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Abstract 

 

      In 2006, Narum published a paper in Conservation Genetics that was motivated by the 

stringent nature of the Bonferroni approach for family wise error correction. That work 

suggested that the approach of Benjamini and Yekutieli in 2001 provided adequate correction 

and was more biologically relevant. However, there are crucial differences between the 

original Benjamini and Yekutieli procedure and that described by Narum. After carefully 

reviewing both papers, we believe that the Narum procedure is both different than the 

Benjamini and Yekutieli procedure and does not adequately control for family wise error. We 

provide an overview of approaches for FWE correction as well as evidence for the faulty 

implementation of the Benjamini and Yekutieli procedure by Narum using the equations from 

the respective papers, data from both papers, and the results of simulation.  
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Introduction 

 

      In 2006, Narum published a paper in Conservation Genetics motivated by the stringent 

nature of the Bonferroni approach for multiple testing correction, suggesting the False 

Discovery Rate (FDR) method proposed by (Benjamini and Yekutieli 2001) as an alternative 

that is both powerful but also more biologically relevant. His paper titled “Beyond 

Bonferroni: Less conservative analyses for Conservation Genetics” has been cited over 500 

times [https://link.springer.com/article/10.1007/s10592-005-9056-y]. The article has not only 

been cited in the field of conservation genetics, but also has been increasingly cited in the 

fields of medicine and neuroscience. These studies apply the approach of Narum (2006) 

attributed to the Benjamini and Yekutieli (2001) (BY) procedure for muliple testing 

correction.  

     However, a careful review of the published BY approach and what Narum describes as the 

BY method, there are crucial differences. Due to an omission of one term, Narum’s 

implementation of BY is incorrect and cannot be guaranteed to control the FDR. Thus, we 

believe that the Narum publication has created confusion about the BY procedure and its 

misuse is being propogated along an increasing number of studies. Thus, we have two goals 

of this paper: The first is to provide an overview of the Bonferroni method, the original 

Benjamini & Hochberg (2000) FDR (BH-FDR), and BY’s method (BY-FDR); the second 

goal is to describe faulty implimentation of the BY-FDR approach described by Narum. We 

will demonstrate that using the multiple testing correction described by Narum results in an 

excessive number of false positives, especially when a larger number of multiple tests are 

performed.  

 

Theory 
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We first review the different multiple testing approaches discussed by Narum (2006) using 

his notation as closely as possible. For a collection of k tests, each with a corresponding p-

value, 𝑝!, i=1,...,k.  A multiple testing procedure identifies a subset of the k tests as significant 

while controlling for some measure of false positive risk that takes into account the number of 

tests performed.  The Bonferroni method controls the family-wise error (FWE), the chance of 

one or more false positives, by using a fixed threshold of:  

𝛼Bonf =
1
𝑘
𝛼FWE 

where αFWE is the desired FWE level: All tests with 𝑝! ≤ αBonf can be declared significant 

while controlling the FWE.  

 

Benjamini & Hochberg (2000) introduced the False Discovery Rate (FDR) for multiple 

testing correction. In describing the FDR it is useful to first define the false discovery 

proportion (FDP): FDP is the ratio of the number of false positive tests to total number of 

significant tests, defined as 0 if no tests are significant. The FDR is the expected value of 

FDP; put another way, FDR is the expected proportion of false positives among positives.  To 

find FDR-significant tests, denote the ordered p-values 𝑝(!) ≤ 𝑝(!) ≤ ⋯ ≤ 𝑝(!).  Then for a 

desired αFDR, let the index i* be found as 

𝑖∗ = max 𝑖: 𝑝 ! ≤
!
!
𝛼FDR , 

and the tests with 𝑝! ≤ 𝑝(!∗) can be declared significant while controlling FDR at αFDR.   

 

The assumptions of this Benjamini & Hochberg FDR procedure (BH-FDR) are independence 

among the test statistics (Benjamini & Hochberg, 2000). However, BY found that weaker 

assumptions could be used, allowing a general form of positive dependence among the test 

statistics. The BY work, however, also proposed another method for controlling FDR that 

makes no assumptions about the dependence among the tests, as long as a more stringent 

criterion was used (Theorem 1.3, BY), with the index i*
BY computed: 
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𝑖BY∗ = max 𝑖: 𝑝 ! ≤
!
!

!
∑!!!!
! !

!!
𝛼FDR . 

With this approach, the tests with 𝑝! ≤ 𝑝(!BY∗ ) are marked significant and FDR is controlled at 

αFDR under any form of dependency.  Notably ∑!!!!
! !

!! ≈ log 𝑘 + !, where ! ≈ 0.57721 is 

Euler’s constant. This is the method we refer to by BY-FDR. 

 

We can now make a quick comparison of three methods on the basis of the smallest p-value 

𝑝(!): Bonferroni has the fixed threshold αFWE/k, while BH-FDR will compare 𝑝(!) to αFDR/k 

and BY-FDR will compare 𝑝(!) to approximately αFDR/(k log(k)).  Of course, BH-FDR and 

BY-FDR are adaptive and compare increasing p-values to successively more lenient 

thresholds, but this comparison for 𝑝(!) points to how BY-FDR is much more stringent than 

BH-FDR. 

 

Now, in Narum (2006), the author incorrectly states that the BY-FDR threshold is fixed and 

equal to: 

1
!
!

!
!!!

𝛼FDR  

This is a fundamental error, as a key feature of FDR methods is that they are adaptive. The 

error arose from neglecting that the equation above was merely one component of the BY 

procedure (to be substituted for q in B-Y Eq. (1) on pp. 1167 (Benjamini and Yekutieli 

2001)). The Narum procedure results in a fixed threshold for a specific k.  

 

Since a fixed threshold specifies the average or per comparison error rate (PCE), we can 

assess the impact of this error.  Assuming the complete null, i.e. no signal for any test, k × 

PCE is the expected number of false positives. For the threshold at the 0.05 level, for k = 105, 

k × PCE ≈ 1, while for k = 1590, k × PCE ≈ 10.  This demonstrates that Narum’s result can be 

assured to produce an increasing number of false positives for an increasing k.  In contrast, for 

Bonferroni k × PCE is exactly αFWE, i.e. always less than 1, and every valid FWE or FDR 
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level α procedure is guaranteed to produce no false positives with probability 1-α (again, in 

this complete null setting). While the Narum approach does asymptote to zero as k 

approaches infinity, it approaches zero extremely slowly. For example, with 10 million tests 

performed, the Narum p-value threshold is 0.003, in contrast to the Bonferroni threshold of 

0.000000005. 

 

     To evaluate the rate of significant p-values between the Bonferroni, B-H, B-Y, and 

Narum’s interpretation of the B-Y approach we conducted a simulation.  We created 50,000 

random realizations where random p-values were computed from a standard Normal 

distribution.  We considered k ranging from 1 to 30 tests, where all tests were independent, 

and used nominal αFWE = αFDR = 0.05 for all methods. In this null setting, any “discovery” is a 

false discovery and so measured FDR and FWE will be the same. So we computed the 

proportion of realizations where any p-values we found significant (FDR & FWE), as well as 

the proportion of tests among the k that were false positives, known as the Per Comparison 

Error rate (PCE). Python code is available in Appendix 1. 

 

     Figure 1 shows the FDR and FWE as a function of the number of tests, showing that 

Bonferroni and BH-FDR both control false positives as expected (as an aside, while 

Bonferroni is often regarded as conservative, in this setting of small k and independent tests, 

it is essentially exact).  The FDR/FWE of BY-FDR becomes increasing conservative while 

Narum’s method has inflated false positives even for k=2 tests, and has a near linear increase 

with increasing k.  In all realizations there was never more than 1 detection, and hence the 

PCE was identical to the FDR/FWE (not shown). 

     We also consider the specific set of 15 p-values used in Narum (2006), tabulating the p-

value threshold that were used for significance testing for each of the four methods. Table 1 

shows the thresholds used for each of the 15-exemplar p-values, with significant tests marked 

in bold.  It can be seen that the BY-FDR and the Narum approach are not the same, with 

Narum finding 4 significant tests as compared to BY-FDR’s having two significant tests.  
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Discussion 

 

     Approaches for multiple testing correction have been present for over half a century. In the 

late 1950’s, Olive Jean Dunn adapted the Italian mathematician Carlo Emilio Bonferroni’s 

theory of inequalities for use in statistics (Dunn 1961). However, since the Bonferroni 

approach is one of the most conservative, especially when the multiple tests are dependent, 

multiple alternative approaches to correct for multiple testing have surfaced. Two commonly 

used approaches include the Benjamini & Hochberg that was introduced in 1995 and the 

Benjamini and Yekutieli approach that was introduced in 2001. In 2006, Narum published a 

paper which provided an overview and examples of the BY-FDR procedure. However, we 

demonstrate that the approach described by Narum is an incorrect depiction of the BY-FDR 

approach.  

     We believe that Narum used an equation from the BY paper (shown above) out of context. 

A careful reading of Benjamini and Yekutieli (2001) finds that this expression (from Theorem 

1.3 on pp. 1169 of BY) is to be entered as the α in the B-H equation (Eq. (1) on pp. 1167 in 

BY), producing an adaptive threshold. Further, we also show, based on a series of p-values 

taken also from the Narum paper (Table 1) that different results are obtained from the BY-

FDR approach and the Narum approach.  

     Direct calculation shows that Narum’s incorrect implementation of BY-FDR has expected 

number of false positives that increases linearly with number of tests k, and invalid and 

increasing false positive rates that, crucially, are drastically different from BY-FDR’s valid 

but conservative performance. We believe that over 500 publications citing Narum (2006) are 

liable to have this inflated rate of false positives in their results. For example, we are 

particularly concerned about papers that cite both the BY paper as the method used, but use 

the multiple testing correction described by Narum 2006 (Chye et al.; Whittle et al. 2016; 

Woolley et al. 2018).  
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     We do agree with Narum that the Bonferroni approach is often conservative for multiple 

testing correction, especially with dependent data. However, there has also been a growing 

concern that many studies fail to replicate (Ioannidis 2005; Open Science Collaboration 2015; 

Nichols et al. 2017). In the past, analyses were performed without adequately controlling for 

the numbers of tests performed (Carp 2012) which resulted in numerous type I errors. We 

know of no justification to use the procedure described by Narum for multiple testing, and are 

unaware of any formal metric of false positives that it controls. Thus, we would recommend 

that this approach not be used for multiple testing correction and the work corrected to 

properly impliment the BY-FDR approach. 
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Table 1 – A set of p-values from 15 significance testing taken from the Narum 2006 paper 

and comparison with four approaches to multiple testing. Numbers in bold reflect those 

in the p-value row that are significant. 

 

p-value 

Examples 

Bonferroni Benjamini & 

Hochberg 

Benjamini & 

Yekutieli 

Narum 

0.0001 0.0033 0.0033 0.0010 0.0151 

0.0010 0.0033 0.0067 0.0020 0.0151 

0.0062 0.0033 0.0100 0.0030 0.0151 

0.0101 0.0033 0.0133 0.0040 0.0151 

0.0214 0.0033 0.0167 0.0050 0.0151 

0.0227 0.0033 0.0200 0.0060 0.0151 

0.0273 0.0033 0.2333 0.0070 0.0151 

0.0292 0.0033 0.0267 0.0080 0.0151 

0.0311 0.0033 0.0300 0.0090 0.0151 

0.0323 0.0033 0.0333 0.0100 0.0151 

0.0441 0.0033 0.0367 0.0111 0.0151 

0.0490 0.0033 0.0400 0.0121 0.0151 

0.0573 0.0033 0.0433 0.0131 0.0151 

0.1262 0.0033 0.0467 0.0141 0.0151 

0.5794 0.0033 0.0500 0.0151 0.0151 

 

. 
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Figure	1	–	Percentage	of	false	positive	results	compared	to	the	number	of	
independent	tests	performed.	The	results	were	derived	from	computer	
simulations	comparing	four	different	approaches	for	multiple	testing	
correction.	Simulations	were	performed	in	python	and	utilized	a	5000	
iterations	of	a	random	Normal	distribution	converted	to	p	values.			
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Supplemental	Material	
	
 
Python Code for Simulation of the Multiple Testing  
 
""" 
Simulations performed on multiple testing in Python 
 
Author:   Tonya White, MD, PhD 
                Adapted by Tom Nichols, PhD on 3 September 2018 
Date:        24 April 2018 
Location: Rotterdam, Netherlands 
  
This program performs simulations of multiple testing to test the Narum paper 
""" 
 
import numpy as np 
import scipy.stats as st 
import matplotlib as ml 
import matplotlib.pyplot as plt 
from matplotlib import cm 
 
################################################################################################## 
 
# You can change variables within this section 
 
m = 30   # Maximum number of multiple tests to perform 
k = 5000   # Number of iterations per test 
alpha = 0.05 
 
#################################################################################### 
 
# Create an array to hold the mean for all the simulations 
bonf = np.zeros(m) 
bh = np.zeros(m) 
by = np.zeros(m) 
narum = np.zeros(m) 
 
# Loop structure to perform iterative tests for percent of false positives 
for x in range(m): 
 pvals = np.zeros(x+1) 
 bonthr = alpha / (1 + x) 
 # Calculate the critical p value for the Narum value 
 ui = 0 
 for t in range(x+1): 
  ui = ui + (1.0 / (t+1.0)) 
 critp = alpha / ui 
 h = 0   # Set the counter for false positives to zero 
 j = 0 
 k2 = 0 
 s = 0 
 for y in range(k): 
  for z in range(x+1): 
   # Now create the random numbers per test 
   a = np.random.normal() 
   u = st.norm.cdf(a) 
   pvals[z] = u 
  p = np.sort(pvals) 
  # Now go through each of the values and calculate the number of false positives 
  j1 = 0 
  k1 = 0 
  for i in range(x+1): 
   # This is to test for the Bonferroni 
   if p[i] <= bonthr: 
    h = h + 1 
   # This is for the Benjamini-Hochberg 
   bh1 = ((i+1.0) / (x+1.0)) * alpha 
   if p[i] <= bh1: 
    j1 = i + 1 
   else: 
    j1 = j1 
   # This is for the Narum paper 
   if p[i] <= critp: 
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    s = s + 1 
   # This is for the Benjamini-Yekutieli equation 
   bh2 = ((i+1.0) / (x+1.0)) * critp 
   if p[i] <= bh2: 
    k1 = i + 1 
   else: 
    k1 = k1 
  j = j + j1 
  k2 = k2 + k1 
 fwefdr_bonf[x] = ((h * 1.0) / (k * 1.0) * 100.0) 
 fwefdr_bh[x] = ((j * 1.0) / (k * 1.0) * 100.0) 
 fwefdr_by[x] = ((k2 * 1.0) / (k * 1.0) * 100.0) 
 fwefdrnarum[x] = ((s * 1.0) / (k * 1.0) * 100.0) 
 
plt.plot(bonf) 
plt.plot(bh) 
plt.plot(by) 
plt.plot(narum) 
plt.show() 
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