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Abstract:   30 

The relationship between an island’s size and the number of species on that island—the island 31 

species-area relationship (ISAR)—is one of the most well-known patterns in biogeography, and 32 

forms the basis for understanding biodiversity loss in response to habitat loss and fragmentation.  33 

Nevertheless, there is contention about exactly how to estimate the ISAR, and the influence of 34 

the three primary ecological mechanisms—random sampling, disproportionate effects, and 35 

heterogeneity— that drive it.  Key to this contention is that estimates of the ISAR are often 36 

confounded by sampling and estimates of measures (i.e., island-level species richness) that are 37 

not diagnostic of potential mechanisms.  Here, we advocate a sampling-explicit approach for 38 

disentangling the possible ecological mechanisms underlying the ISAR using parameters derived 39 

from individual-based rarefaction curves estimated across spatial scales.  If the parameters 40 

derived from rarefaction curves at each spatial scale show no relationship with island area, we 41 

cannot reject the hypothesis that ISARs result only from random sampling.  However, if the 42 

derived metrics change with island area, we can reject random sampling as the only operating 43 

mechanism, and infer that effects beyond sampling (i.e., disproportionate effects and/or 44 

heterogeneity) are also operating.  Finally, if parameters indicative of within-island spatial 45 

variation in species composition (i.e., β-diversity) increase with island area, we can conclude that 46 

intra-island compositional heterogeneity plays a role in driving the ISAR.  We illustrate this 47 

approach using representative case studies, including oceanic islands, natural island-like patches, 48 

and habitat fragments from formerly continuous habitat, illustrating several combinations of 49 

underlying mechanisms.  This approach will offer insight into the role of sampling and other 50 

processes that underpin the ISAR, providing a more complete understanding of how, and some 51 

indication of why, patterns of biodiversity respond to gradients in island area.             52 

 53 

Introduction: 54 

The relationship between the area sampled and the number of species in that area—the species-55 

area relationship—is one of the oldest laws in ecology (e.g., Arrhenius 1921, Lawton 1999, 56 

Lomolino 2000, Drakare et al. 2006).  There are many forms of SARs that represent rather 57 

distinct patterns and processes (e.g., Scheiner 2003, Scheiner et al. 2011), but we here focus 58 

specifically on one type, the Island Species-Area Relationship (hereafter ISAR). The ISAR 59 

correlates how the numbers of species (species richness) varies with the size of islands or distinct 60 

habitat patches (natural or fragmented due to human activities). Like other types of SARs, the 61 

ISAR is usually positive (e.g., MacArthur and Wilson 1963, 1967, Connor and McCoy 1979, 62 

Triantis et al. 2012).  However, complexities such as island age, habitat heterogeneity and/or 63 

isolation can complicate this simple expectation (Kreft et al. 2008, Borregard et al. 2016).   64 

We refer to ‘islands’ in the ISAR as any insular system, including true islands, habitat patches 65 

that are surrounded by distinctly different habitats (matrix) (e.g., lakes, edaphically delimited 66 

habitats), and habitat fragments that have been insularized by human activities.  In addition to 67 

being an important biogeographic pattern in its own right, the ISAR and concepts closely related 68 

to it play an important role in understanding how biodiversity changes when habitat is lost and/or 69 
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fragmented into smaller island-like habitats (e.g., Diamond 1975, Simberloff and Abele 1976, 70 

Matthews et al. 2014, 2016, Fahrig 2017).  As a result, understanding the patterns and the 71 

processes underlying ISARs and their derivatives would seem to be an important endeavor in the 72 

context of island biogeography and conservation.   73 

Despite its conceptual importance, there remains a great deal of ambiguity regarding ISAR 74 

patterns, as well as its underlying processes (e.g., Scheiner et al. 2011).  When describing ISAR 75 

patterns, authors report and analyze different aspects of species richness regressed against total 76 

island size, including total numbers of species and the number of species found within a 77 

constantly-sized sub-sampled area.  Such different sampling designs have created confusion 78 

when comparing slopes of ISARs; an increasing number of species measured in a fixed-area plot 79 

with increasing island area means something quite different than an increasing number of species 80 

on the entire island (see also Hill et al. 1994, Gilaldi et al. 2011, 2014).  In terms of processes 81 

underlying the ISAR, there is similar confusion.  Multiple mechanisms, including passive 82 

sampling, colonization/extinction (i.e., metacommunity) dynamics, and habitat heterogeneity, as 83 

well as their interactions, have been invoked to explain ISARs.  Unfortunately, the exact ways by 84 

which these mechanisms operate, and how they can be disentangled from observational data, 85 

remains in question.   86 

Following others (e.g., Triantis et al. 2012, Mathews et al. 2014, 2016), we refer to the ISAR as 87 

the relationship between the total species richness on a given island (or habitat patch) and the 88 

size of that island.  However, simply knowing the shape of the relationship between the size of 89 

an island and the total species richness (hereafter Stotal) on that island can tell us very little about 90 

the possible mechanisms underlying the ISAR.  In order to understand the mechanisms 91 

underlying the ISAR, it is necessary to collect and analyze data at the level below the scale of the 92 

entire island (see also Hill et al. 1994, Yaacobi et al. 2007, Stiles and Scheiner 2010, Gilaldi et 93 

al. 2011, 2014).  Specifically, we recommend collecting data from multiple standardized plots 94 

where both the numbers and relative abundances of species are available, as well as 95 

compositional differences of species among locations within an island.  We recognize that this 96 

requires extra data often not available for many biogeographical and macroecological studies of 97 

island systems, but emphasize that the extra effort involved allows a much deeper understanding 98 

of the possible processes underlying the ISAR patterns observed.   99 

Mechanisms Underlying the ISAR 100 

We overview three general classes of potential mechanisms underlying the ISAR—passive 101 

sampling, disproportionate responses and heterogeneity—from least complex to most complex 102 

(see also Connor and McCoy 1979, McGuinness 1984, Scheiner et al. 2011 for deeper 103 

discussions of these mechanisms more generally for all types of SARs).  Then we discuss how 104 

they can be detected using a multi-scale, multi-metric approach.  Importantly, there remains 105 

much confusion in the literature regarding exactly which mechanisms can create the ISAR, 106 

which patterns these mechanisms generate, and how to disentangle them.  Thus, we begin with a 107 

general overview of the general classes of mechanisms and discuss how they can be disentangled 108 

with a more directed sampling approach.   109 
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In brief, passive sampling (sometimes called the ‘more individuals hypothesis’) emerges when 110 

larger islands have more species than smaller islands via passive sampling of individuals (and 111 

thus species) from a larger regional pool.  Disproportionate response (sometimes called ‘area 112 

per se’) include a large array of possible mechanisms that influence the likelihood that some 113 

species are favored, and others disfavored, on islands of different sizes, such that they achieve 114 

different relative abundances on different sized islands.  Heterogeneity also leads to 115 

disproportionate responses and altered relative abundances of species, but these emerge at larger 116 

scales via clumping of species that can emerge because of habitat differences and/or dispersal 117 

limitation.  In the following sections, we discuss each of these mechanisms, and possible ways to 118 

detect them from within-island surveys. 119 

Passive sampling—The simplest mechanism of the ISAR is that islands passively sample 120 

individuals from a larger ‘regional’ pool of individuals of different species.  Larger islands 121 

passively sample more individuals, and thus more species, from the regional pool.  This is 122 

essentially a ‘null’ hypothesis, but one that can be tested using standard methods, and which 123 

provides important insights about the potential underlying processes leading the ISAR.  The 124 

influence of passive sampling on the ISAR was first described by Arrhenius (1921) in one of the 125 

first quantitative explorations of the ISAR.  It is important to emphasize that sampling effects are 126 

sometimes thought of as an artifact of limited sampling for uncovering the true numbers of 127 

species.  This is not the case for this passive sampling null hypothesis.  It is also implicit in 128 

several early quantitative explorations of the ISAR where the regional pool consists of few 129 

common and many rare species, and smaller islands passively sample fewer individuals, and thus 130 

fewer species than larger islands (i.e., Preston 1960, May 1975).   131 

Coleman (1981) developed an analytical formula for this process based on random placement of 132 

individuals on islands and Coleman et al. (1982) applied it to data from samples of breeding 133 

birds on islands in a reservoir to suggest that this passive sampling mechanism most likely 134 

explained the ISAR in this system.  This will create a positive ISAR with more rare species being 135 

present on larger islands, but only in proportion to their abundance in the total pool (i.e., the 136 

relative proportions of species does not change from small to large islands).  Importantly, this 137 

random placement method is nearly identical to individual-based rarefaction methods (e.g., 138 

Gotelli and Colwell 2001), which we use below to test the random sampling hypothesis. 139 

Several authors have tested the passive sampling hypothesis by measuring the numbers of 140 

species in a given fixed area on islands of different sizes and correlating that density with the 141 

total area of the island (e.g., Hill et al. 1994, Kohn and Walsh 1994, Yaacobi et al. 2007, Gilaldi 142 

et al. 2011, 2014).  If the number of species in a fixed area sample does not vary as island size 143 

varies, this is taken to imply that passive sampling is most likely the only mechanism acting.  144 

However, if the number of species in a fixed area increases as island size increases, we would 145 

instead conclude that there is some biological effect, beyond sampling, that allows more species 146 

to persist in a given area on larger than smaller islands.       147 

While fixed-area sampling can be useful for inferring whether ISAR patterns deviate from 148 

patterns expected from pure sampling effects, this method is unfortunately not as powerful of a 149 

‘null hypothesis’ as has often been suggested.  There are at least two common factors that can 150 
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lead to patterns that appear consistent with the passive sampling hypothesis that in fact emerge 151 

from effects that are beyond sampling.  First, when disproportionate effects are primarily 152 

experienced by rare species, sampling at small spatial grains may miss this effect, especially 153 

when averages of the numbers of species are taken from the smallest spatial scale.  For example, 154 

Karger et al. (2014) found that fern species richness in standardized plots did not increase with 155 

island area when measured at small spatial grains (i.e., 400m2-2400m2), but that the slope 156 

significantly increasing at the largest sampling grain (6400 m2).  Second, it is possible that 157 

species richness measured in standardized plots may not vary with island size, but that habitat 158 

heterogeneity leads to different species present in different habitat types, creating the ISAR.  For 159 

example, Sfenthourakis and Panitsa (2012) found that plant species richness on Greek islands 160 

measured at local (100m2) scales did not change with island area, but that there were high levels 161 

of β-diversity on islands that were larger, likely due to increased heterogeneity.  In both of these 162 

studies, simply measuring standardized species richness in small plots across islands of different 163 

spatial grains may have led to the faulty conclusion of random sampling effects.   164 

Disproportionate effects—When disproportionate effects underlie the ISAR, there are more 165 

species on larger islands because species from the regional pool are differentially influenced by 166 

island size (as opposed to the passive sampling hypothesis, where species are proportionately 167 

influenced by island size).  Disproportionate effects includes a number of different sub-168 

mechanisms whereby some species are favored, and others disfavored, by changes in island size.   169 

Most such mechanisms predict that the numbers of species in a fixed sampling area should 170 

increase with increasing island size (sometimes called ‘area per se’ mechanisms; Connor and 171 

McCoy 1979).  The mostly widely considered of these mechanisms is MacArthur and Wilson’s 172 

(1963, 1967) theory of island biogeography.  Here, the rates of colonization of species increases 173 

with island size, and the rates of extinction decrease with island size, leading to the expectation 174 

that more species should often be able to persist in a fixed area on larger islands.  Several other 175 

kinds of spatial models can also predict similar patterns whereby the coexistence of several 176 

species is favored when the total area increases (e.g., Hanski et al. 2013), or when population-177 

level processes, such as Allee-effects or demographic stochasticity, are less likely on larger 178 

relative to smaller islands (e.g., Hanski and Gyllenberg 1993, Orrock and Wattling 2010).  179 

Disproportionate effects can also emerge when changes in island size influences island-level 180 

environmental conditions.  For example, smaller islands are often more likely to experience 181 

disturbances and/or have lower productivity (McGuinness 1984), and in the context of habitat 182 

fragmentation, smaller island fragments often have edge effects whereby habitat-specialist 183 

species are negatively impacted (Ewers and Didham 2006).   184 

Although often less well appreciated, mechanisms similar to those described above can favor 185 

multiple species in smaller, rather than larger habitats.  For example, it is possible that more 186 

widespread species can dominate larger habitats via high rates of dispersal and mass effects.  187 

Likewise, especially in the context of habitat islands formed via habitat fragmentation, 188 

disproportionate effects favoring species in smaller islands can include the disruption of 189 

exclusion interspecific interactors (e.g., pathogens, predators or competitors), or more species 190 

favored by edges and heterogeneity created in smaller habitats (Fahrig 2017).  In such cases, we 191 
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might expect a weaker or even negative ISAR depending on whether random sampling effects 192 

(which are always operating) outweigh the disproportionate effects  193 

Heterogeneity—The last family of mechanisms that have been proposed to lead to the ISAR 194 

involve heterogeneity in the composition of species within islands. These mechanisms are 195 

centered on the supposition that larger islands can have more opportunity for species to 196 

aggregate intraspecifically or clump (leading to heterogeneity in species composition) than 197 

smaller islands. This can emerge from two distinct sub-mechanisms: 198 

(i) Habitat heterogeneity.  Habitat heterogeneity leads to dissimilarities in species composition 199 

via the ‘species sorting’ process inherent to niche theory (e.g., Whittaker 1970, Tilman 1982, 200 

Chase and Leibold 2003).  As a mechanism for the ISAR, larger islands are often assumed to 201 

have higher levels of habitat heterogeneity than smaller islands (e.g., Williams 1964, Hortal et al. 202 

2009).  For example, larger oceanic islands typically have multiple habitat types, including 203 

mountains, valleys, rivers, etcetera, allowing for multiple types of species to specialize on these 204 

habitats, whereas smaller islands only have a few habitat types.  Likewise, in freshwater lakes, 205 

which can be thought of as aquatic islands in a terrestrial ‘sea’, larger lakes typically have more 206 

habitat heterogeneity (e.g., depth zonation) than smaller lakes.     207 

(ii) Compositional heterogeneity due to dispersal limitation.  Dispersal limitation can also lead to 208 

compositional heterogeneity through a variety of spatial mechanisms, including ecological drift, 209 

colonization and competition tradeoffs, and the like (e.g., Condit et al. 2002, Leibold and Chase 210 

2017).  If dispersal limitation is more likely on larger islands, we might expect greater within-211 

island spatial coexistence via dispersal limitation, higher compositional heterogeneity, and thus 212 

greater total species richness on larger than on smaller islands.   213 

Patterns of species compositional heterogeneity that emerge from these two distinct mechanisms 214 

are difficult to distinguish without explicit information on the characteristics of habitat 215 

heterogeneity itself, as well as how species respond to that heterogeneity. While we do not 216 

explicitly consider it further here, the spatial versus environmental drivers of compositional 217 

heterogeneity (β-diversity) can be more acutely disentangled if site-level environmental 218 

conditions and spatial coordinates are known by using standard methods in metacommunity 219 

ecology (e.g., Peres-Neto et al. 2006, Ovaskanien et al. 2017).     220 

Finally, as with disproportionate effects above, opposite patterns are also possible.  While we 221 

typically assume that heterogeneity increases with island area, leading to the positive ISAR, this 222 

need not be true.  For example, smaller islands have higher perimeter:area ratios (i.e., edge 223 

effects), and thus can have higher levels of heterogeneity than larger islands by some measures.   224 

Disentangling ISAR Mechanisms with Observational Data 225 

As a result of the often impracticality of field experiments on the ISAR at realistic scales (but see 226 

Simberloff 1976), considerable attention has been paid towards developing sampling and 227 

analytical methodology that can allow a deeper understanding of potential ISAR mechanisms 228 

from observational data.  However, these approaches have appeared piecemeal in the literature, 229 

are incomplete, and have not yet been synthesized into a single analytical framework.  230 
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Furthermore, two or more of these mechanisms can act in concert and are non-exclusive (e.g.., 231 

Chisholm et al. 2016).  For example, the influence of passive sampling is likely always occurring 232 

in the background even when disproportionate effects and/or heterogeneity also influence ISAR 233 

patterns.  Thus, even if we reject passive sampling as the sole mechanism leading to the ISAR 234 

via deviations from the null expectation, we cannot say that passive sampling does not at least 235 

partially influence the observed patterns.  The same is true for any null modelling approach.  236 

Likewise, it is possible that disproportionate responses of species via alterations to spatial or 237 

local conditions can act in concert with changes in habitat heterogeneity.  In this case, however, 238 

we can more completely falsify these processes by comparing patterns both within communities 239 

(α-diversity) and among communities (β-diversity), as we will discuss in more detail below.    240 

Here, we overview a generalized approach for disentangling the possible mechanisms underlying 241 

the ISAR.  Our approach is based on recent work that uses an individual-based rarefaction 242 

framework (e.g., Gotelli and Colwell 2001) to calculate several measures of biodiversity at 243 

multiple spatial scales (e.g., Chase et al. 2018, McGlinn et al. 2018).  And then to relate these 244 

measures to variation in island size.  In a sense, then, we propose the use of within-island species 245 

richness relationships (Type II or Type III curves from Scheiner 2003, Scheiner et al. 2011) to 246 

evaluate the mechanisms underlying among-island ISAR relationships (Type IV curves from 247 

Scheiner 2003, Scheiner et al. 2011).   248 

Figure 1a overviews the sampling design necessary on an island in order to calculate the 249 

parameters necessary to disentangle ISAR mechanisms.  Specifically, in addition to estimating 250 

the total numbers of species on an island (Stotal), we advocate sampling multiple standardized 251 

plots within a given island (ideally stratified across the island and any potential habitat 252 

heterogeneity) so that a number of parameters can be derived and compared with island size.  253 

These parameters are described in Table 1 and can be visualized as components along individual-254 

based rarefaction curves as in Figure 1b.   255 

From the combination of all sampled plots within an island, one can generate a γ-rarefaction 256 

curve and several diversity parameters that can be derived from that information.  We refer to the 257 

rarefied number of species expected from n randomly sampled individuals from the γ-rarefaction 258 

curve as γSn.  Because the γ-rarefaction curve is generated by combining all sample plots on a 259 

given island and randomly choosing individuals, any spatial heterogeneity in species associations 260 

is broken.  In addition to γSn, which weights common and rare species equally, we can also derive 261 

a measure which weights common species more heavily than rare species. Specifically, 262 

Hurlbert’s (1971) Probability of Interspecific Encounter (PIE) is a measure of evenness in the 263 

community and is equivalent to the slope of the rarefaction curve at its base, as illustrated by the 264 

gray arrows in Figure 1b (e.g., Gotelli and Graves 1996, Olszewski 2004).  We use the bias-265 

corrected version, ��� � � �

���
� � �1 
 ∑ ����

���

, where N is the total number of individuals in 266 

the entire community, S is the total number of species in the community, and pi is the proportion 267 

of each species i.  For analyses, we convert PIE to an effective number of species (the number of 268 

species that would be observed if all of the species in a sample were equally abundant) (Jost 269 

2006), which we call SPIE (=1/(1-PIE)). PIE is the same as 1-Simpson’s diversity index, and 270 

when converted to an effective number of species, is part of the Hill continuum of diversity 271 
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numbers that places more weight on common species (whereas richness places equal weight on 272 

common and rare species) (e.g., Hill 1973, Jost 2006).  When SPIE is calculated from the γ-273 

rarefaction curve, we refer to the effective number of species as γSPIE.  Note that only PIE, not 274 

SPIE, is illustrated in Figure 1b, because the forms of SPIE are not readily illustrated in the 275 

individual-based rarefactions construct. 276 

To discern whether any of the ISAR patterns emerge from within-island heterogeneity in species 277 

composition, we need to derive estimates of β-diversity.  To do so, we can generate an α-278 

rarefaction curve and estimate diversity parameters similar to those above, but at the local 279 

(within plot) scale.  From this, we can compare the parameters from the γ-rarefaction curve 280 

which eliminates any plot-to-plot variation due to heterogeneity in species composition by 281 

randomizing across the plots, to the α-rarefaction curve calculated from individual plots (or a 282 

spatially defined subset of plots) which contains local information only (dashed line in Figure 283 

1b).  The degree to which the γ-rarefaction curve (which eliminates spatial heterogeneity) differs 284 

from the α-rarefaction curve (which keeps spatial heterogeneity) tells us how much local 285 

variation there is in species composition across sites, providing an index of β-diversity resulting 286 

from species aggregations (see Olszewski 2004, Chase et al. 2018, McGlinn et al. 2018).  If the 287 

γ-and α-rarefaction curves are on top of each other, then we can conclude that there is no 288 

heterogeneity in the region.  Alternatively, if the α-rarefaction curve is far below the γ-289 

rarefaction curve, this implies that intraspecific aggregation has created compositional 290 

heterogeneity in the community.  Two β-diversity parameters are informative in this context: ��� 291 

(=γSn
 /αSn) which indicates the influence of aggregation of all species, and �����  (=γSPIE

 /αSPIE), 292 

which indicates aggregations primarily by more common species (i.e., the effective number of 293 

unique communities; Tuomisto 2010).    294 

In what follows, we discuss how this analytical methodology can be used to disentangle ISAR 295 

relationships where explicit sampling information from within and among islands is available.  296 

At the outset, it is important to note that in most of what follows, we focus exclusively on island 297 

systems where the primarily independent variable influencing species diversity is island size, 298 

with minimal variation in other diversity drivers.  We focus on this because our goal is to 299 

elucidate and disentangle the ISAR, which describes a bivariate relationship between island size 300 

and species richness, and for which there remains much confusion and little synthesis.  301 

Nevertheless, as with all diversity studies, focusing on a single independent driver is a limiting 302 

case.  In many island systems, islands vary in size as well as other drivers (e.g., productivity, 303 

isolation).  Nevertheless, it is quite straightforward to extend the approach that we advocate 304 

below to include these complexities and still disentangle the influence of island size in the 305 

context of the ISAR.  In such cases, one could simply use these other potential drivers as 306 

covariates with island size in an analysis focusing on the response variables we overview in 307 

Table 1 and Figure 1, using the same framework as described below.  Or one could add more 308 

complexity by including these independent variables in a hierarchical model or structural 309 

equation model with the same response variables, which we discuss in more detail in the 310 

conclusions below (see e.g., Blowes et al. 2017, Chase et al. 2018 for similar analyses in a 311 

different context).   312 
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 313 

 314 

Table 1.  Parameters used to disentangle island species area relationship patterns 315 

Parameter Description 
Island-level patterns 
Stotal Total number of species on an entire island.  Estimated independently or with 

extrapolations from samples. 
N Number of individuals of all species found in a given sampling plot (usually 

expected to scale linearly with effort) 
 
γ-level patterns (derived by combining all sample plots on an island) 
γSn Number of species expected from n randomly sampled individuals from the γ-

rarefaction curve  
γSPIE Effective number of species given the probability of interspecific encounter 

(PIE) from the γ-rarefaction curve 
 
α-level patterns (derived from a single sampling plot or subset of plots on an island) 
αSn Number of species expected from n randomly sampled individuals from the α-

rarefaction curve 
αSPIE Effective number of species given the probability of interspecific encounter 

(PIE) from the α-rarefaction curve 
 
β-level patterns (derived from comparing γ- to α-level patterns) 
���  Ratio of numbers of species expected for a given n from γ-rarefaction curve to 

those expected for a given n from α-rarefaction (a measure of compositional 
heterogeneity) (γSn/ 

αSn) 
�����  Ratio of numbers of effective number of species for a given PIE from γ-

rarefaction curve to the effective number of species for a given PIE from α-
rarefaction (a measure of compositional heterogeneity emphasizing common 
species) (γSPIE/ αSPIE).  

 316 

  317 
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Figure 1. 318 

 319 

 320 

Figure 1. A. Overview of a sampling scheme appropriate for applying the analytical approach 321 

outlined in this paper.  The circle represents a hypothetical island, and each of the four squares 322 

represents individual sampling plots from which α-diversity metrics can be derived.  The 323 

addition of all of the individuals sampled in all of the plots allows the calculation of γ-diversity 324 

metrics, while the differences among the α-diversity plots is β-diversity.  Stotal represents the 325 

total number of species on the island, including those that were not observed in any of the 326 

sampled plots.  B.  Illustration of how these diversity indices can be visualized graphically from 327 

individual-based rarefaction curves that plot species richness (S) against the numbers of 328 

individuals (N) across scales.  The γ-rarefaction curve (solid line) is derived by combining all 329 

individuals from all plots measured on a given island and randomizing individuals to generate 330 

the curve.  From this curve, the dashed line allows us to visualize the total number of species on 331 

the island including those that were not sampled in any plot (Stotal).  We can also visualize: (i) the 332 

numbers of species expected from a given n, γSn (where the vertical dashed line at n intersects 333 

the solid curve) (ii) the probability of interspecific encounter (PIE), which represents the slope at 334 

the base of the rarefaction curve, γPIE (solid grey arrow).  The α-rarefaction curve (dashed line) 335 

is derived by randomizing individuals from a single plot, and similar parameters can be derived 336 

—αSn (vertical dashed line intersects the dashed curve) and αPIE (dashed grey arrow).  The ratio 337 

between the γ− and α-rarefaction curves provides estimates of β-diversity that indicate the degree 338 

of intraspecific aggregation on the island.  Note, in text, we advocate converting PIE values into 339 

effective numbers of species (SPIE), but only illustrate PIE in the figure, as it is not 340 

straightforward to illustrate SPIE on these axes.  341 

 342 
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Question 1: What is the shape of the overall ISAR?  343 

Parameter analyzed: Total number of species on an island (Stotal) 344 

Stotal is the most straightforward ISAR variable one can measure.  The ideal way to estimate Stotal 345 

is from independent information, such as exhaustive searching or checklists of species known to 346 

occur on a given island.  However, because this information is often unavailable, Stotal can be 347 

estimated via techniques for predicting the number of species in a given extent (e.g., Colwell and 348 

Coddington 1994, Harte et al. 2009, Chao and Jost 2012, Chao and Chiu 2014, Azaele et al. 349 

2015).  None of these approaches are perfect, and we are agnostic as to which approach is best 350 

for estimating Stotal when complete species lists are not available.  However, in our case studies 351 

below, we use the Chao (1984) non-parametric estimator to extrapolate the total number of 352 

species on a given island because it can be mathematically and conceptually linked to the 353 

rarefaction curves that we use (Colwell et al. 2012). However, this can only be viewed as a 354 

minimum expected Stotal, and will likely underestimate the true Stotal. 355 

While Stotal is the fundamental parameter of interest to calculate an ISAR, it alone provides little 356 

information as to the nature of its potential underlying mechanisms.  This is because Stotal is 357 

influenced by a number of underlying parameters, including the density of individuals, the 358 

relative abundances of species, and the intraspecific aggregation or spatial heterogeneity 359 

exhibited by species.  Thus, to disentangle the factors underlying variation in Stotal, we need to 360 

look deeper into these underlying components, which we can do using the parameters 361 

overviewed in Table 1 and Figure 1b (see also Chase et al. 2018, McGlinn et al. 2018).  362 

Question 2: Does the ISAR result differ from what is expected from random sampling? 363 

Parameter Analyzed: Number of species expected from the γ-rarefaction curve (γSn) 364 

If patterns of the ISAR were generated simply by the random sampling hypothesis, we would 365 

expect that γ-rarefaction curves of small and large islands would fall right on top of each other 366 

(whereas the curve would go farther along the x-axis for the larger island, because more total N 367 

are present on larger islands) (Figure 2a).  If the γ-rarefaction curves between smaller and larger 368 

islands differ, which we can quantify by comparing γSn among islands (Figure 2b), then we can 369 

conclude that something other than random sampling influences the ISAR.  This is essentially 370 

the same procedure as that described by the random placement approach (Coleman 1981, 371 

Coleman et al. 1982). 372 

 373 

If γSn increases with increasing island area, this means that more species can persist for a given 374 

sampling effort on larger than smaller islands.  We can go one step further in describing this 375 

pattern by examining how island size influences the relative commonness and rarity of species.   376 

If island area influences the γ-rarefaction curve via an overall decrease in evenness of both 377 

common and (as shown in Figure 2b), we would expect that both γSn and γSPIE would change.  378 

However, if only relatively rarer species are disproportionately influenced by island area (not 379 

shown in figure), we would expect that γSn would increase with increasing island area, but there 380 

should be little to no effect on γSPIE.  Importantly, the slope of the γSn with island size very much 381 
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depend on exactly which n is used in the calculations, with steeper slopes observed at higher n.  382 

This is similar to what was observed by Karger et al. (2014) on islands in Southeast Asia.   383 

 384 

It is important to note that the hypotheses of increasing γSn and/or γSPIE with increasing island 385 

area, as illustrated in Figure 2b are not the only possibilities.  Estimates of diversity from 386 

samples, such as γSn and/or γSPIE, could certainly decrease with increasing island size.  For 387 

example, on islands that result from habitat fragmentation and/or those that are surrounded by a 388 

relatively hospitable matrix, there are several mechanisms (e.g., habitat spillover) that can lead to 389 

higher levels of diversity (both in Stotal as well as from samples [γSn and/or γSPIE]) in smaller 390 

relative to larger islands (e.g., Ewers and Diham 2006, Fahrig 2017).   391 

 392 

Even if the numbers of species (and evenness) for a given sampling effort (γSn and/or γSPIE) 393 

declines, this can be outweighed by the random sampling effect, leading to an overall increasing 394 

ISAR even with decreasing components of diversity with increasing area.  This emphasizes the 395 

fact that ISAR mechanisms are not mutually exclusive.  That is, random sampling effects are 396 

likely always operating (as evidenced by the increase in species richness with increasing N along 397 

the rarefaction curve), even when disproportionate effects and/or heterogeneity also influence the 398 

ISAR pattern.  As such, we can use rarefaction curves to examine whether random sampling is 399 

the only mechanism operating, as it would be if there is no influence of island size on γSn, and as 400 

a result, conclude that differential effects and/or heterogeneity are not operating.  However, we 401 

cannot conversely say that random sampling is not operating if there is a relationship between γSn 402 

and island size.  This is because random sampling effects are always operating anytime there are 403 

fewer species on a given island than the total numbers of species in the regional species pool.   404 

 405 

Finally, our discussion above implicitly assumed that island size changes the total number of 406 

individuals on an island via passive sampling, but not the density of individuals in a given 407 

sampled area.  However, there are also reasons that island size can influence individual density.  408 

For example, if larger islands are more favorable for some reason, the total numbers of 409 

individuals would increase both because island size increases, as well as because the density in a 410 

given sampled area increases.  Alternatively, smaller islands could contain more individuals for a 411 

given area (higher density) if there is high spillover from the matrix into smaller islands, or if 412 

larger islands have less favorable habitats.  In such cases, comparisons of γSn are still necessary 413 

to test the null hypothesis of whether the ISAR results from random sampling or not.  However, 414 

when N varies with island size, it will also be useful to compare estimates of S at the scale of the 415 

sample rather than the number of individuals (i.e., sampled-based estimates sensu Gotelli and 416 

Colwell 2001, McGlinn et al. 2018) to determine how changes in N influence the ISAR.  417 

 418 

 419 

 420 
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 421 

 422 

Figure 2.  A.  Hypothetical case where a large island has more species than a smaller island in 423 

total, but this entirely because of random sampling (the larger island has more total individuals).  424 

Note that the rarefaction curves for each island fall on top of each other, and the parameters 425 

derived from it, including γSn and γSPIE (not shown) are the same between larger and smaller 426 

islands.  B.  Hypothetical case where a large island has more species than a smaller island, and 427 

this results because both a sampling effect (the larger island has more N, and goes farther down 428 

the x-axis) as well as a disproportionate effect whereby γSn is lower on the smaller than the larger 429 

island.  γSPIE in this case (not illustrated) is also smaller on the smaller island (because it has a 430 

shallower slope), but this need not be the case if only rarer species are affected.  431 

 432 

 433 

 434 

 435 

Question 3: Does the ISAR result from disproportionate effects or from heterogeneity 436 

Parameter analyzed: β-diversity as the difference between the γ-rarefaction curve and α-437 

rarefaction curve.   438 

  439 

If there is a relationship between γSn and/or γSPIE and island area, we can conclude that there is 440 

something other than random sampling influencing the ISAR.  With only the parameters from 441 

the γ-rarefaction curve, however, we cannot yet discern whether this is due to disproportionate 442 

effects that are equally distributed across the island, or whether these effects emerge because of 443 

heterogeneity in species composition across the island (i.e., different species and relative 444 

3 

).  
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abundances in different parts of the island).  To disentangle disproportionate effects from 445 

heterogeneity, we must look more closely into the variation in species abundances and 446 

composition within an island—that is, within-island β-diversity.   447 

If ��� has no relationship with island size, then we can reject the heterogeneity hypothesis 448 

(Figure 3a; note, in the figure, we have illustrated that ��� is 1, indicating there is no 449 

heterogeneity due to aggregation; however, this hypothesis would also be true if ��� >1, but does 450 

not significantly vary with island size).  However, if ���increases with island size, then we 451 

conclude that heterogeneity plays at least some role in the generation of the ISAR.  If the ISAR 452 

is primarily driven by heterogeneity, we would expect there to be no relationship between αSn 453 

and island size, but a strong relationship with γSn, giving us a significant ��� relationship with 454 

island size (Figure 3b).  Such a pattern was observed by Sfenthourakis and Panitsa (2012) for 455 

plants on Greek islands in the Aegean Sea.  In Figure 3b, we have illustrated a case where 456 

heterogeneity influences rare as well as common species, indicating an effect on both ��� and 457 

�����  (not shown, but implied because the slope at the base of the curve [i.e., PIE] is influenced).  458 

However, it is also possible that heterogeneity can influence just the rarer, but not more common 459 

species, wherein we would expect an effect on ���, but not �����  (not shown in Figure).   460 

It is quite possible that both disproportionate effects and heterogeneity occur simultaneously and 461 

in the same direction, in which case, we would expect a significant relationship between αSn and 462 

island size (indicating disproportionate effects) and stronger relationship between γSn island size, 463 

giving a significant relationship between island size and ��� (not shown in Figure).  On the other 464 

hand, disproportionate effects and heterogeneity mechanisms can act in opposition to one 465 

another. For example, the area-heterogeneity trade-off hypothesis assumes that as heterogeneity 466 

increases, the amount of area of each habitat type declines when total area is held constant 467 

(Kadmon and Allouche 2007, Allouche et al. 2012).  Although perhaps not a common scenario 468 

(e.g., Hortal et al. 2009), if the types of habitats increase with island area, while the total amount 469 

of each habitat type declines, we might expect αSn and/or αSPIE to decline, while γSn and/or γSPIE 470 

can increase, remain unchanged or decrease, depending on the degree to which the heterogeneity 471 

effect is overcome by disproportionate effects (not shown). 472 

Finally, if there is a significant relationship between ���and/or �����  with island area, we can 473 

conclude that compositional heterogeneity likely underlies the ISAR, but we cannot infer 474 

whether this is due to habitat heterogeneity or dispersal limitation.  To disentangle the relative 475 

importance of these mechanisms, it would be necessary to have additional information; for 476 

example, on the environmental conditions from different locations from within an island, and 477 

how species compositional heterogeneity was related to those conditions (see e.g., Leibold and 478 

Chase 2017 for an overview of approaches aimed at disentangling these).   479 
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 480 

 481 

Figure 3.  A.  A hypothetical case where there is no heterogeneity in species composition within 482 

islands (the α- and γ-rarefaction curves completely overlap), such that =1.  And this does not 483 

vary with island size.  Note, that it is also possible that  and/or >1, but we would conclude 484 

no heterogeneity effect underlying the ISAR if this is not influenced by island size   B.  A case where 485 

there is heterogeneity in species composition in the larger island (the α- and γ-rarefaction curves 486 

differ), but not the smaller.  And thus, there is a positive relationship between compositional 487 

heterogeneity (  and/or ) island size.  In this case, note that the α- rarefaction curves 488 

between the larger and smaller island overlap, and the island-effect is just observed at the γ-level, 489 

indicating the ISAR results solely from heterogeneity.  This need not be the case, however, and 490 

other complexities can arise (see text). 491 
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Caveat: Our approach, like all rarefaction-based analyses, assumes that sampling strategies can 493 

clearly identify and enumerate individuals of each species.  Unfortunately, enumeration of 494 

individuals is much more difficult or impossible in certain kinds of communities (e.g., 495 

herbaceous plants, corals).  Nevertheless, there are some ‘workaround’ solutions that can be used 496 

to apply the rarefaction techniques we have advocated to data where numbers of individuals are 497 

not available, but other measures of relative abundance are (e.g., percent cover or occupancy).  498 

For example, one can convert percentages of a species to individuals via a multiplier.  In such a 499 

case, the meaning of PIE, Sn and aggregation measures change slightly, but can be calculated.  500 

Alternatively, one can collect presence-absence data on species in many quadrats within a 501 

locality.  The presence of a species in a quadrat can be taken as a proportion and given the often 502 

strong correlation between abundance and occupancy (e.g., Gaston et al. 2000, Borregaard and 503 

Rahbek 2010), converted to an estimate of percent cover and converted as above.  Again, while 504 

the interpretation of the parameters measured above cannot be taken literally, they provide a 505 

useful way to compare multiple diversity measures (at multiple scales) so that the framework we 506 

advocate can be applied.   507 

Case studies: 508 

Next, we illustrate how to use our analytical framework to test the ecological mechanisms 509 

underlying the ISAR with examples from three datasets representing different taxa and island 510 

settings.  (1) Lizards sampled from several islands in the Andaman and Nicobar archipelago in 511 

the Indian Ocean (data from Surendran and Vasudevan 2015a,b); (2) Grasshoppers (Orthoptera) 512 

from Ozark glades, which are rocky outcrop prairies that represent island-like patches in a 513 

forested ‘sea’ (data from Ryberg and Chase 2007, Ryberg 2009); (3) plants from island-like 514 

habitat fragments of desert/Mediterranean scrub within an agriculture matrix (data from Giladi et 515 

al. 2011).  For each case study, we present a brief overview of the system, results, and an 516 

interpretation of the results. We only used data from islands where multiple plots were censused; 517 

γ-measures included all of these plots, while α-measures were taken as the average among plots.    518 

Results are presented in Table 1 and Figure 4. 519 

All analyses were performed in R version 3.5.0 (R Core Team (2018).  For each system, we did 520 

not have independent estimates of Stotal, and so we used extrapolation using iNEXT (Hsieh et al. 521 

2018).  We also used iNEXT to calculate rarefied richness values (Sn).  SPIE was calculated using 522 

Vegan (Oksanen et al. 2017). Plots were generated using ggplot2 (Wickham 2016).  Code and 523 

data for these analyses are available at https://github.com/Leana-Gooriah/ISAR_analysis 524 

Table 2: Linear regression coefficients and fits for each response in each case study.  525 

Coefficients are only given when the slope was significantly different from zero. 526 

System Response          Intercept             Slope                  R2                     p-value 
Lizards on 
Oceanic 
Islands 

Stotal 0.59 0.23 0.76 <0.0001 
γSn 0.69 0.15 0.51 0.008 
γSPIE - - - 0.1 
αSn 0.86 0.09 0.36 0.003 
αSPIE 0.61 0.10 0.28 0.05 
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�		
 -0.20 0.04 0.34 0.03 

�	
��
 - - - 0.37 

      
Grasshoppers 
in Ozark 
Glades 

STotal 0.87 0.25 0.30 0.0001 
γSn 0.45 0.16 0.19 0.01 
γSPIE 0.18 0.18 0.35 0.0005 
αSn -0.02 0.2 0.18 0.013 
αSPIE -0.39 0.22 0.25 0.004 
�		

 - - - 0.54 
 �	
��

 - - - 0.33 
      
Plants in 
fragmented 
scrubland 

Stotal 3.61 0.24 0.37 0.03 
γSn - - - 0.13 
γSPIE - - - 0.71 
αSn - - - 0.17 
αSPIE - - - 0.85 
�		

 - - - 0.57 
�	
��

 - - - 0.56 
 527 

  528 
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Figure 4. 529 

  530 

Figure 4.  Log-log plots from the three case studies provided above.  Each row represents results 531 

from a different case study; top row is for the lizards on the Andaman Islands; middle row is for 532 

the grasshoppers in Ozark glades; bottom row is for plants in Israeli fragments.  Panels A,D,G 533 

represent parameters derived from the regional scale, including Stotal (the number of species 534 

estimated on the total island), γSn (the number of species expected for a minimum N measured 535 

across plots), and γSPIE (the effective number of species given PIE across plots) (see text for 536 

explanation).  Panels B, E, H represent parameters derived from the local scale, including αSn 537 

(the number of species expected for a minimum n measured in a single plot) and αSPIE (the 538 

effective number of species given PIE within a plot).  Panels C, F, I represent parameters derived 539 

from comparing the local and regional scale (=β-diversity), including  (the difference which 540 

represents heterogeneity in rare and common species), and  (the difference which represents 541 

heterogeneity in common species).  Coefficients and significance values are given in Table 1. 542 

Images are CC0 Creative Commons, with no attribution required.  543 
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Lizards on Oceanic Islands—The Andaman and Nicobar islands are a relatively pristine island 545 

archipelago in the Indian Ocean.  A variety of taxa on these islands have been the subject of 546 

island biogeography studies, including ISAR studies (e.g., Davidar et al. 2001, 2002).  Here, we 547 

used data from Surendran and Vasudevan (2015a,b) who intensively sampled lizards in 100 m2 548 

quadrats from 11 islands that varied from 3.3 to 1375 km2 in area.  We only used data from 549 

islands where two or more quadrats were censused.   550 

As expected, we found a strong increase in our estimate of Stotal as island size increased.  We also 551 

found that γSn increases significantly with island area, allowing us to reject the null hypothesis 552 

that the ISAR is driven by random sampling effects.  However, the relationship between γSPIE 553 

and island area was not significant (Table 2, Figure 4a).  A slightly different pattern emerged at 554 

the local scale (Figure 3b), with individual quadrats on larger islands having more species (αSn) 555 

that were less uneven in species composition (αSPIE) than on smaller islands.  Because there were 556 

significant relationships between island size and both the γ-scale and α-scale measures, we can 557 

conclude that disproportionate effects played at least some role in driving the ISAR on these 558 

islands.  Without additional information, we cannot say for certain exactly which spatial 559 

mechanisms are operating to allow more even communities, and more species co-occurring in 560 

local quadrats on larger compared to smaller islands.  However, because ���  also increased with 561 

island size, this indicates that there was at least some influence of heterogeneity on the ISAR.  562 

This heterogeneity effect was only observed among the rarer species, but not the more common 563 

species, because there was no concomitant relationship between �����  and island size.  From 564 

other studies in these islands, we know that habitat heterogeneity does generally increase with 565 

island size (Davidar et al. 2001, 2002), and so suspect this relationship influenced heterogeneity 566 

in lizard composition from quadrat to quadrat more on larger relative to smaller islands.      567 

Grasshoppers in Ozark Glades—Ozark glades are patchy island-like habitats within 568 

Midwestern forested ecosystems that contain xeric adapted herbaceous plant communities 569 

together with associated fauna (Ware 2002).  Grasshoppers are diverse and abundant herbivores 570 

that are known to respond to local and spatial processes in these patchy ecosystems (e.g., Östman 571 

et al. 2007, Ryberg and Chase 2007).  Here, we use data collected by Ryberg (2009) from area-572 

standardized sweep sample transects (each sample represented 50 sweeps taken from a transect 573 

covering approximately 50 m2) taken from within glades without predatory lizards which varied 574 

from 0.02 to 1.05 ha (ranging from four transects on the smallest glade to 32 on the largest).   575 

As with the lizards above, we find that Stotal increases with island size, as does γSn. Furthermore, 576 

in this case, γSPIE also increased with island size (Table 2, Figure 4d).  A similar pattern is 577 

reflected at the local scale (Figure 4e).  Thus, again, we can reject the null hypothesis that the 578 

ISAR emerges from random sampling, and instead we see a clear signal for disproportionate 579 

effects influencing both the number of species and their relative abundances.  We suspect that 580 

one reason for this was because we only used glades that were relatively isolated from one 581 

another, and these grasshoppers do not readily disperse through the matrix.  And thus, local 582 

processes likely outweighed any regional-level sampling effects.  Unlike the lizards, however, 583 

we found no effect of glade size on β-diversity of grasshoppers between sweep samples within a 584 

glade (Figure 4F), suggesting that the ISAR did not likely result from increased levels of 585 
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heterogeneity in larger glades, but rather from spatial processes associated with disproportionate 586 

effects.  This is despite the fact that we know that heterogeneity in microhabitat types does 587 

increase with increasing glade size (Ryberg 2009).  We suspect that the fact that these 588 

grasshoppers are rather mobile within glades was a reason that heterogeneity in species 589 

composition did not emerge among glades that varied in size.   Unfortunately, however, without 590 

further information, we cannot say exactly what sorts of mechanisms allowed more species of 591 

grasshoppers to persist in larger glades than expected from random sampling.   592 

Plants in fragmented scrubland—Xeric scrub habitat in Israel was once quite extensive, but 593 

has been severely fragmented such that remnant habitats can be thought of as islands within a sea 594 

of agriculture (mostly wheat fields).  These fragments have been the subject of intensive research 595 

on a number of organisms, including plants and several groups of animals (e.g., Yaacobi et al. 596 

2007, Giladi et al. 2011, 2014, Gavish et al. 2012).  Here, we used data from the Dvir region 597 

from the study by Giladi et al. (2011) on plants identified and enumerated in two or three 225 m2 598 

quadrats within seven fragments varying from 0.56 to 3.90 ha. 599 

Again, we found that Stotal increased with fragment area, indicating a positive ISAR relationship.  600 

However, in this case, there were no significant relationships with γSn or γSPIE (Table 2, Figure 601 

4g), any of the metrics from the α-rarefaction curve (Figure 4h), nor any of the β-scale metrics 602 

(Figure 4i).  In this case, then, we are not able to reject the null hypothesis and instead conclude 603 

that the ISAR in these fragmented habitats is most consistent with the idea of random sampling.  604 

Even though we used different (and in our opinion, more robust) analytical tools, our results are 605 

qualitatively similar to those derived by the authors of the original study (Giladi et al. 2011).  In 606 

this case, these results would indicate one of two general possibilities.  First, it could be that 607 

these plants disperse well enough across the matrix that habitat size does not strongly influence 608 

local population dynamics.  Second, it could be that local population dynamics do not depend on 609 

the numbers of individuals and types of species in local neighborhoods, at least during the time 610 

scale in which habitat fragmentation has taken place.       611 

Discussion and Conclusions 612 

The island species-area relationship (ISAR)—depicting how the numbers of species increase 613 

with the size of the island or habitat patch—is one of the most well-known patterns in 614 

biogeography. Understanding the ISAR and the processes leading to it is not only important for 615 

basic ecological knowledge, but is also of critical importance for biodiversity conservation in the 616 

context of habitat loss and fragmentation.  Despite this, the study of the ISAR continues to be 617 

difficult to synthesize, primarily because of the confusion about the confounding influence of 618 

sampling effects and spatial scale on the ISAR.  For example, previous syntheses of the ISAR in 619 

natural and fragmentation contexts have focused on estimates of species richness at the entire 620 

island scale (e.g., Triantis et al. 2012, Matthews et al. 2016).  Other syntheses, however, have 621 

confounded species richness measurements from multiple scales and contexts, making 622 

comparisons within and among studies difficult (e.g., Drakare et al. 2006, Smith et al. 2005, 623 

Fahrig 2017).  As we have shown here, it is important to understand and report how species 624 

richness was sampled in order to interpret ISAR results.  This is particularly true in the realm of 625 

conservation biology, where the influence of habitat loss and fragmentation on biodiversity is a 626 
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critically important, but also controversial topic.  In fact, a great deal of the controversy (e.g., 627 

Haddad et al. 2015, 2017, Hanski 2015, Fahrig 2013, 2017, Fletcher et al. 2018) is likely 628 

attributable to different investigators using different sampling procedures, different analyses, and 629 

different spatial scales for their comparisons, and thus comparing apples to oranges. 630 

We are not alone in this call for a more careful consideration of sampling when measuring and 631 

interpreting ISARs (Hill et al. 1994, Schroeder et al. 2004, Yaacobi et al. 2007, Giladi et al. 632 

2011, 2014, Sfenthourakis and Panitsa 2012, Karger et al. 2014).  However, our approach, using 633 

metrics derived from γ- and α-rarefaction curves, provides an important advance over previous 634 

approaches by allowing one to more explicitly examine the influence of sampling and scale on 635 

the outcome.  As our case studies illustrate, we can use this approach to explicitly disentangle the 636 

main hypotheses suspected to underlie the ISAR (random sampling, disproportionate effects and 637 

heterogeneity).  For example, the case study on fragmentation in Israeli scrub habitats indicated 638 

that random sampling was primarily responsible for the ISAR.  Interestingly, this result is similar 639 

to that found by Coleman et al. (1982) in their original use of this approach to another 640 

fragmented system; birds on islands within a flooded reservoir.  Such results might be expected 641 

if species can readily use the matrix between habitat islands, or can easily disperse among 642 

habitats.  Alternatively, in both the lizard and grasshopper systems, species are less likely to use 643 

the matrix and dispersal is likely lower, influencing the observation that disproportionate effects 644 

and heterogeneity influence the ISAR.  Nevertheless, these are just a few case studies we 645 

analyzed where appropriate data were available.  A more complete exploration of the generality 646 

of the patterns and potential mechanisms leading to the ISAR will require more thorough 647 

analyses of natural islands and patchy landscapes, as well as habitat islands that are created by 648 

habitat loss and fragmentation.  Such analyses will allow us to achieve a more general synthesis 649 

of the patterns and possible processes creating ISARs in natural and fragmented island 650 

landscapes, but will also require more data (i.e., spatially explicit data of total and relative 651 

abundances of species as well as spatially explicit environmental data) than is typically analyzed 652 

in such studies. 653 

There are clearly some extensions that can be made to the simple approach that we have 654 

overviewed.  For example, when measuring ISARs in the real world, there are often many other 655 

mechanisms that can influence diversity patterns in addition to island size.  For example, another 656 

important variable that influences diversity on islands is the isolation (distance) of those islands 657 

from others (e.g., MacArthur and Wilson’s 1967, Kreft et al. 2008).  Habitat area can also 658 

influence trophic structure (e.g., larger islands may be more likely to have top predators), which 659 

in turn will feedback to influence the shapes of the rarefaction curves and patterns of diversity 660 

(e.g., Östman et al. 2007, Gravel et al. 2011).  Likewise, in volcanic archipelagos, larger islands 661 

tend also to be younger and may have not had as much time for diversification as smaller/older 662 

islands, and this confounding factor can also greatly influence the shape of the ISAR (e.g., 663 

Whittaker et al. 2008,.Gillespie and Baldwin 2010).  In addition, islands can vary in a number of 664 

other environmental and biological features, all of which can interact with island area.  665 

Fortunately, the metrics for which we have advocated which explicitly incorporate sampling 666 

theory and scale (see also Chase et al. 2018) can be analyzed in more complex models than the 667 

simple regressions that we have presented above.  For example, hierarchical models can be 668 
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applied to each of these metrics, analyzing the influence of island area along with a number of 669 

potential independent variables (see e.g., Blowes et al. 2017 for such analyses addressing a 670 

different set of questions).  Likewise, structural equation models comparting patterns of ISARs 671 

along with several other covariables (e.g., Stiles and Scheiner 2010) can be applied to these 672 

metrics to disentangle area effects from other potential drivers.   673 

Finally, despite its advantages, it is important to note that our approach is purely observational.  674 

As such, although it can provide deeper insights into the likely mechanisms that influence the 675 

ISAR than previous observational approaches, it cannot definitively discern process from these 676 

patterns.  To more definitively test the primary ISAR mechanisms described here, we would 677 

need to go a step or two further.  This could include, for example, observational studies that take 678 

advantage of variation, such as islands that varied semi-orthogonally in both area and 679 

heterogeneity (Nilsson et al. 1988, Ricklefs and Lovette 1999, Kallimanis et al. 2008, Hannus 680 

and Von Numers 2008, Stiles and Scheiner 2010), but also disentangling patterns of species 681 

richness in a more scale-explicit way as we have outlined here.  Or it could include manipulative 682 

experiments that directly alter island size and/or heterogeneity (e.g., Simberloff 1976, Douglas 683 

and Lake 1994, Matias et al. 2010), or disrupt the processes occurring within islands (e.g., 684 

altering patterns of within-island dispersal and/or extinction).    685 

Acknowledgements:  686 

This work emerged from discussions among the co-authors in many contexts over many years, 687 

and was also improved by discussions with many other colleagues, including S. Blowes, T. 688 

Engel, P. Keil, S. Kroiss, D. McGlinn, B. McGill and N. Gotelli.  Comments from R. Field, J. 689 

Hortal, S. Scheiner and an anonymous reviewer greatly helped us to improve the presentation.  690 

JMC, TMK, DC, LG, and FM were supported by the German Centre of Integrative Biodiversity 691 

Research (iDiv) Halle-Jena-Leipzig (funded by the German Research Foundation; FZT 118).  692 

The contribution of TMK and DC were also supported by the Helmholtz Association and by the 693 

Alexander von Humboldt Foundation.  Ideas presented in this manuscript were inspired from 694 

work done as part of a grant supported by the U.S. National Science Foundation (DEB 0949984) 695 

to JMC and TMK. 696 

Author Contributions: 697 

JMC and TMK developed the initial conceptualization of the framework presented here, with 698 

significant input from WAR, MAS, FM, DC and LG at different stages.  WAR provided the data 699 

for the grasshopper case study; FM provided the data for the fragmentation case study. LG wrote 700 

the code, with help from DC and FM, and did the analyses.  JMC wrote the first draft of the 701 

manuscript, and all authors contributed significantly to revisions.  702 

Data and Code Accessibility:  703 

The code to run the analyses described here, as well as the data for the case studies, are freely 704 

available on https://github.com/Leana-Gooriah/ISAR_analysis. 705 

  706 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/


Chase et al. 23 

Literature Cited: 707 

Allouche, O., M. Kalyuzhny, G. Moreno-Rueda, M. Pizarro, & R. Kadmon. (2012). Area-708 

heterogeneity tradeoff and the diversity of ecological communities. Proceedings of 709 

the National Academy of Sciences USA, 109, 17495–17500. 710 

 711 

Arrhenius, O. (1921). Species and area. Journal of Ecology 9, 95-99. 712 

 713 

Azaele, S., A. Maritan, S. J. Cornell, S. Suweis, J. R. Banavar, D. Gabriel, & W. E. Kunin. 714 

(2015). Towards a unified descriptive theory for spatial ecology: predicting 715 

biodiversity patterns across spatial scales. Methods in Ecology and Evolution, 6, 324–716 

332. 717 

 718 

Blowes, S.A., J. Belmaker & J. M. Chase (2017). Global reef fish richness gradients 719 

emerge from divergent and scale-dependent component changes. Proceedings. 720 

Biological Sciences B., 284, 1867.  721 

 722 

Borregaard, M.K. & C. Rahbek (2010). Causality of the relationship between geographic 723 

distribution and species abundance. Quarterly Review of Biology, 85, 3-25. 724 

 725 

Borregaard, M. K., T. J. Matthews, and R. J. Whittaker (2016). The general dynamic 726 

model: towards a unified theory of island biogeography? Global Ecology and 727 

Biogeography, 25, 805–816. 728 

 729 

Chao, A. (1984). Nonparametric estimation of the number of classes in a population. 730 

Scandinavian Journal of Statistics, 11, 265–270. 731 

 732 

Chao, A., & C.-H. Chiu. (2016). Species Richness: Estimation and Comparison. Pages 1–733 

26 in N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, and J. L. 734 

Teugels, editors. Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, 735 

Ltd, Chichester, UK. 736 

 737 

Chao, A., & L. Jost. (2012). Coverage-based rarefaction and extrapolation: standardizing 738 

samples by completeness rather than size. Ecology, 93, 2533–2547. 739 

 740 

Chase, J. M., & M. A. Leibold. (2003). Ecological Niches: linking classical and 741 

contemporary approaches. University of Chicago Press, Chicago, Illinois, USA.  742 

 743 

Chase, J., B. McGill, D. J. McGlinn, F. May, S. A. Blowes, X. Xiao, T. M. Knight, O. 744 

Purschke, & N. J. Gotelli. (2018). Embracing scale-dependence to achieve a deeper 745 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/


Chase et al. 24 

understanding of biodiversity and its change across communities. Ecology Letters, 746 

21, 1737-1751.  747 

 748 

Chisholm, R. A., T. Fung, D. Chimalakonda, & J. P. O’Dwyer. (2016). Maintenance of 749 

biodiversity on islands. Proceedings of the Royal Society B: Biological Sciences, 283, 750 

20160102.  751 

 752 

Colwell, R. K., A. Chao, N. J. Gotelli, S.-Y. Lin, C. X. Mao, R. L. Chazdon, & J. T. 753 

Longino. (2012). Models and estimators linking individual-based and sample-based 754 

rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 755 

5, 3–21. 756 

 757 

Condit, R., Pitman, N., Leigh, E.G., et al., (2002). Beta-diversity in tropical forest trees. 758 

Science, 295, pp.666-669. 759 

 760 

Connor, E. F., & E. D. McCoy. (1979). The statistics and biology of the species-area 761 

relationship. American Naturalist 113, 791–833. 762 

 763 

Davidar, P., K. Yoganand & T. Ganesh (2001). Distribution of forest birds in the Andaman 764 

islands: importance of key habitats. Journal of Biogeography, 28, 663-671. 765 

 766 

Davidar, P., K. Yogananad, T. Ganesh, & S. Devy. (2002). Distributions of forest birds and 767 

butterflies in the Andaman islands, Bay of Bengal: nested patterns and processes. 768 

Ecography, 25, 5–16. 769 

 770 

Diamond, J. M. (1975). The island dilemma: lessons of modern biogeographic studies for 771 

the design of natural reserves. Biological Conservation, 7, 129-146. 772 

 773 

Douglas, M. & P. S. Lake. (1994). Species richness of stream stones: An investigation of 774 

the mechanisms generating the species-area relationship. Oikos, 69, 387-396. 775 

 776 

Drakare, S., J. J. Lennon & H. Hillebrand. (2006). The imprint of the geographical, 777 

evolutionary and ecological context on species-area relationships. Ecology Letters, 9, 778 

215–227. 779 

Ewers, R.M. & R. K. Didham (2006). Confounding factors in the detection of species 780 

responses to habitat fragmentation. Biological Reviews, 81, 117-142. 781 

 782 

Fahrig, L. (2013). Rethinking patch size and isolation effects: the habitat amount 783 

hypothesis. Journal of Biogeography, 40, 1649–1663. 784 

 785 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/


Chase et al. 25 

Fahrig, L. (2017). Ecological responses to habitat fragmentation per se. Annual Review of 786 

Ecology, Evolution, and Systematics 48, 1–23. 787 

 788 

Gaston, K.J., T. M. Blackburn, J. L. Greenwood, R. D. Gregory, R. M. Quinn & J. H. 789 

Lawton (2000). Abundance–occupancy relationships. Journal of Applied Ecology, 37, 790 

39-59. 791 

 792 

Giladi, I., F. May, M. Ristow, F. Jeltsch, & Y. Ziv. (2014). Scale-dependent species-area 793 

and species-isolation relationships: a review and a test study from a fragmented semi-794 

arid agro-ecosystem. Journal of Biogeography 41, 1055–1069. 795 

 796 

Giladi, I., Y. Ziv, F. May, & F. Jeltsch. (2011). Scale-dependent determinants of plant 797 

species richness in a semi-arid fragmented agro-ecosystem: Scale-dependent plant 798 

diversity in an agro-ecosystem. Journal of Vegetation Science, 22, 983–996. 799 

 800 

Gillespie, R. G., & B. G. Baldwin. (2009). Island biogeography of remote archipelagoes: 801 

Interplay between ecological and evolutionary Processes. Page in J. B. Losos and R. 802 

E. Ricklefs, editors. The Theory of Island Biogeography Revisited. Princeton 803 

University Press, Princeton, New Jersey, USA. 804 

 805 

Gotelli, N. J., & R. K. Colwell. (2001). Quantifying biodiversity: procedures and pitfalls in 806 

the measurement and comparison of species richness. Ecology Letters, 4, 379–391. 807 

 808 

Gotelli, N. J., & G. R. Graves. (1996). Null models in ecology. Smithsonian Institute Press, 809 

Washington, D.C., USA.  810 

 811 

Gravel, D., F. Massol, E. Canard, D. Mouillot, & N. Mouquet. (2011). Trophic theory of 812 

island biogeography: Trophic theory of island biogeography. Ecology Letters, 14, 813 

1010–1016. 814 

 815 

Haddad, N. M., L. A. Brudvig, J. Clobert, et al. (2015). Habitat fragmentation and its 816 

lasting impact on Earth’s ecosystems. Science Advances, 1, e1500052–e1500052. 817 

 818 

Haddad, N. M., A. Gonzalez, L. A. Brudvig, M. A. Burt, D. J. Levey, & E. I. Damschen. 819 

(2017). Experimental evidence does not support the Habitat Amount Hypothesis. 820 

Ecography, 40, 48–55. 821 

 822 

Hannus, J.-J., & M. Von Numers. (2008). Vascular plant species richness in relation to 823 

habitat diversity and island area in the Finnish Archipelago. Journal of Biogeography, 824 

35, 1077–1086. 825 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/


Chase et al. 26 

 826 

Hanski, I. (2015). Habitat fragmentation and species richness. Journal of Biogeography, 42, 827 

989–993. 828 

 829 

Hanski, I., & M. Gyllenberg. (1993). Two general metapopulation models and the core-830 

satellite species hypothesis. American Naturalist, 142, 17–41. 831 

 832 

Hanski, I., G. A. Zurita, M. I. Bellocq, & J. Rybicki. (2013). Species-fragmented area 833 

relationship. Proceedings of the National Academy of Sciences 110, 12715–12720. 834 

 835 

Harte, J., A. B. Smith, & D. Storch. (2009). Biodiversity scales from plots to biomes with a 836 

universal species-area curve. Ecology Letters 12, 789–797. 837 

 838 

Hill, J. L., P. J. Curran, & G. M. Foody. (1994). The effect of sampling on the species-area 839 

curve. Global Ecology and Biogeography Letters, 4, 97-106. 840 

 841 

Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. 842 

Ecology, 54, 427–432. 843 

 844 

Hortal, J., K. A. Triantis, S. Meiri, E. Thébault, & S. Sfenthourakis. (2009). Island species 845 

richness increases with habitat diversity. American Naturalist, 174, E205–E217. 846 

 847 

Hurlbert, S. H. (1971). The nonconcept of species diversity: A critique and alternative 848 

parameters. Ecology, 52, 577–586. 849 

 850 

Hsieh, T. C., K. H. Ma & A. Chao. (2018). iNEXT: iNterpolation and EXTrapolation for 851 

species diversity. R package version 2.0.15. 852 

 853 

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375. 854 

 855 

Kadmon, R., & O. Allouche. (2007). Integrating the effects of area, isolation, and habitat 856 

heterogeneity on species diversity: A unification of island biogeography and niche 857 

theory. American Naturalis, 170, 443–454. 858 

 859 

Kallimanis, A. S., A. D. Mazaris, J. Tzanopoulos, J. M. Halley, J. D. Pantis, & S. P. 860 

Sgardelis. (2008). How does habitat diversity affect the species–area relationship? 861 

Global Ecology and Biogeography, 17, 532–538. 862 

 863 

Karger, D. N., P. Weigelt, V. B. Amoroso, D. Darnaedi, A. Hidayat, H. Kreft, & M. 864 

Kessler. (2014). Island biogeography from regional to local scales: evidence for a 865 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/


Chase et al. 27 

spatially scaled echo pattern of fern diversity in the Southeast Asian archipelago. 866 

Journal of Biogeography, 41, 250–260. 867 

 868 

Kohn, D. D., & D. M. Walsh. (1994). Plant species richness: The effect of island size and 869 

habitat diversity. Journal of Ecology, 82, 367-377. 870 

 871 

Kreft, H., W. Jetz, J. Mutke, G. Kier, & W. Barthlott. (2008). Global diversity of island 872 

floras from a macroecological perspective. Ecology Letters, 11, 116–127. 873 

 874 

Lawton, J. H. (1999). Are there general laws in ecology? Oikos, 84, 177-192. 875 

 876 

Leibold, M. A., & J. M. Chase. (2017). Metacommunity ecology. Princeton University 877 

Press, Princeton, New Jersey, USA. 878 

 879 

Lomolino, M. V. (2000). Ecology’s most general, yet protean pattern: the species-area 880 

relationship. Journal of Biogeography, 27, 17–26. 881 

 882 

MacArthur, R. H., & E. O. Wilson. (1963). An equilibrium theory of insular zoogeography. 883 

Evolution, 17, 373–387. 884 

 885 

MacArthur, R. H., & E. 0. Wilson. (1967). The theory of island biogeography. Princeton 886 

University Press, Princeton, New Jersey, USA. 887 

 888 

Matias, M. G., A. J. Underwood, D. F. Hochuli, & R. A. Coleman. (2010). Independent 889 

effects of patch size and structural complexity on diversity of benthic 890 

macroinvertebrates. Ecology, 91, 1908–1915. 891 

 892 

Matthews, T. J., F. Guilhaumon, K. A. Triantis, M. K. Borregaard, & R. J. Whittaker. 893 

(2016). On the form of species-area relationships in habitat islands and true islands: 894 

Species-area relationships in islands and habitat islands. Global Ecology and 895 

Biogeography,  25, 847–858. 896 

 897 

Matthews, T. J., M. J. Steinbauer, E. Tzirkalli, K. A. Triantis, & R. J. Whittaker. (2014). 898 

Thresholds and the species-area relationship: a synthetic analysis of habitat island 899 

datasets. Journal of Biogeography, 41, 1018–1028. 900 

 901 

May, R. M. (1975). Patterns of species abundance and diversity. Pages 81–120 in M. L. 902 

Cody and J. M. Diamond, editors. Ecology and Evolution of Communities. Belknap 903 

Press of Harvard University, Cambridge, Massachusetts, USA. 904 

 905 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/


Chase et al. 28 

McGill, B. J., R. S. Etienne, J. S. Gray, et al. (2007). Species abundance distributions: 906 

moving beyond single prediction theories to integration within an ecological 907 

framework. Ecology Letters, 10, 995–1015. 908 

 909 

McGuinness, K.A., 1984. Species–area curves. Biological Reviews, 59(3), 423-440. 910 

 911 

McGlinn, D. J., X. Xiao, F. May, N. J. Gotelli, S. Blowes, T. Knight, O. Purschke, J. 912 

Chase, & B. McGill. (2018). Measurement of Biodiversity (MoB): a method to 913 

separate the scale-dependent effects of species abundance distribution, density, and 914 

aggregation on diversity change. Methods in Ecology and Evolution 915 

https://doi.org/10.1111/2041-210X.13102. 916 

 917 

Nilsson, S. G., J. Bengtsson, & S. As. (1988). Habitat diversity or area per se? Species 918 

richness of woody plants, carabid beetles and land snails on islands. Journal of 919 

Animal Ecology, 57, 685-704. 920 

 921 

Oksanen et al. (2018). vegan: Community Ecology Package. R package version 2.4-5. 922 

 923 

Olszewski, T. D. (2004). A unified mathematical framework for the measurement of 924 

richness and evenness within and among multiple communities. Oikos, 104, 377–387. 925 

 926 

Orrock, J. L., & J. I. Watling. (2010). Local community size mediates ecological drift and 927 

competition in metacommunities. Proceedings of the Royal Society B: Biological 928 

Sciences 277, 2185–2191. 929 

 930 

Östman, Ö., N. W. Griffin, J. L. Strasburg, J. A. Brisson, A. R. Templeton, T. M. Knight, 931 

& J. M. Chase. (2007). Habitat area affects arthropod communities directly and 932 

indirectly through top predators. Ecography, 30, 359–366. 933 

 934 

Ovaskainen, O., G. Tikhonov, A. Norberg, F. G. Blanchet, L. Duan, D. Dunson, T. Roslin, 935 

& N. Abrego, (2017). How to make more out of community data? A conceptual 936 

framework and its implementation as models and software. Ecology Letters, 20, 561-937 

576. 938 

 939 

Peres-Neto, P.R., P. Legendre, S. Dray, & D. Borcard (2006). Variation partitioning of 940 

species data matrices: estimation and comparison of fractions. Ecology, 87, 2614-941 

2625. 942 

 943 

Preston, F. W. (1960). Time and space and the variation of species. Ecology, 41, 611–627. 944 

 945 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/


Chase et al. 29 

R Core Team. (2018). R: A language and environment for statistical computing. R 946 

Foundation for Statistical Computing, Vienna, Austria.  947 

 948 

Ricklefs, R. E., & I. J. Lovette. (1999). The roles of island area per se and habitat diversity 949 

in the species-area relationships of four Lesser Antillean faunal groups. Journal of 950 

Animal Ecology, 68, 1142–1160. 951 

 952 

Ryberg, W. A., & J. M. Chase. (2007). Predator-dependent species-area relationships. 953 

American Naturalist 170, 636–642. 954 

 955 

Ryberg, W.A., (2009). Predation, community assembly, and the scaling of prey diversity in 956 

Ozark glade metacommunities. PhD Dissertation, Washington University in St. 957 

Louis. 958 

 959 

Scheiner, S.M., (2003). Six types of species‐area curves. Global Ecology and  960 

Biogeography, 12, 441-447.  961 

 962 

Scheiner, S.M., A. Chiarucci, G. A. Fox, M. R. Helmus, D. J. McGlinn, D.J. & M. R. 963 

Willig (2011). The underpinnings of the relationship of species richness with space 964 

and time. Ecological Monographs, 81, 195-213. 965 

 966 

Sfenthourakis, S. & M. Panitsa. (2012). From plots to islands: species diversity at different 967 

scales: Diversity patterns in insular plants communities. Journal of Biogeography, 39, 968 

750–759. 969 

 970 

Simberloff, D. S. and L. G. Abele (1976). Island biogeography theory and conservation 971 

practice. Science, 191, 285-286. 972 

 973 

Simberloff, D. (1976). Experimental zoogeography of islands: Effects of island size. 974 

Ecology, 57, 629–648. 975 

 976 

Smith, V. H., B. L. Foster, J. P. Grover, R. D. Holt, M. A. Leibold, & F. deNoyelles. 977 

(2005). Phytoplankton species richness scales consistently from laboratory 978 

microcosms to the world’s oceans. Proceedings of the National Academy of Sciences 979 

USA, 102, 4393–4396 980 

 981 

Stiles, A. and Scheiner, S.M., (2010). A multi‐scale analysis of fragmentation effects on 982 

remnant plant species richness in Phoenix, Arizona. Journal of Biogeography, 37, 983 

1721-1729. 984 

 985 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/


Chase et al. 30 

Surendran, H. & K. Vasudevan. (2015a). The devil is in the detail: estimating species 986 

richness, density, and relative abundance of tropical island herpetofauna. BMC 987 

Ecology, 15, 18. 988 

 989 

Surendran, H. & K. Vasudevan. (2015b). Data from: The devil is in the detail: estimating 990 

species richness, density, and relative abundance of tropical island herpetofauna. 991 

Dryad Digital Repository. https://doi.org/10.5061/dryad.88v79 992 

 993 

Tilman, D. (1982).  Resource competition and community structure. Princeton University 994 

Press, Princeton, NJ. 995 

 996 

Tjørve, E. (2009). Shapes and functions of species-area curves (II): a review of new models 997 

and parameterizations. Journal of Biogeography 36, 1435–1445. 998 

 999 

Tuomisto, H. (2010). A diversity of beta diversities: straightening up a concept gone awry. 1000 

Part 1. Defining beta diversity as a function of alpha and gamma diversity. 1001 

Ecography, 33, 2-22. 1002 

 1003 

Triantis, K. A., F. Guilhaumon, & R. J. Whittaker. (2012). The island species-area 1004 

relationship: biology and statistics. Journal of Biogeography, 39, 215–231. 1005 

 1006 

Whittaker, R. H. (1972). Communities and ecosystems. Macmillan, New York, New York, 1007 

USA. 1008 

 1009 

Whittaker, R. J., K. A. Triantis, and R. J. Ladle. (2008). A general dynamic theory of 1010 

oceanic island biogeography. Journal of Biogeography, 35, 977-994. 1011 

 1012 

Ware, S. (2002). Rock outcrop plant communities (Glades) in the Ozarks: A synthesis. 1013 

Southwestern Naturalist 47, 585-597. 1014 

 1015 

Williams, C. B., (1964). Patterns in the balance of nature and related problems of 1016 

quantitative ecology. Academic Press, London, UK.  1017 

 1018 

Yaacobi, G., Y. Ziv, & M. L. Rosenzweig. (2007). Habitat fragmentation may not matter to 1019 

species diversity. Proceedings of the Royal Society B: Biological Sciences, 274, 1020 

2409–2412. 1021 

 1022 

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New 1023 

York, USA. 1024 

 1025 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/410126doi: bioRxiv preprint 

https://doi.org/10.1101/410126
http://creativecommons.org/licenses/by/4.0/

