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Abstract

The explosion of data throughout the sciences provides unprecedented opportunities to learn about the dynam-
ics of evolution and disease progression. Here, we describe a highly generalisable statistical platform to infer
the dynamic pathways by which many, potentially interacting, discrete traits are acquired or lost over time in
biological processes. The platform uses HyperTraPS (hypercubic transition path sampling) to learn progression
pathways from cross-sectional, longitudinal, or phylogenetically-linked data with unprecedented efficiency, read-
ily distinguishing multiple competing pathways, and identifying the most parsimonious mechanisms underlying
given observations. Its Bayesian structure quantifies uncertainty in pathway structure and allows interpretable
predictions of behaviours, such as which symptom a patient will acquire next. We exploit the model’s topology
to provide visualisation tools for intuitive assessment of multiple, variable pathways. We apply the method to
ovarian cancer progression and the evolution of multidrug resistance in tuberculosis, demonstrating its power to
reveal previously undetected dynamic pathways.

Keywords: HyperTraPS, cancer progression models, trait evolution, phylogenetic character mapping, Bayesian
inference, precision healthcare

1. Introduction

Many problems in biomedicine and throughout the sciences can be thought of as the serial stochastic acqui-
sition of discrete features or traits. These traits may be, for example, the symptoms experienced by a patient
during progressive diseases, the genetic and physiological features underlying cancer progression, or the acquisi-
tion of drug-resistance traits in pathogens. Understanding the dynamics of these processes has the potential to
inform targetted therapies, reveal biological mechanisms, and predict future behaviours, and has been an open
challenge throughout the data explosion in biomedical sciences Colijn et al. (2017).

Existing methods to reconstruct the past, and predict the future, of processes involving discrete trait ac-
quisition have emerged from both the cancer science and evolutionary literature. Authors attempt to classify
cancer-related alterations into progressive ‘hallmarks’ (Hanahan and Weinberg, 2000, 2011). With the advent of
high-throughput sequencing, a large amount of effort has been placed in utilising phylogenetic methods for un-
derstanding the way in which cancer progresses at the genetic level (Schwartz and Schäffer, 2017). Beerenwinkel
et al. (2015) provide an excellent review of methods designed for these systems: a large array of methods have
been developed for deriving progression models to devise better treatments and interventions through under-
standing the way and order in which alterations are acquired (Beerenwinkel et al., 2015; Schwartz and Schäffer,
2017). These range from stochastic models employing Markov chains for acquisition on graphs such as in Hjelm
et al. (2006), to Bayesian network approaches where trees, forests or a directed acyclic graph (DAG) are to be
inferred from the data (Szabo and Boucher, 2002; Beerenwinkel et al., 2007; Gerstung et al., 2009; Loohuis et al.,
2014; Ramazzotti et al., 2015). A major branch of this field has focussed on independent samples exhibiting
differing presence of alterations (cross-sectional data) for reconstructing oncogenetic models (Beerenwinkel et al.,
2015) to discover cancer progression or potentially causal relationship of markers in patients.

Evolutionary and phylogenetic approaches for inferring trait dynamics, by contrast, must account for the
relatedness of individuals and the possibility that a given state in a progressive system is inherited from an
ancestor. Notable models that have attempted to solve this problem have included Bollback (2006) with Markov
Chain Monte Carlo (MCMC) approaches to sampling from a master equation model for character mapping
with Simmap. Other similar methods include Ordermutation (Youn and Simon, 2012) and the Reversible Jump
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MCMC (RJ-MCMC) methodology also applied to a master equation formulation (Pagel and Meade, 2006). Such
approaches have been utilised for understanding the evolution of phenotypic traits in populations (Mahler et al.,
2010; Watts et al., 2015). In connection with cancer progression, more recently modelling approaches have been
developed with the aim of reconstructing phylogenetic models from sources such as single-cell sequencing data
(Beerenwinkel et al., 2015; Ross and Markowetz, 2016; Zafar et al., 2017; Ramazzotti et al., 2017).

Challenges remain in applying these algorithms to dissect the dynamics of systems involving many, poten-
tially coupled, traits. Existing methods may assume an absence of coupling or interactions between traits or be
restricted to a limited number. Computational runtime often scales exponentially with the underlying number
of features, and frequently exhibits challenging scaling with the number of observations and traits, limiting the
applicability of the approaches to many forms of biomedical data, particular given modern trends of increasing
data volumes and heterogeneity. A recent approach, HyperTraPS (hypercubic transition path sampling) (John-
ston and Williams, 2016), aimed to address these issues, allowing the inference of the dynamics of many coupled
traits from data following arbitrary (but known) phylogenetic relationships. HyperTraPS represents progressive
dynamics as paths on a hypercubic space connecting all possible patterns of trait presence and absence, and uses
observations of intermediate states to learn the most likely pathways of progress through this space. In this way,
snapshot data can be used to learn the probabilistic structure of dynamic pathways, which have in turn been
used to identify the mechanisms underlying the evolutionary dynamics of L = 65 mtDNA genes (Johnston and
Williams, 2016) and C3 to C4 photosynthesis (Williams et al., 2013).

To date, HyperTraPS has only been used to address these specific evolutionary questions. However, in the
current era of large-scale scientific and biomedical data, questions about the structure of dynamic pathways are
expanding and becoming more pertinent to endeavours from evolutionary biology to precision medicine. Hy-
percubic inference represents a powerful new way of addressing these questions, but a general platform for its
application, interpretation, and visualisation remains absent. Such a platform would provide many advantages
over the current state of the art: large-scale datasets can be readily analysed, different types of observational
data can be used (cross-sectional, longitudinal, and/or phylogenetically coupled observations); Bayesian quantifi-
cation of uncertainty and a completely unrestricted set of states and transitions can be applied, and competing
pathways and their detailed structure can be resolved and characterised, facilitating the identification of progres-
sion mechanisms. In principle, any dataset where the relationship of the samples is known or can be inferred is
amenable to this detailed analytic approach.

Here, we address this target, presenting a novel and expansive set of developments to allow the inference
of dynamic pathways from highly general datasets. We embed HyperTraPS in a new and efficient platform for
parametric inference and model selection, simultaneously allowing Bayesian inference of dynamic pathways and
the identification of model structures that best describe the dynamics and interactions contained within a given
set of observations. This model selection guards against overfitting and reveals the extent to which interactions
between features dictate the dynamics of the observed system. Models identified in this way have the strongest
power to predict out-of-sample observations, which we demonstrate with synthetic and real-world examples,
illustrating the predictive power of the approach. To further facilitate interpretation of the inference outcomes,
we introduce approaches for intuitively visualising and comparing the high-dimensional pathways inferred from
complex datasets, which may include multiple distinct orderings for the acquired traits.

We illustrate the performance of these methods in three different scenarios: with illustrative synthetic datasets;
with a well-studied dataset on the progressive acquisition of genetic alterations in ovarian cancer; and with
a recent large-scale dataset on drug-resistant tuberculosis. We compare this novel HyperTraPS platform to
other approaches from the disease progression and evolutionary literatures for trait inference, highlighting its
intersection between these fields and consequent general power and applicability. We conclude by discussing the
breadth of applications in the expanding fields of precision medicine, data science, and evolutionary inference,
and provide an open source package for the code.

2. Results

2.1. Inferring dynamic pathways involving coupled traits on general state spaces

HyperTraPS represents every possible state of a system with L features or traits (we use these terms synony-
mously here) as a binary string of length L, where 0 and 1 at the ith position correspond respectively to absence or
presence of the ith trait. HyperTraPS assumes that systems start with no traits present (O, the string of all 0s).
Traits are then acquired stochastically and irreversibly, according to transition probabilities linking states. We
assume that traits are acquired one-at-a-time, so that the states and transitions are embedded on a hypercubic
transition graph (Fig. 1). We then consider instances of an evolving or progressing system as an ensemble of
random walkers on this graph. As in a hidden Markov model Murphy (2012), observations are assumed to arise
through randomly emitted signals by these walkers; a signal corresponds to the current set of acquired traits
of the random walker. The task at the core of HyperTraPS is to compute the likelihood of observing a set of
emissions that match the states in a dataset, given a parameterisation W describing the transition probabilities
on the edges of the hypercube.
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In STAR Methods, we outline the HyperTraPS algorithm to estimate this likelihood given a set of observations.
In contrast to previous approaches (Johnston and Williams, 2016; Williams et al., 2013), we embed the core
likelihood calculation in an auxilary pseudo-marginal MCMC (APM MCMC) framework (Murray and Graham,
2015) to allow more efficient Bayesian inference of the hypercubic transition network supporting the observed
dynamics. The APM MCMC embedding overcomes potential issues arising from uncertainty in the likelihood
estimates for long pathway calculations (STAR Methods), better guaranteeing that the MCMC process will mix
well and converge to a consistent posterior in the case of large, sparse inference challenges. APM MCMC makes
it possible to address systems involving dozens of sparsely sampled traits, as we demonstrate below.

The next important consideration in this inference process is how this transition network is parameterised.
Individually parameterising each of L2L−1 hypercubic edges represents a huge inference challenge for (likely)
very little model fit reward. Instead, we propose a hierarchy of parameter representations (Fig. 6). For the zero
order model every feature has equal probability of acquisition. All edges on the transition network thus have the
same weight, requiring no parameters. In the first order model, every feature has an independent acquisition
probability regardless of current state. Transition edge weights between two states are thus exclusively determined
by the trait that distinguished the two states (requiring k = L parameters). In the second order model, every
feature’s acquisition probability depends independently on the presence of each other feature. Transition edge
weights between two states thus depend on the distinguishing trait and the presence/absence of each other trait
(requiring L2 parameters; as in (Johnston and Williams, 2016)). Higher order models, including the full L2L−1

set naturally follow, introducing more complex interactions between the co-occurrence of features (as in (Williams
et al., 2013)). The appropriate choice of parameterisation is dictated by the generative processes underlying the
observed data; if trait acquisitions are independent, the parsimonious first-order model is more appropriate; if
traits interact pairwise, the second-order model will be required to capture the dynamics. A given dataset may
be best described by an intermediate representation between two of these cases.

To identify the optimal parameter representation for a given dataset, we introduce methods for regularising
the inferred model parameterisations (see STAR Methods), allowing the appropriate choice of model structure to
describe the observed data and a means of generating maximum likelihood parameterisations without overfitting.
The regularisation allows us to distinguish simple cases, where all dynamics can be described by traits behaving
independently, from more complex cases where the acquisition of one or more traits influences the probability of
acquisition of other traits. This combination of an efficient and general inference platform, a process for model
selection, and a new toolbox for visualising and interpreting inferred posteriors, allows us for the first time to
apply HyperTraPS to a dramatically expanded range of biomedical questions.

In order to illustrate the ability of HyperTraPS to characterise dynamics from independent cross-sectional
samples, we constructed three cross-sectional datasets with different underlying progressions. First, DCS1

involves
samples taken uniformly from each state along a single trajectory, where features are accumulated from left to
right. For example, for L = 3, the sequence of acquisition is 000 → 100 → 110 → 111. Second, DCS2 involves
samples taken uniformly from states along two distinct progression pathways with exactly opposing temporal
ordering of acquisition: one where features are acquired from left to right and the other where features are acquired
from right to left. For example, for L = 3, this corresponds to the two trajectories 000→ 100→ 110→ 111 and
000 → 001 → 011 → 111. Lastly, a composite of DCS1

and DCS2
such that DCS3

is the linear combination:
DCS3 = 2DCS1 +DCS2 . In this case, we have a dominant progression underlying the dataset but with a significant
alternative progression also being present.

We chose these structures to illustrate HyperTraPS’s ability to infer both single (DCS1
), multiple competing

(DCS2
) pathways and multiple differentially weighted competing (DCS3

) pathways. For the single pathway,
traits can be independent – a suitable ordering of the ‘basal rates’ is sufficient to generate DCS1

. By contrast,
competing pathways require traits to interact – acquisition of traits on one pathway in DCS2 and DCS3 must
repress acquisition of traits on the other pathway. Importantly, the samples used in the dataset are cross-sectional
and therefore the underlying progressions that generated the samples is to be inferred; the data is input simply
as the set of transitions from the state with no features present to the observed signals.

In Fig. 2, we demonstrate structure of the data, pathway inference, model regularisation, and validation for
each of the DCS1

, DCS2
and DCS3

. Fig. 2A(i)-(iii) shows the visual structure of the data with samples plotted
against features with black rectangles indicating the presence of a feature in the sample. To visualise the inferred
dynamic behaviour, we use a custom algorithm (described in further detail in STAR methods) to project the
inferred hypercubic transition network into two dimensions, arranging states with increasing numbers of features
from left to right (Fig. 2B). A single dominant progression is clear for Fig. 2B(i), while the two progressions
are clearly shown in Fig. 2B(ii) and 2B(iii). Fig. 2C(i)-(iii) show an alternative representation: the posterior
probabilities with which each trait is acquired in each possible ordering. Again, the dynamics corresponding to
the simple single pathway and the more complex competing two-pathway model are clearly visible.

In this extreme example, the inferred ordering distributions for all but the central traits in DCS2 and DCS3

exhibit bimodality. Generally in such histograms from HyperTraPS posteriors, bimodality (and multimodality
more generally) reflects structurally distinct progression pathways (for example, where a feature can be acquired
early or late, but not at intermediate stages), while unimodal distributions reflect sets of pathways with a
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Fig. 1: HyperTraPS allows dynamic inference with three classes of input data A, B and C. In each case, presence/absence of traits
are labelled with a binary marker, and temporal relationships between observations (if present) are invoked to represent observed
samples as observed transitions, yielding transition sets. With a dataset of transitions, the likelihood that a given set of edge
weights on the underlying hypercubic transition network will give rise to the observed transitions can be calculated efficiently using
a path sampling approach where random walkers sample parameterisations. Each (hyper)cube corresponds to the datasets (A, B
and C), with colour coded curved edges and states showing the possible paths that can be taken to reach observed samples from the
source state. Edge weights that reproduce the observed transitions are more likely to represent the underlying transition process.
Embedding this likelihood calculation in a Bayesian inference scheme allows posterior weights on inferred transition graphs to be
computed, constituting a complete characterisation of the dynamic systems. Edge widths and vertex areas are proportional to the
posterior weighting.

consistent structural trend. The width of such modes reflects the amount of noise and variation in the order
for which a feature is acquired in the progression associated with the mode. Multimodal distributions in these
plots provide a suggestive signature of distinct dynamic pathways of the system. In Appendix D.1, we compare
this inference of competing pathways to existing alternative approaches and show that HyperTraPS has a unique
ability to resolve and characterise multiple progressive pathways.

To highlight the potential for HyperTraPS to identify, disambiguate and characterise competing pathways,
we applied an alternative method, Capri (Ramazzotti et al., 2015), to these synthetic datasets. Capri attempts
to produce a maximum-likelihood directed acyclic graph (DAG) reflecting causal relationships between traits,
given inference of causal relationships from data. For the single-pathway case DCS1 , Capri and HyperTraPS yield
tightly comparable results (Fig. D.12B): in both cases, the temporal relationship (first to last trait acquisitions)
is captured. However, for the two-pathway case DCS2

and DCS3
, the DAG inferred by Capri does not directly

reflect the dynamics of the system, which are captured by HyperTraPS (Fig. D.12A(ii)-(iii) and Fig. D.12B(ii)-
(iii)). Instead, the DAG inference is rather confounded by the competing pathways and reports an indirect mix
of causalities rather than the clearly separated pathways inferred by HyperTraPS.

Fig. 2D demonstrates that the model regularisation process (described in STAR Methods) dramatically
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Fig. 2: Inference, regularisation, and validation of HyperTraPS platform for two synthetic datasets. Synthetic dataset
DCS1 (i) supports only a single pathway; DCS2 (ii) supports two competing pathways; and DCS3 (iii) supports competing pathways
but with a single dominant pathway. A. The cross-sectional datasets are represented with a trait being present in a sample where
a black box is present in the corresponding feature row. The samples are unordered to highlight the platform’s ability to infer
progressions from cross-sectional data. B. Inferred paths across hypercube. Random walks from the empty state “{}” state to the
“all features state” are performed across parameterisations from the posterior for each dataset. Edge widths and node areas are
proportional to the number of times edges/nodes are encountered. States are plotted from left to right in order of the number
of features acquired in the state using the embedding and labelling procedure described in STAR methods. The single pathway
clearly dominates in (i), while the two pathways present in DCS2

and DCS3
are clearly observable in (ii) and (iii). C. Inferred

ordering of acquisitions. Blue bars give the probability that a feature (horizontal axis) is acquired at a given step (vertical axis).
Bimodality in ordering posteriors ((ii) and (iii)) and reflect the presence distinct progressions that exist in the underlying dynamics.
D. Regularisation of the inferred models. The dashed line shows the AIC score as parameters are greedily pruned from approximate
first- and second- order maximum likelihood parameterisations. Each model and its corresponding AIC score is shown in the plot. The
turning point illustrating an optimal sparser parameterisation denoted as the first- and second- order regularised models respectively.
Simpler dataset (i) requires fewer parameters than the more complex datasets (ii) and (iii). E. For each regularised model type, the
AIC of the full dataset, and log-likelihoods of the training dataset and test dataset (as described in the text). For the full and training
dataset, stars give the p-value from a likelihood ratio in comparison to the zero order model (the null model) with significance levels
of ∗∗∗ < 0.001, ∗∗ < 0.01 and ∗ < 0.05. The first order regularised model is sufficient for the single pathway, while the second order
regularised model is necessary for (ii) and (iii).

reduces extraneous parameters at negligible cost to model fit. The optimal parameterisation for DCS1 contains
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around L terms, as illustrated by the overlapping points for the first order and second order regularised models in
Fig. 2D(i). The interaction terms included in the second order regularised model provide additional explanatory
power for DCS2

and DCS3
, with the regularised second order model having a considerably better AIC score

than the first order regularised model. This improvement is a consequence of the trait-interaction terms in the
second-order model allowing the required cross-repression of pathways, making it a better explanatory model in
this case.

To validate these findings and explore the predictive power of this approach, we split the data into two halves
to form a training and test dataset. We obtained posteriors from the training set for each model, and computed
the likelihood associated with the test set for these inferred posteriors. Fig. 2E(i)-(iii) shows the AIC scores for
the full model, and the log-likelihoods for training and validation datasets. For the single-path dataset, the first
order model and second order model provide similar explanatory power in the full model, and predictive power
in the validation experiment, both improved over the zero order model (null model). For the two-path dataset
DCS2

, the second order model enhances predictive power compared to both the first order and null models, and
regularisation improves the parsimony of this model with no cost to model fit (p < 0.001 for the a likelihood ratio
test against the null model). For DCS3

, the first order regularised model has a lower AIC than the zero order
model as it captures the dominant progression. However, the second order regularised model performs much
better still through the ability to capture both the dominant and secondary progression present in the dataset,
illustrated by lower AIC and larger log-likelihoods in the training and validation datasets.

2.2. Application to cross-sectional ovarian cancer data

We next apply HyperTraPS to a well-studied dataset on copy number variation in ovarian cancer progression
(Knutsen et al., 2005). This dataset is included in the Oncotrees package (Szabo and Boucher, 2002), with
(Loohuis et al., 2014) and we make direct comparisons these approaches. The data consist of a sample of N = 87
patients with differing levels of copy numbers for L = 7 genes associated with ovarian cancer, with the assumption
that none of the alterations were present in the individual at birth.

Fig. 3A provides a visual representation of the dataset, showing the presence/absence of each genetic alteration
in each patient. Fig. 3B shows the recorded transitions following parameter inference on the hypercube. A
collection of previously unreported dynamic features are revealed by this approach. A set of several constrained,
well-defined paths are visible, with flexible ordering in the acquisition of features being apparent. Interestingly,
the feature that is acquired first has substantial influence over the subsequent pathway structure, visible as the
tightly constrained individual pathways in Fig. 3B with rather few transitions between pathways. 3C shows
the inferred ordering of trait acquisition in this dataset. Clear differences in the temporal order where features
are acquired are observed here too. In both plots, alterations 8q+ and 3q+ are often observed early (the dark
edges in the top left part of Fig. 3A, while 8p-, Xp- and 1q+ tend to be acquired later. These observations are
supported by Desper et al. (1999) and Loohuis et al. (2014). It should be noted that there is weak multimodality
exhibited in almost all the features, consistent with the appearance of several distinct pathways in Fig. 3B.

In Fig. D.12A(iv) and B(iv), we compare the Capri results for the ovarian cancer data with the pathways
inferred by HyperTraPS. Capri yields a DAG of causalities that matches the ordering of the most pronounced
modes (and some of the most probably specific pathway structures) in the HyperTraPS posterior. HyperTraPS
additionally reports alternative pathways supported by the data, which may be neglected in the maximum-
likelihood Capri approach due to their comparatively low probability. The separation of these pathways (the
aforementioned dependence on the first-acquired trait) is revealed through the HyperTraPS approach. For
example, HyperTraPS suggests that while the 8q+ change is the most likely to be acquired first, if an alternative
is acquired first, 8q+ can often be acquired rather later in disease progression. We consider additional comparisons
with a Bayesian network approach in Appendix D.

In Fig. 3D, the AIC for each model is plotted along with the log-likelihood for the training and validation
datasets. The second order regularised model outperforms the others with the validation dataset in terms of log-
likelihood and significance. Additionally, the second order regularised model has marginal improved predictive
power over the first order regularised and zero order (null) models with the validation dataset.

These results together illustrate that samples parameterisations from HyperTraPS model does provide im-
proved predictive potential for a cross-sectional dataset with biomedical application.

2.3. Application to the evolution of multi-drug resistant tuberculosis

In the above two sections, observations are cross-sectional and ‘historically’ independent: each observation
corresponded to an individual with its own unique trajectory from the ‘no features’ state on the hypercube.
As discussed in the introduction, phylogenetically linked observations raise the possibility that traits may be
inherited from ancestors rather than being acquired de novo for individual observations. Next, we demonstrate
the application of HyperTraPS to a large-scale dataset with such a phylogenetic relationship between observations.

We consider the case of pathways of genetic polymorphisms that underpin drug-resistant tuberculosis isolates
reported in Casali et al. (2014). In this study, the authors sequenced 1000 drug-resistant tuberculosis isolates from
Samara in Russia. The data consists of presence/absence markers of polymorphisms at 16 key genes/promoter
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Fig. 3: Inference, regularisation, and validation of HyperTraPS applied to an ovarian cancer alteration cross
sectional dataset. A. The cross-sectional samples from the oncogenetic dataset are shown with black rectangles illustrating the
presence of a genetic alteration in each sample. B. Trajectories across the hypercube from a healthy initial state to increasing number
of copy number variants. Individual pathways are labelled with their cumulative steps: for example, the path {} → +8q+→ +3q+
begins at the (empty) initial state, then proceeds first to the 8q+ state, then to 8q+, 3q+. Areas of nodes and edge weights are
in proportion to the proportion of random walks through each. C. The inferred ordering histogram for the acquisition of genetic
alterations. Blue bars give the probability that a given mutation (horizontal axis) is acquired at a given step (vertical axis). D. AIC
for the full dataset and log-likelihoods for the training and validation data. The AIC score for the second order regularised model
has the marginally lowest AIC, suggesting the importance of interaction terms. This is highlighted by the most significant training
fit and the largest likelihood for the validation data.

regions that confer drug-resistance, as well as mutations in three RNA polymerase genes for 993 of these isolates
(those with complete data out of a total of 1000). Observed isolates are linked by a phylogeny, which Casali et
al. constructed from genome-wide information (importantly, consisting of a much wider set of genomic regions
than just those involved in drug resistance). We show the structure of this dataset with phylogenetic linkage (the
maximum likelihood phylogeny from Casali et al. (2014)) in Fig. 4A.

In addition to irreversible acquisition, we here assume that mutations are sufficiently rare such that convergent
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Fig. 4: Inference and validation of HyperTraPS applied to genetic polymorphisms in drug resistant tuberculosis
isolates. A. Each tuberculosis isolate (sample) is shown with a polymorphism at each genetic site indicated by a black rectangle in
each column, linked by a phylogeny. B. Trajectories across the hypercube as a weighted directed graph using transitions between
states simulated with posterior samples. There are clear differences in progression highlighted by the different regions of dense
transition edges, with the first, second and sixth greedy paths labelled. C. Inferred ordering of changes to genes conferring drug
resistance in tuberculosis. Bimodal ordering distributions reveal distinct evolutionary pathways underlying the acquisition of drug
resistance. Density in the grey regions corresponds to acquisitions that do not directly affect the likelihood, as features are not
observed to be acquired in these regions in the dataset. D. Regularisation of the model validation. The second order regularised
model has the lowest AIC for the full dataset. The log-likelihoods for each model with the training and validations datasets are
shown with all models experiencing statistically significant support over the null. The second order regularised model performs best
for the validation dataset.
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evolution is not a leading-order dynamic process between descendant and parent nodes in the phylogeny. With
these assumptions, one can work backwards through the phylogeny and apply the bitwise AND operator between
descendant states to allow a parsimonious estimate of the unobserved parent state. From these estimates, we can
reconstruct the observations as the transitions from parent nodes to descendant nodes on the phylogeny which
provide an independent set. A simple version of this process is depicted in Fig. 1A(iii). Once Dtransitions has
been reconstructed via the above process, the derived dataset can be used for inference of evolutionary pathways
for the drug-resistant sites.

Fig. 4B shows a transition graph of the transitions across the hypercube with parameterisations from the
inferred posterior. Once more, a collection of previously unreported dynamic features are immediately observed.
There is substantial heterogeneity in density of edges in the transition graph and acquisition orderings between
the different traits we consider. In contrast to the large number of highly focussed paths inferred from the ovarian
cancer data, this transition graph demonstrates a smaller number of looser – but still distinct in structure – paths
across the hypercube, each with a ‘cloud’ of variability indicating some flexibility in specific orderings within these
pathways.

Fig. 4C shows posterior distributions on acquisition ordering, some of which, notably, are observed to be
bimodal in time. This bimodality points to the presence of multiple pathways towards drug-resistance, with
some traits having the potential to be acquired early or later in the evolutionary pathway. Each of these
distinct modes suggests the presence of a distinct evolutionary pathway, supporting a picture where, for example,
katG alterations may be acquired either early or late in resistance evolution. This presence of multiple distinct
evolutionary pathways suggests substantial flexibility in the evolution of resistance (supported by the recent
review of drug resistant tuberculosis in Dookie et al. (2018)).

The non-grey regions for each row of the histogram displayed in Fig. 4C represents the range over which
each feature is observed to be acquired in the transition dataset, while the grey regions are the converse where
acquisitions are outside the window of where the feature is observed to have been acquired in the data. As a
result, density in the grey region is not directly supported by the data. However, under the assumption of full
acquisition of all features provides a relative indication of when this acquisition would occur. This is further
discussed in Appendix B where an alternative use of the posterior inference is presented.

Regularisation of the model finds that the minimum AIC arises at kmin ≈ 216 parameters out of the L2 = 361
starting parameters. Many interaction terms are thus required in the second order model, to provide significant
explanatory power to distinguish multiple progression pathways (and the necessitated interactions between traits,
as discussed above). Correspondingly, the AIC and log-likelihoods associated with the second order model are
much larger than for the first order model. This observation aligns with the observation of bimodality in the
ordering posteriors: interaction terms are required to enforce distinction between different progressions.

Validation calculations for the model (Fig. 4D) further support this message. All models experience statisti-
cally significant support over the null model in terms of the log-likelihood ratio. While the first order regularised
model has improved predictive power over the null model, the second order regularised model provides around
twice the increase in log-likelihood compared with the first order model.

In summary, the inferences around the order in which features are acquired from combining the phylogenetic
relationships of samples yields new insights into the structure and variability of the evolutionary trajectories by
which drug resistance is acquired. This can potentially add important insight into the mechanisms by which
co-associating drug-resistant polymorphisms occur in an epistatic fitness landscape. We discuss some of the
specific evolutionary implications in Appendix E and compare with outputs of the approach of Bollback (2006)
in Appendix F (see Fig. F.14).

3. Discussion

In this work, we have introduced a powerful and highly generalisable statistical platform for inferring stochas-
tic, coupled dynamics from samples in a binary state space. The methodology makes use of a stochastic process
model on a hypercube, with Bayesian inference utilised to infer parameters from the full posterior with the
HyperTraPS algorithm. We provide novel means for visualising the inferred paths across the hypercube, and
introduce additional methods for working with inferred parameterisations including a framework for regularisa-
tion and validation predictions for choosing from a hierarchy of models. We have illustrated the method through
application to synthetic datasets, before showing its utility and generality in application to real datasets: firstly,
with oncogenetic data to construct a stochastic cancer progression model for the accumulation of alterations in
an ovarian cancer dataset and secondly, with genetic mutations in drug-resistant tuberculosis to elucidate the
order in which mutations are occurred that confer such drug-resistance. In each of these cases, new insight into
the structure and variability of progression pathways was revealed through the inference platform.

The HyperTraPS platform is specifically designed to infer dynamic pathways given arbitrarily linked obser-
vations of many, possibly interacting, traits. The generality of this question is illustrated by the diversity of
existing approaches that have some bearing on the corresponding inference problem. Table 1 illustrates several
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Regression models Bayesian networks
Stochastic processes 
for phylogenies Topological approaches

Stochastic process on a 
hypercube

Example Logistic regression

Oncogenetic trees 
(Oncotrees), CBNs, SBNs 
Caprese, Capri)

Simmap, OrderMutation 
(Master equation MCMC)

Progression Analysis of 
Disease HyperTraPS

Typical input Cross-sectional samples Cross-sectional samples
Cross-sectional and 
phylogenetic Cross-sectional samples

Cross-sectional and 
general dependent 
observations

Typical output Maximum likelihood Maximum likelihood graph Bayesian posterior Topological embedding Bayesian posterior
Type Parametric Parametric Parametric Non-parametric Parametric
Scaling Polynomial Polynomial Exponential Polynomial Polynomial
Dependent 
observations No Yes Yes No Yes
Capture dynamics No No Yes Yes Yes
Incomplete data Imputation Imputation Imputation Imputation Yes

Types of approach

Table 1: Comparison of HyperTraPS with other methods for inference from state space observations. We consider
some of the key properties that HyperTraPS introduces. The following abbreviations are used: Suppes-Bayes Network
(SBN), Conjunctive Bayes Network (CBN) and Markov chain Monte Carlo (MCMC).

broad classes of these approaches, including regression models, Bayesian network models, stochastic processes on
phylogenies, topological approaches and finite state space models (HyperTraPS).

Regression models are widely used to perform classification and predictions, but the inclusion and/or recon-
struction of dynamic observations is less explored in this framework. While this approach is applied widely across
the statistical and biomedical community, it is usually reliant on a linear underlying model and does not attempt
to capture dynamics in which variables arise. Additionally, it requires a clear dichotomy between predictors and
response variables to be imposed a priori, when such a distinction may not be appropriate, especially from the
perspective of the inference of pathways.

Bayesian networks allow the probabilistic relationships between features to be considered. They provide a
common platform for this with different assumptions placed on the conditioning probabilities: two examples
being Conjunctive Bayes Networks (Beerenwinkel et al., 2007) and Suppes-Bayes networks (Loohuis et al., 2014).
These are commonly used in oncogenetic inference problems, and have proved successful at unpicking causal
relationships between features. We have shown that HyperTraPS aligns with the outputs of these approaches
in simple cases. In more general settings, the stochastic model underlying HyperTraPS has the potential to
reveal more probabilistic structure, including the identification of competing stochastic pathways, complex sets
of interactions between coupled traits, and the quantification of uncertainty in the pathway structures that are
revealed.

Modelling trait evolution on phylogenies is the closest group of models to which HyperTraPS is related, and
typically requires computation of master equation rate matrices that do not place restrictions on the transitions
that may occur in the state space (Bollback, 2006; O’Meara, 2012). By embedding transitions on a hypercu-
bic graph, HyperTraPS has the ability to handle orders of magnitude more features without noticeable loss of
generality (simultaneous transitions are represented as equally weighted, temporally adjacent, transitions). Ad-
ditionally, these methods are designed specifically for phylogenies, while HyperTraPS has applicability to generic
sample dependency.

Dimensionality reduction approaches have been considered for finding representations of temporal dynamics
from samples. Such methods are powerful and have been applied to vast data collected in whole genome single
cell RNA experiments (Campbell and Yau, 2016) and also to disease (Nicolau et al., 2011). While highly flexible,
these approaches often rely on specific assumptions about the quantitative details of the dimensionality reduction,
leading to variability from method to method. Additionally, this approach is yet to be considered in detail for
finite space state models like the ones we consider here.

The HyperTraPS framework presented here has several advantages: (a) its polynomial scaling allows it to
deal with large (many observations and many traits) datasets; (b) the regularisation processes we outline allow it
not only to reveal and deal with arbitrary coupling between traits, but to select good and statistically significant
parametric representations of these couplings to yield sparse models (thus applying Occam’s razor); (c) it yields
general and readily interpretable predictions; and (d) it simultaneously provides inferred pathway structure,
mechanistic insight, and uncertainty quantification. A further advantage, which we have not explored in detail
here, arises from its inherently Bayesian nature: the ability to include prior information about pathway structure.
Throughout this article we have assumed uninformative uniform priors over pathway structure. In situations
where, for example, the scientific literature provides existing insight into a pathway, the prior distributions on
the hypercube parameters can readily be adapted to include this prior knowledge in the inference process.

Despite these advantages, there are of course some limitations to the platform’s capabilities. Incomplete data
currently provides a challenge for inference with HyperTraPS. There is nothing in principle preventing hypercubic
inference with incomplete data: unbiased random walks can be simulated on a hypercube and their ability to
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recapitulate observations can be computed. Indeed, HyperTraPS can be applied in the case of uncertain end
points of observed transitions. However, the sampling algorithm that allows HyperTraPS’ efficient sampling of
high-dimensional spaces currently does not translate to incompletely described start points of observed transitions.
This is due to the complexity that arises from the potential compatible emission patterns with the source state
producing differential weightings for the compatible transitions that contribute to the likelihood. The datasets
considered here involved complete entries – we excluded cases where observations of particular feature in a sample
were not present (this involved excluding 7 out of 1,000 samples for the case of tuberculosis). It is worth noting
that the potential to handle incomplete data in the target state already is a significant advantage over many other
methods where subjective imputation methods are required to make progress, and that incomplete data can be
handled here for any case of independent trajectories where a complete source state is known, such as for cross-
sectional datasets. However, further developments in this area would be invaluable for further generalisations.

We introduced a method for regularisation in HyperTraPS models through use of a greedy backward selection
algorithm allowing the discovery of sparser model representations and to uncover the importance of interaction
terms for a given dataset. This process both enables clearer insights to be drawn between the relationship of
features for the progressions that best explain the data, while also providing a means of considering the extent
to which the data is suggestive of multiple progressions. While this approach was successful towards the above,
the means by which it achieves this was reliant on both the imperfect greedy algorithm and additionally on the
subjective use of the Akaike Information Criterion (AIC) for finding such sparser models. A multitude of methods
are available for performing model selection within a full Bayesian setting (O’Hara and Sillanpää, 2009; Murphy,
2012) and exploration of alternative approaches for exploration of mappings from W → π and regularisation of
HyperTraPS models is an import avenue of research as has been the case across statistical modelling.

Our platform occupies the under-explored intersection between methods for inferring dynamics from uncou-
pled observations (as in cancer progression) and from phylogenetically linked observations (as in evolutionary
inference). In addition, as we have demonstrated, HyperTraPS can harness both cross-sectional and longitudinal
observation data. We have shown that HyperTraPS has a unique power to dissect multiple competitive dynamic
pathways (yielding new insight in two biomedical case studies), and demonstrated how the processes of regulari-
sation can be used to identify model structures that contain necessary and sufficient information to describe the
set of pathways likely to exist in a given scientific setting. We anticipate that this flexibility, and the abilities of
HyperTraPS to naturally quantify uncertainty and form probabilistic predictions about future behaviours, will
be of use across biomedical and other scientific disciplines as volumes of data continue to increase.

4. HyperTraPS package implementation

All computational work was performed with custom-written software in C++ and Python. The code for the
HyperTraPS package is available from the authors upon request.
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Schwartz, R. and Schäffer, A. A. (2017). The evolution of tumour phylogenetics: principles and practice. Nature Reviews Genetics,

18(4):213–229.
Sherlock, C., Thiery, A. H., Roberts, G. O., and Rosenthal, J. S. (2015). On the efficiency of pseudo-marginal random walk metropolis

algorithms. Annals of Statistics, 43(1):238–275.
Szabo, A. and Boucher, K. (2002). Estimating an oncogenetic tree when false negatives and positives are present. Mathematical

Biosciences, 176(2):219–236.
Watts, J., Greenhill, S. J., Atkinson, Q. D., Currie, T. E., Bulbulia, J., and Gray, R. D. (2015). Broad supernatural punishment

but not moralizing high gods precede the evolution of political complexity in Austronesia. Proceedings of the Royal Society B:
Biological Sciences, 282(1804):20142556–20142556.

Williams, B. P., Johnston, I. G., Covshoff, S., and Hibberd, J. M. (2013). Phenotypic landscape inference reveals multiple evolutionary
paths to C4photosynthesis. eLife, 2:1–19.

Youn, A. and Simon, R. (2012). Estimating the order of mutations during tumorigenesis from tumor genome sequencing data.
Bioinformatics, 28(12):1555–1561.

Zafar, H., Tzen, A., Navin, N., Chen, K., and Nakhleh, L. (2017). SiFit: inferring tumor trees from single-cell sequencing data under
finite-sites models. Genome Biology, 18(1):178.

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 5, 2018. ; https://doi.org/10.1101/409656doi: bioRxiv preprint 

https://doi.org/10.1101/409656


6. STAR Methods

6.1. Overview of HyperTraPS pipeline

Inputs

Transition data (Section 6.2)

Training and validation data

Observation data, linkage and 
assumptions (Section 6.2)

HyperTraPS parametric inference 
algorithm (Algorithm 1 and 

Section 6.3)

Random walk simulations
(Section 6.4)

Regularisation (Section 6.4.3) and 
model selection (Section 6.4.4)

Outputs

Parameterised hypercubes 
from Bayesian posterior

Regularised maximum 
likelihood parameterisations

Visualisation of simulations
(Section 6.4.2)

Distributions of trait 
acquisition (Section 6.4.1)

Fig. 5: An illustration of the pipeline from inputs to outputs with the underlying inference, application and
description methods within HyperTraPS.

In Fig. 5, we provide a diagrammatic overview of the HyperTraPS pipeline. The different elements are
described below.

6.2. Construction of a transition dataset from observed signals

As described in Fig. 1, the first step is to convert cross-sectional, longitudinal, or phylogenetically linked
observations to a set of transitions, which we will represent as D = {si, ti}, where si is the ith source state and
ti the ith target state, and there are nD observations in total.

6.3. Inference of parameterisations

6.3.1. Bayesian framework and likelihood of transition dataset

As introduced in Johnston and Williams (2016), we choose a Bayesian framework for inferring parameters for
the set of edge weights W on the hypercubic transition graph that explain the data D. As such we are concerned
with drawing samples from the posterior:

P (W |D) =
P (D|W )∫

P (D|W )P (W )dW
P (W )

which is proportional to the product of our prior probability density P (W ) on edge parameterisations and the
likelihood L(W |D) = P (D|W ), such that we have P (W |D) ∝ L(W |D)P (W ). Throughout this work we choose
a uniform prior distribution on P (W ) and therefore only need to consider the calculation of L(W |D) in order to
derive samples from the posterior probability distribution.

From this transition set, we can decompose the likelihood into the following form (regardless of whether the
source data was cross-sectional, longitudinal, or phylogenetically coupled Johnston and Williams (2016)):

L(W |D) =

nD∏
i=1

Pobserve(si → ti)

where nD is the size of the transition dataset. Pobserve, the probability of observing such a transition requires
a signal to be emitted by our system at both the source and target states, with the system having reached the
source state and then made the transition to the target state via any possible walk on the hypercube. Therefore,
the probability of observing such a transition can be written as:

Pobserve(si → ti) = Pemit(si, ti)Preach(si|W )P (ti|si,W )

If each si and ti is completely given (no missing data), emission probabilities corresponding to the observed
transitions are independent of the trajectories taken, and Pemit yields a constant multiplicative factor which can
be ignored in the inference process. In Johnston and Williams (2016), it is shown that the remaining log-likelihood
can be written as:
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logL(W |D) =

nD∑
i=1

logP (ti|si,W ) := l(W |D) (1)

where the only computation required is the probability of making the transition to ti from si for a given param-
eterisation of W .

In order to calculate P (ti|si,W ), a sum over all possible paths between si and ti is required. Given the
number of paths between si and ti scales as the factorial of the Hamming distance, the problem of deriving
the rate matrix becomes intractable for systems of dimension O(101). Instead we tackle the problem by way of
performing biased random walks restricted to pathways that end in ti. This method of sampling was introduced
in Johnston and Williams (2016) and allows systems more features to be considered than previously has been
the case. This HyperTraPS algorithm that forms the key part of the HyperTraPS framework is captured in
Algorithm 1.

Algorithm 1: HyperTraPS algorithm for complete data: Hypercubic Transition Path Sampling
was first introduced by Johnston and Williams (2016) to sample random walks on a hypercube across a
restricted set of compatible states between a source and target state.

Data: Dtransitions = {si → ti}nD
i=1

Result: Estimate of P (Dtransitions|W )
begin

for (s→ t) ∈ Dtransitions do
sc ← s
Initialise Nh trajectories starting at state s
for i ∈ Nh do

sc ← s
αi ← 1
while t-compatible move possible for sc do

Calculate the probability of making a t-compatible move, record as α′i
αi ← αiα

′
i

Choose a t-compatible move at random in proportion to its transition probability
Make move and update sc accordingly

P̂ (s→ t) = N−1h

∑
i αi

P (Dtransitions|W )← P (Dtransitions|W ) + P̂ (s→ t|W )

6.3.2. Tractable parameterisations of hypercube

The hypercube embedding for L features has L2L−1 edges that we aim to parameterise. As L grows, we require
a way of reducing this number of parameters k without compromising our ability to describe the dynamics of a
system. Shrinkage and model selection tools may be used to achieve this reduction: we explore a simple approach
for this process later. However, given the potentially large number of parameters in the default model, we also
consider methods to reduce parameter space before the inference process.

One intuitive approach is based around considering the factors that may influence a given transition. The
full parameterisation allows independent rates between any two states. In this picture, the probability P (i) of
acquiring the ith trait can take arbitrary and independent values for every possible combination of the other
L−1 traits. As an alternative, we can restrict the dependence of P (i) on the coupling of other trait patterns. For
example, if we assume that each of the L−1 other traits influence P (i) independently (no synergistic interactions),
we need only L2 parameters: a ‘basal rate’ of acquisition for each trait i, and the amount by which this basal
rate is modified by the presence of trait j 6= i. This reduction is analogous, for example, to Generalised Linear
Models where response variables can be considered a function of independent variables and interaction terms
between the independent variables, neglecting higher order interaction terms.

From this perspective a hierarchy of models may be constructed (Fig. 6). For the ‘zero order’ model every
feature has equal probability of acquisition (k = 0 parameters). In the ‘first order’ model, every feature has an
independent acquisition probability (k = L parameters). In the ‘second order’ model, every feature’s acquisition
probability depends independently on the presence of each other feature (k = L2 parameters). Higher order
models, including the full L2L−1 set can be envisaged, introducing more complex interactions between the co-
occurrence of features.

A mapping is then required for applying the parameters in each model to the edges of the hypercube. We
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Fig. 6: Tractable parameterisations and regularisation. A full irreversible directed hypercube is parameterised by edge set
W and contains L2L−1 edges. We define three orders of model (zero order, first order and second order) for reducing the parameter
space and regularised models (first order regularised and second order regularised). The zero-, first- and second- order models are
nested in the sense that a second order model can be equal to a first order model (interaction terms all set to unity) and the first
order model can equal to the zero order model (all basal terms set to unity). In the example above, for L = 3, the 12 edges of the
Full (hyper)cube (A-K) are reduced down to combinations of a set of 9 parameters (a-i). The advantage becomes clear for larger
L. At L = 16, over 500,000 potential parameters are reduced to just 256 parameters for the second order model. Regularisation
involves a greedy backward selection process to identify which parameters may be removed (set to the value of the zero order model,
unity) and decrease a criterion, which we choose to be the Akaike Information Criterion. In the illustration above, for the first order
regularised model, parameter a is set to unity and, for the second order regularised model, parameters a and g are both set to unity
(as would be the case in a zero order model) with the consequent impact on the hypercube edge weights shown.

choose the following functional form:

wsi→sj ∝ φ(π, si, sj) =


exp

πjj +
∑
k 6=j

sikπkj

 if asi,sj = 1

0 otherwise

(2)

where wsi→sj is the transition weight associated with going from state si to sj , sik is the kth element of the
state si and asi,sj is the directed adjacency matrix of the hypercube. The choice of the exponential function
in the mapping simultaneously enforces that w elements are non-negative and allows a computationally efficient
coverage of a wide range of possible parameter values.

With the tractable parameterisation described, we replace W in the above inference with π, and consider the
inference of the matrix representing the a priori model choice π instead of the full set of edges W .

At this point, it should be noted that this mapping retains the Markovian nature of walks on the hypercube
as W is a static object independent of the walker. Alternative mappings can be construed that make the mapping
a function of the states previously visited by a specific walker and update W for each walker. This introduces the
idea of including non-Markovian dynamics within the same framework, with a similar hierarchy of potentially
tractable parameterisations imaginable from this alternative perspective. However, this is beyond the scope of
the work we introduce here.

6.3.3. Monte Carlo sampling methods

The complexity of the inference problem challenges analytic or uniform sampling approaches to compute Eq.
(1) for the full range of parameters W . Instead, we employ Markov Chain Monte Carlo (MCMC) in order to
generate samples from the posterior on W . As the HyperTraPS algorithm generates an estimate of the likelihood
(with the same expected value as the exact likelihood), this is in fact a pseudo-marginal MCMC sampler which
has been shown to yield the same stationarity properties as if it were exact (Andrieu and Roberts, 2009).
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Previous approaches for specific scientific questions (Williams et al., 2013; Johnston and Williams, 2016)
found this pseudo-marginal MCMC sampler to demonstrate good mixing. However, there are cases where this
simple approach produces poor mixing, specifically when the hamming distance between a source and target
state becomes large. This is because Algorithm 1 generates an estimate of the likelihood with increased variance
around its exact value due to the greater number of acquisitions made during path sampling. This can lead to
poor mixing of sampler chains due to parameterisations becoming stuck in the tail of the estimator rather than
being able to explore the variation of the likelihood with respect to different parameterisations. This occurs when
the variance of the total log-likelihood has a variance with magnitude greater than unity (Sherlock et al., 2015).

To address this issue and generalise to more diverse datasets, we embedded HyperTraPS within an auxiliary
pseudo-marginal MCMC algorithm (APM MCMC), which also satisfies the same convergence properties as
MCMC (Murray and Graham, 2015). By making the likelihood a joint density l(π, u) over the parameters of the
model and also the random variable from which our estimate is drawn, alternate Metropolis-Hastings steps can
be performed by keeping π and u alternately fixed during the proposed update to the chain. For HyperTraPS, a
new proposal for the random variable u is a new set of random trajectories across the hypercube over which each
observations’s likelihood is estimated. We make use of this scheme throughout this work as little computational
overhead is introduced with observed potential ability for improved mixing times.

As discussed, we have assumed a uniform prior for the parameterisations of the hypercube. For our choice of
mapping π, this means we choose P (π) ∈ U(−m,m) where m = 10 covering 20 orders of magnitude with respect
to the relative size of inferred parameterisations.

Rather than drawing from the prior distribution on π, for every Monte Carlo sampling run, we choose to
begin from π = 0. This is equivalent to the zero order model where there is no directionality pre-supposed.
This facilitates the avoidance of local traps in the parameter landscape while remaining agnostic in introducing
directionality into the inferred parameterisations for a particular dataset.

6.4. Applications of parameterisations

6.4.1. Simulated walks to illustrate order of acquisition

The inference process above yields inferred posterior distributions on the hypercubic edge weights W . We
can query these posteriors in a number of ways to gain descriptive and predictive information about the mecha-
nisms generating observed states. First, we produce a parsimonious and intuitive representation of the dynamic
pathways supported by the inferred posteriors. Here, we simulate an ensemble of random walkers generating
complete trajectories on hypercubes with sets of transition probabilities sampled from the inferred posterior.
This ensemble reflects the likely dynamic pathways supported by the dynamic transition model after parame-
terisation. We simulate an ensemble of random walks in two ways: Walk Simulation 1 (WS1), with walkers
that run from completely {0}L to {1}L where a feature is acquired at every time step and Walk Simulation 2
(WS2), that run across the transition dataset Dtransitions. In each case, we record every transition between states
allowing the construction of a weighted directed graph of all states and transitions encountered. From this graph,
the frequency fij with which feature i is gained at step j. In the main text we focus on graph and histogram
depictions of WS1 and refer to Appendix B for further discussion and illustration of WS2.

6.4.2. A graph embedding and visualisation for dynamic acquisition on the hypercube

With each simulated random walk, L transitions occur between states on the hypercube. Across a large
sample of these states we encounter a set of states S = {si} and we can represent the number of transitions
between any two states by a directed, weighted graph with adjacency matrix aij .

In order to visualise this graph to reveal characteristic progressions across the hypercube resulting from the
parameterisation, we use a custom embedding to project the high-dimensional graph into two dimensions. First,
we project the hypercube on to the surface of a sphere, an intuitive choice given that the discrete hypercube is
embedded on a continuous hypersphere. We optimise the projection by making the following choices:

• Every state is on the surface, so is given the same radial coordinate, r = 1.

• The number of features acquired in the dataset is a measure of the how far the state is along the progression
from 0L to 1L. Therefore, for every state S, we find the sum of features present and assign a polar angle
that produces an even distribution between 0 and L across the sine of the polar angle which lies on the
interval 0 ≤ θ ≤ π.

• The azimuthal angle φ on the interval 0 ≤ φ ≤ π is assigned by considering the mean angle of the states
from all incoming edges, in order to attempt maximise the potential spread of the most common distinct
paths across the hemisphere. A final assumption involves choosing all states with a single acquisition (L
states) to be uniformly spread on the cosine of the interval [0, π].

With the embedding, the plot of the adjacency matrix aij is augmented by choosing node sizes and edge
widths in proportion to the number of times the state and the transition are respectively encountered by the
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ensemble of random walks. Three examples of plots generated from this embedding with parameterisations of
the hypercube are shown in Fig. 2B(i)-(iii), illustrating the potential highlight different underlying progressions
inferred with HyperTraPS.

In presenting the embedding, we adjust the graphical depiction to highlight the features of the graph in the
following way:

• Vertex area is in proportion to the number of times the vertex is visited by WS1 simulated random walks.

• Edge widths and opacity are in proportion to the number of times the transition between states is made
with a random walker under WS1.

• In the main text, all vertices are blue. It is also possible to colour encountered states in accordance with
the whether depicted states s ∈ Dtransitions. In Figs. C.9B, C.10B and C.11 we examine examples where
such considerations provide further insight.

• A greedy labelling scheme is employed to aid understanding how random walkers acquire features across the
hypercube. As walkers start from the empty “{}” state (0L), we can consider the addition of single features
as each edge is traversed. In the plots, we use a greedy mechanism for determining which edges to label.
Starting from 0L, we take the most probable outgoing edge at each vertex encountered and label the feature
acquired across that edge at the resulting vertex until the 1L state is reached, giving is the first greedy
path. The following n greedy paths make use of the same approach but disregard any previously labelled
edges, taking the next most probable available. We use the approach to clearly identify the left-right and
right-left paths in Fig. 2B(i)-(iii).

• Finally, an optional transform to remove vertex overlap may be applied to remove overlap of vertices with a
given number of features, while retaining the relative area of each vertex that is determined by the number
of times the vertex is encountered.

6.4.3. Regularisation

We previously discussed approaches to reduce the parameter space of the HyperTraPS model while retaining
dynamic information. We can also employ model reduction approaches to identify supported parameter structures
given a particular dataset. This regularisation helps identify more interpretable, parsimonious models and to
guard against over-fitting.

One approach to model selection would be a fully Bayesian exploration of the joint space of model structures
and parameters. However, the combinatorial explosion of search space with L currently makes this approach
unfeasible for all but the simplest systems. Instead, we sacrifice a full exploration of this complicated space in
favour of a tractable but principled approach to balance the reduction of model complexity against the ability
to fit the data. This illustrative metric can indicate the amount of redundancy present in the parameterised π
that can be removed in order to reduce the potential for over-fitting. To this end, we introduce a cost function
to penalise the log-likelihood and then perform a algorithmic search to optimise this function.

We note that the number of parameters k required to adequately describe a given dynamic system is deeply
related to the mechanisms underlying that system. If features are acquired independently, the first order model
with L parameters should be sufficient to capture the dynamics. If a higher order model with more parameters is
required, it suggests that interactions exist between features, such that one feature may influence the acquisition
propensity of another. Identifying the sparsest model that can account for observations therefore also reveals
mechanistic insight into the system.

For simplicity, we use the Akaike Information Criterion (AIC) (Murphy, 2012) to introduce sparsity. The
AIC score for a model can be written as:

AIC = 2(k − l̂)

where k are the number of parameters in the model, and l̂ is the maximum log-likelihood. The score comprises
the log likelihood and a penalty for lack of sparsity, in this case, the number of non-zero elements included
in the maximum likelihood parameterisation π. Other options for regularization scoring include the Bayesian
Information Criterion (BIC), but we refrain from exploring different metrics here, focussing firstly on illustrating
how such regularisation can be performed within the HyperTraPS framework. A more general model selection
approach will be the subject of future work.

To find parameterisations that optimise the AIC, we take a greedy backward selection approach (Murphy,
2012) to reduce the number of parameters k for a given model type. The process can be applied to both the
first- and second- order models. An issue with such a greedy approach is that each single greedy backward step
is unable to account for interactions between multiple parameters that lead to lower scores. Therefore, given
a set of potentially distinct approximately maximum likelihood parameterisations, different backward selection
processes from different starting maximum likelihood models may yield different minimum AIC scores for a given
value of k. In an attempt, to bypass this problem, we take an ensemble of the top 100 maximum likelihood
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parameterisations from an MCMC sampling procedure and perform the greedy backward selection process to
each one. Across the ensemble, for a given parameter number k, we take the minimum AIC score as a proxy
for the minimum model at this level of parameterisation. The global minimum with respect to AIC is taken as
the first order regularised or second order regularised model for the a first order and second order starting point
respectively. The regularised models are then taken used in the subsequent section to perform model validation.

In Fig. 2D(i)-(iii), we show the regularisation process described above for the minimum of the ensemble at
each value of k for the synthetic datasets and, in Appendix A, the process for ovarian and tuberculosis datasets.
In these cases, a Hanning-tapered convolution is applied for smoothing to remove any artificial lack of the a single
global minimum that should be expected.

6.4.4. Validation

Importantly, the inferred parameterisations from our approach can be used to predict future behaviour of for a
given state. We have described two procedures for generating parameterisations: sampling from the full posterior
for a given model (first- or second- order) or regularised parameterisations constructed by the procedure in the
previous section. In this section, we perform model validation through using the regularised parameterisations
in order to identify the strength of evidence for the first- or second- order models. Using the outcome of
this procedure, either samples from the full posteriors of the identified model or the corresponding regularised
parameterisation can be used for prediction.

We validate this predictive power through two methods: firstly, through basic model comparison between the
regularised first- and second- order models; and subsequently, by calculating the likelihood of observing data not
used in the inference part of the method as a proxy for the predictive capability of each model. As a simple
procedure to illustrate this, we split the Dtransitions dataset into two halves: a training dataset Dtrain on which
samples from the posterior are drawn and model comparisons can be made, and a testing dataset Dtest with
which the likelihood can be calculated using samples from the posterior for Dtrain.

For model comparisons, we choose the zero order model as a null model. For comparisons between the
different order models, we find the regularised first- and second- order model for the training dataset and denote
this likelihood as l̂(π|Dtrain). We then perform a log likelihood test, generating a log-likelihood ratio statistic
(LLR) following a χ2 distribution:

LLR = 2l̂(π(j)
r |Dtrain)− 2l̂(π(0)

r |Dtrain)

where π
(j)
r is regularised jth order model. We compare to the χ2 distribution for the number of non-zero param-

eters in π. With regard to the test dataset, we then use HyperTraPS to estimate logP (Dtest|π(j)
r ) providing a

measure of predictive capability of the jth order regularised model, with larger values indicating better perfor-
mance.

In each results section, a figure with the AIC score for each model, and the values from the model validation
described above are shown, highlighting the performance of each model against the null model facilitating the
determination of the appropriate model for use in a predictive setting for a given dataset.
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Appendix A. Regularisation of first order and second order models for ovarian and tuberculosis
datasets
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Fig. A.7: The regularisation process described in STAR methods and displayed for the synthetic datasets in Fig. 2 is applied to
the ovarian and tuberculosis datasets. In both cases a smoothing algorithm (Hanning-tapered convolution) is applied to remove the
appearance of local minima that would be unlikely to occur for larger ensembles of the greedy process. In both cases, the second
order model is favoured, in particular for tuberculosis where a large number of the L2 parameters are retained with minima present
at k ≈ 216.

In STAR methods, we introduced a greedy backward selection process for inducing parsimonious parame-
terisations from samples of maximum likelihood models and demonstrated the process for an ensemble for the
synthetic datasets (Fig. 2D). In Fig. A.7, plots for the ovarian and tuberculosis datasets are also shown with
the minimum AIC score at each k from 100 unique greedy backward selection procedures for different maximum
likelihood parameterisations. The AIC score is observed to decrease to a global minimum for each model. First
order models may only have a few parameters removed before reaching a minimum, while second order models,
depending on the number of interactions in the underlying dataset, can have a greater proportion of parameters
removed. In both cases, smoothing is applied to remove the artificial appearance of more than a single minimum.
This has no affect on the global minimum that is found from the ensemble and is used for illustrative purposes.

Appendix B. Additional simulation for order acquisition interpretation: Walk Simulation 2

In Section 6.4.1 we introduced a protocol for using samples from the posterior of L(π|D) to illustrate the order
in which features are acquired. We denoted this process Walk Simulation 1 (WS1) as simulations from {0}L to
{1}L are performed with the feature i acquired at step j being recorded as a proportion fij . Alternatively, we
can consider fij as the probability:

fij ≈ P (feature i is gained at step j|s = {0}L → t = {1}L)

where s is the source state and t is the target state of the set of random walks.
As a feature is a always gained in each step, and all features are gained at some stage during this simulation

process, the two properties
∑

k fkj = 1 and
∑

k fik = 1 both hold. We illustrated the result of this simulation
using a histogram for the matrix fij with kernel density estimates overlaid for each feature.

An alternative simulation protocol is to only simulate trajectories corresponding to transitions that are ob-
served in the dataset. In other words, rather than assuming walkers proceed from 0L to 1L, we simulate a set of
walkers between each pair of source and target states si, ti in the dataset, relaxing the requirement that walkers
start at 0L and end at 1L. We denote this process Walk Simulation 2 (WS2). Here, we record the proportion
of times that feature i is acquired at step j as gij . However, in this case, gij does not satisfy the relations∑

k gkj = 1 and
∑

k gik = 1 anymore, as there is no explicit guarantee that feature i is acquired across all pairs
of transitions {s→ t} ∈ Dtransitions, nor that there is a transition at every step j observed across the transition
dataset. Framing as a probability of acquisition of feature i at step j given it is acquired, we can consider WS2
as:

gij∑
k gik

≈ P (feature i is gained at step j|s→ t ∈ Dtransitionsand s, t differ at feature i)

where s is the source state and t is the target state for each element of the set of simulated walks. This fraction
is the proportion of times that feature i is gained at step j given it is acquired in a transition observed in the
dataset.

The main distinction between WS1 and WS2 is the following: WS1 infers trajectories, informed by data, that
start at {0}L and acquire all features to reach {1}L. WS2 restricts the inference to the region ‘covered’ by the set
of transitions observed in the dataset. Therefore, WS1 provides a readout of a complete process of acquisition
(so may be more appropriate for analysis in systems where this is the expected outcome), while WS2 gives a
readout of trajectories without extrapolating beyond the limits of observed states (and may be more appropriate
if the walks are not believed to go to completion).
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Fig. B.8: Comparison between WS1 and WS2 represented as violinplots for the cross-sectional dataset DCS2
(A)

and tuberculosis (B) from the main text. The blue bars are density corresponding to acquisitions with WS1 and the orange
density for acquisitions with WS2. WS1 represents density for the ordering of acquisition from 0 to the 1 state so assumes all features
are acquired. WS2 provides density relating to the acquisitions observed in the dataset.

We plot the densities for WS1 and WS2 in Fig. B.8 for two datasets from the main text, DCS2
and the

tuberculosis dataset. WS1 bars above the axis (blue bars) and WS2 bars below (orange bars) with kernel density
estimates over each to guide the eye. As a result of this different approach, there are three key differences.
First, posterior probabilities are rescaled according to how much a trait is ‘covered’ by observations. This is
seen, for example, in feature 1 (and feature 16) in Fig. B.8A. Here, under WS1, early and late acquisitions of
the feature are inferred to be equally likely, as walks are inferred to always run to completion. Under WS2, the
number of walks that run to completion is lower (only some observations include ‘complete’ acquisition). The
early acquisition mode is then inferred to be more likely, with a balancing probability that the feature is not
acquired.

Secondly, with WS1, as the process starts from 0L, the transitions observed in the dataset are not guaranteed
to be reached by random walkers. This means that the overall inferred parameterisations across the entire dataset
may not lead transitions in the dataset being encountered. As a result, the WS1 process does not allow us to
directly enquire into the nature of progressions between states in the original transition datasets. By exactly
considering these transitions, WS2 allows this data to be examined using the parameterisations that have been
sampled across the entire dataset allowing for a different type of inference. A clear example of this is seen in
Fig. B.8B for feature PembA or PethA that are rarely encountered in the window of acquisition where they are
acquired in the dataset, illustrated by the strikingly different distributions for WS1 and WS2.

Thirdly, there is no density observed in the grey regions for WS2 due to there being no transitions in the
dataset ‘covering’ these regions, so no transitions performed with WS2 record any density there. In Fig. B.8B,
in application to the tuberculosis dataset, the lack of WS2 density (orange bars) in the grey regions is apparent.
In addition, there is clearly observable multimodality in WS2. Multimodality in WS1 is indicative of a feature
belonging to multiple progressions that may include an absence of acquisition if the trajectory does not terminate.
In contrast, multimodality in WS2 is indicative of multiple progressions where multiple orders of acquisition of
a given feature are directly observed in the data. A striking example is PethA where in WS1 the predominant
visible mode of acquisition is in the grey region towards the end of all possible acquisitions, while in WS2, the
acquisition is observed in two distinct regions at step j = 5 and step j = 10, suggesting that the transition data
contains multiple types of progression where PethA is acquired. This is also clearly the case for other features
such as PembA, PinhA, ethA and RRDR.

We introduced WS2 here as a supplementary form of enquiry of the posteriors that can potentially reveal
additional inferences about the underlying progressions from which the data may be derived. In the next section,
we look in more detail at the assumptions, types of progressions and the outputs in the plots we have used for
the inference in order to motivate intuition further.
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Appendix C. Implicit assumptions and interpretation of parameterisations

Appendix C.1. Definitions and assumptions

In using HyperTraPS with a dataset of samples Dsamples linked to form Dtransitions, several technical concepts
and assumptions are required. We review these here:

• Systems are assumed to evolve as an ensemble of trajectories on a hypercubic transition graph. Indepen-
dent sets of samples emerge from independent trajectories in this ensemble; historically coupled sets of
observations (longitudinal or phylogenetic) observations emerge from trajectories that share some or all of
their history.

• We assume that features are irreversibly acquired along a trajectory.

• As with WS2 above, progressions of a system may not always involve the complete acquisition of all
features before an outcome occurs. For example, with respect to cancer alterations, not all mutations may
be acquired before death occurs. In the tuberculosis example, not all polymorphisms may be required
before drug-resistance is acquired. This assumption needs consideration when interpreting results as it may
shape the research question being asked.

• Observations arise from signals emitted from states of the system where features have been acquired in a
specific order.

• We assume that these signals faithfully reflect the state of the system when emitted. Below (‘Noisy ob-
servations’), we explore the effects of noise in these signals below and show that even in the presence of
substantial observational noise we can recover the underlying generative pathway structure.

• We assume that the probability that a given state emits a signal is the same for all states. This assumption
may be challenged, for example, if observations occur regularly in real time and some states are occupied
for longer than others. However, we show below (‘Non-uniform sampling across the progression’) that
HyperTraPS’ inference of event ordering (not explicit timescales, which we do not address) is robust to this
class of challenge.

• The inference process yields a fundamentally probabilistic output: a posterior distribution describing the
probability of different dynamic pathways. We interpret modes in this posterior as ‘characteristic’ pathway
structures. Spread of posterior probability density around these modes corresponds to ‘variations on a
theme’: pathways of similar structure with similar statistical support given the data. Below (‘Repeated
uniform sampling’), we explore how the volume and structure of sampled observations affects this posterior
breadth.

In the next section, we consider this set-up for the inference process by constructing specific synthetic cross-
sectional datasets to examine the impact of these assumptions on outputs.

Appendix C.2. Implications of assumptions for HyperTraPS inference and walk simulations

To illustrate this further, we consider specific attributes with respect to attributes that may be present in
systems under consideration:

1. No structure: only in the case of independent feature acquisition and identical frequencies will no suggestive
progression be found, in which case the prior distribution (in this article, uniform across all trajectories)
will be recovered by the inference process.

2. Samples from complete and partial progressions: If one or more of the underlying progressions does not
correspond to a complete walk across the hypercube, transition density in unsampled regions will be dictated
by extrapolated dynamics or the prior, depending on whether WS1 or WS2 is used. In Fig. C.9(i) we
illustrate the dataset DCS1

for L = 8 but for a progression that now stops after gaining feature i = 4. In
this case, with no other progressions present in the dataset, we find that the remaining features gained in
the grey region do so with a uniform distribution over remaining orderings (recovering the prior). In Fig.
C.9(ii) we examine the case where there is a complete right-left path and a partial left-right path (that ends
with feature i = 8 being acquired, which is the start of the complete trajectory). Trajectories belonging to
the left-right transition in WS1 may be interpreted as joining the full right-left path. WS2 does not clearly
disambiguate these dynamics – it is not clear whether features 5-8 are acquired. WS1, in the bottom right
quadrant of the plot, shows some support for the beginning of the complete progression beginning after
the partial progression ends. Fig. C.9(iii) looks at two partial progressions again illustrating that in the
grey region (acquisitions without support in the dataset), there can be a mixed signal from the two partial
progressions.
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Fig. C.9: HyperTraPS inference in the presence of partial and multiple progressions. Three datasets are considered: (i)
A single partial progression (1,2,3,4); (ii) A single partial progression (1,2,3,8) and a complete second progression (8,7,6,5,4,3,2,1);
and (iii) Two partial progressions (1,2,3,4) and (8,7). In each case: A. shows the dataset structure (dataset plots); B. The inferred
paths on the hypercube with samples from the second order posterior and WS1 simulations (hypercube plots). Orange vertices are
observed in the dataset, while blue ones are not; and C. The corresponding histograms for WS1 and WS2 (histogram plots). For
(i), the partial progression is inferred following by uniform acquisitions in line with the prior expectation. In the hypercube plots,
paths on the hypercube are seen to diverge with equal proportion in this region illustrating this point. For (ii), the hypercube plot
highlights the ability to infer both progressions. The longer path has greater weight due to an increased number of observations
associated. The greedily labelled paths show an interesting feature where at the end of the partial progression, as the last feature
is the first feature of the complete progression, the pattern of acquisition seen in the second progression is ‘predicted’ to occur in
continued acquisition. This is visible in the histogram plot by the asymmetric density in WS1 flowing from feature i = 7 for the fifth
feature acquired onwards. For (iii) with two partial progressions, the two paths are clearly distinguished in the hypercube plot with
the same property of the progressions continuing on from each other after each partial progression is completed, eventually joining
together after the sixth feature is acquired. The spread of other states encountered highlights the stochastic nature of the platform’s
predictions.

3. Noisy observations: We consider the influence of noise in observations in Fig. C.10 by looking at the
single left-right progression conflated with noisy observations (from a cross-sectional dataset made up of
10 randomly sampled trajectories). From Fig. C.10(i)-(iii), the number of noisy (random acquisition of
traits) observations increases, introducing breadth into the inferred posterior around the modal pathway
(Fig. C.10(iii) for example). However, even with 50% noisy observations in Fig. C.10(ii), it is possible to
clearly recover the modal progression. Even for the extreme case, the non-noisy pathway is almost exactly
reproduced with the first greedy path across the hypercube.

4. Repeated uniform sampling: When repeated sampling occurs, it can strengthen the inference around where
traits are acquired. For example, comparing the first four traits of Fig. C.9(i) and Fig. C.10(i), we can see
that the repeated sampling afforded by 10 repeated trajectories almost completely removes any density for
acquisition off the progression.

5. Non-uniform sampling across the progression: We consider this assumption in Fig. C.11. When some states
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Fig. C.10: HyperTraPS inference in the presence of noisy samples. (i) One complete progression with ten samples from
each state instead of a single sample (|D| = 10L compared to |D| = L). (ii) Five out of the ten trajectories part of the dataset
involved the features being randomly acquired instead of the left-right progression. (iii) Nine out of the ten trajectories part of the
dataset involved the features being randomly acquired instead of the left-right progression. The figure structure mimics that of Fig.
C.9. For (i), the hypercube plot and histogram plot shows more tightly defined paths due the ten-fold increase in data supporting
the primary pathway, pushing the posterior towards the maximum likelihood parameterisation. In (ii), the introduction of this noise
is visible but does not obscure the dominant non-noisy progression from being disambiguated. (iii) For (iii), the introduction of the
uniform noise has a significant effect on the nature of paths observed across the hypercube, although even in this case it should be
noted the appearance of the first greedy path being almost identical in structure to the non-noisy path structure.

are sampled a greater number of times, parameterisations that lead to this state will have a stronger ‘signal’
than those where the observation just occurs once. We illustrate this important effect with several examples.
In all cases we consider the complete left-right progression but with the state s = 11110000 sampled 100
times more than the others. In Fig. C.11(i) we see this state acts as a ‘gateway’ by removing uncertainty
for the acquisition of features present in s after s is encountered, and removing uncertainty in acquisition of
features absent in s before s is encountered. In Fig. C.11(ii), the right-left progression is also included but
with uniform sampling. The non-uniform sampling leads to a much greater representation of the left-right
progression. In Fig. C.11(iii), two noisy trajectories are now included (only uniform sampling for the noisy
trajectories). As the noise is uniform, acquisitions before s still clearly resemble the progression, while
features not present in s become affected by the noise.

Appendix D. Detailed comparison of HyperTraPS with alternative Bayes network approach

Appendix D.1. Comparison for synthetic datasets

In this section we look in more detail at how our main three synthetic datasets and the ovarian dataset can be
analysed with HyperTraPS or an alternative approach with Bayesian networks. We use the same three datasets
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Fig. C.11: HyperTraPS inference in the presence of non-uniform sampling. In each of (i)-(iii) the state s = 11110000
is sampled 100 times more than all other samples. (i) Only the single left-right progression. (ii) The single left-right progression
with the non-uniform sampled middle state is present and a second progression with uniform sampling from right-left. (iii) Same as
(ii) but a single noisy progression is added in each direction. The figure structure mimics that of Fig. C.9 and C.10. For (i), the
oversampled state acts as a gateway with uncertainty remaining in the regions where acquisition occurs before and after the gate.
For example, f45 ≈ 0 in contrast to Fig. C.9(a), while f43 6= 0 as for the uniform case. For (ii), where two progressions are present
but only the left-right has oversampling in the middle, due to the oversampling in the left-right path there is a large bias towards
random walks from 0L following this path, as seen by the strength of corresponding path in the hypercube plot. WS2 allows for this
to be accounted for illustrating the other pathway more clearly as the simulations ensure the right-left progression is visited. For
(iii), noise is now introduced for both progressions. As the noise is uniform, acquisitions before the oversampled state s still resemble
the dominant progression, while subsequently the noise clearly affects the order of acquisition increasing the uniformity of feature
acquisition. The right-left progression becomes difficult to distinguish at all due to a lack of random walks beginning at 0L following
this progression. However, the ability for the inference to perform random walks that take this weaker and noisy second progression
is remarkable as observed by the fact orange states from the data associated with the progression are still encountered.

Dataset Maximum regularized likelihood with Capri Maximum likelihood with HyperTraPS
DCS1

-16.64 -16.64
DCS2 -46.97 -41.59
DCS3 -88.81 -80.04

Table D.2: Maximum likelihood values for Capri and HyperTraPS with each sythetic cross-sectional dataset and ovarian CGH
dataset. Where there is a single progression (DCS1

) both models reproduce the same maximum likelihood via the two completely
different approaches. Where there is more than a single progression (DCS2 and DCS3 ), the additional stochastic flexibility avail-
able in HyperTraPS parameterisations allows models with larger maximum likelihoods to be recovered without the enforcement of
monotonicity.

DCS1
, DCS2

and DCS3
but with L = 7 for additional comparability with the ovarian dataset. We perform

model fits with HyperTraPS and the Capri model from the Tronco package (Loohuis et al., 2014). Capri aims
to output a maximum likelihood DAG relying upon a Suppes-Bayes plausible causation condition for an edge to
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Fig. D.12: HyperTraPS outputs A(i)-(iii) compared with Capri outputs B(i)-(iv) from the Tronco package (De Sano et al., 2016)
applied to DCS1

, DCS2
and DCS3

. Each edge for Capri has a p-value associated with the significance of the edge for temporal
priority and probability raising from bootstrapping of the data. In A(i) and B(i), the single underlying progression in DCS1

is
reproduced significantly in both methods. In A(ii) and B(ii) for DCS2

where two progressions (in equal proportion) are present,
HyperTraPS distinguishes the two while Capri cannot significantly distinguish due to a lack of temporal priority for all features
as they form part of progressions with different orderings. In A(iii) and B(iii), for DCS3

, there is a dominant progression which
HyperTraPS and Capri identify, while only HyperTraPS identifies the second potential progression, evidenced by the additional
density from the bottom left to the top right of the feature histogram.

be permitted between two features in the dataset, creating a Bayes network. Temporal priority and probability
raising are key to this approach for feature relationship reconstruction (Loohuis et al., 2014). That is, if the
data suggests that P (A) > P (B) and P (B|A) > P (B|Ā), A may be considered to be a plausible cause of B,
allowing temporal and causal relationships between features to be investigated. Regularisation procedures allow
for optimal graph structures to be found for a given dataset based on rules for disregarding edges of the feature
to feature graph that are less supported by the data.

Table D.2 shows the resulting maximum likelihoods achieved in each model. The likelihoods here are made
comparable by incorporating the Pemit(O, si) for each observed state in the dataset. The same maximum likeli-
hood is recovered for the DCS1

dataset where there is a single temporal progression for features in the data, while
greater maximum likelihoods are recovered for DCS2

and DCS3
are recovered with HyperTraPS. This provides

an illustration of data where HyperTraPS can derive models with greater associated likelihoods than approaches
where a single progression of features is an implicit assumption of the method due to the platform’s ability to
capture multiple temporal pathways through its stochastic foundations.

In Fig. D.12A(i)-(iii) and D.12B(i)-(iii), the outputs of HyperTraPS compared to Capri illustrate this by
the two progressions present in DCS2

and DCS3
being clearly visible in the HyperTraPS histograms but not

detectable with the graphical model reconstructed by Capri.

Appendix D.2. Comparison for ovarian dataset

We consider the comparison further for the biomedical dataset in the main text for ovarian cancer alterations.
The ovarian-cgh data has been previously analysed using Bayesian network approaches in two distinct ways: one
using oncogenetic trees with Oncotrees (Desper et al., 1999; Szabo and Boucher, 2002) and the Suppes-Bayes
approach discussed here with a slightly different method for pruning edges from the feature to feature graph (the
Caprese algorithm (Loohuis et al., 2014)).

In Fig. D.13A and D.13B, we show the outputs for HyperTraPS (with a the hypercube plot and histogram
plots from the main text) and the output of the Capri algorithm (Ramazzotti et al., 2015) respectively as for
the synthetic datasets. In this case, HyperTraPS generates significant variation in the order of acquisition of
features, as indicated by a lack of a strong mode for several of the features (5q- and 4q- that have quite uniform
distributions. In contrast, the Capri algorithm presents a clear relationship of precedence between all the features
in a maximum likelihood DAG that is significant both in temporal priority and probability raising (p < 0.01
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Fig. D.13: (A) HyperTraPS outputs compared with (B) Capri outputs from the Tronco package (De Sano et al., 2016) applied to
the ovarian dataset.

in the plot). Despite the clear difference in outputs from the method, there are still clearly strong apparent
similarities such as the frequency of 8q+ over 3q+ as the first genetic acquisition.

Our aim with this comparison is not to claim one approach is superior to the other, but to highlight that the
HyperTraPS framework provides an alternative, inherently probabilistic, methodology for analysing such data
that generates different model outputs that may provide different insights towards understanding such systems,
as discussed in the Main Text. As such, the methods can be considered as complementary: HyperTraPS can be
utilised to highlight the possibility of multiple underlying progressions with different temporal priorities for the
features, while the Bayesian network approaches can attempt to precisely reconstruct the feature relationships
through imposing more restrictive assumptions.

Appendix E. Additional interpretation of findings for tuberculosis dataset

Additional comparisons can be made between the inferred order of polymorphism acquisition in Fig. 4 and
Fig. B.8B and the findings of by Casali et al. (2014). Of the L = 19 features used for the analysis, we pick a
subset here that provide interesting discussion points with regard to co-associations discussed by the authors.
These points demonstrate the ability of HyperTraPS to provide quantitative support for existing hypotheses, and
to suggest new avenues of mechanistic research, in complex biological systems.

• Drug-resistance and fitness compensatory mutations: Of the L = 19 features, the first 16 correspond to
the drug-resistant polymorphisms within genes or in the promoter regions. The last three (rpoA, rpoB and
rpoC are nonsynonymous SNPs within RNA polymerase genes. The authors considered the occurrence
of compensatory mutations in rpoA and rpoC in response to drug-resistance polymorphism in rpoB. WS1
reveals an acquisition ordering with rpoB being acquired prior to rpoC, suggesting a compensatory effect
follows drug-resistance mutations in this case.

• Mutations arising due to changes in environment: Casali et al. (2014) find a co-association of KatG with
inhA discussed in the original data, with the the inhA mutation arising potentially from the presence of
KatG polymorphisms in response to specific treatments. This temporal priority of KatG followed by PinhA
mutations are consistent with the HyperTraPS analysis depicted.

• Genetic sites particularly associated with adaptive selection: Highly polymorphic genes conferring resistance
are known to be embB, pncA, ethA (Casali et al., 2014). Interestingly these polymorphisms occur at a
wide range of orderings within the inferred orderings, illustrative of their flexibility and why they may be
particularly polymorphic – they can play different roles in different progressions.
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Fig. F.14: Comparison of the tuberculosis dataset analysed with both HyperTraPS (A) and Simmap (B) on the restricted, tractable
set of genetic sites: KatG, PinhA and RRDR.

• Transmissibility of drug-resistance: With respect to transimissibility Casali et al. (2014) suggest that KatG
is prior to RRDR which is supported in the top two greedy paths highlighted in the hypercube plot in the
main text Fig. 4.

Appendix F. Comparison of HyperTraPS with Simmap for tuberculosis dataset

Here we make a direct comparison of the order in which mutations are acquired with Simmap, which takes the
form of a continuous time Markov model with mater equation approach to acquiring characters that belong to
leaves on a phylogeny. This approach runs into computational issues when the number of states under evolution
grows large (only tractable in short run times for the tuberculosis up to L ≈ 5). This is in contrast to HyperTraPS
which can handle the full L = 19 traits.

As an illustration of compatibility with this alternative approach, we restrict the tuberculosis dataset to
L = 3 features (KatG, PinhA and RRDR) with the full set of isolates and enforce single irreversible acquisitions
as transitions wuthin the Simmap model in order to make direct comparisons with HyperTraPS. In Fig. F.14A,
we show the output for the density of order of acquisition from simulated rate matrices outputted by Simmap
with the hypercubic restriction imposed and irreversibility. Alongside in Fig. F.14 we show the result for WS2
with HyperTraPS (as the transitions performed with Simmap are to the sample data and do not fully acquire all
features as is the case with WS1). The plots are in close agreement, providing good validation that HyperTraPS
generates results consistent with current platforms.
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