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ABSTRACT 
Trio family and case-control studies of next-generation sequencing data have proven integral to 
understanding the contribution of rare inherited and de novo single-nucleotide variants to the 
genetic architecture of complex disease. Ideally, such studies should identify individual risk 
genes of moderate to large effect size to generate novel treatment hypotheses for further follow-
up. However, due to insufficient power, gene set enrichment analyses have come to be relied 
upon for detecting differences between cases and controls, implicating sets of hundreds of genes 
rather than specific targets for further investigation. Here, we present a Bayesian statistical 
framework, termed gTADA, that integrates gene-set membership information with gene-level de 
novo and rare inherited case-control counts, to prioritize risk genes with excess rare variant 
burden within enriched gene sets. Applying gTADA to available whole-exome sequencing 
datasets for several neuropsychiatric conditions, we replicated previously reported gene set 
enrichments and identified novel risk genes. For epilepsy, gTADA prioritized 40 risk genes 
(posterior probabilities > 0.95), 6 of which replicate in an independent whole-genome 
sequencing study. In addition, 30/40 genes are novel genes. We found that epilepsy genes had 
high protein-protein interaction (PPI) network connectivity, and show specific expression during 
human brain development. Some of the top prioritized EPI genes were connected to a PPI 
subnetwork of immune genes and show specific expression in prenatal microglia. We also 
identified multiple enriched drug-target gene sets for EPI which included immunostimulants as 
well as known antiepileptics. Immune biology was supported specifically by case-control 
variants from familial epilepsies rather than do novo mutations in generalized encephalitic 
epilepsy.  

INTRODUCTION 

De novo mutations (DNMs) have been successfully used to identify genes associated with 
neurodevelopmental disorders (NDDs) 1-8.  Recently, additional risk genes have been reported by 
meta-analyzing DNMs and rare case-control (CC) variants, an approach that has been 
particularly successful for autism spectrum disorders (ASD) 9,10. For epilepsy (EPI), multiple 
associated genes have been identified through DN based studies 4,5,11, and in recent years, a 
number of EPI significant genes have also been identified through CC studies 12,13. We 
hypothesized that, as for ASD, additional significant EPI genes could be discovered through the 
integration of DN and CC data. EPI is a serious brain disorder which includes multiple subtypes. 
Studies of cases/controls and twins have shown that genetic components have played important 
roles in EPI 14-16. Some of EPI’s subtypes can be explained by single genes, but multiple 
subtypes might be caused by multiple genes 15. It is still challenging to develop specific drugs for 
this disorder. There have been multiple antiepileptic drugs used for EPI treatments; however, 20-
30% of EPI patients have not been successful in  controlling their seizures by using current 
medications 17. Identifying additional genes or gene sets might help better understand its etiology 
as well as better design drug targets for the disorder.  

Due to the high polygenicity of NDDs, gene set (GS) tests have also been used to identify 
specific pathways relevant to disease etiology 18-23. A typical approach is that top significant 
genes are tested for enrichment in established sets and pathways. We here propose an alternative 
method that circumvents this issue by jointly modeling CC/DN variants and gene set 
information.  
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In this work, we introduce a method that tests gene-set enrichment directly from DN and rare CC 
data, and leverages enriched gene sets (eGSs) to prioritize risk genes. This approach allows 
genes to be prioritized if they are in enriched GSs/tissues, for a given strength of genetic 
evidence. The method can be used for discrete or continuous gene-set data and therefore can 
incorporate gene expression data to obtain additional significant genes based on tissue or cell-
type expression information. It is a generalized framework of our extended Transmission And 
De novo Association, gTADA. We apply gTADA to large DN and rare CC variant data, 
incorporating candidate and canonical gene sets, drug-target gene sets, and GTEx expression 
data in order to prioritize NDD and congenital heart disease (CHD) genes. With recent large rare 
CC data sets for EPI, we further analyze results for this disorder. We identify multiple significant 
EPI genes, and validate top genes in an independent data set. We provide further support for our 
significant genes through the analysis of expression data and protein-protein interaction 
networks. 

RESULTS 

We have developed the gTADA pipeline to prioritize risk genes for complex genetic disorders 
through integration of DN mutations, rare CC variants, and gene-set (GS) membership (Figure 
1). The pipeline uses the Transmission And Denovo Association (TADA9 and extTADA18) 
framework to model and integrate DN and CC data, and combines gene-set information using a 
logistic regression model (Figure 1) in a generalized TADA 9,18 framework.  

To summarize, for each gene, all variants in a variant category are collapsed and considered as a 
single count (!). Table S1 presents the details of statistical models of the counts, their 
parameters, and the hyper parameters of DN and CC data. For each gene, gTADA compares two 
hypotheses: it is a risk gene (H1) and it is not a risk gene (H0). Similar to TADA9, our model 
assumes that rare variant counts in a risk gene are elevated by " fold compared to chance 
expectation, and " follows a gamma distribution: "	~	%&''&("̅ ∗ +, +) in which "̅ is the mean 
relative risk and + is the dispersion parameter of ". For non-risk genes, " = 1. We assume that 
there is a probability ./ for the 012 gene to be a risk gene. This ./ is connected to a GS by ./ =
	456(7)/(1 + 456(7)), and ;/(<) = <= + %>/ ∗ <? where %>/ is the value of the GS at the 012 gene 
which can be 0/1 or a continuous value. This is in contrast to TADA and extTADA, in which ./ 
is assumed to be the same across all genes. gTADA’s approach is more reasonable than previous 
approaches because genes should have different probabilities of being risk genes. The likelihood 
for the data is @(!|B&C&'4D4CE) = @(!|F?)./ + @(!|F=)(1 −	./). All parameters and hyper 
parameters of gene data were jointly estimated from the likelihood function across the all genes. 
Similar to extTADA24, if there are multiple variant categories and population samples, their 
parameters are also jointly estimated. The main model for testing GS enrichment and prioritizing 
significant genes was the single-GS model. We used a Markov Chain Monte Carlo (MCMC) 
method to sample parameters. Modes which were considered as the estimated values, and 
Bayesian credible intervals (CIs) of MCMC results were used in all the inferences. A GS was 
considered enriched if the lower boundary of its  < CI was positive. One of the advantages of 
gTADA is that after learning gene sets, it can use that knowledge to increase the power of 
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finding risk genes, because genes in the enriched GS will have higher prior probabilities 25.  We 
used posterior probabilities (PPs) to prioritize risk genes with @@/ =

HI!JF?KL6
HI!JF?KL6MHI!JF=K(?N	L6)

 for 

the 012 gene.  After testing multiple gene sets separately, we reported genes with PP>0.95 with 
any gene set as significant gTADA genes, and also conducted follow-up analyses on significant 
and suggestive genes with PP>0.8 with any gene set. We conducted simulation analyses based 
on real data, to show the effect of taking the union of results across gene sets.  

We simulated different DN/CC data using genetic parameters from previous ASD studies 9,18. 
Enriched gene sets (eGSs) were simulated using the results of known enriched gene sets for ASD 
18 (see Methods), and non-enriched gene sets were simulated by randomly choosing genes. 
Different trio numbers were used in the simulation process ranging from 1,000 to 50,000. 
Genetic parameters of simulated data are presented in Table S2 (See Methods). We tested 
simulated data for single gene set and multiple gene set analyses (Supplementary Information). 
For single-GS models, the number of risk genes identified increased when eGSs were used 
(Figure S1). In addition, the Type I error of calling a GS enriched was well calibrated (Table S3). 
For multiple-GS models, the number of risk genes increased when eGSs numbers increased; 
however, we observed higher rates of false positive risk genes particularly with small sample 
sizes (Figure S2). For this reason, we focused our analyses on single gene set models, and 
combined results across single gene set models. 

We applied gTADA to available rare variant data of four NDDs and CHD to prioritize genes for 
these disorders (Figure 2). In summary, this data included 4293, 1012, 1213, 5122 and 356 trios 
of  DD, ID, CHD, ASD and EPI respectively; plus 4058 ASD and 5704 EPI case/control data 
(see Methods Data). These data were annotated and divided into different categories by using the 
approach of Nguyen, et al. 24. We used loss-of-function (LoF) and missense damaging (MiD) 
categories of these annotations. For EPI case/control, we only used count data from Epi K. 
consortium and Epilepsy Phenome/Genome Project 13 which were annotated by the authors 
(details in the Method). GSs were called enriched if their 95% credible intervals were larger than 
zero. GSs were further called significantly enriched (seGS) if their Benjamini and Hochberg 26 
adjusted p value (pBH) was < 0.05. To identify significant genes for each eGS, we set a stringent 
maximum PP (PPmax) threshold of 0.95. We also examined the properties of prioritized genes 
having PPmax > 0.8.  

We tested 1,903 GSs used in our previous study 24, including 186 candidate and 1,717 gene sets 
with 100 to 4,955 genes from MSigDB 27  and the Gene Ontology data base 28 (Table S4, Table 
1). gTADA identified multiple eGSs for all disorders (Table 1). All gTADA GS enrichment 
results are presented in Table S5. Overall, CHD, ASD, ID and DD had the highest overlapping 
seGSs (132 GSs, Figure S3). The top seGS of each disorder replicated previous results 24,29. 
gTADA was able to re-call >89% enriched gene sets reported by our previous results 
(Supplementary Information, Figure S4). To better understand the performance of gTADA on 
each eGS individually, we chose top 20 eGSs from each disorder based on significance	, and 
compared the significant gene-count results of gTADA and extTADA using a threshold 
PP>0.95. ASD, DD and ID gained more significant genes than CHD and EPI when GSs were 
used (Figure 3). In addition, EPI had more small eGSs than the four other disorders.  

We combined results from all eGSs to prioritize risk genes for each disorder. Based on 
PPmax>0.95, DD had the highest number of genes (167) followed by ASD, ID and EPI (64,  59 
and 40 respectively) while CHD had only 12 prioritized genes (Table 1). All prioritized genes are 
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presented in Table S6. One gene, STXBP1, was observed across all four NDDs with PPmax > 
0.95. In addition, 18 genes were identified (PPmax > 0.95) in at least three disorders (Table S6). 
The results of gTADA were from combining multiple single-GS analyses; therefore, we tested 
the observed false discovery rates and saw that PPmax>0.95 was nearly equivalent to FDR<0.1 
(Figure S5, Supplementary Information). 

We also applied gTADA to expression data of 53 tissues from GTEx Consortium 30.  Only 6 
tissues were enriched for EPI while 28 issues were enriched for ASD (Table 1). Interestingly, >= 
50 tissues showed enrichment for ID, DD and CHD. ID and DD data were very well powered, 
while CHD risk genes may be highly expressed across multiple tissues. All enrichment results 
are presented in Table S7 and in Figure S6. The risk-gene numbers from enriched tissues were 
not as high as results from candidate GSs. One possible reason was that the estimated <? values 
of GTEx were not high (less than 1, Table S7) because we used continuous values for all genes.  
There were 11 genes with PP > 0.95 in at least three disorders. All these 11 were among the 15 
genes identified with candidate and canonical GSs above (Table S8). 

We also tested drug target GSs described in Ruderfer, et al. 31. Briefly, drug target genes were 
predicted by using the Similarity Ensemble Approach (SEA) 32 on data from DrugBank version 
4.1 33 and ChEMBL-14. We tested 710 and 156 drug and drug-class GSs based on the 
Anatomical Therapeutic Chemical (ATC) classification system Level 3 and Level 5 respectively. 
EPI had the highest number of significantly enriched drug GSs, followed by ID and DD (67, 3 
and 2 seGSs respectively; Table 1 and S9). There were 13 and 4 significantly enriched drug-class 
GSs for EPI and ID respectively (Table 1 and S10). There were some eGSs for other disorders, 
but none were significant after adjusting for multiple tests. Two drug classes were observed in 
the enrichment results of both EPI and ID: ANTIEPILEPTICS (pBH = 2.1x10e-3 and 0.015 
respectively) and ANTIPROPULSIVES (pBH = 0.01 for both disorders) (Table S10). 
Interestingly, some immune drug target GSs were significant or nominally significant for EPI: 
the drug nabumetone (pBH = 0.02; a member of drug-class ANTIINFLAMMATORY AND 
ANTIRHEUMATIC PRODUCTS, NON-STEROIDS), and the drug-class GSs OTHER 
DERMATOLOGICAL PREPARATIONS (pBH = 1.1e-3), IMMUNOSTIMULANTS (pBH = 
0.003), ANTIINFLAMMATORY AGENTS (pBH = 0.06). To test whether the enrichment of 
immune drug target GSs was driven by their overlap with ANTIEPILEPTICS, we re-ran gTADA 
on the drug-class GSs after removing overlapping genes with the ANTIEPILEPTICS GS. The 
drug-class IMMUNOSTIMULANTS remained significant (pBH = 0.013).  Prioritized risk genes 
using enriched drug target GSs are shown in Tables 1, S11, S12.  

We focus on EPI because this disorder had DN and CC data, including recent rare CC variant 
studies 12,13. In addition, multiple EPI genes were prioritized by gTADA. gTADA results without 
GSs provide an estimated proportion of risk genes of 4.9% (Table S13), higher than the 
proportion estimated in Nguyen, et al. 24, however Nguyen et al., 2017 only used DN data. Based 
on this proportion, the mean DN RRs (estimated "̅) were >15 (16 and 18 for MiD and LoF 
mutations respectively). The mean RRs of the three CC samples were > 4 (Supplementary 
Information). Details of the analyses are in Section 1.2 of Supplementary Information, Figure S7 
and Table S14.  

We sought to validate gTADA identified EPI risk genes, focusing on the results from 1,903 
candidate/canonical GSs, from which higher numbers of significant genes were obtained, and 
which included all genes prioritized using GTEx and most genes prioritized using the drug-target 
GSs (Figure S8). gTADA prioritized 40 genes with PPmax>0.95 from 108 eGSs (S6), 30 of which 
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(ATP8B1, C5orf42, CACNA1B, CEP89, COPB1, CSNK1E, DRC1, EHD4, FGFR1OP, FURIN, 
GABBR2, GIGYF1, GPAM, GPR87, GRIA4, HSD17B4, KDM6B, KEAP1, NFATC3, NRXN2, 
PHTF1, PMPCA, SAMD9L, SCYL1, SLC10A1, SLC8A2, SLC9A2, TBCK, TRMT1L, TYRO3) 
were not in the list of known EPI genes. One gene (GABBR2) was identified in our recent 
analysis of only DN data 18. ExAC LoF-intolerance pLI information 34 was available for 29 of 
the 30 novel genes. 12/29 genes (CACNA1B,  COPB1, CSNK1E, FURIN, GABBR2, GIGYF1, 
GRIA4, KDM6B, NFATC3, NRXN2, TRMT1L, TYRO3) were highly intolerant genes (pLI > 0.9). 
Interestingly, 13/30 genes (ATP8B1, C5orf42, CEP89, DRC1, EHD4, GPAM, HSD17B4, 
PHTF1, PMPCA, SAMD9L, SCYL1, SLC10A1, TBCK) had pLI < 0.1 and were not known 
missense constrained genes 35. We investigated these genes and saw that the significant signal of 
these 11 genes was from CC data.  C5orf42, HSD17B4, PMPCA, SAMD9L, SCYL1 and TBCK 
were also reported in NDD studies 36-41. The Epi K. consortium and Epilepsy Phenome/Genome 
Project 13 used the same CC data set as our current study and reported 7 significant autosomal 
genes (DEPDC5, GABRG2, GRIN2A, KCNQ2, LGI1, PCDH19, SCN1A); all seven had gTADA 
PPmax > 0.9, and 6/7 (except GRIN2A) had PPmax > 0.95. We also saw that the majority of the 40 
genes which had PPmax>0.95 were inside eGSs (Figure 4). 

Recently, Hamdan, et al. 42 sequenced the whole genomes of 197 trios with developmental and 
epileptic encephalopathy (DEE). From the 40 genes identified by gTADA using 
candidate/canonical GSs, 6 genes (CSNK1E, GABBR2, GABRG2, GNAO1, KCNQ2, SCN1A) had 
DNMs in the 197 trios (p value for this overlap < 5.9e-5). Interestingly, SCNA1 had 6 DNMs and 
GNAO1 had 2. Two of the 30 novel gTADA genes, GABBR2 and CSNK1E, had one 
nonsynonymous DNM each. The gene GABRB2 was reported as a significant risk gene for DEE 
by Hamdan, et al. 42 because it was in a de novo copy-number variant (CNV) duplication in 6 
probands.  

We analyzed the protein-protein interaction (PPI) network connectivity of 135 top gTADA EPI 
genes (PPmax > 0.8) using GeNets 43. We found that 100/135 genes and 57 direct connection 
candidate genes were well connected in five communities (overall and community connectivity p 
values < 2e-3, Figure 5A). The communities showed enrichment for multiple canonical pathways 
(Table S15): ion channel transport, neurotransmitter receptor binding, GABA receptor activation, 
ligand gated ion channel transport (Community 2); JAK-STAT signaling pathway, regulation of 
IFNA signaling, RIG-I-like receptor signaling pathway, interferon alpha/beta signaling, and 
autoimmune thyroid disease (Community 4).  

The InWeb/GeNets43,44 PPI data are highly curated but nevertheless include many interactions 
from high-throughput in vitro assays that are false positive in the sense of in vivo biological 
function. To assess the influence of incorporating high throughput PPI data, we also used the 
STRING database 45 to test for physical interactions among EPI genes from gTADA and from 
our GeNets communities. Using only sources with experimental evidence, PPI connectivity was 
significant among the 135 gTADA EPI genes (13 observed edges versus 7 expected edges, p = 
0.0248), and was strongly significant for Communities 2 and 4 (p < 4.33e-10). Interaction signals 
were weaker for other communities (p = 0.02, 0.07 and no interactions for Community 1, 3 and 5 
respectively). 

We tested EPI gene PPI communities for specific enrichment in our recent high-depth mouse 
brain single cell RNA sequencing (scRNAseq) data 46, which included fetal cell types (Figure 
5B). We saw enrichment pyramidal CA1, SS neuronal expression in Communities 2 and 5, 
similar to results we recently reported for four NDDs 24. Interestingly, Community 4 gene 
expression was enriched in microglia cells (p = 2.34e-5). Endothelial mural, vascular 
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leptomeningeal, astrocytes_ependymal cells were also enriched in Community 4 but not as 
strongly as microglia. Similarly, scRNAseq cell type enrichments were seen for these 
communities using only gTADA EPI genes and not GeNets candidate genes (Figure S9). 
Microglia were enriched for Community 4 (p = 1.5e-3), followed by endothelial mural cells (p = 
0.02). Community 4 included three gTADA genes IFNAR2, LEPR, PTPN6; PTPN6 and IFNAR2 
were strongly specifically expressed in microglia (Figure S10). Observing genes with PPmax>0.8 
from drug-target based gTADA, IFNAR2 was prioritized as a top gene in multiple drug-target 
GSs with the strongest PP from the drug class IMMUNOSTIMULANTS (PP = 0.99) while 
PTPN6 was also prioritized by the drug-name GS mebeverine (PP = 0.85, in class of drugs for 
functional gastrointestinal disorders). In available human brain scRNAseq data sets 47,48 gTADA 
EPI genes were enriched in neuronal and GABAergic cell types (Figure S11), with the strongest 
enrichments observed for Community 2. These results were similar to the results of mouse cell 
types in Figure 5. Community 4 showed positive but non-significant microglial enrichment in 
human brain scRNAseq cell types (Figure S11). In human fetal brain scRNAseq data 49, PTPN6 
was also present in clusters of immune and microglia cell types.  

We next examined our prioritized EPI genes in the BrainSpan50 spatiotemporal brain gene 
expression data. The EPI prioritized genes showed expression during all developmental stages of 
the human brain (Figure 5C). Hierarchical clustering of EPI gene spatiotemporal brain 
expression identified expression patterns that were largely prenatal (black); postnatal (red); 
prenatal, infant, and postnatal in the cerebellum (green); and late prenatal, and postnatal in 
striatal regions (blue). In contrast, DD, ID, and CHD genes were more strongly expressed in 
prenatal stages (Figure S12). Spatiotemporal expression correlated with PPI communities (p = 
0.0007153, Figure 5D); PPI communities 1 and 2 had higher proportions of genes with specific 
prenatal and postnatal expression, respectively, while Communities 3, 4 and 5 had only genes 
from single expression clusters (red, green and blue respectively). gTADA genes in the immune 
PPI community (IFNAR2, LEPR, PTPN6) were strongly expressed in late prenatal stages 
particularly in subcortical regions, and postnatally in the striatum (Figure 5C, S13).  

A number of gene sets from the drug-target data were highly enriched in the EPI data, driven 
especially by GABA receptor genes. The genes GABRG2, GABRA5, GABRA1 were all present in 
at least 45 of the 67, and the voltage-gated sodium channel genes SCN1A, SCN8A and SCN2A 
were present in at least 32, significantly enriched GSs (Figure 6).   

To see whether the DN or CC signal was specific for these clusters, we counted all the DN 
mutations and calculated CC ratios for all PPI communities, spatiotemporal expression clusters 
and significantly enriched drug target gene sets. The DN signals of Communities 1, 2 and 3 were 
much stronger than those of other Communities (ratios of observed and expected DN counts > 
80, which were highly larger than the meanRRs of DN signals). Regarding gene-expression 
clusters, surprisingly, multiple de novo mutations were observed in postnatal genes (Table S16).   

For enriched drug-class GSs, both DN and CC data were enriched for these GSs, but DN signals 
were much higher than CC signals for the majority of GSs. In addition, the main signals of CC 
data for these enriched GSs were from familial non-acquired focal epilepsy (Table S16). 
Interestingly, very different from other GSs, IMMUNOSTIMULANTS was enriched because of 
only CC signals, and there were no GABA receptor genes in this GS; hence this GS remained 
significant for EPI after removing genes overlapping with the ANTIEPILEPTICS drug class 
targets.  
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Discussion 

We have presented a pipeline (gTADA) that incorporates de novo mutations (DNMs), rare 
inherited/case-control (CC) variants and pathway/gene-set/expression information to prioritize 
disease genes. This pipeline is based on our previous work, extTADA 18, but gTADA is a 
generalized framework of extTADA. gTADA can be extTADA if the gene-set information is not 
used. Recently, methods which use annotation/expression information to impute more risk genes 
have been actively developed for common variants 51-53. These methods have been successfully 
used to prioritize risk genes, and elucidate biological pathways for schizophrenia, bipolar 24,54 
and breast cancer 55. gTADA might be the first tool using this approach for rare variants. There 
are many benefits of this approach 51. First, it can identify significant genes which might be 
missed by using typical genetic-data based methods. Second, significant genes can assist in 
understanding the structure of enriched gene sets.  Another advantage of gTADA is that the 
package can test gene set enrichment directly from data. This enrichment test has been shown 
more powerful than other ways in the analyses of ChiP-Seq data sets 56. We hope that gTADA 
will be helpful in rare-variant based studies. The code is available online on 
https://github.com/hoangtn/gTADA. 

We used gTADA to identify enriched tissue/gene sets (GSs) (from candidate GSs, drug-target 
GSs and GTEx tissues); and to prioritize genes for neurodevelopmental disorders (NDDs) and 
congenital heart disease (CHD). We saw that six human brain-region tissues and multiple 
candidate GS were enriched across NDDs and CHDs (Table 1). Interestingly, multiple drug 
target GSs were enriched in EPI, but just a few were enriched in DD and ID, and there were no 
enriched GS for ASD and CHD. In analyses leveraging the enriched GSs, multiple significant 
genes were identified for all these disorders (Table 1).  

We analyzed EPI results in depth because new rare CC data sets were analyzed and multiple 
novel EPI rick genes were identified. By combining the results from multiple gene sets, there 
were 40 genes with maximum posterior probabilities (PPmax) > 0.95, corresponding to FDR<0.1. 
Thirty of our 40 EPI genes were not in the list of known EPI genes. Two of the 30 genes had de 
novo events in a new trio data set, and some of the 30 genes have been reported in other studies 
of neurodevelopmental disorders. This number of genes was much higher than analyses with 
only DN or only CC. The number of predicted risk genes of these EPI combined data sets (~ 
950) was higher than that of the DN-only based genetic architecture 18. The EPI CC data 
represent three EPI types, familial non-acquired focal epilepsy (familial NAFE), familial genetic 
generalized epilepsy (familial GGE), and sporadic non-acquired focal epilepsy (NAFE), whereas 
the DN data are from epileptic encephalopathies (EE); combining heterogeneous DN and CC 
data could contribute to larger estimated proportion of risk genes. In a recent case/control study 
57, risk genes were observed for familial non-acquired focal and familial genetic generalized 
epilepsies. However, in this study, gTADA estimated mean relative risks (RRs) were nearly 
equal for all three CC population samples:  familial non-acquired focal epilepsy, familial genetic 
generalized epilepsy, and sporadic non-acquired focal epilepsy (Supplementary Information, 
Table S14). The top gTADA genes had higher differences in the variant counts between cases 
and controls than the other well-known gene sets, including known EPI genes and FMRP targets 
(Table S14). Therefore, this result suggests that sporadic non-acquired focal epilepsy top risk 
genes are the same as the two familial EPI types. The top drug target gene sets were supported 
by DN and CC data, with a some genes occurring in many enriched GSs: GABRG2, GABRA5, 
GABRA1, GABRB3, SCN1A (Figure 6). These genes have been discussed as potential drug 
targets specific for EPI as well as other neurodevelopmental disorders 58-60. Further studies 
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focusing on deeply understanding genetic variants in these genes could help better design drug 
targets for EPI.  

In our current study, we observed that  EPI genes with PPmax > 0.8 were well connected in five 
communities by a protein-protein interaction (PPI) network analysis. These genes showed 
expression in different developmental stages of the human brain (Figure 4). Interestingly, 
Community 4 from the PPI network analysis was enriched in immune pathways. Genes from this 
community were strongly expressed in the late prenatal stages of the human brain. In addition, 
based on scRNAseq, we saw that microglia cells were strongly enriched in this community but 
not in other communities. We note that the PPI results here rely on interaction data from high-
throughput in vitro assays 43,44. The selection of members of Community 4 is based on these data. 
To verify these results, we used the STRING database with only edges with experimental 
evidence and still saw significant interactions between members inside Community 4. In 
addition, the results of Community 4 are supported by the enrichment of immune drug-target 
GSs. The relationship between epilepsy and the immune system as well as inflammatory 
pathways has been discussed elsewhere 61-65. Future studies exploring more on this connection 
could be beneficial in understanding the etiology of epilepsy. 

While this study uses a novel approach to integrate different types of genomic data, it does have 
some limitations. First, gTADA partly relies on reference data sets (e.g., gene sets, tissues, 
Figure 3, Table 1). gTADA is a model-based analysis of DN and CC variant data; therefore, the 
top prioritized genes are generally supported by the DN and CC data, not solely from reference 
data sets (Figure S8). In simulations when large GSs or multiple GSs are used, rates of false 
positive gene identification increase. One obvious reason is that if a GS size is larger than the 
number of risk genes, imputed genes outside the range of risk genes would be called false 
positive genes. However, for real data, large enriched gene sets might help in identifying more 
novel risk genes (Figure 3). For the current model with multiple GSs, we must calibrate an 
increased PP threshold for accurate control of FDR (Figure S1, S2). For example, we used a 
threshold PPmax>0.95 to obtain top EPI genes. Based on simulation data from EPI genetic 
parameters, the prioritized genes should have FDRs < 0.1 (Figure S5). Using the same PPmax 
threshold, we also saw that FDRs increased quickly when few gene sets were added; however, 
FDRs slightly increased when more gene sets were added (Figure S5). This might be because the 
enriched GSs overlap with each other. As a result, more significant genes are not identified when 
additional GSs are added. Therefore, FDRs do not change much after adding a number of GSs. 
Simulations show (Figure S1) and as discussed by Nguyen, et al. 18, larger sample sizes and 
improved modeling approaches can help to address these weaknesses in future studies. gTADA 
as well as its previous pipelines 9,18 model variant-count data using statistical distributions (e.g, 
Poisson distribution for rare variants); therefore, count data should follow these distributions to 
obtain optimal results. Finally, the top prioritized EPI genes here are based on meta-analyzing 
multiple population samples and types of EPI; generally, as with any meta-analysis approach, 
heterogeneity should be assessed in the results. In this case, DN and multiple CC datasets 
support top EPI gene sets and risk genes, and many prioritized EPI genes were reported for other 
neurodevelopmental disorders, suggesting that the results point to convergent dysfunctions 
across EPI types and NDDs.  
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Methods and data 

Data 

Gene-set data 

We used 1903 gene sets curated by Nguyen, et al. 24. These included 186 known gene sets with 
prior evidence of involvement in ASD and SCZ, and 1717 gene sets (whose lengths were 
between 100 and 4995 genes) from different databases: the Gene Ontology database 66, KEGG, 
and REACTOME, and the C3 motif gene sets from the Molecular Signatures Database 
(MSigDB) 67. The information of these gene sets was presented in Table S2 of Nguyen et al. 
2017.  

Drug-target gene sets were processed and classified as Ruderfer, et al. 68. Briefly, drugs were 
classified according to the level of the Anatomical Therapeutic Chemical (AUC) classification 
system. The ATC system divides drugs into 5 levels from anatomical group (level 1) to chemical 
substance (level 5).  Drug targets which were classified as level 3 (therapeutic subgroup) and 
level 5 (specific drug) were used in this study. We used 156 GSs from level 3, and 710 gene sets 
from level 5 whose lengths were ≥ 5 genes from the curated GSs of Ruderfer, et al. 31. 

To compare the current results with previous results, known EPI genes were downloaded from 
two sources. The first was 76 genes from https://www.cureepilepsy.org/egi/genes.asp 11, and the 
second was 218 genes from https://www.omim.org/phenotypicSeries/PS308350 of the Online 
Mendelian Inheritance in Man, OMIM 69.  

Transcriptomic data  

Gene expression specific for tissues were downloaded from the GTEx project (V6p) 30 . We used 
OPQ2(!/S + 1) in our analyses in which !/S was the expression value of the 012 gene at the T12 
tissue. Spatiotemporal transcriptomic data were downloaded from BRAINSPAN 50. As in our 
previous work 70, this data set was partitioned into eight developmental time points (four pre-
natal and four post-natal) for each of the four brain regions: the frontal cortex, temporal and 
parietal regions, sensory-motor regions, and subcortical regions. To create heatmaps for the main 
analysis, we calculated average expression across samples for each spatiotemporal point and then 
standardized these values. The package 'UOVED 71 was used to cluster these standardized 
expression data. We also created heatmaps for each of the brain regions across 8 developmental 
time points. We standardized expression values across samples of the tested region and then 
made a heatmap for all samples. 

Single-cell RNA sequencing (scRNAseq) data were obtained from Skene, et al. 72. Briefly, this 
data set included 9970 mouse cells. These cells were clustered into 24 Level 1 brain cell types 
and 149 Level 2 cell types 72. 24 Level 1 cell types were used in this study. 

Variant data 

We used DN and rare CC data of NDDs from our previous publication 18, a recent EPI study 13 
and CHD data from the denovo-db database 73. The data of Nguyen, et al. 18 were collected from 
multiple publications and were described in detail in Table S1 of Nguyen, et al. 18. In summary, 
the DN data included 5122, 4293, 1012 and 356 trios for ASD, DD, ID and EPI respectively, 404 
cases for ASD, 3654 controls ASD respectively. We also used CHD data of 1213 trios from 
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Homsy, et al. 29. Variants were annotated and divided into different categories. There were 
categories which included loss of function (LoF) variants/mutations, missense damaging (MiD) 
variants/mutations. The data from Epi K. consortium and Epilepsy Phenome/Genome Project 13 
consisted of 5696 samples: 640 cases of familial genetic generalized epilepsy, 522 cases of 
familial non-acquired focal epilepsy, 662 cases of sporadic non-acquired focal epilepsy and 
3877 controls. We used the ultra-rare variant counts of all genes from Table S10, S11, S12 of Epi 
K. consortium and Epilepsy Phenome/Genome Project 13. These variants had minor allele 
frequencies <= 0.05% and MAF = 0% in ExAC (http://exac.broadinstitute.org/about) and in EVS 
(http://evs.gs.washington.edu/EVS/) . They were annotated by SnpEff 74 as loss-of-function, 
inframe indels, or missense “probably damaging” predicted by PolyPhen-2 (HumDiv). Based on 
these data sets and annotations, DD, ID and CHD had only two DN categories (LoF and MiD); 
ASD had two DN categories (LoF, MiD) and one LoF+MiD CC population sample; EPI had two 
DN categories (LoF, MiD), and three CC population samples. In addition, we also used an 
independent EPI data set of 197 trios 42 to validate our results. This data set is whole-genome-
sequencing (WGS) data of individuals with EPI and DD and their parents. 

Simulated data 

To evaluate the new method, ASD genetic parameters were used to simulate DN and CC data. 
Simulation parameters were from previous ASD studies 10,18 as described in Table S2. We first 
simulated exact parameters of ASD to compare gene counts between gTADA and extTADA and 
test type I errors of gTADA in the identification of eGSs. After that, we simulated different 
sample sizes to have a better understanding of gTADA. There were three sample sizes: case, 
control and family numbers. Therefore, to reduce the complexity of the simulation process, only 
family numbers were changed.  

Method 

The gTADA pipeline 

gTADA was designed with two main aims.  The first aim is to test the enrichment of a gene set 
directly from DN+CC data. The second is to use enriched gene sets as prior information to 
improve the identification of novel significant genes associated with the tested trait—this is 
considered a key feature of the pipeline.  

The main pipeline of gTADA is described in Figure 1 and is presented in the Results section. In 
summary, gTADA combined de novo mutations, rare inherited/case-control variants and 
pathway/gene-set (GS) information to jointly estimate genetic and enrichment parameters. GS 
information could be from gene sets or from expression data. For variant data of each gene, we 
used the statistical models of extTADA as described in Table S1. For GS data, there were two 
situations. If that was a gene set, we coded a gene as 1 or 0 corresponding with the presence or 
absence in all tested genes. If that was gene expression data, we used log2(1 + expression 
values). To incorporate GS information, we improved the main approach of extTADA. We 
assumed that for each 012 gene, there was a probability ./ for the gene to be a risk gene. This was 
connected to a GS by ./ =

?
?MWX6(Y)

 with ;/(<) = <= + %> ∗ <? or to multiple GSs by ;(<) =
<= + ∑ <S[

S\? %>/S. Let ]/ be a vector of de novo, case/control data of the ith  gene, then the 
likelihood (LK) function across genes was:  
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^_ = ` [
bcWbW

/\?

@(]/|F?)./ + @(]/|F=)(1 −	./)]
 

&ef	./ = 	
456(7)

1 + 456(7)
,			;/(<) = 	%> ∗ <? +	<=		(g)			PC		;/(<) = 	h%>/S	 ∗ <S +	<=

[

S\?

	(gg) 

@I]/JFSK was the product of probabilities across all de novo and case/control data. If there were 
multiple variant categories then @I]/JFSK was also the product of probabilities across these 
categories as described in 24. Table S1 describes the distribution of de novo, case and control data 
for one category of a given gene. 

For a single GS model, based on the result of the equation above, a GS was considered an 
enriched GS (eGS) if the low boundary of its credible interval (CI) was positive. We did not 
adjust gene lengths inside the GS model because the statistical models of de novo data adjusted 
mutation rates (Table S1) and mutation rates were positively correlated with gene lengths. 

For a multiple GS model, from eGSs, we chose a group of optimal gene sets that improved the 
model fit. We started with the model without any gene set (only <=). Then, we looped over all 
gene sets, and a gene set was added into the model if it improved the value of the likelihood 
function by a given threshold and the 95% CI was positive. To reduce a computational burden, 
we used a reduced forward-selection strategy. All enriched GSs were sorted ascendingly 
according to their corresponding < values, and GSs were added into the combined model based 
on this order. The final optimal gene sets were used in the identification process of risk genes. 
Their < values and genetic parameters were re-estimated to use for the calculation of posterior 
probabilities (PPs). 

Generation of simulated data 

To evaluate gTADA, we simulated the data as follows: 

1. Simulate data without GSs: 
– Input <= to calculate ./ =

WYi

?MWYi
 for the ith gene. 

– Sample the characteristics of a gene (risk or not-risk genes) j/ ∼ l0eP'0&O(2, ./): 
• j/ = 1	(C0Em	Q4e4): "/ ∼ %&''&(" ∗ +, +) 
• j/ = 0	(ePD − C0Em	Q4e4): "/ = 1. 

– Sample CC and DN counts for each gene from statistical models in Table S1. 
2. Simulate gene sets: 

We simulated different GS sizes. To simulate non eGSs, random genes were chosen from 
all genes. To simulate enriched GSs, we used prior information from Nguyen, et al. 18 as 
follows. Overlaps between eGSs and top significant genes from DN and CC data are not 
random. Therefore, to make the distribution of genes in gene sets more realistic in the 
simulation process, we used results from 186 candidate gene sets of our previous study for 
ASD. Briefly, eGSs from the 186 gene sets were chosen. We used extTADA 18 to obtain 
posterior probabilities (PPs) for genes from the simulation data, and then ranked the genes 
according to their PPs. After that, for each gene set, we made a table of overlapping-gene 
numbers between the gene set and genes in different groups (e.g., top 50 genes, 51st to 
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100th genes, ..). In the simulation process, we allocated genes into different groups using 
this table. The allocation was also based on the gene size of each simulated gene set. 

Estimation of genetic and gene-set parameters  

We used Markov Chain Monte Carlo (MCMC) methods implemented in the rstan package 75 to 
jointly estimate all genetic and gene-set parameters. The convergence of each parameter from 
MCMC results was diagnosed by the estimated potential scale reduction statistic (pq) inside the 
rstan package. The Locfit 76 was used to obtain credible intervals (CIs), modes of parameters.  
 
To obtain eGSs for the process of risk-gene prioritization, we only used GSs whose low 
boundaries of CIs were positive. To obtain comparable results with other studies, we used 
posterior sampling results. A one-tail p value for each GS was calculated as the probability of 
GS’s alpha less than 0 if alpha’s posterior mode was positive and larger than 0 if alpha’s 
posterior mode was negative. All p values were adjusted by using the method of Benjamini and 
Hochberg 26.  

Validation of significant genes 

GeNets was used to test protein-protein interactions from the identified genes. Inside GeNets, the 
InWeb database which includes 428,429 pair-wise interactions involving 12,357 proteins 43 was 
used. The protein interaction set of InWeb is comprised of high confidence interactions from 
different databases 44. Connectivity p values were obtained using default parameters from the 
GeNets server (http://apps.broadinstitute.org/genets#computations). We also used STRING 
database to further obtain the information of protein interactions of genes. To test the enrichment 
of scRNAseq data, we used the same method described in Nguyen, et al. 24. The information of 
the probabilities of LoF tolerance was downloaded from 
ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint/ 34. The 
list of constrained genes was downloaded from Table S4 of Samocha, et al. 35. 

Simulation of data to test the false discovery rates of top prioritized EPI genes 

To check the observed false discovery rates (FDRs) of the top prioritized EPI genes, we 
simulated data similarly to the general simulation framework above. All genetic parameters 
which were estimated by gTADA for one trio population sample and three case/control 
population samples were used (Table S13). We used all 98 enriched GSs from the 1903 GSs. 
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Tables 

Table 1: The number of prioritized genes for all disorders. n GS and eGS are the number of tested GSs and the number of 
enriched/significant GSs (lower CIs > 0) respectively. For each disorder, we did not use its own DNM and known gene sets to avoid 
inflating results. seGS is the number of tested GSs whose lower CIs are > 0 and adjusted p values are < 0.05.  For each column with 
posterior probability (PP) > a threshold, the number in each cell is the number of prioritized genes. 

 

Disorder 

Results: number of tested/significant gene sets/tissues 
Results: number of prioritized genes 

  

Candidate GS GTEx tissue Drug-target GS Drug-target (class) GS Candidate GS GTEx tissue Drug-name GS Drug-class GS 

n GS eGS seGS n GS eGS seGS n GS eGS seGS n GS eGS seGS PP > 0.95 PP > 0.8 PP > 0.95 PP > 0.8 PP > 0.95 PP > 0.8 PP > 0.95 PP > 0.8 

ASD 1901 381 338 
53 

29 28 710 31 0 156 3 0 63 191 33 59 35 63 31 57 

ID 1901 495 485 
53 

52 52 710 36 2 156 8 4 59 177 45 74 47 63 45 60 

DD 1901 686 679 
53 

53 53 710 39 3 156 4 0 167 288 129 198 115 159 114 152 

EPI 1901 108 50 53 9 6 710 88 67 156 18 13 40 135 26 82 35 100 33 95 

CHD 1902 280 241 
53 

50 50 710 0 0 156 2 0 12 101 6 16 0 0 5 15 
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Figures 

Figure 1: The framework of gTADA. The pipeline combines de novo (DN), case/control (CC) 

data (via variant counts of genes) and gene set (GS) information. It can test the enrichment of GS 

directly from the data (use !" information from single-GS model), and prioritize risk genes using 

model I (single GS) or model II (multiple GSs). For example, Gene 4 might have a small 

posterior probability (PP) to be a risk gene because it does not have strong genetic information; 

however, the gene’s PP would be high when it is supported by GS information from eGSs.  
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Figure 2: Data analyses in the study. Four neurodevelopmental disorders (NDDs) and 
congenital heart disease (CHD) are analyzed. Results of epilepsy (EPI) are validated by using 
different methods and an independent data set. 

 

 

gTADA

1. Enriched gene sets/tissues
2. Top prioritized genes

GENE SETS
1.Top genes are significantly clustered into 

specific communities by protein-protein 
interaction analyses.

2.Top genes express in both pre-natal and 
post-natal stages of the human brain

GENETIC DATA
De novo + inherited/case-control (CC) data
DD: 4,293 trios
ID: 1,012 trios
CHD: 1,213 trios
ASD: 5,122 trios + 4,058 CCs
EPI: 356 trios + 5,704 CCs

Test top significant EPI genes

SINGLE GENES
1. 40 highly significant genes (maxPP > 0.95): 6/40 
genes have de novo events in 190 independent 
trios
2. 135 genes (maxPP > 0.8): they are enriched in a 
community of immune genes, and strongly overlap 
with drug-target genes.

GENE-SET/PATHWAY INFORMATION
- 1903 gene sets
- 53 GTEx tissues
- Drug-target gene sets (710 drug-name 

gene sets + 156 drug-class gene sets)
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Figure 3: Top enriched gene sets (eGSs) of disorders. These are top eGSs of the analyzed 

disorders (based on !"’s significance). Y-axes are names of the eGSs and their sizes (e.g, 

GO:0016568 has 396 genes). The left picture shows  !"’s credible intervals and modes of eGSs. 
The right picture describes the differences in gene counts (posterior probabilities > 0.95) 
between using GSs and not using GSs. 
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Figure 4: Comparing posterior probabilities (PPs) for top epilepsy (EPI) genes (PP > 0.95). The 
x-axis shows the PPs when no gene sets are used while the y-axis shows the PPs when enriched 
GSs are used. Points with gene names describe novel risk genes whose PPs are less than 0.95 if 
no GSs are used. Genes in the red color are inside enriched GSs while genes in the blue color 
are not inside enriched GSs.  
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Figure 5: Results of the top prioritized EPI genes. These are genes whose maximum posterior 
probabilities are larger than 0.8. A: Protein-protein interaction (PPI) analysis for these genes; 
B: enrichment results of different mouse cell types using single-cell RNA data for Communities; 
C: spatiotemporal gene expressions across the genes in four regions (frontal cortex, temporal 
and parietal cortical regions, sensory-motor regions, and subcortical regions) of the human 
brain; D: gene counts in spatiotemporal brain expression clusters from C for PPI Communities 
from A.  
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Figure 6: The number of appearances of genes in enriched drug-target gene sets. For each gene, 
the number in red is the highest gTADA posterior probability (PPmax) of the gene. 
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Supplementary Tables and Figures 

Figure S1: The performance of gTADA in the prioritization of top genes for single gene sets 
(GSs). Left panel compares gene counts between extTADA and gTADA for different sample sizes. 
The left panel is for single gene sets in which random gene sets (rGSs) and enriched gene sets 
(eGSs) are presented side by side. These are gene counts with different posterior probabilities 
(PP) of 0.95 and 0.8. The right panel describes the correlation between PPs and observed false 
discovery rates (FDRs). 

Figure S2: The performance of gTADA in the prioritization of top genes for multiple gene sets 
(mGSs). Left panel compares gene counts between extTADA and gTADA for different numbers of 
GSs: these are gene counts with different posterior probabilities (PP) of 0.95 and 0.8. The right 
panel describes the correlation between PPs and observed false discovery rates (FDRs) for 
mGSs. 

Figure S3: Results of gene-set analyses from gTADA. The left picture shows a heatmap of z-
scores (estimated modes/standard errors) of all gene sets across five disorders (autism spectrum 
disorder: ASD, intellectual disability: ID, developmental disorder: DD, epilepsy: EPI and 
congenital heart disease: CHD) while the right picture presents overlapping results of 
significantly enriched gene sets from the analysis of gTADA. 
 
Figure S4: P-value correlation between gTADA and previous methods. These results are for 186 
gene sets (GSs) analyzed in current study and in the previous study of our group. Left panels 
show correlations between gTADA and the two previous methods: permutation based method 
(PE) and posterior probability based method (PP). Right panels describe numbers of gene sets 
which are identified by three methods. PE used the top 500 genes with the smallest FDRs from 
extTADA to test the enrichment of the 186 GSs. PP calculated the sum of the posterior 
probabilities of a tested GS and compare the sum with those of random GS having the same size 
as the tested GS. 

 
Figure S5: Correlation between the number of gene sets and observed false discovery rates 
(FDRs) by using different thresholds of maximum posterior probabilities (PPs). These are 
simulation results for enriched gene sets of epilepsy (EPI). The genetic parameters of de novo 
mutations and rare case-control variants are from the analysis of 356 trios + 5,704 cases and 
controls. 
 
Figure S6: gTADA results for GTEx tissues. These are credible intervals (CIs) and modes 
estimated by gTADA for the tissues. Red color intervals are for enriched tissues after adjusting 
for multiple tests. 

 
Figure S7: The genetic parameters of epilepsy (EPI) from de novo (DN) and rare case-control 
(CC) data sets. Y axes are mean relative risks (mean RRs) for two DN classes, and three CC 

population samples. X axes are the intercept in the logistic regression: !# = %&	( )*
"+)*

), -. is the 

probability of a gene being a risk gene. 

Figure S8: The number of overlapping genes between different gene sets and no GS (noGS) for 
epilepsy. These are the top epilepsy genes prioritized by using different types of gene sets: GTEx 
tissues, drug-class gene sets (DrugClassGS), drug-name gene sets (DrugNameGS) and 1901 
gene sets (GS)  collected from previous studies. 
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Figure S9: The enrichment results of single-cell RNA sequencing (scRNAseq) data in different 
communities. These results are for five communities generated by GeNets 77. For each 
community, scRNAseq data were tested for genes from gTADA only. 

 
Figure S10: Single-cell based gene expressions across genes of Community 4. These are gene-
expression levels standardized across genes for genes inside Community 4. 

 
Figure S11: The enrichment results of the top epilepsy genes from gTADA and from the protein-
protein interaction (PPI) analysis for different human cell types.  
 
Figure S12: Results of the spatiotemporal gene expression analyses for the prioritized genes of 
different disorders: autism spectrum disorder (ASD), congenital heart disease (CHD), 
intellectual disability (ID) and developmental disorder (DD). These genes have maximum 
posterior probabilities > 0.8  from the  gTADA results of candidate gene sets. 
 

Figure S13: Spatiotemporal gene expressions across prioritized EPI genes in 4 different regions 
of the human brain (the frontal cortex, temporal and parietal regions, sensory-motor regions, 
and subcortical regions). Each heatmap is for one region and shows 8 development stages of the 
human brain, and each development stage has multiple collected samples. For example, columns 
with a red bar are for the late prenatal stage, and there are only three samples for this stage. 

 
Table S1: Parameters of gTADA. Statistical models for de novo (dn) and case/control (cc) data 

are from Nguyen, et al. 18. /01, /"3&4	/# are sample sizes for families, cases and controls 

respectively. 501, 5"	3&4	5# are de novo, case and control counts in that order at a given ith 

gene.6. is the prior probability of being a risk gene for the 789 gene. : is the number of gene 

sets. ;<.=is the value of the >89 gene set at a given 789 gene. 

 
Table S2: Simulation parameters for gTADA from genetic parameters of autism spectrum 
disorder. These parameters were from previous studies 10,18. 
 

Table S3: Type I error rates of gTADA for the identification of enriched gene sets. These results 
are obtained by simulating non-enriched gene sets. The last column is the percentage of gene 
sets having the low boundaries of credible intervals (CIs)  > 0. The second and third columns 
describe Type I errors for two approaches: p values < alpha thresholds and low CI > 0, and p 
values < alpha thresholds respectively.  

 
Other tables are in SupTables (SupTable_gTADA.xlsx) 
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