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ABSTRACT  
 
Over 100,000 genetic variants are classified as disease-causing in public databases. 
However, the true penetrance of many of these rare alleles is uncertain and may be 
over-estimated by clinical ascertainment. As more people undergo genome 
sequencing there is an increasing need to assess the true penetrance of alleles. 
Until recently, this was not possible in a population-based setting. Here, we use data 
from 388,714 UK Biobank (UKB) participants of European ancestry to assess the 
pathogenicity and penetrance of putatively clinically important rare variants.  
 
Although rare variants are harder to genotype accurately than common variants, we 
were able to classify 1,244 of 4,585 (27%) putatively clinically relevant rare variants 
genotyped on the UKB microarray as high-quality. We defined “rare” as variants with 
a minor allele frequency of <0.01, and “clinically relevant” as variants that were either 
classified as pathogenic/likely pathogenic in ClinVar or are in genes known to cause 
two specific monogenic diseases in which we have some expertise: Maturity-Onset 
Diabetes of the Young (MODY) and severe developmental disorders (DD). We 
assessed the penetrance and pathogenicity of these high-quality variants by testing 
their association with 401 clinically-relevant traits available in UKB. 
 
We identified 27 putatively clinically relevant rare variants associated with a UKB trait 
but that exhibited reduced penetrance or variable expressivity compared with their 
associated disease. For example, the P415A PER3 variant that has been reported to 
cause familial advanced sleep phase syndrome is present at 0.5% frequency in the 
population and associated with an odds ratio of 1.38 for being a morning person 
(P=2x10-18). We also observed novel associations with relevant traits for 
heterozygous carriers of some rare recessive conditions, e.g. heterozygous carriers 
of the R799W ERCC4 variant that causes Xeroderma pigmentosum were more 
susceptible to sunburn (one extra sunburn episode reported, P=2x10-8). Within our 
two disease subsets, we were able to refine the penetrance estimate for the 
R114W HNF4A variant in diabetes (only ~10% by age 40yrs) and refute the previous 
disease-association of RNF135 in developmental disorders.  
  
In conclusion, this study shows that very large population-based studies will help 
refine the penetrance estimates of rare variants. This information will be important for 
anyone receiving information about their health based on putatively pathogenic 
variants. 
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INTRODUCTION 
 
One of the ongoing challenges in genetic medicine is that of variant interpretation. 
Many variants and genes have been erroneously associated with disease as a result 
of problems with study design, including ascertainment bias and inadequate cohort 
size1–3, as well as biological phenomena such as genetic heterogeneity, reduced 
penetrance, variable expressivity, composite phenotypes, pleiotropy and epistasis4–

13. These issues have resulted in ambiguity over how to interpret clinically-
ascertained variants found in individuals with no known family history or symptoms of 
the disease14. Although there has traditionally been a division between rare disease 
genetics (studied in small disease cohorts and individual high-risk families) and 
common disease genetics (studied in large disease cohorts and population 
biobanks), in reality there is likely to be a continuum of causality that exists for many 
human disorders15. Fortunately, rare and common disease studies suffer from 
opposing ascertainment biases. Clinically-ascertained cohorts are enriched for 
individuals with a specific clinical presentation, and will therefore tend to over-
estimate the penetrance of any disease-causing variants identified16. In contrast, 
population cohorts tend to be enriched for healthy individuals (so-called “healthy 
volunteer” selection bias) who have both the time and ability to volunteer for a 
study17,18, and will therefore tend to under-estimate penetrance. Population cohorts 
with high-resolution genetic and clinical data are therefore invaluable for establishing 
minimum penetrance estimates, exploring variable expressivity and challenging 
pathogenicity assertions made in the clinical arena. 
 
Several studies have already started to bridge this gap by using population data to 
evaluate rare disease-causing variants19,20, refine penetrance estimates21 and refute 
reportedly pathogenic variants22,23. These previous studies were mostly limited to a 
very specific set of variants (e.g. protein truncating), or one particular disease, or 
were too small to statistically test phenotypic penetrance. With its wealth of linked 
phenotypic and clinical information on >450,000 genotyped individuals, UK Biobank 
(UKB)24 offers a powerful dataset in which to systematically evaluate the 
pathogenicity, penetrance, and expressivity of clinically important variants in the 
population. However, differences in the technologies used to assay genetic variation 
can hinder these analyses. A particular concern is the use of genotyping arrays 
(such as those currently used by UKB)25, which have been designed primarily to 
assay common variation. In contrast, rare single nucleotide variants (SNVs) and 
small insertions/deletions (indels) have typically been detected through sequencing 
assays26. A method is therefore needed to select well-genotyped rare variants in 
UKB, which can then be used to address biological and clinical questions. 
 
Here we describe a systematic method for evaluating the analytical validity of rare 
variant genotyping data from the UKB arrays, investigate the relationship between 
data quality and minor allele frequency (MAF), and evaluate the association of a 
subset of clinically-interesting, well-genotyped coding variants with relevant 
phenotypes in UKB. We focus on variants in ClinVar that have been classified as 
“pathogenic/likely pathogenic” by at least one submitter27, as well as variants in 
genes known to cause two specific monogenic diseases in which we have some 
expertise: maturity-onset diabetes of the young (MODY) and developmental 
disorders (DD).  
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METHODS 
 
UKB cohort 
UKB recruited over 500,000 individuals aged 37-73 years between 2006-2010 from 
across the UK. Participants provided a range of information via questionnaires and 
interviews (e.g. demographics, health status, lifestyle) and anthropometric 
measurements, blood pressure readings, blood, urine and saliva samples were 
taken for future analysis. Genotypes for single nucleotide variants (SNVs) and 
insertions/deletions (indels) were generated from the Affymetrix Axiom UKB array 
(~450,000 individuals) and the UKBiLEVE array (~50,000 individuals) in 106 batches 
of ~4,700 samples. This dataset underwent extensive central quality control 
(http://UKB.ctsu.ox.ac.uk)25. We limited our analysis to 388,714 QC-passed white 
Europeans. 
 
Variant prioritisation 
Variants were annotated using Annovar28 and MAFs were calculated using PLINK29. 
To prioritise variants of potential clinical importance, we selected those with at least 
one classification of pathogenicity (pathogenic or likely pathogenic) in the ClinVar 
database (https://www.ncbi.nlm.nih.gov/clinvar/)27, including those with conflicting 
classifications. In addition, irrespective of their presence in ClinVar, we selected 
predicted protein truncating variants (PTV; stopgain SNVs and frameshift indels) and 
known pathogenic functional variants (nonsynonymous SNVs and inframe indels) in 
genes known to cause MODY30,31 (https://www.diabetesgenes.org) and dominant 
DD32,33 (https://www.ebi.ac.uk/gene2phenotype) for detailed evaluation. These 
diseases and genes were selected due to our own prior experience, the availability 
of well-curated gene lists that include mode of inheritance and mechanism of action, 
and the different priors associated with finding diabetes (a common disease) and 
severe DD (a rare disease) in UKB. We excluded common variants (MAF>0.01), as 
these have already been thoroughly investigated through genome-wide association 
studies34,35, and further refined the list of variants to include only those where the 
Hardy–Weinberg equilibrium (HWE) P>0.05 and the proportion of missing genotypes 
across all samples <0.01 (n=4,585).  
 
Assessing analytical validity 
To assess the analytical validity of these variants, we used Evoker Lite 
(https://github.com/dlrice/evoker-lite) to generate cluster plots of intensities, and 
combined data from all the batches into one plot for each variant. Cluster plots were 
manually assessed and ranked in quality from 1-5, where: 1=poor quality, no 
discernible separate clusters; 2=poor quality, no discernible separate clusters but 
noisy data; 3=unclear/uncertain; 4=good quality, clearly separable clusters but noisy 
data; and 5=good quality, clear separation between clusters (Supplementary 
Figure 1). In an initial subset of 750 variants that was independently evaluated by 
two scientists (Supplementary Figure 2), correlation between the two independent 
scorers was high (R2=0.8), and there was a 95% agreement in low quality (score=1 
or 2) versus high quality (score=4 or 5) variants. All remaining variants of interest 
were evaluated by one scientist, and those with high quality scores were checked by 
the second scientist. Only variants with an average score of >4 were retained for 
further analysis. For all 1,244 high-quality variants, we assessed whether the rare 
genotype calls were unusually distributed across the 107 genotype batches. None of 
the rare genotypes calls at these variants were entirely due to calls from a single 
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batch. Across the 1,244 variants, the highest proportion of rare genotype calls in a 
single batch was 4 from a total of 13 for Affx-89007317. A plot of total allele count for 
each variant against maximum allele count across each individual batch 
demonstrated a linear association with no clear outlying variants.   
 
Assessing clinical relevance 
We ran a phenome-wide association for all of our 1,244 high-quality rare variants 
against a curated list of 401 clinically-relevant traits in UKB (Supplementary Table 
1) in 388,714 QC-passed white Europeans using PLINK29, and those with a 
Bonferroni-corrected p <1x10-7 (0.05/(401*1244)) were prioritised for detailed 
evaluation. For continuous traits, we used linear regression adjusting for age, sex 
(unless a sex-specific trait), centre, chip and ten ancestry principal components. For 
binary traits, we used Fisher’s exact test as the primary association method and 
performed logistic regression adjusting for the same covariates as for continuous 
traits as a sensitivity analysis. We excluded variants now considered by recent 
reclassifications in ClinVar to be benign. To assess the potential clinical implications 
of high-quality rare variants, we compared the UKB traits with the clinical 
presentation of the disease for each gene, and the evidence supporting the assertion 
of pathogenicity of the variant using ClinVar27, DECIPHER36 and OMIM37. For high-
quality rare variants in MODY genes and PTVs in DD genes, we had no p-value cut-
off for investigating diabetes and developmental traits (cognitive function, 
educational attainment, body mass index, height, hearing and albumin creatinine 
ratios). Conditional analysis of the most-associated regional variant (1Mb window) 
from each trait led us to remove one trait-variant association that was explained by 
linkage disequilibrium with a common causal variant. 
 
RESULTS 
 
Variants below 0.00001 frequency are not reliably genotyped 
Across all the variants evaluated for analytical validity using combined cluster plots 
(n unique=4,585, see Methods), we categorised 27% as high quality (average 
score>4), 64% as low quality likely false positives (average score<2.5), and 9% as 
unclear (Table 1). There was a strong correlation between the analytical validity 
quality score and MAF (Table 1 and Figure 1), as well as presence of the variant in 
either gnomAD38 or the 1000 genomes project39. For low versus high quality 
variants, a nonparametric regression analysis estimated the area under the ROC 
curve to be 0.95 (95% CI = 0.943-0.956); the false positive rate (FPR) at 
MAF>0.00005 was ~20%, while FPR~60% at MAF>0.00001. 
 
Reduced penetrance estimates for known pathogenic variants 
The 1,244 high-quality putative pathogenic rare variants, with their ClinVar-
associated disease and the allele frequencies in UKB and gnomAD, are shown in 
Supplementary Table 2. Of these variants only 27 were associated with one of the 
401 traits we tested against in UKB with p<1x10-7 (Table 2). Of these, 13 have 
previously been linked with a dominant disease. For two variants, where penetrance 
had previously been estimated from large clinical cohorts40,41, we found substantially 
reduced penetrance in our population-based study. Specifically, we observed well-
established associations between variants in PALB240 and HOXB1341 and breast 
cancer and prostate cancer respectively, where the odds ratios were around half the 
previous estimates from family-based disease studies (in both cases, ~4.5 in UKB 
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versus ~9.5 in the family-based studies)40,41. The other 11 variants were causally 
linked to disease, but penetrance estimates were not available from the literature for 
comparison. However, we observed that these variants were associated with a 
related trait in our population-based cohort (Table 2), suggesting reduced 
penetrance versus their presumed monogenic forms. Two PTVs in FLG that cause 
ichthyosis vulgaris42 were associated with a 2-fold increased odds of Eczema. A PTV 
in TSHR that causes nonautoimmune hyperthyroidism43 was associated with a 3-fold 
increased odds of hypothyroidism. A nonsynonymous variant in LRRK2 that causes 
Parkinson’s disease44 was associated with a 5-fold odds of having a parent with 
Parkinson’s disease. A nonsynonymous variant in PER3 previously classified as 
pathogenic for advanced sleep phase syndrome had an odds ratio of only 1.38 for 
being a morning person45,46 compared to a reported 2 hour shift in midpoint sleep. 
Height, skeletal weight and male pattern baldness were negatively associated with 
two nonsynonymous variants in AR that cause partial androgen insensitivity 
syndrome47. Finally, a nonsynonymous variant in MYH7, which has been classified 
by a ClinGen Expert Panel as pathogenic for hypertrophic cardiomyopathy48 was 
associated with a reduced pulse rate of 5 beats per minute.  
 
We specifically investigated known pathogenic variants and PTVs in MODY genes, 
where we found two rare variants that were high quality, definitely pathogenic and 
strongly associated with diabetes (Table 2): a very rare stop-gain variant in GCK 
(OR=68 95% CI: 14, 328, P=2x10-8), and a nonsynonymous variant (p.R114W) in 
HNF4A (OR=2.9 95% CI: 1.7, 5.0, P=3x10-4). Both associated with diabetes in UKB, 
in-line with previous findings49–51. However, the penetrance of the HNF4A variant 
was previously estimated to be up to 75% at age 40-years based on a large MODY 
diabetes cohort49, while we estimate the minimum penetrance to be ~10% from UKB 
(Figure 2). This has important implications for the attributable risk associated with 
the variant in different cohorts, and the interpretation of genetic test results: if the 
R114W variant was found in an affected individual following clinical testing, it may 
still be the primary cause of their diabetes, while incidental discovery of the variant in 
an unaffected individual would not be predictive. 
 
Related mild heterozygous phenotypes in autosomal recessive disorders  
Of our 27 high-quality, rare putatively pathogenic variants associated with a trait in 
UKB, 16 have previously been linked with a recessive disease (Table 2). We 
observed associations with milder or related traits in the heterozygous carriers of 
these monogenic recessive diseases in our population cohort. A nonsynonymous 
variant in ERCC4, which causes recessive xeroderma pigmentosum52, and two 
nonsynonymous variants in OCA, which causes oculocutaneous albinism53,54 were 
associated with ease of sunburn. A stopgain variant in TACR3, which causes 
recessive hypogonadotropic hypogonadism55,56 was associated with an 8 month 
increase in age at menarche. In addition, variants in six genes known to cause 
different recessive blood-related disorders were associated with decreased mean 
corpuscular volume and/or increased red blood cell distribution width (including HBB 
which causes β-thalassemia but where the carrier state is already known to cause 
the much milder β-thalassemia minor57).  
 
Refuting previous disease associations 
We focused our clinical analysis of variants in DD genes on just PTVs, of which six 
(including two variants in one gene) were of high-quality and in genes that are 
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reported to cause disease via a haploinsufficiency mechanism (Table 3). None of 
these variants were associated with developmentally relevant traits in UKB (p>0.1), 
suggesting they are all benign. For three variants, the location of the variant in the 
gene is notably different from that of known pathogenic variants. GNAS is the only 
one of the five genes with a high probability of being loss-of-function intolerant (pLI)38 
based on the frequency of loss-of-function variants in ExAC38. The stop-gain variant 
in GNAS is present in the highly variable first exon of the gene and is likely to result 
in nonsense-mediated RNA decay; in contrast, pathogenic variants in GNAS that 
cause Albright hereditary osteodystrophy are located in later, highly constrained 
exons58. Similarly, the stop-gain variant in TGIF1 is located in the first exon of the 
gene, where multiple PTVs in gnomAD38 are also located, while TGIF1 pathogenic 
variants causing holoprosencephaly are located in the final exons of the gene where 
they affect DNA binding affinity59. Finally, a frameshift deletion in HIST1H1E is 
located near the start of the single exon of this gene; however, in contrast, 
pathogenic HIST1H1E frameshift deletions that cause child overgrowth and 
intellectual disability are located near the end of the exon, where they result in a 
truncated histone protein with lower net charge that is less effective at binding 
DNA60. Hence, we believe that these three rare PTVs are benign due to their 
location, despite being PTVs in genes that cause dominant DD via 
haploinsufficiency.  
 
For the other three variants, our findings are not consistent with the genes causing a 
dominant DD via haploinsufficiency. First, there was no association between a 
frameshift variant in the middle of COL4A3 – where pathogenic variants are thought 
to cause a rare dominant form of Alport syndrome (as well as benign familial 
hematuria)61,62 – and albumin creatinine ratios, hearing or any of the development 
traits in UKB. Similarly, there was no association between either stop-gain or 
frameshift variants in RNF135 – where haploinsufficiency is thought to cause 
macrocephaly, macrosomia and facial dysmorphism syndrome63 – with any 
development traits in UKB. In both cases, given the high-quality genotyping of these 
variants in UKB and a lack of association with any clinically relevant traits, coupled 
with a pLI of zero for both genes, the age of the original publications and the lack of 
enrichment of de novo mutations within the DDD study33, we suggest that 
haploinsufficiency in these genes is not a cause of a severe DD. 
 
CONCLUSIONS 
 
Previous studies have been unable to analyse rare variants in sufficiently large 
population-based studies to establish pathogenicity and lower-bounds for 
penetrance. Large population cohorts such as UKB provide an opportunity to 
investigate the relationship between genes and disease. However, the absence of 
genome-wide sequencing data has thus far minimised the impact of UKB in the rare 
disease community. We have established a method for evaluating the analytical 
validity of rare variants genotyped by microarray, using combined intensity plots for 
individual variants across all genotyping batches. Although we initially tried to 
examine variant cluster plots for each batch separately, as recommended by UKB, 
this proved impossible due to the rarity of most clinically important variants. MAF 
was an extremely good predictor of the likelihood of a variant being genotyped well 
by the UKB arrays (Figure 1). At MAF>0.00005 (~50 heterozygous individuals) 
FPR~7% and most variants were well genotyped, while FPR~60% at MAF>0.00001 
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(~10 heterozygous individuals), and we classified all variants at MAF< 0.000005 (~5 
heterozygous individuals) as being low quality. This has important implications for 
epidemiological research carried out uncritically using these data. Although many 
rare variants in UKB are well genotyped with the arrays, the rarer the variant, the 
more likely it is to be poor quality and therefore yield false associations. 
 
A limitation of our work is that we did not attempt to confirm the variants using an 
independent assay. However, most researchers using data from UKB will be 
similarly unable to attempt independent variant confirmations, and thus a method for 
evaluating the genotyping quality of rare variants directly from the data has 
widespread utility. The validity of our method is supported by our ability to replicate 
numerous previous findings of well-known, clinically important variants classified as 
pathogenic in ClinVar (Table 2, plus additional well-established associations for 
variants where MAF>0.01). In addition, our analyses of likely pathogenic variants in 
two disease subtypes (MODY and DD) were independent of any potential biases or 
misclassification errors associated with ClinVar, and the findings were consistent 
with our prior expectations. We expected there to be a small number of individuals in 
UKB with monogenic subtypes of diabetes and we found two pathogenic variants 
that associated with appropriate traits in UKB (Table 2) and were thus able to lower 
the previous penetrance estimate for a pathogenic variant in HNF4A (Figure 2). In 
contrast, we did not expect there to be any instances of severe DD, due to the rarity 
of the condition, the relatively senior age of the UKB population and the inherent 
challenges of consenting individuals with severe DD to population biobanks64. We 
are therefore confident that the PTV variants identified in dominant DD genes in UKB 
are benign (Table 3), and in refuting previous associations between 
haploinsufficiency in RNF135 and COL4A3 and dominant DD (which has no bearing 
on the asserted relationship between the latter and either recessive DD or alternative 
mechanisms of disease). 
 
In this study, we have shown that population genetic data can be used to estimate 
lower bounds for the penetrance of pathogenic disease-causing variants, and refine 
our understanding of the links between rare variants (MAF<0.01) and monogenic 
diseases. Performing a similar analysis on ultra-rare variants (MAF<0.00001) will 
require large-scale sequencing data rather than genotyping arrays. Although 
population-based studies will be biased in the opposite direction from clinical studies, 
i.e. towards healthy individuals, they are nonetheless crucial for interpreting 
incidental or secondary findings from clinical testing, and for informing direct-to-
consumer genetic testing. At this point, we are left with some fundamental 
conceptual questions about the nature of “monogenic” disease. When should 
variants exhibiting reduced penetrance –  a term frequently used in the diagnosis of 
rare genetic disease –  be called risk or susceptibility factors – terms generally used 
in the study of common disease? When should a gene-disease relationship be 
termed variable expressivity rather than normal variation? Should “pathogenic” be 
reserved only for highly penetrant variants that cause a tightly defined disease entity, 
or can it apply to any variant associated, however weakly, with a clinically-relevant 
phenotype? As genome-wide sequencing becomes widely used in routine clinical 
practice, research cohorts and direct-to-consumer testing, understanding this 
spectrum will become both increasingly important and tractable. 
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TABLES 
 
Table 1. Evaluated variants. Number of variants manually evaluated for analytical 
validity in different MAF bins, with quality scores grouped into false positive (FP, 
score=1 or 2), unclear (score=3) and true positive (TP, score=4 or 5). 
 
Table 2. Pathogenic variants. Reduced penetrance, variable expressivity and 
carrier phenotypes for rare (MAF<0.01) ClinVar pathogenic variants with genome-
wide significant associations in UKB. 
 
Table 3. Benign variants. Classification of likely pathogenic variants in maturity-
onset diabetes of the young (MODY) and developmental disorders (DD) from UKB. 
 
Supplementary Table 1. Curated traits included from UKB. 
 
Supplementary Table 2. 1,244 high quality putative pathogenic variants 
analysed. 
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FIGURES 
 
Figure 1. Correlation between MAF and analytical validity quality score. 
(a) Density plot and (b) boxplot of manual quality scores (from 1-5, see 
Supplementary Figure 1) of genotype data in UKB versus minor allele frequency 
(MAF) for 4,585 putatively clinically important variants, where MAF<0.01, HWE>0.05 
and missingness<0.01; (c) Histogram of the number of variants at each quality score 
versus presence or absence of the variant in gnomAD (exome data) or the 1000 
genomes project; (d) Estimation of the false positive rate (FPR) versus MAF for 
variants assayed using the UKB genotyping arrays, calculated by grouping quality 
scores into low (score=1 or 2) and high (score=4 or 5) and using the rocreg 
command in Stata to fit a ROC curve. Red=score 1; gold=score  2; green = score 3; 
blue = score 4; purple = score 5. 
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Figure 2. Penetrance estimate for HNF4A p.R114W in UK Biobank compared to 
previously published estimates from MODY cohort studies. A Kaplan-Meier plot 
of proportion of individuals that are diabetes-free against age for 388,174 individuals 
from UK Biobank (red line); 122 UK Biobank individuals that are heterozygous for 
HNF4A p.R114W (green line) and 26 MODY referral probands (blue line) and 24 
family members of the probands (yellow line) from Laver et al. 49 
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SUPPLENTARY FIGURES  
 
Supplementary Figure 1. Combined cluster intensity plots. 
Intensity plots combined across all batches are shown for five variants, all with a 
UKB MAF = 0.00004. The clustering quality of heterozygous variants was manually 
assessed and ranked from 1-5. (a) Score 1 = poor quality, no discernible separate 
clusters; (b) Score 2 = poor quality, no discernible separate clusters but noisy data; 
(c) Score 3 = unclear/uncertain; (d) Score 4 = good quality, clearly separable 
clusters but noisy data; (e) Score 5 = good quality, clear separation between 
clusters. 
 

 
 
 
 
Figure 2. Comparison of quality scores between two independent scorers. 
Two scientists independently scored the quality (from 1-5, see Figure 1) of combined 
cluster plots for 750 variants. The R2 between their scores was 0.8, and there was a 
95% agreement in low quality (score=1 or 2) versus high quality (score=4 or 5) 
variants. 
 

 
  

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407981doi: bioRxiv preprint 

https://doi.org/10.1101/407981
http://creativecommons.org/licenses/by/4.0/


REFERENCES 
 
1. Kraft, P., Zeggini, E., and Ioannidis, J.P.A. (2009). Replication in genome-wide 
association studies. Stat Sci 24, 561–573. 
2. Park, S., Lee, S., Lee, Y., Herold, C., Hooli, B., Mullin, K., Park, T., Park, C., Bertram, L., 
Lange, C., et al. (2015). Adjusting heterogeneous ascertainment bias for genetic association 
analysis with extended families. BMC Med. Genet. 16, 62. 
3. Clark, A.G., Hubisz, M.J., Bustamante, C.D., Williamson, S.H., and Nielsen, R. (2005). 
Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 15, 
1496–1502. 
4. Gratten, J., and Visscher, P.M. (2016). Genetic pleiotropy in complex traits and diseases: 
implications for genomic medicine. Genome Med. 8, 78. 
5. Visscher, P.M., and Yang, J. (2016). A plethora of pleiotropy across complex traits. Nat. 
Genet. 48, 707–708. 
6. Boycott, K.M., and Innes, A.M. (2017). When one diagnosis is not enough. N. Engl. J. 
Med. 376, 83–85. 
7. Theunissen, T.E.J., Sallevelt, S.C.E.H., Hellebrekers, D.M.E.I., de Koning, B., Hendrickx, 
A.T.M., van den Bosch, B.J.C., Kamps, R., Schoonderwoerd, K., Szklarczyk, R., Mulder-
Den Hartog, E.N.M., et al. (2017). Rapid Resolution of Blended or Composite Multigenic 
Disease in Infants by Whole-Exome Sequencing. J. Pediatr. 182, 371–374.e2. 
8. Ritchie, M.D., and Van Steen, K. (2018). The search for gene-gene interactions in genome-
wide association studies: challenges in abundance of methods, practical considerations, and 
biological interpretation. Ann Transl Med 6, 157. 
9. Cooper, D.N., Krawczak, M., Polychronakos, C., Tyler-Smith, C., and Kehrer-Sawatzki, 
H. (2013). Where genotype is not predictive of phenotype: towards an understanding of the 
molecular basis of reduced penetrance in human inherited disease. Hum. Genet. 132, 1077–
1130. 
10. Gillentine, M.A., Lupo, P.J., Stankiewicz, P., and Schaaf, C.P. (2018). An estimation of 
the prevalence of genomic disorders using chromosomal microarray data. J. Hum. Genet. 
11. Wright, C.F., FitzPatrick, D.R., and Firth, H.V. (2018). Paediatric genomics: diagnosing 
rare disease in children. Nat. Rev. Genet. 19, 253–268. 
12. Hormozdiari, F., Zhu, A., Kichaev, G., Ju, C.J.-T., Segrè, A.V., Joo, J.W.J., Won, H., 
Sankararaman, S., Pasaniuc, B., Shifman, S., et al. (2017). Widespread allelic heterogeneity 
in complex traits. Am. J. Hum. Genet. 100, 789–802. 
13. McClellan, J., and King, M.-C. (2010). Genetic heterogeneity in human disease. Cell 141, 
210–217. 
14. Wright, C.F., Middleton, A., Burton, H., Cunningham, F., Humphries, S.E., Hurst, J., 
Birney, E., and Firth, H.V. (2013). Policy challenges of clinical genome sequencing. BMJ 
347, f6845. 
15. Katsanis, N. (2016). The continuum of causality in human genetic disorders. Genome 
Biol. 17, 233. 
16. Minikel, E.V., Zerr, I., Collins, S.J., Ponto, C., Boyd, A., Klug, G., Karch, A., Kenny, J., 
Collinge, J., Takada, L.T., et al. (2014). Ascertainment bias causes false signal of anticipation 
in genetic prion disease. Am. J. Hum. Genet. 95, 371–382. 
17. Fry, A., Littlejohns, T.J., Sudlow, C., Doherty, N., Adamska, L., Sprosen, T., Collins, R., 
and Allen, N.E. (2017). Comparison of Sociodemographic and Health-Related Characteristics 
of UK Biobank Participants With Those of the General Population. Am. J. Epidemiol. 186, 
1026–1034. 
18. Ganguli, M., Lytle, M.E., Reynolds, M.D., and Dodge, H.H. (1998). Random versus 
volunteer selection for a community-based study. J. Gerontol. A, Biol. Sci. Med. Sci. 53, 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407981doi: bioRxiv preprint 

https://doi.org/10.1101/407981
http://creativecommons.org/licenses/by/4.0/


M39-46. 
19. DeBoever, C., Tanigawa, Y., Lindholm, M.E., McInnes, G., Lavertu, A., Ingelsson, E., 
Chang, C., Ashley, E.A., Bustamante, C.D., Daly, M.J., et al. (2018). Medical relevance of 
protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat. 
Commun. 9, 1612. 
20. Bastarache, L., Hughey, J.J., Hebbring, S., Marlo, J., Zhao, W., Ho, W.T., Van Driest, 
S.L., McGregor, T.L., Mosley, J.D., Wells, Q.S., et al. (2018). Phenotype risk scores identify 
patients with unrecognized Mendelian disease patterns. Science 359, 1233–1239. 
21. Tuke, M.A., Ruth, K.S., Wood, A.R., Beaumont, R.N., Tyrrell, J., Jones, S.E., 
Yaghootkar, H., Turner, C.L.S., Donohoe, M.E., Brooke, A.M., et al. (2017). Mosaic Turner 
syndrome shows reduced phenotypic penetrance in an adult population   study compared to 
clinically ascertained case. BioRxiv. 
22. Minikel, E.V., Vallabh, S.M., Lek, M., Estrada, K., Samocha, K.E., Sathirapongsasuti, 
J.F., McLean, C.Y., Tung, J.Y., Yu, L.P.C., Gambetti, P., et al. (2016). Quantifying prion 
disease penetrance using large population control cohorts. Sci. Transl. Med. 8, 322ra9. 
23. Shah, N., Hou, Y.-C.C., Yu, H.-C., Sainger, R., Caskey, C.T., Venter, J.C., and Telenti, 
A. (2018). Identification of misclassified clinvar variants via disease population prevalence. 
Am. J. Hum. Genet. 102, 609–619. 
24. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, 
P., Green, J., Landray, M., et al. (2015). UK biobank: an open access resource for identifying 
the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, 
e1001779. 
25. Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., Motyer, A., 
Vukcevic, D., Delaneau, O., O’Connell, J., et al. (2017). Genome-wide genetic data on 
~500,000 UK Biobank participants. BioRxiv. 
26. Auer, P.L., and Lettre, G. (2015). Rare variant association studies: considerations, 
challenges and opportunities. Genome Med. 7, 16. 
27. Harrison, S.M., Riggs, E.R., Maglott, D.R., Lee, J.M., Azzariti, D.R., Niehaus, A., 
Ramos, E.M., Martin, C.L., Landrum, M.J., and Rehm, H.L. (2016). Using clinvar as a 
resource to support variant interpretation. Curr Protoc Hum Genet 89, 8.16.1-8.16.23. 
28. Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of 
genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164. 
29. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, 
J., Sklar, P., de Bakker, P.I.W., Daly, M.J., et al. (2007). PLINK: a tool set for whole-genome 
association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. 
30. Ellard, S., Lango Allen, H., De Franco, E., Flanagan, S.E., Hysenaj, G., Colclough, K., 
Houghton, J.A.L., Shepherd, M., Hattersley, A.T., Weedon, M.N., et al. (2013). Improved 
genetic testing for monogenic diabetes using targeted next-generation sequencing. 
Diabetologia 56, 1958–1963. 
31. Hattersley, A.T., and Patel, K.A. (2017). Precision diabetes: learning from monogenic 
diabetes. Diabetologia 60, 769–777. 
32. Wright, C.F., Fitzgerald, T.W., Jones, W.D., Clayton, S., McRae, J.F., van Kogelenberg, 
M., King, D.A., Ambridge, K., Barrett, D.M., Bayzetinova, T., et al. (2015). Genetic 
diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide 
research data. Lancet 385, 1305–1314. 
33. Deciphering Developmental Disorders Study (2017). Prevalence and architecture of de 
novo mutations in developmental disorders. Nature 542, 433–438. 
34. McCarthy, M.I., Abecasis, G.R., Cardon, L.R., Goldstein, D.B., Little, J., Ioannidis, 
J.P.A., and Hirschhorn, J.N. (2008). Genome-wide association studies for complex traits: 
consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407981doi: bioRxiv preprint 

https://doi.org/10.1101/407981
http://creativecommons.org/licenses/by/4.0/


35. Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A., and 
Yang, J. (2017). 10 years of GWAS discovery: biology, function, and translation. Am. J. 
Hum. Genet. 101, 5–22. 
36. Bragin, E., Chatzimichali, E.A., Wright, C.F., Hurles, M.E., Firth, H.V., Bevan, A.P., and 
Swaminathan, G.J. (2014). DECIPHER: database for the interpretation of phenotype-linked 
plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. 42, D993–
D1000. 
37. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., Scott, A.F., and Hamosh, A. (2015). 
OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human 
genes and genetic disorders. Nucleic Acids Res. 43, D789-98. 
38. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., 
O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis of 
protein-coding genetic variation in 60,706 humans. Nature 536, 285–291. 
39. 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M., Garrison, 
E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., et al. (2015). A 
global reference for human genetic variation. Nature 526, 68–74. 
40. Antoniou, A.C., Casadei, S., Heikkinen, T., Barrowdale, D., Pylkäs, K., Roberts, J., Lee, 
A., Subramanian, D., De Leeneer, K., Fostira, F., et al. (2014). Breast-cancer risk in families 
with mutations in PALB2. N. Engl. J. Med. 371, 497–506. 
41. Ewing, C.M., Ray, A.M., Lange, E.M., Zuhlke, K.A., Robbins, C.M., Tembe, W.D., 
Wiley, K.E., Isaacs, S.D., Johng, D., Wang, Y., et al. (2012). Germline mutations in 
HOXB13 and prostate-cancer risk. N. Engl. J. Med. 366, 141–149. 
42. Smith, F.J.D., Irvine, A.D., Terron-Kwiatkowski, A., Sandilands, A., Campbell, L.E., 
Zhao, Y., Liao, H., Evans, A.T., Goudie, D.R., Lewis-Jones, S., et al. (2006). Loss-of-
function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat. Genet. 38, 
337–342. 
43. Jordan, N., Williams, N., Gregory, J.W., Evans, C., Owen, M., and Ludgate, M. (2003). 
The W546X mutation of the thyrotropin receptor gene: potential major contributor to thyroid 
dysfunction in a Caucasian population. J. Clin. Endocrinol. Metab. 88, 1002–1005. 
44. Wu, X., Tang, K.-F., Li, Y., Xiong, Y.-Y., Shen, L., Wei, Z.-Y., Zhou, K.-J., Niu, J.-M., 
Han, X., Yang, L., et al. (2012). Quantitative assessment of the effect of LRRK2 exonic 
variants on the risk of Parkinson’s disease: a meta-analysis. Parkinsonism Relat. Disord. 18, 
722–730. 
45. Zhang, L., Hirano, A., Hsu, P.-K., Jones, C.R., Sakai, N., Okuro, M., McMahon, T., 
Yamazaki, M., Xu, Y., Saigoh, N., et al. (2016). A PERIOD3 variant causes a circadian 
phenotype and is associated with a seasonal mood trait. Proc. Natl. Acad. Sci. USA 113, 
E1536-44. 
46. Jones, S.E., Lane, J.M., Wood, A.R., van Hees, V.T., Tyrrell, J., Beaumont, R.N., 
Jeffries, A.R., Dashti, H.S., Hillsdon, M., Ruth, K.S., et al. (2018). Genome-wide association 
analyses of chronotype in 697,828 individuals provides new insights into circadian rhythms 
in humans and links to disease. BioRxiv. 
47. Bevan, C.L., Brown, B.B., Davies, H.R., Evans, B.A., Hughes, I.A., and Patterson, M.N. 
(1996). Functional analysis of six androgen receptor mutations identified in patients with 
partial androgen insensitivity syndrome. Hum. Mol. Genet. 5, 265–273. 
48. Kelly, M.A., Caleshu, C., Morales, A., Buchan, J., Wolf, Z., Harrison, S.M., Cook, S., 
Dillon, M.W., Garcia, J., Haverfield, E., et al. (2018). Adaptation and validation of the 
ACMG/AMP variant classification framework for MYH7-associated inherited 
cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel. 
Genet. Med. 20, 351–359. 
49. Laver, T.W., Colclough, K., Shepherd, M., Patel, K., Houghton, J.A.L., Dusatkova, P., 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407981doi: bioRxiv preprint 

https://doi.org/10.1101/407981
http://creativecommons.org/licenses/by/4.0/


Pruhova, S., Morris, A.D., Palmer, C.N., McCarthy, M.I., et al. (2016). The Common 
p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes. 
Diabetes 65, 3212–3217. 
50. Osbak, K.K., Colclough, K., Saint-Martin, C., Beer, N.L., Bellanné-Chantelot, C., Ellard, 
S., and Gloyn, A.L. (2009). Update on mutations in glucokinase (GCK), which cause 
maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic 
hypoglycemia. Hum. Mutat. 30, 1512–1526. 
51. Chakera, A.J., Steele, A.M., Gloyn, A.L., Shepherd, M.H., Shields, B., Ellard, S., and 
Hattersley, A.T. (2015). Recognition and management of individuals with hyperglycemia 
because of a heterozygous glucokinase mutation. Diabetes Care 38, 1383–1392. 
52. Kashiyama, K., Nakazawa, Y., Pilz, D.T., Guo, C., Shimada, M., Sasaki, K., Fawcett, H., 
Wing, J.F., Lewin, S.O., Carr, L., et al. (2013). Malfunction of nuclease ERCC1-XPF results 
in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, 
and Fanconi anemia. Am. J. Hum. Genet. 92, 807–819. 
53. King, R.A., Willaert, R.K., Schmidt, R.M., Pietsch, J., Savage, S., Brott, M.J., Fryer, J.P., 
Summers, C.G., and Oetting, W.S. (2003). MC1R mutations modify the classic phenotype of 
oculocutaneous albinism type 2 (OCA2). Am. J. Hum. Genet. 73, 638–645. 
54. Preising, M.N., Forster, H., Tan, H., Lorenz, B., de Jong, P.T.V.M., and Plomp, A.S. 
(2007). Mutation analysis in a family with oculocutaneous albinism manifesting in the same 
generation of three branches. Mol. Vis. 13, 1851–1855. 
55. Lunetta, K.L., Day, F.R., Sulem, P., Ruth, K.S., Tung, J.Y., Hinds, D.A., Esko, T., Elks, 
C.E., Altmaier, E., He, C., et al. (2015). Rare coding variants and X-linked loci associated 
with age at menarche. Nat. Commun. 6, 7756. 
56. Topaloglu, A.K., Reimann, F., Guclu, M., Yalin, A.S., Kotan, L.D., Porter, K.M., Serin, 
A., Mungan, N.O., Cook, J.R., Imamoglu, S., et al. (2009). TAC3 and TACR3 mutations in 
familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central 
control of reproduction. Nat. Genet. 41, 354–358. 
57. Origa, R. (1993). Beta-Thalassemia. In GeneReviews(®), R.A. Pagon, M.P. Adam, H.H. 
Ardinger, S.E. Wallace, A. Amemiya, L.J. Bean, T.D. Bird, C.-T. Fong, H.C. Mefford, R.J. 
Smith, et al., eds. (Seattle (WA): University of Washington, Seattle), p. 
58. Turan, S., and Bastepe, M. (2015). GNAS spectrum of disorders. Curr. Osteoporos. Rep. 
13, 146–158. 
59. Zhu, J., Li, S., Ramelot, T.A., Kennedy, M.A., Liu, M., and Yang, Y. (2018). Structural 
insights into the impact of two holoprosencephaly-related mutations on human TGIF1 
homeodomain. Biochem. Biophys. Res. Commun. 496, 575–581. 
60. Tatton-Brown, K., Loveday, C., Yost, S., Clarke, M., Ramsay, E., Zachariou, A., Elliott, 
A., Wylie, H., Ardissone, A., Rittinger, O., et al. (2017). Mutations in Epigenetic Regulation 
Genes Are a Major Cause of Overgrowth with Intellectual Disability. Am. J. Hum. Genet. 
100, 725–736. 
61. Jefferson, J.A., Lemmink, H.H., Hughes, A.E., Hill, C.M., Smeets, H.J., Doherty, C.C., 
and Maxwell, A.P. (1997). Autosomal dominant Alport syndrome linked to the type IV 
collage alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol. Dial. Transplant. 12, 
1595–1599. 
62. Heidet, L., Arrondel, C., Forestier, L., Cohen-Solal, L., Mollet, G., Gutierrez, B., Stavrou, 
C., Gubler, M.C., and Antignac, C. (2001). Structure of the human type IV collagen gene 
COL4A3 and mutations in autosomal Alport syndrome. J. Am. Soc. Nephrol. 12, 97–106. 
63. Douglas, J., Cilliers, D., Coleman, K., Tatton-Brown, K., Barker, K., Bernhard, B., Burn, 
J., Huson, S., Josifova, D., Lacombe, D., et al. (2007). Mutations in RNF135, a gene within 
the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth. Nat. 
Genet. 39, 963–965. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407981doi: bioRxiv preprint 

https://doi.org/10.1101/407981
http://creativecommons.org/licenses/by/4.0/


64. Horner-Johnson, W., and Bailey, D. (2013). Assessing understanding and obtaining 
consent from adults with intellectual disabilities for a health promotion study. J. Policy Pract. 
Intellect. Disabil. 10, 260–265. 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407981doi: bioRxiv preprint 

https://doi.org/10.1101/407981
http://creativecommons.org/licenses/by/4.0/

