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ABSTRACT 18 

The combination of biclustering and large-scale gene expression data holds a promising potential 19 

for inference of the condition specific functional pathways/networks. However, existing 20 

biclustering tools do not have satisfied performance on high-resolution RNA-sequencing (RNA-21 

Seq) data, majorly due to the lack of (i) a consideration of high sparsity of RNA-Seq data, e.g., 22 

the massive zeros or lowly expressed genes in the data, especially for single-cell RNA-Seq 23 

(scRNA-Seq) data, and (ii) an understanding of the underlying transcriptional regulation signals 24 

of the observed gene expression values. Here we presented a novel biclustering algorithm namely 25 

QUBIC2, for the analysis of large-scale bulk RNA-Seq and scRNA-Seq data. Key novelties of the 26 

algorithm include (i) used a truncated model to handle the unreliable quantification of genes with 27 

low or moderate expression, (ii) adopted the mixture Gaussian distribution and an information-28 

divergency objective function to capture shared transcriptional regulation signals among a set of 29 

genes, (iii) utilized a Core-Dual strategy to identify biclusters and optimize relevant parameters, 30 

and (iv) developed a size-based P-value framework to evaluate the statistical significances of all 31 

the identified biclusters. Our method validation on comprehensive data sets of bulk and single cell 32 

RNA-seq data suggests that QUBIC2 had superior performance in functional modules detection 33 

and cell type classification compared with the other five widely-used biclustering tools. In addition, 34 
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the applications of temporal and spatial data demonstrated that QUBIC2 can derive meaningful 35 

biological information from scRNA-Seq data. The source code for QUBIC2 can be freely accessed 36 

at https://github.com/maqin2001/qubic2. 37 

 38 

INTRODUCTION 39 

As next-generation sequencing technologies have become more affordable in these years (1,2), 40 

it is possible to generate large-scale biological data with higher resolution, better accuracy, and 41 

lower technical variation than the array-based counterparts (3,4). RNA-Seq measures the 42 

abundance of RNA transcripts, giving rise to genome-scale gene expression data in a biological 43 

sample at a given moment (5). Nowadays, researchers can isolate individual cells from complex 44 

organisms and measure transcriptional activity using single-cell sequencing. Hundreds of RNA-45 

seq data sets with more than hundreds of sample were emerged in the public domain in the past 46 

five years, and their tremendous values have been confirmed in many research areas, e.g., 47 

elucidation of cell-type-specific gene regulatory networks (6) and cancer & complex diseases (7-48 

9).  49 

 50 

The abundance of gene expression datasets provides an opportunity to computationally identify 51 

condition based functional gene modules (FGMs), each of which is defined by a similar expression 52 

patterns over a certain gene set, which tend to be functionally related or co-regulated by the same 53 

transcriptional regulatory signals (TRSs) under a specific condition. Thus, successfully derivation 54 

of the FGMs may grant a higher-level interpretation of gene expression data, improve functional 55 

annotation of genes, facilitate inference of gene regulatory relationships, and provide a better 56 

mechanism level understanding of diseases such as cancer. The identification of FGMs can be 57 

naturally modeled as a specific data pattern over unknown subset of genes and samples, and 58 

solved with a bi-clustering approach (10), a two-dimensional data mining technique that can 59 

simultaneously identify co-expressed genes under a subset of conditions (i.e., samples or cells). 60 

This unique feature makes it more useful than clustering when applied to large-scale gene 61 

expression data, as genes are usually co-expressed under certain instead of all conditions. 62 

 63 

Besides the identification of FGMs in bulk tissue data, a similar formulation may also be applied 64 

to scRNA-Seq data, to identify individual cells or cell types as well as their complex interactions 65 

under specific stimuli, e.g., cell types classification and clustering. In multicellular organisms, 66 

biological function emerges when heterogeneous cell types form complex organs (11). 67 

Investigations into organ development, cell function, and disease microenvironment highly 68 
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depend upon an accurate identification and categorization of cell types, sometimes along with 69 

their temporal and spatial features (12). Traditionally, a cell type was predicted based on 70 

morphological properties or marker proteins, yet this method failed to characterize the full diversity 71 

of cells. scRNA-Seq data provides the possibility to group cells based on their genome-wide 72 

transcriptome profiles, and several studies have already been carried out using scRNA-Seq data 73 

to identify novel cell types, proving its power to unravel the full diversity of cells in human and 74 

mouse (13). Mathematically, the problem of scRNA-seq based cell types classification can be 75 

naturally formulated as biclustering problems, since the essence is to find sub-populations of cells 76 

sharing common expression patterns among subsets of genes. 77 

 78 

Substantial efforts have been made in biclustering algorithm and tool development since 2000 79 

(14-26), and a few review studies have provided considerable guidance in choosing suitable 80 

algorithms in different contexts (27-29): Eren et al. compared 12 algorithms and concluded that 81 

our previously developed method, QUBIC, is one of the top performed methods, as it has 82 

achieved the highest performance in synthetic datasets and captured a high proportion of 83 

enriched biclusters on real datasets, comparing to Plaid, FABIA, ISA and Bimax, which were also 84 

recommended for capturing upregulated biclusters  (27). In 2018, Saelens et al. ranked ISA, 85 

FABIA and QUBIC as the top biclustering methods in terms of predicting gene modules from 86 

human and/or synthetic data (30).  87 

 88 

Although numerous bi-clustering methods have been developed for gene expression data 89 

analysis, the most existing algorithm are designed and evaluated using microarray rather than 90 

RNA-Seq data. One of the unique features of gene expression data derived from RNA-Seq, 91 

especially the scRNA-Seq data, is the massive zeros (up to 60% of all the genes in a cell have 92 

read counts being zeros) (31,32). The normalized read counts roughly follow lognormal 93 

distributions; however, the raw zero counts of specific genes will lead to negative infinity after 94 

logarithmic transformation (33-36), resulting in unquantifiable errors. Therefore, the biclustering 95 

methods that are successful for microarray cannot be directly applicable to RNA-Seq data (37), 96 

and novel methods taking full consideration of characteristics of RNA-Seq data are urgently 97 

needed in the public domain.  98 

 99 

In this paper, we developed a novel bi-clustering algorithm, namely QUBIC2, for large-scale RNA-100 

seq data analysis. We demonstrated the performance of QUBIC2 on capturing FGMs by applying 101 

it to four datasets and benchmarking against five widely used biclustering algorithms. QUBIC2 102 
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turned out to be a superior player as it has identified a significant higher proportion of enriched 103 

and diverse FGMs. Besides, QUBIC2 can also identify cell types with a higher accuracy, 104 

comparing to the five biclustering tools and SC3, a state-of-the-art cell clustering method. 105 

Furthermore, we also illustrated the application power of QUBIC2 on inferring time- and spatial-106 

related insights from two temporal and two spatial scRNA-seq datasets. 107 

 108 

RESULTS 109 

Overall design of QUBIC2 110 

Inheriting the qualitative representation and graph-theory based model from QUBIC (19), QUBIC2 111 

has four unique features: (i) developed a rigorous truncated model to handle the unquantifiable 112 

errors caused by zeros, and used a reliable qualitative representation of gene expression to reflect 113 

expression states corresponding to various TRSs; (ii) integrated an information-divergence 114 

objective function in the biclustering framework in support of functional gene modules 115 

identification; (iii) employed a Core-Dual strategy to optimize consistency level of a to-be-identified 116 

bicluster; and (iv) developed a robust P-value framework to support statistical evaluation of all the 117 

identified biclusters. Details of these four features are showcased as follows (Figure 1).  118 

 119 

A mixture of left-truncated Gaussian distributions (LTMG) model was designed to fit the RNA-Seq 120 

data, rather than discarding zeros or adding a small constant to original counts (34,38). The basic 121 

idea is to treat the large number of observed zeros and low expressions as left censored data in 122 

the mixture Gaussian model of each gene (39,40), assuming that the observed frequency of 123 

expressions on the left of the censoring point should be equal to the area of the cumulative 124 

distribution function of the mixture Gaussian distribution left of the censoring point. Furthermore, 125 

we assumed that a gene should receive 𝐾  possible TRSs under all the conditions, and its 126 

expression profile would follow a mixture of 𝐾 left truncated Gaussian distributions. The LTMG 127 

model was applied to fit the expression value of each gene and the gene expression value under 128 

a specific condition was labeled to the most likely distribution. Accordingly, a row consisting of 129 

discrete values (1,2, ⋯, 𝐾) for each gene was generated (Figure 1A). Then this qualitative row 130 

was split into 𝐾 new rows, such that in the 𝑖th row those labeled initially as 𝑖 are labeled as 1, while 131 

the rest were labeled as 0.  Finally, a binary representing matrix MR was generated. 132 

 133 

A weighted graph 𝐺 = (𝑉, 𝐸) was constructed based on MR, where nodes 𝑉 correspond to genes, 134 

edges 𝐸 connecting every pair of genes (Figure 1B). The edge weight indicates the similarity 135 

between the two corresponding genes, which is defined as the number of conditions in which the 136 
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two genes have 1s in MR. Intuitively, two genes from a bicluster should have a heavy edge in 𝐺 137 

innately while two random genes may have a heavy edge only accidentally. Hence, a bicluster 138 

should correspond to a maximal subgraph of 𝐺, with edges typically heavier than the edges of an 139 

arbitrary subgraph. Identifying all the biclusters equals to identifying all the heavy subgraphs in 𝐺, 140 

which is an NP-hard problem. Therefore, a heuristic strategy was designed as follows.  141 

 142 

The algorithm would iterate a seed list (𝑆), which is the sorted list of edges in 𝐺 in the decreasing 143 

order of their weights (i.e., 𝑤(𝑒1) ≥ 𝑤(𝑒2) ≥ ⋯ ,𝑤(𝑒|𝐸|) ). An edge 𝑒𝑖𝑗 = 𝑔𝑖𝑔𝑗 is selected as a seed 144 

if and only if at least one of 𝑔𝑖 and 𝑔𝑗 is not in any previously identified biclusters, or  𝑔𝑖 and 𝑔𝑗 are 145 

in two nonintersecting biclusters in terms of genes. QUBIC2 first built a core bicluster from a seed 146 

and then expanded to recruit more genes and conditions into a to-be-identified bicluster, until the 147 

Kullback-Leibler divergence score (KL score) was locally optimized. It was proposed based on 148 

the assumption that the difference between a bicluster and its background should be larger than 149 

the difference between an arbitrary same-size submatrix and its background. The KL score of a 150 

bicluster was designed to quantify this difference as the larger of the difference was, the larger of 151 

the score is (Figure 1C. See Methods for details). 152 

 153 

During bicluster expansion, the algorithm controlled the consistency level for a bicluster, which is 154 

defined as the minimum ratio of the number of 1s in a column/row and the number of 155 

rows/columns in the bicluster. In QUBIC, a pre-specified value c (0<c≤1.0) was used to control 156 

the overall consistency level of the bicluster. While this parameter was dynamically optimized by 157 

a Dual searching method in QUBIC2 (Figure 1D-E), giving rise to a submatrix (I, J) of MR (i.e., a 158 

bicluster) with optimized consistency level and maximal KL score can be identified. Biclusters 159 

expanded using Dual strategy tend to be more significant than those without Dual (See Example 160 

S1 in Supplementary File 1). 161 

 162 

Furthermore, for the first time, a statistical framework based on the size of the biclusters was 163 

implemented to calculate a P-value for each of the identified biclusters. The problem of assessing 164 

the significance of identified biclusters was formulated as calculating the probability of finding at 165 

least one submatrix enriched by 1 from a binary matrix with given size, with a beta distribution 166 

employed during the process. This P-value framework enables users systematically evaluate the 167 

statistical significance of all the identified biclusters, especially for those from less-annotated 168 

organisms (Figure 1F). 169 

 170 
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 171 

Figure 1. QUBIC2 workflow. A. Discretization of gene expression data from RNA-Seq. The LTMG model 172 

will be applied to fit each gene’s expression profile. A representing row for each gene will be generated with 173 

integers denote the most likely component distribution that each value belongs to. Then this representing 174 

row will be split into multiple rows. Finally, a binary representing matrix will be generated; B. Graph 175 

construction and seed selection. A weighted group will be constructed based on the representing matrix 176 

from A. By sorting the edges in decreasing order of their weight, and an initial seed list will be obtained. 177 

QUBIC2 will select a feasible seed from the list; C. Build an initial core based on the selected seed. During 178 

seed expand, QUBIC2 will search for genes with higher weight with the seed. In case of two genes have 179 

the same weight, the one with higher KL score will be selected. Thus, gene k (KL=0.1914) instead of gene 180 

j (KL=0.0622) will be added to the core first; D. Expand core and determine pool. QUBIC2 will expand the 181 

core vertically and horizontally to recruit more genes and conditions under a preset consistency level, 182 

respectively. The intersected zone created by extended genes and conditions as a Dual searching pool 183 

(brown box); E. Dual search in the pool and output the bicluster with genes and conditions that come from 184 
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Core and Dual as final bicluster (red box); F. Statistical evaluation of identified biclusters based on either 185 

biological annotations or the size of the bicluster. 186 

 187 

Functional gene modules detection from RNA-Seq data 188 

Compared with five biclustering algorithms (Bimax(18), ISA(41), FABIA(20), Plaid(15), and 189 

QUBIC(19), with more details in Table S1 of Supplementary File 1), the performance of QUBIC2 190 

in identifying FGMs was systematically evaluated using four gene expression datasets: a 191 

simulated RNA-Seq dataset based on an in-house method (22,846 rows × 100 columns), a bulk 192 

RNA-Seq dataset from Escherichia coli (E. coli, 4,497 rows × 155 columns), a bulk RNA-Seq 193 

dataset from TCGA (3,084 rows ×  8,555 columns), and a scRNA-Seq dataset from human 194 

embryos (3,798 genes × 90 cells). For the identified biclusters from a specific tool, precision 195 

showcases the fraction of biclusters whose genes are significantly enriched with certain biological 196 

pathways (i.e., relevance), and recall reflects the fraction of captured known modules/pathways 197 

among all known modules in a functional annotation database, e.g., KEGG (42) and RegulonDB 198 

(43) (i.e., diversity). The harmonic mean value of precision and recall, referred to as the F score, 199 

was used as the integrated criteria in performance evaluation. 200 

 201 

Evaluation studies usually used default parameters of the to-be-analyzed tools, which were 202 

optimized for specific benchmark datasets. However, when applied to datasets coming from a 203 

different organism (e.g., E. coli vs. human), or be acquired by other technologies (e.g., microarray 204 

vs. RNA-Seq), the default parameters often fail to achieve satisfying performance and need 205 

further optimization/adjustment. To minimize the biases in performance comparison among 206 

multiple tools, for each of the four datasets, we run the six tools under more than 50 parameter 207 

combinations by adjusting their critical parameters around default/recommended values (see 208 

Methods and Table S2 in Supplementary File 1). Then the F score of identified biclusters under 209 

each parameter combination was calculated. In this way, we can test a tool’s robustness and infer 210 

how sensitive of its performance is to parameter adjustment, besides the basic performance 211 

comparison among different tools.  212 

 213 

As showcased in Figure 2, QUBIC2 achieved the highest median F scores and the highest F 214 

scores with the default parameter on all the four datasets, and its F scores were significantly 215 

higher than the second-best algorithms in all the comparison circumstances (Wilcoxon test P-216 

value <0.01). QUBIC2 performed well in both precision and recall, indicating that the identified 217 

FGMs are relevant and diverse; and it had relatively small variance, while the performance of 218 
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some algorithms on certain dataset was very sensitive to parameter change (e.g., FABIA on E. 219 

coli). Regarding median F scores, QUBIC was the second-best algorithm on simulated data, E. 220 

coli RNA-Seq data, and human scRNA-Seq data, while FABIA was the second-best one for TCGA 221 

data. As regards the default settings, QUBIC ranked as the top ones on simulated data and E. 222 

coli data, and ISA and Plaid had relative higher rank on TCGA data. ISA was generally very stable, 223 

and its variances were the smallest on three datasets. As for Bimax, although its recall was 224 

relatively low, it was characterized with high precision on the four datasets. It is noteworthy that 225 

QUBIC2 is the only program, among all the six biclustering algorithms, which did not encounter a 226 

dramatic performance drop on scRNA-Seq data compared to RNA-Seq data, suggesting the 227 

unique applicative power of QUBIC2 on FGMs detection from scRNA-Seq data (Figure S1 in 228 

Supplementary File1).  229 

 230 

Furthermore, the performance of all the biclustering algorithms on E. coli data was better than on 231 

human data, with the possible reason that E. coli data has more completed functional annotation 232 

and affects the evaluation of module significance. Therefore, for less annotated organisms, we 233 

need a statistical evaluation framework for all the identified biclusters. 234 

 235 

 236 

Figure 2. Overall performance comparison between QUBIC2 and five popular biclustering methods based 237 

on the agreement between identified biclusters and known modules. A. Distribution of F scores on each of 238 

the four datasets under multiple runs (n>40). Black line in the box denote median value, whiskers denote 239 

10% and 90% percentiles, while the box denotes 25% and 75% percentiles; B. relative performance of six 240 

algorithms in terms of F score under default parameters, variance of F scores under multiple sets of 241 

parameters, median value for the precision and median value for the recall, respectively (normalized over 242 

six algorithms). Note that the variance of F scores depends on the increment of parameters, and therefore 243 

only indicative. 244 
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A statistical evaluation framework for identified biclusters 247 

The significances of gene modules from the identified biclusters were usually evaluated by 248 

pathway enrichment analysis. However, many organisms (including human) have limited 249 

functional annotations supported by experimentally verifications, which makes a systematic 250 

evaluation of all identified biclusters non-trivial. To fill this gap, a statistical method was proposed 251 

in this study, which can calculate a P-value for a bicluster purely based on their size (number of 252 

genes and conditions).  253 

 254 

Interestingly, we found that there is a strong association between the P-values of biclusters 255 

calculated via pathway enrichment analysis (named knowledge-based P-value) and the 256 

corresponding size-based P-values. Specifically, spearmen correlation tests were conducted 257 

between size-based P-values and five groups of knowledge-based P-value (see Methods). The 258 

average spearman correlation coefficients (ρ) were higher than 0.40 (ComTF_ρ =0.48, TF_ρ=0.56, 259 

KEGG_ρ =0.42, SEED_ρ=0.43 and ECO_ρ =0.42), and the average p-values for the correlation 260 

test were smaller than 0.01. As showcased in Figure 3A, all the ρs in the five groups are positive. 261 

In addition, ρs related with regulatory pathways (i.e., TF_ ρ and ComTF_ ρ) were generally larger 262 

than ρs those related to metabolic pathways (i.e., KEGG_ ρ and SEED_ ρ). This indicated that the 263 

size-based P-value seemed to be more suitable for the evaluation of biclusters’ regulatory 264 

significance. Furthermore, all the corresponding p-values were less than 0.05 (Figure 3B), 265 

suggesting that the correlations between knowledge-based P-values and size-based P-values 266 

were statistically significant at the 0.05 level. In addition, the parameter f which controls the level 267 

of overlaps between biclusters had a negative association with ρ (Figure S2 in Supplementary 268 

File1), suggesting that the size-based P-values would have a stronger association with 269 

knowledge-based P-values when the overlaps between biclusters are relatively low. 270 

 271 
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Figure 3. A. The distribution of correlation coefficients(ρ) between P-value obtained from enrichment 273 

analysis and size-based P-value. We run QUBIC2 under 63 different parameter settings, and ρ was 274 

calculated under each run; B. Scatter plot of ρ and p-value. The y-axis denotes ρ, the correlation coefficient 275 

for the spearman association test, the x-axis denotes the p-value of the association test. Note that to 276 

distinguish, italic lowercase p was used to denote the p-value of the Spearman correlation test, while italic 277 

uppercase P was used to denote the significance of biclusters. 278 

 279 

Cell type classification based on scRNA-Seq data 280 

The above sections demonstrated the outstanding performance of QUBIC2 on FGMs 281 

identification and its unique feature of statistical evaluation for all the identified biclusters. In this 282 

section, we showed the predictive power of biclustering methods on cell types identification from 283 

scRNA-Seq data.  284 

 285 

We developed a pipeline to group cells into different types with the assumption that two cells 286 

belonging to the same bicluster have a higher likelihood of being the same cell type than two 287 

randomly selected cells (see Methods). Briefly, a biclustering tool was first used to identify 288 

biclusters from a scRNA-Seq expression data. Then, a weighted graph 𝐺 = (𝐶, 𝐸)  was 289 

constructed to model the relationship between cell pairs, where nodes 𝐶 represent cells, edges 𝐸 290 

connect pairs of cells, and edge weight indicates the number of biclusters that the two 291 

corresponding cells appear in simultaneously. Finally, cell types were predicted via the Markov 292 

Cluster Algorithm (MCL) clustering on the weighted graph (Figure 4A). 293 

 294 

For each of the six biclustering methods in Figure 2, we applied this pipeline to a benchmark 295 

dataset with 20,214 genes and 90 cells (41), which have been experimentally classified into seven 296 

types (46). The Adjusted Rand Index (ARI) was adopted as the evaluation criteria to access the 297 

agreement between predicted cell types and these ‘ground truth' (46). Two more external 298 

validation criteria, namely Jaccard Index (JI) and Fowlkes Mallows Index (FW), were also used 299 

here aiming to provide a comprehensive evaluation. 300 

 301 

As Figure 4B showed, QUBIC2 and QUBIC were the top two biclustering tools, respectively, in 302 

terms of median values on the three criteria. Both surpassed the performance of SC3 (41), which 303 

was used as the benchmark (median value from 100 runs) and was denoted by the red dash line 304 

in each panel of Figure 4B. In addition, ISA always demonstrated the smallest variance across 305 

the three validation criteria. The FW values of each tool were more stable than other two values. 306 
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Figure 4C showcased one cell type classification result obtained by QUBIC2 (parameter f was set 307 

to 0.85, c set to 0.85, k set to 13, o set to 2000). The result was in good agreement with the 308 

reference cell labels and QUBIC2 correctly grouped the three major cell types (8_cell_embryo, 309 

Morulae, and late_blastoCyst).   310 

 311 

 312 

Figure 4. A. Computational pipeline for cell type classification. This pipeline consists of three steps: 313 

biclustering, generation of weighted cell-cell matrix and clustering using MCL. The input is biclusters and 314 

output is cell type labels; B. Benchmark of QUBIC2 against five popular biclustering algorithms. Upper layer: 315 

each panel shows the similarity between the inferred labels and the reference labels quantified by the four 316 

indices, i.e., Adjusted Rand Index (ARI), Folkes Mallows's index and Jaccard Index, respectively. Each 317 

algorithm was applied >40 times to the same dataset to evaluate accuracy and stability. The three indices 318 

were calculated for each run of the respective methods (black dots). Bars represent the median of the 319 

distribution of black dots. The red dash lines correspond to the benchmark performance of SC3 (ARI: 320 

0.6549, FW: 0.7243, JI: 0.5671). Lower layer: the variance of each tool in terms of three validation criteria; 321 

C. Sankey diagram comparing the 7 clusters obtained with SC3 (left layer) and 6 clusters obtained with 322 

QUBIC2 (right layer). The middle layer corresponds to the seven reference clusters. The widths of the lines 323 

linking nodes from two layers correspond to the number of cells they have in common. 324 
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QUBIC2 inferred the temporal and spatial organization of cells from scRNA-Seq data 326 

When spatial and temporal information is available, scRNA-Seq can reveal more biological 327 

insights beyond cell types. In this section, QUBIC2 was applied on two temporal (and) and two 328 

spatial scRNA-Seq datasets, respectively, to explore the temporal and spatial organization of cells. 329 

 330 

Five biclusters were identified by QUBIC2 from a time series lung scRNA-Seq data (GSE52583), 331 

which consists of 152 cells collected at E14, E16 and E18, respectively (47). Three of the five 332 

biclusters contain time-specific cells. In particular, bicluster BC002 consists of cells exclusively 333 

from E14; bicluster BC003 contains cells that only from E16; and bicluster BC004 has cells coming 334 

from E18 (Figure 5A). Functional enrichment analyses of the component genes from these three 335 

biclusters were carried out based on DAVID (48) and the results showed that genes in BC002 336 

mainly related to cell cycle, cell division, and mitosis; BC003 genes were enriched with ribosome, 337 

translation, and structural constituent of ribosome; and spliceosome-related genes were grouped 338 

in BC004 (see details in Supplementary File 2). 339 

 340 

In addition to identifying biclusters corresponding to specific time point, QUBIC2 can also be used 341 

to find biclusters with time-dependent patterns. Here QUBIC2 was used to analyze a scRNA-Seq 342 

data with mouse dendritic cells (DCs) collected at 1h, 2h, 4h and 6h after treatment with 343 

pathogenic agent lipopolysaccharide (LPS) and untreated controls (GSE48968) (49). In total, 51 344 

biclusters were identified in the datasets treated with LPS. For each bicluster, the Fisher exact 345 

test was conducted on its constituting samples to assess if significant over-representation by any 346 

time points could be found within the bicluster. For those biclusters showing significant association 347 

with the time-course, a pathway enrichment analysis was conducted to infer the biological 348 

characteristics of the bicluster. In the end, 30 biclusters that are significantly over-represented by 349 

one or several consecutive time points were identified in the LPS dataset (α=0.005, P<1e-22), 350 

and six of them showed distinct time dependence (Figure 5B). Specifically, bicluster BC013 351 

consists of untreated samples and samples collected at 1h, which represents the earliest 352 

response to LPS and enriches multiple immune response pathways. Bicluster BC005 consists 353 

largely of untreated samples and samples collected at 1h and 2h, which also is enriched with 354 

immune response pathways but with more responses to a virus, T cell chemotaxis and so on. 355 

BC009 and BC001 are enriched by samples collected at 1h and 2h, covering a wider range of 356 

stress-response pathways, suggesting that the activation of stress response pathways and 357 

altered metabolisms as secondary responses after the early immune response. BC025 and 358 

BC002 consist of samples collected at 4h and 6h, and their genes enrich pathways associated 359 
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with alterations in cell morphogenesis, migration, cell-cell junction and so on. Overall these 360 

observations suggest that our analysis can identify all the major responses to the LPS treatment 361 

in a time-dependent manner. Detailed pathways enriched by the six biclusters are given in Figure 362 

S3 in Supplementary File 1. The detailed information of these biclusters is given in Supplementary 363 

File 3. 364 

 365 

Figure 5. A. Visualization of three biclusters (BC002, BC003, and BC004) selected based on the specificity 366 

to time point; B. Time-dependent distribution of cells in six selected biclusters identified in the LPS data. In 367 

each histogram, the five bars from left to right show the proportion of the untreated samples and samples 368 

collected at 1h, 2h, 4h and 6h after the LPS treatment. 369 

 370 

Then QUBIC2 was applied to a mouse spatial scRNA-Seq dataset with 280 cells. The cells were 371 

classified into five clusters that correspond to five well-defined morphological layers in (50) (Figure 372 

6A). Five biclusters were predicted. Among them, the bicluster BC000 consists of cells mainly 373 

from the granular layer; the bicluster BC001 contains cells from the mitral layer and glomerular 374 

layer; and the bicluster BC002 contains cells mainly from the olfactory nerve layer (Figure 6B). 375 

Functional annotation showed that BC000 mainly enriches plasma membrane, cell membrane, 376 

and cell projection; BC001 enriches synapse, neuron projection, and cell projection; and BC002 377 

enriches cell projection (Details in Supplementary File 4).  378 

 379 

Finally, another spatial scRNA-Seq dataset (GSE60402) with samples dissected from three 380 

mouse medial ganglionic eminence tissues and known spatial coordinates was analyzed. 381 

QUBIC2 was applied and 37, 40, and 120 biclusters were identified in the mutant, wild-type 1, 382 

and wild-type 2 datasets, respectively (Details in Supplementary File 5). Further investigation on 383 

the spatial distribution of cells in each bicluster showed that all the four spatial biclusters with 384 

distinct expression patterns by cell cycle, cell morphogenesis, and neuron development genes, 385 

as reported in the original study (51), were identified by QUBIC2 . It is noteworthy that the outliers 386 
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with highly expressed stem cell markers tend to be located at the intermediate region between 387 

two adjacent (or overlapping) biclusters in the three datasets as shown in Figure 6D and 6F. Our 388 

interpretation is that these location-dependent expression patterns may be caused by parallel and 389 

independent differentiations from common stem cells. 390 

 391 

Figure 6. A. The coordinates of cells correspond to five morphological layers (1. Granular cell layer; 2. 392 

Mitral cell layer; 3. Outer plexiform layer; 4. Glomerular layer; 5. Olfactory nerve layer); B. The coordinates 393 

of cells from three selected biclusters; C. The spatial coordinates of samples in the four biclusters identified 394 

in wild-type 1 mouse; Colors red, green, cyan and dark blue represent samples in four different biclusters; 395 

D. In addition to the coordinates of bicluster samples, the yellow cubes represent significant outlier samples; 396 

E. The same information as in C except the samples are from wild-type 2 mouse; F. The same information 397 

as in D except the samples are from wild-type 2 mouse. 398 

 399 

METHODS AND MATERIALS 400 

Data acquisition 401 

A total of four expression datasets were used in the Functional gene modules detection from 402 

RNA-Seq data section, that is, one synthetic RNA-Seq data, one E. coli RNA-Seq data and two 403 

human datasets (one RNA-Seq and one scRNA-Seq). The synthetic dataset was simulated 404 

using our in-house simulation method (details in Simulation of co-regulated gene expression 405 

data section). It contains 22,846 genes and 100 samples. A total of 10 co-regulated modules 406 

was embedded in this dataset, covering 2,240 up-regulated genes. The E. coli RNA-Seq data 407 
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consists of 4,497 genes and 155 samples, which was integrated and aggregated by our group. 408 

In short, 155 fastq files were downloaded from ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ using the 409 

sratoolkit (v2.8.1, https://github.com/ncbi/sra-tools/wiki/Downloads), and they are processed 410 

following quality check (FastQC), reads trimming (Btrim), reads mapping (HISAT2) and 411 

transcript counting (HTseq). Then, raw read counts were RPKM normalized. The human RNA-412 

Seq data contains 3,084 genes and 8,555 samples, which was obtained from (30). The scRNA-413 

Seq data was downloaded from (13) as an RPKM expression matrix with 20,214 gene and 90 414 

cells and then 3,798 genes were kept for the analysis in this study by removing the genes 415 

without annotation.  416 

 417 

Multiple sets of known modules/biological pathways were provided or collected to support the 418 

enrichment analysis of the above four datasets. For synthetic data, the 10 groups of pre-defined 419 

up-regulated genes were used as co-regulated modules. For E. coli data, we used five kinds of 420 

biological pathways, which are complex regulons and regulons extracted from the RegulonDB 421 

database (version 9.4, accessed on 05/08/2017), KEGG pathways collected from the KEGG 422 

database (accessed on 08/08/2017), SEED subsystems from the SEED genomic database 423 

(accessed on 08/08/2017) (44), and EcoCyc pathways from the EcoCyc database (version 21.1, 424 

as of 08/08/2017) (45). Complex regulons were defined as a group of genes that are regulated 425 

by the same transcription factor (TF) or the same set of TFs. In total, 457 complex regulons, 204 426 

regulons, 123 KEGG pathways, 316 SEED subsystems, and 424 EcoCyc pathways were 427 

retrieved, respectively. For the human TCGA and scRNA-Seq data, we used three sets of 428 

modules provided by (30). 429 

 430 

One golden-standard scRNA-Seq data (52) was downloaded from https://scrnaseq-public-431 

datasets.s3.amazonaws.com/manual-data/yan/nsmb.2660-S2.csv in the cell type classification 432 

section. It consists of 20,214 genes and 90 cells, where the cells were assigned into seven 433 

subgroups with the true cell subtypes information provided in (52).  434 

The time series lung scRNA-Seq dataset (GSE52583) with 152 cells and 15,174 genes from was 435 

downloaded from (47). The cells were collected at three time points: E14, E16, and E18. Another 436 

time series scRNA-Seq data with 527 cells and 13991 genes (GSE48968) was downloaded from 437 

the GEO database, in which the RPKM values are available.  438 

 439 

The Mouse olfactory bulb spatial transcriptomic data was downloaded from (50), which contains 440 

280 cells and 15,981 genes. Ståhl et al. (50) classified the cells into five clusters that correspond 441 
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to well-defined morphological layers. The cells use coordinates as IDs, and the cell layers 442 

information was manually extracted using the ST viewer 443 

(https://github.com/SpatialTranscriptomicsResearch/st_viewer), based on the coordinate 444 

information (see Supplementary File 6).The raw reads of mouse spatial scRNA-Seq data 445 

GSE60402 was retrieved from the SRA database (53,54), and the RPKM values for it were 446 

calculated using software packages TopHat (55) and Cufflink (56). GSE60402 was split into three 447 

subsets according to sample information. The detailed information of the selected and split 448 

datasets is listed in Table 1. 449 

 450 

Table 1. Summary of GSE60402 451 

GEO 

Accession ID 
Data ID Description #Cells #Genes 

GSE60402 GSE60402-Mutant From Gfra1 mutant sample 94 11094 

GSE60402 GSE60402-Wildtype1 From wild type mouse 1 124 10037 

GSE60402 GSE60402-Wildtype2 From wild type mouse 2 94 10714 

 452 

Left Truncated Mixed Gaussian (LTMG) model and qualitative representation 453 

To accurately model the gene expression profile of RNA-Seq and scRNA-Seq data, we 454 

specifically developed a mixed Gaussian model with left truncation assumption. Denotes the log 455 

transformed FPKM, RPKM or CPM expression values of gene X  over 𝑁  conditions as X =456 

{𝑥1,𝑥 }, we assumed that 𝑥𝑗 𝑋 follows a mixture of 𝑘 Gaussian distributions, corresponding to 457 

𝑘 possible TRSs. The density function of 𝑥𝑗 is: 458 

𝑝(𝑥𝑗; Θ) = ∑𝛼𝑖𝑝(𝑥𝑗; 𝜃𝑖)

 

𝑖=1

= ∑𝛼𝑖

1

√2𝜋𝜎𝑖
𝑒

−(𝑥𝑗−𝜇𝑖)
2

2𝜎𝑖
2

 

𝑖=1

 459 

And the density function of X is: 460 

𝑝(X;Θ) = ∏𝑝(𝑥𝑗; Θ)

 

𝑗=1

= ∏∑𝛼𝑖𝑝(𝑥𝑗; 𝜃𝑖)

 

𝑖=1

 

𝑗=1

= ∏∑𝛼𝑖

1

√2𝜋𝜎𝑖
𝑒

−(𝑥𝑗−𝜇𝑖)
2

2𝜎𝑖
2

 

𝑖=1

 

𝑗=1

= 𝐿(Θ;𝑋) 461 

where 𝛼𝑖  is the mixing weight, 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of ith Gaussian 462 

distribution, which can be estimated by an EM algorithm with given X: 463 

Θ∗ =        Θ
argmax𝐿(Θ;𝑋)

 464 

 465 
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Parameters Θ  can be estimated by iteratively running the estimation (E) and maximization (M) 466 

steps. In this study,  𝑍𝑐𝑢𝑡  is set for each gene as the logarithm of the minimal non-zero 467 

RPKM/FPKM/TPM value in the gene’s expression profile. The EM algorithm is conducted for 𝐾 = 468 

1, …, 9 to fit the expression profile of each gene and the 𝐾 that gives the best fit is selected 469 

according to the Bayesian Information Criterion (BIC):  470 

𝐵𝐼𝐶 = −2 ln(Θ∗) + 3𝐾ln(𝑁) 471 

where 𝐾 is the number of TRS, 𝐾 is the number of conditions. 𝐾 that minimizes the BIC will be 472 

selected. 473 

 474 

Then the original gene expression values will be labeled to the most likely distribution under each 475 

cell. In detail, the probability that 𝑥𝑗 belongs to distribution 𝑖 is formulated by:  476 

 𝑝(𝑥𝑗 ∈ 𝑇𝑅𝑆 𝑖|𝐾, Θ∗) ∝
𝛼𝑖

√2𝜋𝜎𝑗
2

𝑒

−(𝑥𝑗−𝜇𝑖)
2

2𝜎𝑖
2

 477 

And 𝑥𝑗  is labeled by TRS 𝑖 if 𝑝(𝑥𝑗 ∈ 𝑇𝑅𝑆 𝑖|𝐾, Θ∗) = max
𝑖=1,⋯,𝐾

(𝑝(𝑥𝑗 ∈ 𝑇𝑅𝑆 𝑖|𝐾, 𝛩∗)). In such a 478 

way, a row consisting of discrete values (1,2, , 𝐾) for each gene will be generated. 479 

 480 

KL score 481 

A Kullback-Leibler divergence score (KL score) is introduced in QUBIC 2 to guide candidate-482 

selection and biclustering optimization. The KL score of a bicluster is defined as: 483 

𝐾𝐿𝐵 =
1

𝑁
∑ ∑ 𝑅(𝑖, 𝑗) × 𝑙𝑜𝑔

𝑅(𝑖, 𝑗)

𝑄(𝑖, 𝑗)
+

1

𝑀𝑖∈{ ,1}

𝑁

𝑗=1
∑ ∑ 𝐶(𝑖, 𝑘) × 𝑙𝑜𝑔

𝐶(𝑖, 𝑘)

𝑃(𝑖, 𝑘)
            

𝑖∈{ ,1}

𝑀

 =1
 484 

where 𝑁 and 𝑀 are the numbers of rows and columns of a submatrix B in MR, respectively. 𝑅(𝑖, 𝑗) 485 

represents the proportion of element 𝑖  in row 𝑗  of B, 𝑄(𝑖, 𝑗)  is the proportion of 𝑖  in the 486 

corresponding entire row,  𝐶(𝑖, 𝑘)  is the proportion of 𝑖  in column 𝑘  of B, and 𝑃(𝑖, 𝑘)  is the 487 

proportion of 𝑖 in the entire corresponding column.   488 

 489 

Meanwhile, the KL score for a gene quantify the similarity between a candidate gene 𝑗 and a 490 

bicluster, which is defined as follows: 491 

𝐾𝐿𝑗 = ∑ 𝑅(𝑖, 𝑗) × 𝑙𝑜𝑔
𝑅(𝑖, 𝑗)

𝑄(𝑖, 𝑗)𝑖∈{ ,1}
 492 

where 𝑅(𝑖, 𝑗) represent the proportion of 𝑖 under corresponding columns of the current bicluster.  493 

 494 
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Simulation of co-regulated gene expression data 495 

We utilized a single cell RNA-Seq dataset of human melanoma (58) (with 22,846 genes and 4,645 496 

cells) to simulate bulk tissue RNA-Seq data with known co-regulated modules. Specifically, a 497 

single cell RNA-Seq pool consists counts data of 4,466 cells of six annotated cell types namely 498 

B-, T-, endothelial, fibroblast, macrophage and cancer cells were constructed. The top 1,000 cell 499 

type specifically expressed genes of each cell type were identified by using Z score of the mean 500 

of each gene’s expression level in each cell type.  501 

 502 

For each round of simulation, the number of to be simulated bulk tissue samples and co-regulation 503 

modules is first defined. Then the genes of each co-regulation module denoted as 𝑋 , will be 504 

specified by randomly selecting 𝑀  genes from the top 1,000 cell type specifically expressed 505 

genes of one cell type. A co-regulation strength matrix 𝑃  is then simulated from a bimodal 506 

distribution over (0,1), with 𝑃[𝑖, 𝑘] denotes the proportion of cells with the transcriptional regulatory 507 

signal of co-regulation module 𝑘 in bulk sample 𝑖. A bulk tissue data is simulated by randomly 508 

drawing cells from the cell pool by following a multinomial distribution, with predefined parameters 509 

and the total number of cells. For co-regulation module 𝑘  in bulk sample 𝑖 , genes 𝑋  in a 510 

proportion 𝑃[𝑖, 𝑘] of the selected cells of the cell type corresponds to 𝑘 are perturbed by an X-fold 511 

increase of the gene expression. Then the bulk data 𝑖 with simulated co-regulations are formed 512 

by summing the perturbed gene expression profile the selected cells and normalized to RPKM 513 

expression scale. The Pseudo code of the simulation approach is provided Method S1 in 514 

Supplementary File 1. 515 

 516 

The rationales of this simulation approach include (1) gene expression level and noise in the bulk 517 

data are purely simulated by sum of real single-cell data, without using artificially assigned 518 

expressions scale and noise; (2) co-regulation genes are modeled as a specific fold increase of 519 

a number of cell-type-specific genes in a particular subset of the cells, which characterizes the 520 

heterogeneity of transcriptional regulation among cells in a tissue; (3) multiple co-regulation 521 

modules in specific to different cell types can be simultaneously simulated. Hence, we believe the 522 

gene expression data simulated by this way can satisfactorily reflect genes co-regulated by a 523 

perturbed transcriptional regulation signal in real bulk tissue data. 524 

 525 

Evaluation of the functional modules 526 

The capability of algorithms to recapitulate known functional modules are assessed using 527 

precision and recall. First, for each identified bicluster, we use the P-value of its most enriched 528 
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functional class (biological pathway) as the P-value of the bicluster. Specifically, the probability of 529 

having 𝑥 genes of the same functional class in a bicluster of size 𝑛 from a genome with a total of 530 

𝑁 genes can be computed using the following hypergeometric function(59): 531 

P (𝑋 = 𝑥|𝑁, 𝑝, 𝑛) =
(𝑝𝑁

𝑥
)((1−𝑝)𝑁

 −𝑥
)

(𝑁
 
)

 532 

where 𝑝 is the percentage of that pathway among all pathways in the whole genome. The 533 

P-value of getting such enriched or even more enriched bicluster is calculated as: 534 

𝑃 − value = P(X ≥ x) = 1 − P(X < x) = 1 −∑
(𝑝𝑁

𝑖
)((1−𝑝)𝑁

 −𝑖
)

(𝑁
 
)

𝑥−1

𝑖= 
 535 

The bicluster is deemed enriched with that function if its p-value is smaller than a specific 536 

cutoff (e.g., 0.05). 537 

 538 

Given a group of biclusters identified by a tool under a parameter combination, the precision is 539 

defined as the fraction of observed biclusters significantly enriched with the one biological 540 

pathway/known modules (Benjamini-Hochberg adjusted p<0.05), 541 

 542 

𝑃𝑟𝑒 𝑖𝑠𝑖𝑜𝑛 =
# 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖 𝑎𝑛𝑡 𝑏𝑖 𝑙𝑢𝑠𝑡𝑒𝑟𝑠

# 𝑜𝑓 𝑏𝑖 𝑙𝑢𝑠𝑡𝑒𝑟𝑠 
 543 

 544 

 For recall, we compute the fraction of known modules that were rediscovered by the algorithms, 545 

𝑅𝑒 𝑎𝑙𝑙 =
# 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖 𝑎𝑛𝑡 𝑚𝑜𝑑𝑢𝑙𝑒𝑠

# 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 
 546 

Finally, the harmonic mean of precision and recall were calculated to represent the performance 547 

of an algorithm on a given dataset and parameter setting, denoted as F score: 548 

𝐹 =
2

1
𝑃𝑟𝑒 𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒 𝑎𝑙𝑙

 549 

Note that the number of biclusters used to calculate precision and recall may affect the results. 550 

To make sure the evaluation is as fair as possible, for each dataset, we select the first 30 551 

biclusters. 552 

 553 

Parameter adjustment of biclustering tools 554 

To assess the robustness of selected algorithms’ performance, each tool is run multiple times by 555 

varying parameters that affect the size and number of biclusters. In general, parameters are 556 

adjusted around their default or recommended (if available) value. The parameters that varied are 557 
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listed in Table2, and details about the range and increment of parameters can be found in 558 

Supplementary File. 559 

 560 

Table 2. Main parameters adjusted for each algorithm 561 

Algorithm Implementation Parameters 

Bimax R package ‘biclust’ minr, minc, number 

ISA R package ‘isa2’ set.seed 

FABIA R package ‘fabia’ alpha, spl, spz, cyc, p 

Plaid R package ‘biclust’ row.release,  col.release, max.layer 

QUBIC R package ‘QUBIC’ f, c, k, o 

QUBIC2 C++ f, c, k, o 

 562 

Spearman correlation test 563 

QUBIC2 was run on the E. coli RNA-Seq data in Figure 2 under 63 parameter settings. For each 564 

setting, around 100 biclusters were identified. Five sets regulatory or metabolic pathways were 565 

extracted from four databases of  E. coli (RegulonDB, KEGG, SEED (46) and EcoCyc (47)) to 566 

support this association study.  In specific, for each set of ~100 biclusters obtained under the 567 

same settings, six groups of P-values for all these biclusters were calculated, with five knowledge-568 

based groups and one size-based group. Spearman correlation test was conducted to investigate 569 

the rank-order correlation among the six groups of P-values. Five correlation coefficients (ρ), 570 

which demonstrated the extent of correlation between size-based P-values and five biological 571 

knowledge-based P-values, as well as five corresponding p-values, were recorded from the test. 572 

Note that the p-value of correlation test denotes the probability of observing such a correlation or 573 

even stronger correlation, under the null hypothesis that no correlation exists. For simplicity, the 574 

correlation coefficient between the size-based P-value and biological knowledge-based P-value 575 

was prefixed with the name of a pathway, e.g., TF_ρ  and KEGG_ ρ . In the end, a total of 5 × 63 576 

ρ (63 parameter settings, each with five ρs) and a same number of p-values were obtained. 577 

 578 
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Cell type classification pipeline 579 

By using biclustering, we can group genes and cells simultaneously. However, since biclustering 580 

aims to find sets of genes that are co-expressed across a subset of conditions, it is possible that 581 

genes may co-expressed across multiple cell types. Therefore, one bicluster may consist of cells 582 

from different types, and cells from the same types may appear in different biclusters. In a word, 583 

it is not guaranteed that one bicluster corresponds to one cell type. However, it is assumed that 584 

two cells from a bicluster are more likely to be of the same subtypes than the two cells that are 585 

randomly selected. It is believed that biclusters can capture this feature to some extent. If there 586 

are multiple biclusters and when we condense them together, we can distinguish sets of cells 587 

belonging to the same type from sets of cells that are grouped by chance. 588 

 589 

Based on the above idea, we developed a pipeline to obtain cell type classification based on 590 

biclustering results (Figure 4A). First, a biclustering tool was applied to the expression data (rows 591 

represent genes and columns represent cells) to identify a set of biclusters. Then a weighted 592 

graph 𝐺 = (𝐶, 𝐸)  was constructed to model the relationship between cell pairs among biclusters. 593 

A node  𝑖 in 𝐺 represented a cell, and 𝑒𝑖,𝑗 represented the edge connecting  𝑖 and  𝑗, where 𝑖 ≠ 𝑗. 594 

We assigned weight 𝑤𝑖,𝑗 to 𝑒𝑖,𝑗 to represent the number of biclusters that contain both  𝑖 and  𝑗. 595 

Intuitively, a higher 𝑤𝑖,𝑗  value indicates that  
𝑖  

and  
𝑗

 are simultaneously involved in more 596 

biclusters, hence, are more likely to be the same cell type than cell pairs with lower weight. A 597 

symmetrical cell-cell matrix with diagonal as 0 was then constructed to record 𝑤𝑖,𝑗 and Markov 598 

Cluster Algorithm (MCL) was performed to cluster cells into cell types and produce cell labels. In 599 

specific, the MCL clustering was run 100 times by varying inflation factor, resulting 100 cell labels. 600 

A binary similarity matrix was constructed for each cell label: if two cells belong to the same cluster, 601 

their similarity is 1; otherwise, the similarity is 0. Then a consensus matrix was built by averaging 602 

all similarity matrices. The resulting consensus matrix was clustered using hierarchical clustering 603 

with complete agglomeration, and the clusters were inferred at the k level of the hierarchy. 604 

 605 

External cluster validity indices 606 

External validation measures the extent to which cluster labels match externally supplied class 607 

labels. Generally, they are based on counting the pairs of points on which two classifiers 608 

agree/disagree. Denote two partitions of the same data set as R and Q. The reference partition, 609 

R, encode the class labels, i.e., it partitions the data into k known classes.  Partition Q, in turn, 610 

partitions the data into v categories, which is the one to be evaluated. 611 

 612 
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Adjusted Rand Index (ARI) is defined as 613 

𝐴𝑅𝐼 =
𝑎 −

(𝑎 +  )(𝑎 + 𝑏)
𝑑

(𝑎 +  ) + (𝑎 + 𝑏)
2

−
(𝑎 +  )(𝑎 + 𝑏)

𝑑

 614 

a: Number of pairs of data objects belonging to the same class in R and the same cluster in Q. 615 

b: Number of pairs of data objects belonging to the same class in R and different clusters in Q. 616 

c: Number of pairs of data objects belonging to different classes in R and the same cluster in Q. 617 

d: Number of pairs of data objects belonging to different classes in R and different clusters in Q. 618 

Terms a and d are measures of consistent classifications (agreements), whereas terms b 619 

and c are measures of inconsistent classifications (disagreements). 620 

 621 

Jaccard Index is defined as: 622 

𝐽𝐼 =
𝑎

𝑎 + 𝑏 +  
 623 

The Jaccard Index can be seen as a proportion of good pairs with respect to the sum of non-624 

neutral (good plus bad) pairs. 625 

 626 

Folkes-Mallow's index is defined as 627 

𝐹𝐼 =
𝑎

√(𝑎 + 𝑏)(𝑎 +  )
 628 

Fowlkes–Mallow's index can be seen as a non-linear modification of the Jaccard coefficient that 629 

also keeps normality. 630 

 631 

Pathway enrichment analysis 632 

Pathway enrichment analysis is conducted and the statistical significance of each enriched 633 

pathway is assessed by using a hypergeometric test (statistical significance cutoff = 0.005) 634 

against 4,725 curated gene sets in the MsigDB database, which includes 1,330 canonical KEGG, 635 

Biocarta and Reactome pathways, and 3,395 gene sets representing expression signatures 636 

derived from experiments with genetic and chemical perturbations, together with 6,215 Mouse 637 

GO terms each containing at least 5 genes (62,63). 638 

 639 

CONCLUSION 640 

QUBIC2 is a novel biclustering algorithm developed for bulk RNA-Seq and scRNA-Seq data 641 

analysis in this study. It has four unique characteristics: (i) used a left-truncated  mixture model to 642 

fit the log-transformed RPKM/CPM/TPM values of each gene and qualitatively represent gene 643 
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expression; (ii) integrates an information-divergence objective function in the biclustering 644 

framework; (iii) applies a Dual strategy to optimize consistency level of a to-be-identified bicluster; 645 

and (iv) develops a robust P-value framework to evaluate the significance of all the identified 646 

biclusters. QUBIC2 proved to have significant advantages in the functional module detection area, 647 

outperforming five widely-used biclustering methods based upon our test on four datasets. The 648 

proposed P-value calculation method based on bicluster size did make sense, which may facilitate 649 

the evaluation of all the identified biclusters, especially from less-annotated organisms. The cell 650 

type classification pipeline, based on QUBIC2, worked well and outperformed the state-of-the-art 651 

performance of SC3. By utilizing time-dependent data, QUBIC2 discovered biclusters specific to 652 

time point and identified a cascade of immune responses to the external pathogenic treatment. 653 

From the spatial transcriptomic data, QUBIC2 discovered that spatially adjacent single cells may 654 

have high co-expression patterns, and particularly, two distinct spatially clustered cells may be 655 

derived initially from the same stem cell. We believe that QUBIC2 can serve biologists as a useful 656 

tool to extract novel biological insights from large-scale RNA-Seq data (The tutorial for QUBIC2 657 

program is provided in Supplementary File 7). 658 

 659 

DISCUSSION 660 

Single-cell sequencing has enabled new transcriptome-based studies, including the study of 661 

distinct responses by different cell types in the same population when encountered by the same 662 

stimuli or stresses, and identification of the complex relationships among different cells in complex 663 

biological environments such as tissues. However, to fully excavate the potential of scRNA-Seq 664 

data, we must overcome several technical challenges.  665 

 666 

As sequencing costs decrease, larger scRNASeq datasets will become increasingly common; 667 

thus, the scalability to large dataset and efficiency of tools will become more and more important. 668 

Currently, the discretization and Dual searching functions of QUBIC2 are time consuming on 669 

large-scale datasets. Based on our test, it takes 17 minutes to discretize a dataset with 4,297 670 

rows and 466 columns (a desktop with 48.0GB memory, Intel Core i7-6700 and 3.40GHz). Given 671 

a dataset with 22,846 genes and 100 conditions, the running time while using Dual strategy are 672 

generally 2 minutes longer than that without Dual. The openMP method will be implemented in 673 

the EM steps for discretization and more efficient heuristics algorithm will be designed to optimize 674 

the dual searching of biclustering. 675 

 676 
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Another challenge involves the interpretation of time-series and spatial data. For example, in the 677 

GSE52583 data, QUBIC2 could only separate cells collected at different time points, yet the 678 

further differentiation stage information was not captured. For the mouse olfactory bulb data, 679 

QUBIC2 did not separate cells from adjacent layers. To deal with this drawback, we need to 680 

combine biclustering with other statistical methods specifically designed for time series and spatial 681 

gene expression data. 682 

 683 

It is noteworthy that many other kinds of methods can be used for gene expression data analysis. 684 

Forty-two module detection tools covering five main approaches were reviewed in (30) and the 685 

authors concluded that decomposition methods outperformed all other strategies, including 686 

biclustering methods. Meanwhile, they also observed that QUBIC and FABIA had higher 687 

performance on human and synthetic data. We compared two top rated decomposition methods 688 

and two top clustering methods with QUBIC2 and QUBIC on a human scRNA-Seq data; and the 689 

results showed that QUBIC2 surpassed both decomposition and clustering methods (Figure S4 690 

in Supplementary File 1). In the future, we will carry out more comprehensive comparison 691 

between QUBIC2 and other decomposition and network-based methods, aiming to give a 692 

systematical evaluation of the power of computational techniques on scRNA-seq data.  693 

 694 
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