of PCs (Figure 8
B). Similar to the findings of Keller et al. (2012), we found network configurations in
which we observed selective responses in PCs when motor feedback was present in the
absence of visual stimulation (Figure 8 C), but not when visual stimuli were presented
in the absence of motor feedback (Figure 8 D). These responses were reduced when the
circuit was brought into an attenuation configuration by weakening mutual inhibition
between VIP and SOM neurons (Figure 8 E).

We therefore suggest that the amplification brought about by the competition between
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Figure 8. Mismatch detection by SOM/VIP-dependent amplification.
(A) Additional modulatory input onto SOM neurons shifts the transition point (green)
of the PC rate as a function of modulatory VIP input (top). When plotted as a function
of the difference of SOM and VIP input, the transition points align, indicating that the
circuit amplifies differences between two input streams (bottom). Additional input onto
SOM neurons ranges from −2/s to 0/s. (B) Model for the integration of visual inputs
and motor-related predictions (Attinger et al., 2017). SOM neurons, PV neurons and the
somatic compartment of PCs receive external visual input, VIP neurons and the apical
dendrites of PCs receive an internal (motor-related) prediction of the expected visual
input. The connection strengths from PV neurons to the somatic compartment of PCs
and the SOM→PV connection were chosen to ensure a response only when the visual
input is switched off and the (motor-related) prediction is switched on (see Methods).
(C) PC neurons respond with an increase in firing rate when visual input is off and the
motor-related input is on (mismatch), but show a negligible increase in activity above
baseline when both input streams are on. (D) Also, only negligible responses above
baseline are evoked when motor-related input is permanently off (playback session).
Mutual inhibition strength ŵ = 0.8. (E) The mismatch-induced increase in firing rate
is more pronounced in an amplification regime (ŵ = 0.9, dark red) in comparison to
an attenuation regime (ŵ = 0.1, gray). Parameters (B-E): Motor-related and visual
input on corresponds to an additional input of 10.5/s and noise drawn from a Gaussian
distribution with zero mean and SD = 3.5/s. Background stimulation xE = 24.5/s,
xD = 0/s. Time constant of PC neurons increased by factor 6 to reduce onset responses.

SOM and VIP neurons could serve to amplify small deviations between different input
streams, such as sensory signals and internal predictions. Because such deviations are
powerful learning signals for the internal prediction system (Wolpert et al., 2011), an
amplification may be beneficial for learning highly accurate predictions.
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Discussion

We have shown that the broadly observed microcircuit comprising excitatory PC and
inhibitory PV, SOM and VIP neurons can act as an amplifier that translates weak
input onto VIP cells into large changes in the somato-dendritic distribution of inhibition
onto PCs. A cornerstone of this amplification is mutual inhibition between SOM and
VIP neurons that - if sufficiently strong - allows switch-like spatial shifts of somato-
dendritic inhibition. Connectivity properties like short-term facilitation of those mutual
connections and the absence of recurrent connections among both SOM and VIP neurons
support the amplification. Spike-frequency adaptation as observed for SOM and VIP cells
gives rise to a frequency-selective amplification, as a consequence of the slow time scales
of adaptation. Furthermore, adaptation in conjunction with sufficiently strong mutual
inhibition results in an oscillatory switching regime (Laing and Chow, 2002; Moreno-
Bote et al., 2007), in which SOM and VIP neurons alternately win the competition,
thus generating rhythmic shifting of somato-dendritic inhibition. These oscillations are
inherited by PC neurons that fluctuate between two different computational states with
frequencies ranging from approximately 1 to 10 Hz. Functionally, such oscillations could
reflect a rhythmic switching between a state in which sensory data is acquired and a
state in which it is calibrated against internal predictions.

Evidence for model assumptions

The microcircuit we studied has been observed in several cortical areas, including mouse
primary somatosensory (S1), visual (V1) and vibrissal motor (vM1) cortex, and both
in layer 2/3 and 5 (Bartley et al., 2008; Fino and Yuste, 2011; Packer and Yuste, 2011;
Avermann et al., 2012; Pfeffer et al., 2013; Lee et al., 2013; Jiang et al., 2015; Jouhanneau
et al., 2015; Pala and Petersen, 2015; Urban-Ciecko et al., 2015). We did not strive to
resolve subtle differences between these areas, but rather covered broad parameter ranges
to explore the computational repertoire of the circuit (see, e.g., Wang and Yang, 2018,
for area-to-area variations). Whether the SOM-VIP motif would act as an amplifier,
switch or even a rhythmic switch in these different regions will depend on details of the
circuit. In the following, we discuss a few assumptions made in the model, including the
absence of recurrent inhibition within the SOM and VIP populations and the fact that
we ignored VIP connections onto other cell classes.

The absence of recurrent connections among both SOM and VIP neurons has been
supported by many studies, both in vitro and in vivo (e.g., Pfeffer et al., 2013; Karnani
et al., 2016). It has been argued, however, that SOM neurons should be subdivided
into ’Martinotti’ and ’non-Martinotti’ cells to account for subtle differences in their
morphology and biophysical properties (e.g., Jiang et al., 2015) . While recurrence seems
to be weak or absent within both sub-populations, connections between these subgroups
have been reported. However, most of the SOM neurons belong to the class of Martinotti
cells that avoid connections to each other. Moreover, the number of ’non-Martinotti’ cells,
their connection probability and strength is relatively weak, such that our assumption of
no recurrence between SOM neurons is a reasonable approximation (Jiang et al., 2015).

The model contained a unidirectional connection from SOM neurons onto PV neurons.
This assumption is based on the common observation that this connection is strong and
frequent, while the backprojection is rather weak or absent in layer 2/3 and 5 (see Pfeffer
et al., 2013; Urban-Ciecko and Barth, 2016). An exception is the study of Walker et al.
(2016), who reported strong and frequent connections from PV to Martinotti cells in
layer 2/3 of mouse S1. We expect that such a mutual inhibition between PV and SOM
neurons would not violate our hypothesis, but rather introduce another amplification
mechanism with a similar structure. However, PV→SOM connections may also introduce
complex interactions between inputs to PV and VIP neurons that are not captured
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Figure 9. Diverse processing modes at the network level
Garcia-Junco-Clemente et al. (2017) suggested that VIP neurons also target the apical
dendrites of PCs. Moreover, Karnani et al. (2016)) suggested that SOM and VIP neuron
populations receive excitatory input from distinct (non-overlapping) PC populations. If
SOM and VIP interneurons preferably inhibited those PCs from which they get their
input, it is conceivable that the distinct PC populations operate in a feedback-modulated
state and a feedforward-driven mode, respectively. The switch between these states
could then be triggered by VIP neuron input or the difference between modulatory input
onto SOM and VIP cells.

in our model. It remains for future work to explore the computational and functional
consequences of such serially connected amplifiers.

In our model, VIP neurons are connected exclusively to SOM neurons. We neglected
potential VIP input to PCs and other interneuron classes. This assumption is supported
by a wealth of experimental studies that reported no or weak connections from VIP to
PC and PV neurons (e.g. see Pi et al., 2013; Pfeffer et al., 2013; Jiang et al., 2015),
and a net disinhibitory impact of VIP neurons onto PCs in S1 (Lee et al., 2013), V1
(Pfeffer et al., 2013; Pi et al., 2013; Fu et al., 2014; Zhang et al., 2014) and the auditory
cortex (Pi et al., 2013). However, in a study of Garcia-Junco-Clemente et al. (2017)
strong and direct connections between VIP and PC neurons were found during arousal
in layer 2/3 of the mouse frontal association area. The strength of this inhibition was
highly variable between cells, covering a wide range of almost two orders of magnitude.
Also, this connection was reported to be weaker in the occipital cortex in the same study
(Garcia-Junco-Clemente et al., 2017). Notwithstanding the presence of this connection
in different systems, it is tempting to speculate on its computational function, because
it may enable to run different operating modes in parallel. Karnani et al. (2016) have
demonstrated that SOM and VIP neurons receive local excitation from distinct (non-
overlapping) PC groups rather than non-selectively from all nearby excitatory neurons.
If the respective interneuron types also selectively project back, and if the VIP projection
would also impinge onto apical dendrites, one group of PC neurons may operate in a
feedback-modulated state, whereas another group runs in a feedforward-driven mode at
the same time (see Figure 9).

The modulatory VIP neuron input in our microcircuit represents an abstract control
signal. We deliberately did not specify the origin of this signal throughout most of
this study, because inputs to VIP cells are very diverse. Besides local excitation from
PC neurons in the same and deep layers, the greatest source of excitatory input of
VIP cells is feedback from higher cortical areas and thalamus (Harris and Shepherd,
2015; Tremblay et al., 2016; Wall et al., 2016). Moreover, VIP neurons are also strongly
excited by acetylcholine and serotonin (Harris and Shepherd, 2015), and Pi et al. (2013)
have shown that VIP neurons in the auditory and prefrontal areas are recruited by
reinforcement signals during an auditory discrimination task. Furthermore, in barrel
cortex, VIP cells increase their activity during whisking as they receive substantial
input from vM1 pyramidal neurons (Lee et al., 2013). Finally, it has been shown that
locomotion activates VIP cells in V1 (independent of visual stimulation) and their firing
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rate is correlated with running speed (Fu et al., 2014). In summary, the assumption of a
modulatory signal targeting VIP cells is supported by experimental data, but its origin
or functional meaning may well vary between areas or over time.

Testing the hypothesis

The hypothesis that the SOM-VIP motif mediates an amplification remains to be tested
in experiments. The most direct test would be a measurement of the amplification index
with VIP neurons active or deactivated. This could be achieved, e.g., by comparing the
population activity of SOM neurons before and after silencing VIP cells optogenetically
for a range of inhibitory and excitatory inputs presented to VIP and SOM neurons,
respectively.

A central prerequisite of the hypothesis is that mutual inhibition between SOM and
VIP neurons is strong. What does strong inhibition mean here? How does the unitless
strength of synaptic connections in the model translate into physiological quantities? An
intuition can be obtained from the amplification mechanism. The transition into switch-
like behavior occurs when the total disynaptic disinhibition in the SOM-VIP motif is
stronger than existing negative feedback mechanisms, such as leak or adaptation currents
(or recurrent inhibition, if present). Consequently, the total inhibitory conductance a
cell receives from the other interneuron type needs to be comparable to its own leak, a
hallmark that could be observed physiologically.

Functional implications

The ability to switch between distinct operating modes increases the computational
repertoire of principal cells. When SOM neurons are inactive, top-down inputs onto
apical dendrites elevate the output of pyramidal cells, for instance by bursts generated
by dendritic calcium spikes (Larkum, 2013). On the other hand, when SOM neurons are
highly active, the transmission of dendritic signals can be effectively canceled. Feedback
”top-down” projections have been associated with a variety of cognitive parameters,
including attention and visual awareness (Lamme et al., 1998; Siegel et al., 2000; Pascual-
Leone and Walsh, 2001; Spratling, 2002), context (Tomita et al., 1999; Siegel et al., 2000;
Olson et al., 2001; Spratling, 2002), internal predictions of the outside world (Rao and
Ballard, 1999; Siegel et al., 2000; Larkum, 2013) and error or reinforcement signals for
learning (Spratling, 2002; Rumelhart et al., 1986; Guerguiev et al., 2017; Sacramento
et al., 2017). Hence, the integration or cancellation of top-down inputs from higher to
lower cortical areas is likely to play a crucial role in information processing, cognition
and perception (Siegel et al., 2000; Pascual-Leone and Walsh, 2001; Larkum, 2013). The
SOM-VIP microcircuit could enable an efficient control over these processes by cortical
and thalamic inputs to VIP neurons (Lee et al., 2013; Fu et al., 2014; Zhang et al., 2014;
Wall et al., 2016).

Modulatory inputs may not comprise inputs to VIP neurons alone. The ability to
amplify weak signals arriving in the SOM-VIP motif may be of particular importance in
the context of detecting mismatches between two sources of information (Keller et al.,
2012; Attinger et al., 2017). This could allow not only to amplify, but also to compute
error signals that drive the refinement of internal models or the computational function
of hierarchical ”deep” networks (Spratling, 2002; Rumelhart et al., 1986; Guerguiev
et al., 2017; Sacramento et al., 2017).

Despite the accumulating data on the broad variety of interneurons (Tremblay et al.,
2016), their computational function is still poorly understood. The present study provides
a hypothesis for one candidate role, which may well be only one in a broad repertoire of
functions performed in parallel. Computational models may offer a useful resource to
understanding this functional repertoire (Hayut et al., 2011; Litwin-Kumar et al., 2016;
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Yang et al., 2016; El-Boustani and Sur, 2014; Lee and Mihalas, 2017), given that they
offer a degree of control over the circuit that is hard to achieve in experimental setups.

Models and methods

Neural network model

We simulated a rate-based network of excitatory pyramidal cells (NPC = 70) and
inhibitory PV, SOM and VIP cells (NPV = NSOM = NVIP = 10). All neurons are
randomly connected with connection probabilities (see Table 1) consistent with the
experimental literature (Avermann et al., 2012; Pfeffer et al., 2013; Jiang et al., 2015). If
not stated otherwise, all cells of the same neuron type have the same number of incoming
and outgoing connections, respectively. This assumption is made merely for purposes of
mathematical tractability and does not qualitatively alter the results.

Table 1. Connection probabilities between neuron types. Entries in the same
columns correspond to the same presynaptic neuron type, entries in the same row to
the same postsynaptic neuron type. Parentheses denote values that are only used when
recurrence is introduced artificially. E: somatic PC compartment, D: dendritic PC
compartment.

E (PC som.) PV SOM VIP
E (PC som.) - 0.6 - -

D (PC dendr.) 0.1 - 0.55 -
PV 0.45 0.5 0.6 -
SOM 0.35 - (0.5) 0.5
VIP 0.1 - 0.45 (0.5)

The excitatory pyramidal cells are simulated by a two-compartment rate model
taken from Murayama et al. (2009). The steady-state firing rate rE,i of the somatic
compartment of neuron i obeys

τE
drE,i

dt
= −rE,i + [Ii −Θ]+ , (1)

where [x]+ = max(0, x) is a rectifying nonlinearity and τE denotes a rate time constant
(τE=10 ms, unless stated otherwise). Θ denotes the rheobase of the neuron and Ii is the
total somatic input generated by somatic and dendritic synaptic events and potential
dendritic calcium spikes,

Ii = λD

[
IsynD,i + ci

]
+

+ (1− λE)IsynE,i . (2)

IsynD,i and IsynE,i are the total synaptic inputs into dendrites and soma, respectively, and ci
denotes the dendritic calcium event. λD and λE are the fraction of ”currents” leaking
away from dendrites and soma, respectively. The synaptic input to the soma IsynE,i is given
by the sum of external bottom-up inputs xE and PV neuron-induced (P) inhibition,

IsynE,i = xE −
NPV∑
j=1

wEP,ij rP,j . (3)

IsynD,i is the sum of top-down inputs xD, the recurrent, excitatory connections from other
PCs and SOM neuron-induced (S) inhibition:

IsynD,i = xD −
NSOM∑
j=1

wDS,ij rS,j +

NPC∑
j=1

wDE,ij rE,j . (4)
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The weight matrices wEP, wDS and wDE denote the strength of connection between PV
neurons and the soma of PCs (wEP), SOM neurons and the dendrites of PCs (wDS)
and the recurrence strength between PCs (wDE), respectively (see Table 2). Note that
all existing connections between neurons of type X and Y have the same strength,
wXY,ij = wXY, X,Y ∈ {E,D,P, S, V }. All weights are scaled in proportion to the
number of existing connections (i.e., the product of the number of presynaptic neurons
and the connection probability), so that the results are independent of population sizes.
The input generated by a calcium spike is given by

ci = c ·H(I0D,i −Θc), (5)

where c scales the amount of current, H is the Heaviside step function, Θc represents
a threshold that describes the minimal input needed to produce a Ca2+-spike and I0D,i

denotes the total, synaptically generated input in the dendrites,

I0D,i = λEI
syn
E,i + (1− λD)IsynD,i . (6)

Unless stated otherwise, parameters were taken from Murayama et al. (2009) (see Table
2). Note that we incorporated the gain factor present in Murayama et al. (2009) into
the parameters to achieve unit consistency for all neuron types.

Table 2. PC parameters describing the two-compartment rate model. ŵEP,
ŵDS and ŵDE denote the total strength of connection between PV neurons and the soma
of PCs, SOM neurons and the dendrites of PCs and the recurrence strength between
PCs, respectively. The total connection strength is given by the product of the number
of existing connections between two neuron types (or compartments) and the strength
for individual connections. All parameters taken from Murayama et al. (2009). Note that
we incorporated the gain factor present in Murayama et al. (2009) into the parameters
to achieve unit consistency for all neuron types.

parameter (unit) value
Θ (s−1) 14
λE 0.31
λD 0.27
ŵEP 0.7
ŵDS 1.96
ŵDE 0.42
c (s−1) 7

Θc (s−1) 28

The firing rate dynamics of each interneuron is modeled by a rectified, linear differ-
ential equation (Wilson and Cowan, 1972):

τi ṙi = −ri +
∑
j

wij uij rj − ai + xi,

(if ri < 0, then ri → 0) (7)

where ai represents an adaptation variable, wij denotes the relevant synaptic weight
onto the neuron, uij describes a synaptic facilitation variable and xi denotes external
inputs. The rate time constant τi was chosen to resemble the GABAA time constant
of approximately 10 ms for all interneuron types included. The weight matrix W (see
Table 3) was chosen such that the relative connection strengths are consistent with
experimental findings (Avermann et al., 2012; Pfeffer et al., 2013; Lee et al., 2013; Pi
et al., 2013; Jiang et al., 2015). When we simulated mismatch neurons (see Figure 8),
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we set the SOM→PV connection to ŵPS = 0.1 and tuned the connection from PV
neurons to the somatic compartment of PCs in order to ensure a response only when
the visual input is switched off and the (motor-related) prediction is switched on:
ŵEP = (1 + ŵPP)(1 + ŵ)/(1 + ŵ − ŵPS). Note that all weights are scaled according to
the number of existing connections, such that simulation results are robust to changes
in the number of neurons in any of the cell classes.

Table 3. Connection strengths between neuron types. Entries in the same
columns correspond to the same presynaptic neuron type, entries in the same row
to the same postsynaptic neuron type. Given are the total connections strengths
(absolute values, sign in simulations in line with neuron type – excitatory/inhibitory),
which are the product of the number of existing connections between two neuron types
(or compartments) and the strength for individual connections. The total recurrence
strengths ŵSS and ŵVV as well as the total mutual inhibition strengths ŵSV and ŵVS are
varied in the simulations. Parentheses denote values that are only used when recurrence
is introduced artificially.

E PV SOM VIP
PV 1 1.5 1.3 -
SOM 1 - ŵSS ŵSV

VIP 1 - ŵVS ŵVV

In contrast to PV neurons, both SOM and VIP cells show pronounced spike-frequency
adaptation (Rudy et al., 2011; Gentet, 2012; Tremblay et al., 2016; Urban-Ciecko and
Barth, 2016; Wamsley and Fishell, 2017), which is described by an adaptation variable
ai,

τa ȧi = −ai + b ri. (8)

At constant neuronal activity ri, the adaptation variable ai exponentially approaches the
steady-state value b ri with time constant τa. For simplicity, if not otherwise stated, the
adaptation strength b and time constant τa are the same for both cell types (b ∈ [0, 2],
τa = 100 ms). If adaptation is not present, we set the parameter b to zero.

Short-term facilitation is only modeled for SOM→VIP and VIP→SOM connections.
The facilitation variable uij between neuron j and neuron i evolves according to the
Tsodyks-Markram model (Tsodyks and Markram, 1997; Markram et al., 1998):

u̇ij =
Us − uij

τf
+ Us (1− uij) rj . (9)

The facilitation variable uij ranges from 0 to 1 and represents the release probability,
which changes according to the availability of calcium in the axon terminals. In the
absence of presynaptic activity, the facilitation variable uij relaxes exponentially with
time constant τf to a steady state Us, which represents the initial release probability.
Presynaptic activity increases the facilitation variable uij by an amount proportional
to Us. If not stated otherwise, the initial release probability Us and facilitation time
constant τf are equal for SOM and VIP neurons (Us ∈ [0, 1], τf = 200 ms). When STF
is not present, uij = 1 (or, equivalently, Us = 1). In simulations where the strength
of short-term facilitation is varied, we ensured comparability by scaling the weights
wij by Us, thereby keeping constant the initial synaptic response after a long period of
inactivity.

External stimulation

To achieve physiologically reasonable activity levels, all neurons are stimulated with
a time-independent background rate xi. PCs receive constant bottom-up input xE at
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the soma and top-down feedback xD at their dendrites. Additionally, VIP (in the full
network setting) or SOM neurons (in the reference network) receive an external stimulus
xmod that was varied systematically to investigate the amplification properties of the
microcircuit. If not indicated differently, all cells of the same neuron type are presented
with an identical stimulus.

In the interneuron network, for the sake of comparability across different parameter
settings, we always adjust the background inputs xi such that the spontaneous activity
(that is, at xmod = 0) is equal to r0 = 3/s for all interneurons. In the non-WTA regime
this can be achieved by

xi = (1 + b) r0,i −
∑
j

wij uij r0,j (10)

with uij = 1, if short-term facilitation is not present, or

uij =
Us (1 + τf r0,j)

1 + Us τf r0,j
(11)

otherwise. In the full microcircuit comprising PC, PV, SOM and VIP cells, the external
stimulation is set to xPV = xSOM = xVIP = 3/s for the interneurons and xE = 17.5/s
and xD = 21/s for the PC neurons, if not otherwise stated.

To characterize the dynamics of the system, we perform a frequency response analysis
that measures the amplitude of the output signal as a function of the frequency 1/T . In
that case, the weak external stimulus xmod is expressed by a sine wave

xmod = C sin

(
2πt

T

)
, (12)

where T ∈ [50, 600] ms. The amplitude of the output signal is normalized to the
amplitude C of the input oscillation (C = 1s−1 in the simulations).

To investigate correlations, we stimulated SOM and VIP neurons with an input
consisting of i) a constant component x̄ (calculated as before, see Equation 10), ii)
individual noise and iii) noise that it shared among the neurons of the same type:

xmod,i = x̄ (1 + 0.6 ξshared + 0.4 ξi) , (13)

where the noise terms ξshared and ξi are drawn at each time t from Gaussian distributions
with zero mean and unit variance. The shared component of the noise accounts for the
strong correlations seen by Karnani et al. (2016). Furthermore, the number of cells per
neuron type is increased in these simulations by a factor 5 to obtain reliable statistical
estimates.

For the example firing rate traces (in Figure 5 and Figure S3 & S4 ), we stimulated
SOM and VIP neurons with an input consisting of i) a constant component of 25/s and
ii) individual noise drawn at each time t from a Gaussian distribution with zero mean
and SD of 5/s.

Definition and mathematical derivation of the amplification index

To quantify the strength of amplification in our neural microcircuit, we introduce the
amplification index,

A = log2

(
mfull

mref

)
, (14)

where mfull and mref denote the slope of the sigmoid function of the full and the reference
network (see Figure 1 D or 2 B), respectively. These slopes represent the redistribution
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of somatic and dendritic inhibition upon a change in modulatory VIP input. Hence, the
amplification index measures how much stronger the redistribution is when weak input
passes through the SOM-VIP motif instead of directly through the SOM neurons.

The amplification index can be calculated analytically for the simplified linear network
without PCs and short-term facilitation. To this end, we first derive the slope mfull from
the mean-field population dynamics,

τ
drPV

dt
= xPV − ŵPP rPV − ŵPS rSOM, (15)

τ
drSOM

dt
= xSOM − ŵSS rSOM − ŵSV rVIP, (16)

τ
drVIP

dt
= xVIP + xmod − ŵVV rVIP − ŵVS rSOM, (17)

where ŵmn denotes the total weight from neuron type n onto m, and the rates rn denote
the mean-field population rate of neuron type n. For the sake of generality, we included
the possibility of recurrent connections among both SOM and VIP neurons. Solving this
set of equations for the steady-state population activity yields

rPV =
xPV − ŵPS rSOM

1 + ŵPP
, (18)

rSOM =
xSOM(1 + ŵVV)− ŵSV(xVIP + xmod)

(1 + ŵSS)(1 + ŵVV)− ŵSVŵVS
. (19)

The slope mfull is given by the derivative of rPV − rSOM with respect to xmod,

mfull =

(
1 +

ŵPS

1 + ŵPP

)
ŵSV

(1 + ŵSS)(1 + ŵVV)− ŵSVŵVS
. (20)

Similarly, the slope mref in the reference network can be derived from the mean field
equations without VIP and PC neurons,

τ
drPV

dt
= xPV − ŵPP rPV − ŵPS rSOM, (21)

τ
drSOM

dt
= xSOM − xmod − ŵSS rSOM, (22)

and is given by

mref =

(
1 +

ŵPS

1 + ŵPP

)
1

1 + ŵSS
. (23)

Finally, the amplification index is given by the ratio of the slopes,

A = log2

(
mfull

mref

)
= log2

(
ŵSV(1 + ŵSS)

(1 + ŵSS)(1 + ŵVV)− ŵSVŵVS

)
. (24)

In the absence of recurrent inhibition within SOM and VIP populations, this expression
simplifies to

A = log2

(
ŵSV

1− ŵSVŵVS

)
. (25)

Mathematical analysis of the computational repertoire of the
SOM-VIP network

To analyze the computational repertoire of the SOM-VIP motif, we considered a network
composed of SOM (hereafter only S) and VIP neurons (hereafter only V) that are
mutually and fully connected. Again, the rectifying nonlinearity of the neurons is
neglected.
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Computational states with recurrent inhibition within SOM and VIP neu-
rons

In the absence of adaptation, the dynamics of the system is fully characterized by the
change in rates. Each population comprises n cells, so the dynamics of the full network
are described by a (2× n)-dimensional system of linear differential equations,

ṙ = Wr + s (26)

with rT = [rS1
, . . . , rSn

, rV1
, . . . , rVn

]. s represents a vector of external stimuli and W is
a block matrix that contains the connection weights.

By deriving the eigenvalue spectrum of the matrix W (see Appendix 1 for a detailed
derivation), we can perform a bifurcation analysis. For the sake of simplicity, we suppose
that the rate time constants, recurrence and mutual inhibition strengths are equal for
both interneuron types: τS = τV = τ , wSS = wVV = wr and wSV = wVS = w. By
analyzing the sign and nature (complex or real) of the eigenvalues, we can define five
dynamical regimes:

(i) All interneurons can be active and operate in an attenuation regime,

(ii) All interneurons can be active and operate in an amplification regime,

(iii) Winner-take-all (WTA) between SOM and VIP neuron population (strong com-
petition, either all SOM or all VIP cells are silenced, neurons within the winning
population are all active),

(iv) WTA in each population separately (exactly one VIP and one SOM cell remain
active),

(v) Total WTA (only one single neuron in the whole network is active).

The transition between the attenuation and the amplification regime ((i) and (ii)) is
determined by the condition that the amplification index, Equation 24, is equal to one
(for the symmetric case ŵVV = ŵSS = ŵr and ŵSV = ŵVS = ŵ). The transition to WTA
regimes ((iv) and (v)) within each neuron population emerges when the total recurrence
strength ŵr is greater or equal to the leak multiplied by the population size,

ŵr ≥ n− 1. (27)

Moreover, the transition to a WTA regime between SOM and VIP neurons (regime
(iii)) occurs when the total mutual inhibition strength ŵ is larger than the sum of total
recurrence ŵr and leak,

ŵ2 > (1 + ŵr)
2, (28)

where ŵr = (n− 1)wr and ŵ = nw. Finally, the pathological regime (v) of a total WTA
requires that Equation 27 is fulfilled and that ŵ > n, i.e., condition 28 at the transition
boundary to WTA within the two populations.

Computational states with adaptation

In order to derive the qualitative changes in the bifurcation structure when adap-
tation (instead of recurrence) is present, we extended the rate-dynamics (see Equa-
tion 26) with linear differential equations describing the evolution of an adaptation
current (cf. Equation 8). The (4 × n)-dimensional state-vector r is now given by
rT = [rS1

, aS1
, ..., rSn

, aSn
, rV1

, aV1
, ..., rVn

, aVn
]. For the sake of simplicity and compa-

rability, we suppose that the rate time constants, the mutual inhibition strength as
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well as the adaptation parameters are equal for SOM and VIP neurons: τS = τV = τ ,
wSV = wVS = w, bS = bV = b and τa,S = τa,V = τa. This symmetry simplifies the
derivation of the eigenvalues considerably (see Appendix 1).

The eigenvalue spectrum reveals that, in contrast to recurrence, adaptation does not
lead to pathological states (see conditions (iv) and (v) in subsection above). Furthermore,
depending on the sign and nature of the eigenvalues, we find four dynamical regimes:

(i) All interneurons can be active and operate in an attenuation regime (Figure 5A,
region a),

(ii) All interneurons can be active and operate in an amplification regime (Figure 5A,
region b),

(iii) Switch regime (Figure 5A, region c): WTA between SOM and VIP neuron popula-
tion when total mutual inhibition strength is larger than the sum of the adaptation
strength and the leak:

ŵ ≥ b+ 1. (29)

(iv) Oscillatory switch regime (Figure 5A, region d), in which SOM and VIP cells
alternate between active and inactive states. It requires two conditions: First,
adaptation must be stronger than the difference of total mutual inhibition and
leak. Second, this total reciprocal inhibition must be larger than leak and ratio of
rate and adaptation time constant:

b > ŵ − 1,

ŵ > 1 + τ/τa. (30)

The derivation of the amplification index A for a network with adaptation is analogous
to the derivation with recurrent inhibition, and merely requires to replace the total
recurrence strength ŵr by the strength b of adaptation. Hence, the transition between
the attenuation and the amplification regime ((i) and (ii)) is determined by this minor
modification of Equation 24.

In the oscillatory switching regime, some of the eigenvalues of the dynamical system
are complex. An approximation of the oscillation frequency can then be derived from
their imaginary part:

f =
1

4π

√
4b

ττa
−
(

1

τ
− 1

τa
− ŵ

τ

)2

. (31)

Simulation details

All simulations were performed in customized Python code written by LH. Differential
equations were numerically integrated using a 2nd-order Runge-Kutta method with a
maximum time step of 0.05 ms. Neurons were initialized with ri(0) = 0 Hz, ai(0) = 0
Hz (if adaptation was modeled) and uij(0) = Us (if STF was present) for all i. Source
code will be made publicly available upon publication.
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Appendix 1

A Mathematical analysis of the SOM-VIP motif

In order to characterize the computational repertoire of the SOM-VIP motif, we performed
an extensive mathematical analysis of a simplified model that comprises only SOM and
VIP cell populations. Moreover, we neglected the rectifying nonlinearity that ensures
that firing rates remain positive. We will start with networks that take into account
either recurrent connections among both SOM and VIP neurons or adaptation, but
ignore short-term plasticity. In these cases, the circuits are described by linear dynamical
systems and therefore allow detailed bifurcation analyses. The derivations provide
analytical conditions for the parameter boundaries between different computational
states of the SOM-VIP motif. We then continue to derive approximations for these
boundaries for the nonlinear case that includes short-term plasticity.

A.1 Bifurcation analysis: Recurrent inhibition within the SOM/VIP
populations

We consider a network composed of SOM (hereafter only S) and VIP neurons (hereafter
only V) that are mutually and fully connected. Furthermore, we assume that each
population comprises n cells. The circuit dynamics can then be described by

ṙ = Wr + s (32)

with rT = [rS1
, . . . , rSn

, rV1
, . . . , rVn

]. s represents a vector of external stimuli and W is
a block matrix of the form

W =

[
US←S US←V

UV←S UV←V,

]
(33)

which contains the connection weights. When recurrence is included , the (n× n) blocks
have the following form

US←S =


−1/τS −wS/τS ... −wS/τS
−wS/τS −1/τS ... −wS/τS

...
...

. . .
...

−wS/τS −wS/τS ... −1/τS

 US←V = −wSV

τS
Jn,n (34)

UV←V =


−1/τV −wV/τV ... −wV/τV
−wV/τV −1/τV ... −wV/τV

...
...

. . .
...

−wV/τV −wV/τV ... −1/τV

 UV←S = −wVS

τV
Jn,n (35)

where Jn,n is a squared matrix of dimension n with all entries equal one. Note that
autapses were not included and that we chose the convention that the weight parame-
ters wi are positive.

The dynamical properties of the circuit are described by its eigenvalues, which are
given by the zero crossings of the characteristic polynomial of the matrix W ,

0 = det ((US←S − λ1) (UV←V − λ1)− US←VUV←S) , (36)
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where 1 denotes the n-dimensional identity matrix. Resolving the determinant yields
the following condition for the eigenvalues:

0 =

[(
1

τS
+ λ

)(
1

τV
+ λ

)
+
wSwV

τSτV
−
(

1

τS
+ λ

)
wV

τV
−
(

1

τV
+ λ

)
wS

τS

]n−1
(37)

·
[
ŵSŵV

τSτV
+

(
1

τS
+ λ

)(
1

τV
+ λ

)
+

(
1

τS
+ λ

)
ŵV

τV
+

(
1

τV
+ λ

)
ŵS

τS
− ŵSVŵVS

τSτV

]
,

with the total recurrence strengths ŵmn = (n− 1)wmn and the total mutual inhibition
strengths ŵm = nwm. Consequently, the eigenvalues of the linear system are

λS =− 1

τS
+

ŵS

(n− 1)τS
, (38)

λV =− 1

τV
+

ŵV

(n− 1)τV
,

λ+/− =− 1

2

(
1 + ŵS

τS
+

1 + ŵV

τV

)
(39)

± 1

2

√[(
1

τV
− 1

τS

)
+

(
ŵV

τV
− ŵS

τS

)]2
+ 4

ŵSVŵVS

τSτV
. (40)

While the first and second eigenvalues λS , λV have an algebraic and geometric multiplicity
of (n− 1) and describe the dynamics of rate inhomogeneities within the two populations,
the eigenvalues λ+ and λ− have an algebraic and geometric multiplicity of one and
determine the dynamics of the population rates of the two interneuron types. Because
ŵSV and ŵV S are positive, all eigenvalues are real, suggesting the absence of oscillations.
For the sake of simplicity, we now analyze a symmetric situation, in which τS = τV = τ ,
ŵS = ŵV = wr and ŵSV = ŵVS = w. By analyzing the sign and the nature (complex or
real) of the eigenvalues, we can define five dynamical regimes:

(i) All interneurons can be active and operate in an attenuation regime (no competition,
all eigenvalues negative, weak mutual inhibition),

(ii) All interneurons can be active and operate in an amplification regime (no competi-
tion, all eigenvalues negative, strong mutual inhibition),

(iii) WTA between SOM and VIP neuron population (either SOM or VIP cells win;
λ+/− > 0, λS/V < 0),

(iv) WTA in each population separately (one VIP and one SOM cell survive, λ+/− < 0,
λS/V > 0 positive),

(v) Total WTA (only one single neuron is active, all eigenvalues positive).

The transition between the attenuation and the amplification regime ((i) and (ii)) is
determined by the condition that the amplification index Equation 24 is equal to one
(for the symmetric case ŵVV = ŵSS = ŵr and ŵSV = ŵVS = ŵ). The transition to a
WTA regime within each neuron population emerges when λS = λV = λ ≥ 0, yielding
the condition

wr ≥ (n− 1). (41)

Moreover, the transition to a WTA regime between SOM and VIP neurons occurs when
λ+ ≥ 0, which yields

ŵ ≥ 1 + ŵr. (42)
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A.2 Bifurcation analysis: Adaptation

We extend the rate dynamics (see Equation 32) with linear differential equations describ-
ing the evolution of an adaptation current in order to derive qualitative changes in the
bifurcation structure when adaptation (instead of recurrent inhibition) is present. The
(4× n)-dimensional state vector r now includes the adaptation variables and is given by
rT = [rS1

, aS1
, ..., rSn

, aSn
, rV1

, aV1
, ..., rVn

, aVn
]. Again, the dynamical system can be

written in the format of Equations 32 and 33, but the matrices Um←n (m,n ∈ {S, V })
now themselves become block matrices:

US←S =


M0 0 ... 0
0 M0 ... 0
...

...
. . .

...
0 0 ... M0

 US←V =


N0 N0 ... N0

N0 N0 ... N0

...
...

. . .
...

N0 N0 ... N0

 (43)

UV←S =


P0 P0 ... P0

P0 P0 ... P0

...
...

. . .
...

P0 P0 ... P0

 UV←V =


Q0 0 ... 0
0 Q0 ... 0
...

...
. . .

...
0 0 ... Q0

 . (44)

Here, M0, N0, P0 and Q0 are (2× 2) matrices given by

M0 =

[
−1/τS −1/τS
bS/τa,S −1/τa,S

]
N0 =

[
−wSV/τS 0

0 0

]
(45)

Q0 =

[
−1/τV −1/τV
bV/τa,V −1/τa,V

]
P0 =

[
−wVS/τV 0

0 0

]
(46)

with the adaptation strengths bS and bV, as well as adaptation time constants τa,S
and τa,V. As the block matrices do not commute, the eigenvalue condition for the
characteristic polynomial is now given by (Silvester, 2000)

0 = det(W − λ1) = det(US←S − λ1)

· det([UV←V − λ1]− UV←S [US←S − λ1]
−1
US←V). (47)

After some straightforward linear algebra, the eigenvalues are given by the zeros of the
following equation:

0 =

[(
1

τS
+ λ

)(
1

τa,S
+ λ

)
+

bS
τSτa,S

](n−1) [(
1

τV
+ λ

)(
1

τa,V
+ λ

)
+

bV
τVτa,V

](n−1)
·
[{(

1

τS
+ λ

)(
1

τa,S
+ λ

)
+

bS
τSτa,S

}{(
1

τV
+ λ

)(
1

τa,V
+ λ

)
+

bV
τVτa,V

}
− ŵSVŵVS

τSτV

(
1

τa,S
+ λ

)(
1

τa,V
+ λ

)]
. (48)

For the sake of simplicity and comparability, we again consider the symmetric case
τS = τV = τ , wSV = wVS = w, bS = bV = b and τa,S = τa,V = τa. This simplifies the
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derivation of the eigenvalues considerably. We obtain three pairs of eigenvalues

λ1,± =
1

2

−(1

τ
+

1

τa

)
±

√(
1

τa
− 1

τ

)2

− 4 b

ττa

 ,
λ2,± =

1

2

−(1

τ
+

1

τa
− ŵ

τ

)
±

√(
1

τ
− 1

τa
− ŵ

τ

)2

− 4 b

ττa

 ,
λ3,± =

1

2

−(1

τ
+

1

τa
+
ŵ

τ

)
±

√(
1

τ
− 1

τa
+
ŵ

τ

)2

− 4 b

ττa

 . (49)

The first two eigenvalues (λ1,+ and λ1,−) have both algebraic and geometric multiplicity
of (2n− 2) and define the rate and adaptation dynamics of rate inhomogeneities within
the two interneuron populations. Both eigenvalues are strictly negative for all parameters
possible. Hence, in contrast to recurrence, adaptation does not lead to pathological
states in which a single cell within one population silences the others (see conditions
(iv) and (v) in section above). The last four eigenvalues have algebraic and geometric
multiplicity of one and describe the interaction between the two populations. It can be
easily seen that Re(λ3,±) < 0, so that instabilities – like WTA regimes – can only arise
from the two eigenvalues λ2,±. Depending on the sign and nature of these eigenvalues,
we find four dynamical regimes:

(i) All interneurons can be active and operate in an attenuation regime (all eigenvalues
real and negative, weak mutual inhibition),

(ii) All interneurons can be active and operate in an amplification regime (all eigenvalues
real and negative, strong mutual inhibition),

(iii) WTA between SOM and VIP neuron population, described by the condition

b ≤ ŵ − 1, (50)

(iv) An oscillatory WTA regime (osc WTA) in which SOM and VIP neurons alternate
between active and inactive states. It depends on two conditions

b > ŵ − 1,

ŵ > 1 + τ/τa. (51)

The derivation of the amplification index A for a network with adaptation is analogous
to the derivation with recurrent inhibition, and merely requires to replace the total
recurrence strength ŵr by the strength b of adaptation. Hence, the transition between
the attenuation and the amplification regime ((i) and (ii)) is determined by this minor
modification of Equation 24.

Strictly speaking, the last regime (iv) has to be separated into two subregimes, in
which the two eigenvalues λ2,± either (a) form a complex conjugate pair with positive
real part or (b) are both real and positive. In the former regime, an approximation of
the oscillation frequency f can be obtained from the imaginary part of the eigenvalues:

f =
1

4π

√
4b

ττa
−
(

1

τ
− 1

τa
− ŵ

τ

)2

. (52)

The oscillation frequency follows a square root function in b with a scaling factor
determined by τa, and an offset controlled by both ŵ and τa. The parameter regime (a),
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in which an approximation for the oscillation frequency can be obtained from a linear
analysis is limited by the condition

b >
ττa
4

(
1

τ
− 1

τa
− ŵ

τ

)2

. (53)

In the second regime (b), the circuit nevertheless displays oscillations when simulated.
These rely on the rectifying nonlinearity for the firing rates, so their frequency cannot
be calculated within the present linear analysis.

A.3 Bifurcation analysis: Adaptation and short-term facilita-
tion

When synaptic adaptation (STF) is included in the model, the dynamical system
equations become nonlinear and mathematically intractable. Thus, we can only derive
approximate expressions for the transitions between the computational regimes (see (i)
to (iv) in section above).

In zero-order approximation, we assume that the facilitation variable uij can be
replaced by its steady-state value u∞, for which we derive an expression below. The
boundaries given by Equations 50 and 51 can then be replaced by

b = u∞ŵ − 1, (54)

u∞ŵ = 1 +
τ

τa
. (55)

These approximations allow to deduce the qualitative changes in the transition boundaries.
As u∞ ≥ 1, the slope of Equation 54 increases, leading to an enlarged WTA regime (i.e.,
switch-like state). Moreover, the transition to an oscillatory switch is pushed towards
smaller mutual inhibition strengths and requires stronger adaptation (cf. Equations 54-
55).

To qualify the regime boundaries, we have to derive an expression for the steady-
state value u∞ as a function of the parameters b and ŵ. To this end, we identify a
self-consistent solution of the equations for u∞ and the steady state of the population
rates of the two interneuron types.

The steady state of the population rates rV/S := 1
NV/S

∑
i

rV/S,i is given by the

conditions

rV = s̄− ŵ uS∞ rS − b rV, (56)

rS = s̄− ŵ uV∞ rV − b rS. (57)

Here, s̄ denotes the averaged input. uS∞ and uV∞ represent the steady-state facilitation
variable for SOM→VIP and VIP→SOM, respectively, which are given by

uV/S
∞ =

1 + τfrV/S

1 + UsτfrV/S
. (58)

To express u∞ in terms of b and ŵ, we have to resolve Equation 57 for the population
rates and insert these expressions into Equation 58. Because the resulting equations
are lengthy and non-informative, we consider two approximations. In the non-WTA
regime, as intrinsic and synaptic parameters as well as the external stimulation are taken
to be equal, we assume that the population firing rates of SOM and VIP neurons are
approximately equal on average rV ≈ rS ≡ r. This leads to the following expression for
the population rates r in terms of the system parameters:

r
(56)
=
(58)

τfUss̄− 1− b− ŵ +
√

(τfUss̄− 1− b− ŵ)2 + 4s̄τf [(1 + b)Us + ŵ]

2τf [(1 + b)Us + ŵ]
. (59)
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By inserting Equations 58 and 59 into Equation 55, we obtained a good approximation
of the transition boundary between the amplification regimes and the oscillatory switch
state.

For the transition to a WTA regime, the assumption of equal rates is violated. To
derive an expression for this transition boundary, we therefore replace the assumption of
equal rates by an assumption of a WTA state, in which one of the rates is zero. Because
all parameters are assumed to be symmetric, we can assume without loss of generality
that the VIP population is the winner. We can then obtain conditions for the boundary
by setting rS = 0 in Equations 56 and 57 and inserting Equation 58 into Equation 57:

rV
(57)
=
(58)

τfUss̄− ŵ +
√

(τfUss̄− ŵ)2 + 4ŵτf s̄

2ŵτf
,

(56)
=
(58)

s̄

1 + b
. (60)

Solving this equation for the adaptation strength b, we obtain

b =
2ŵτf s̄

τfUss̄− ŵ +
√

(τfUss̄− ŵ)2 + 4ŵτf s̄
− 1. (61)

This approximation predicts the transition to the WTA regime qualitatively and quanti-
tatively very well.

For deriving the transition boundary between attenuation and amplification, we note
that the amplification threshold A = 1 is satisfied when the slopes for the full network
and the reference network are equal,

drfullS

dxmod
=

drrefS

dxmod
. (62)

The steady state equation for the population rates of the SOM neurons in the reference
and full network, respectively, are given by

(1 + b) rrefS = s̄− xmod, (63)

(1 + b) rfullS = s̄− uV∞rV, (64)

where uV∞ is given in Equation 58. The population rate rV of the VIP neurons in the
full network obeys

(1 + b) rV = s̄+ xmod − uS∞rfullS . (65)

Taking the derivative of the steady-state Equations 63 and 64 for full and reference
network with respect to xmod yields

drrefS

dxmod
= − 1

1 + b
, (66)

drfullS

dxmod
= − w

1 + b

(1 + 2τfrV)(1 + UsτfrV)− (1 + τfrV)UsτfrV
(1 + UsτfrV)2

drV
dxmod

. (67)

By taking the derivative of Equation 65, we can express drV
dxmod

as a function of
drfullS

dxmod

and rfullS . Furthermore, we assume again that rV ≈ rS ≡ r (cf. Equation 59). Solving

for
drfullS

dxmod
, the condition 62 finally yields

(1 + b)2 − ŵ2γ2
(62)
= ŵγ(1 + b), (68)
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with

γ =
(1 + 2τfr)(1 + Usτfr)− (1 + τfr)Usτfr

(1 + Usτfr)2
. (69)

The combination of Equations 68, 69 and 59 provide an accurate prediction of the
amplification threshold when STF and adaptation are present.

B Supporting Figures

Figure S1. Asymmetric mutual inhibition strengths for SOM and VIP neu-
rons also enhances the amplification index.
When one of the connections, VIP→SOM (ŵSV) or SOM→VIP (ŵVS), is kept constant,
increasing the respective other weight leads to a strengthening of the amplification.
Fixed weight was set to ŵVS/SV = 1.

Figure S2. Asymmetric recurrence strengths for SOM and VIP neurons also
reduce the amplification index.
When one of the recurrent connections, VIP→VIP (ŵVV) or SOM→SOM (ŵSS), is kept
constant, increasing the respective other weight leads to a decrease of the amplification
index. Fixed weight was set to ŵSS/VV = 0.5. Mutual inhibition strength ŵ = 0.8.
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Figure S3. Oscillations also arise for asymmetric adaptation strengths in
SOM and VIP neurons, with altered firing rate and oscillation frequency.
Firing rate traces for SOM (blue) and VIP (green) neurons for a range of adaptation
strengths (bS/V ∈ {0.4, 0.6, 0.8, 1}). Off-diagonal plots correspond to asymmetric adap-
tation strengths. Mutual inhibition strength ŵ = 1.3, adaptation time constants τa = 50
ms.

Figure S4. Asymmetric adaptation time constants for SOM and VIP neurons
lead to different duration of active and inactive periods.
Firing rate traces for SOM (blue) and VIP (green) neurons for a range of adaptation
time constants (τa,S/V ∈ {50, 100, 200, 400} ms). Larger adaptation time constants cause
longer active states. Mutual inhibition strength ŵ = 1.3, Adaptation strength b = 0.5.
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Figure S5. Dynamical states of the SOM-VIP motif with recurrence.
Left: Bifurcation diagram reveals distinct operation modes: all interneurons are active
(divided into amplification and attenuation regime), winner-take-all (WTA) regime
leading to a switch, and two pathological states (WTA in each population separately and
total WTA). Regime boundaries (black lines) are obtained from a mathematical analysis
(see Appendix). Right: Example firing rate traces for all SOM (blue) and VIP (green)
neurons for four network settings (see markers) taken from the bifurcation diagram.
NSOM = NVIP = 5.
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Figure S6. WTA between SOM and VIP neurons causes hysteresis in the
reduced interneuron network and full microcircuit.
(A) Example phase planes (top) for three distinct values of the modulatory input
(cf. bottom). The intersection points of SOM- (blue) and VIP-nullcline (green) correspond
to the fixed points that are either stable (filled circle) or unstable (open circle). The
vector field shows the direction and strength of flow. In a WTA regime, the network
exhibits bistability for a range of modulatory input values, leading to hysteresis (bottom).
Mutual inhibition strength ŵ = 1.05. (B) Same as above for the full microcircuit. PC
rate exhibits two stable states for a range of modulatory input. The steady-state activity
depends on the initial state. Mutual inhibition strength ŵ = 1.1.
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