

Title: 1

Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole 2
genomes 3
Running Title: Tree-sequence recording in SLiM 4

Authors: 5

Benjamin C. Haller ‡ 6
Dept. of Biological Statistics and Computational Biology 7
Cornell University, Ithaca, NY 14853, USA 8
 9
Jared Galloway 10
Institute of Ecology and Evolution 11
University of Oregon, Eugene, OR 97403, USA 12
 13
Jerome Kelleher 14
Big Data Institute, Li Ka Shing Centre for Health Information and Discovery 15
University of Oxford 16
Oxford, OX3 7FZ, UK 17
 18
Philipp W. Messer * 19
Dept. of Biological Statistics and Computational Biology 20
Cornell University, Ithaca, NY 14853, USA 21
 22
Peter L. Ralph ‡ * 23
Institute of Ecology and Evolution 24
University of Oregon, Eugene, OR 97403, USA 25
 26
‡ Corresponding authors 27
* Joint senior authors 28

Corresponding Authors: 29

Benjamin C. Haller, bhaller@benhaller.com 30
Peter Ralph, plr@uoregon.edu 31

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Abstract 32

There is an increasing demand for evolutionary models to incorporate relatively realistic 33

dynamics, ranging from selection at many genomic sites to complex demography, population 34

structure, and ecological interactions. Such models can generally be implemented as individual-35

based forward simulations, but the large computational overhead of these models often makes 36

simulation of whole chromosome sequences in large populations infeasible. This situation 37

presents an important obstacle to the field that requires conceptual advances to overcome. The 38

recently developed tree-sequence recording method (Kelleher et al., 2018), which stores the 39

genealogical history of all genomes in the simulated population, could provide such an advance. 40

This method has several benefits: (1) it allows neutral mutations to be omitted entirely from 41

forward-time simulations and added later, thereby dramatically improving computational 42

efficiency; (2) it allows neutral burn-in to be constructed extremely efficiently after the fact, using 43

“recapitation”; (3) it allows direct examination and analysis of the genealogical trees along the 44

genome; and (4) it provides a compact representation of a population’s genealogy that can be 45

analyzed in Python using the msprime package. We have implemented the tree-sequence 46

recording method in SLiM 3 (a free, open-source evolutionary simulation software package) and 47

extended it to allow the recording of non-neutral mutations, greatly broadening the utility of this 48

method. To demonstrate the versatility and performance of this approach, we showcase several 49

practical applications that would have been beyond the reach of previously existing methods, 50

opening up new horizons for the modeling and exploration of evolutionary processes. 51

Keywords 52

pedigree recording, coalescent, background selection, genealogical history, selective sweeps, tree 53
sequences 54

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Introduction 55

Forward simulations are increasingly important in population genetics and evolutionary biology. 56

For example, they can be useful for modeling the expected evolutionary dynamics of real-world 57

systems (Fournier-Level et al., 2016; Cotto et al., 2017; Matz et al., 2018; Ryan et al., 2018), for 58

discovering the ecological and evolutionary mechanisms that led to present-day genomic patterns 59

in a species (Enard et al., 2014; Nowak et al., 2014; Arunkumar et al., 2015; Patel et al., 2018), 60

for testing or validating empirical and statistical methods (Haller and Hendry, 2013; Caballero et 61

al, 2015; Ewing et al., 2016; Haller and Messer, 2017a), and for exploring theoretical ideas about 62

evolution (Haller et al., 2013; Assaf et al., 2015; Mafessoni and Lachmann, 2015; Champer et. al, 63

2018), among other purposes. Because of this broad utility, there is a growing desire to run 64

simulations with increased realism in a variety of areas: longer genomic regions up to the scale of 65

full genome sequences, large populations, selection at multiple loci with linkage effects, complex 66

demography, ecological interactions with other organisms and the environment, explicit space 67

with continuous landscapes, spatial variation in environmental variables, spatial interactions such 68

as competition and mate choice between organisms, and so forth. 69

However, this type of realism comes at a price, in both processing time and memory usage. 70

Since computational resources are finite, this can often make it difficult or, in practical terms, 71

impossible to run some models. Advances in computing power have gradually extended the 72

boundaries of what is possible, as have performance improvements due to improved forward 73

simulation software (Messer, 2013; Thornton, 2014; Haller and Messer, 2017b), but 74

computational overhead continues to hold back progress in the field by limiting the level of 75

realism that can be attained in models. 76

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

From this perspective, the recently developed pedigree recording or “tree-sequence recording” 77

method (Kelleher et al., 2018) is potentially transformative. Kelleher et al. (2018) have shown 78

that, perhaps counterintuitively, the recording of all ancestry information for the entire population 79

can actually improve the runtime by orders of magnitude. These gains in efficiency are made 80

possible by the succinct tree sequence data structure (or “tree sequence”, for brevity) that lies at 81

the heart of the msprime coalescent simulator (Kelleher et al., 2016), subsequently refined in 82

Kelleher et al. (2018). The tree sequence data structure is a concise encoding of the correlated 83

genealogies along a chromosome resulting from evolution in sexually reproducing populations 84

(Figure 1). The sequence of trees along a genome has been studied for some time (Hudson, 85

1983), and is closely linked to the concept of an “Ancestral Recombination Graph” or ARG 86

(Griffiths, 1991; Griffiths & Marjoram, 1997). The use of the term “ARG” has historically been 87

ambiguous, however, sometimes referring to the stochastic process generating these trees, rather 88

than the resulting tree sequence itself, so we use the term “tree sequence” here to refer to this 89

sequence of trees in the particular representation described by Kelleher et al. (2016, 2018). 90

Precisely the same tree sequence data structure can be used to record each generation’s parent–91

child relationships. This data structure will then record who each individual inherited each 92

section of chromosome from, for every individual that ever lived. However, there is a massive 93

amount of redundancy in this information, since many of the individuals simulated in the past 94

will leave no descendants in the extant population. The key insight of Kelleher et al. (2018) was 95

to provide an efficient algorithm to remove this redundancy by periodically “simplifying” the tree 96

sequence. This combination – the tree sequence data structure and an efficient algorithm for 97

simplifying it – allows complete genealogies for all extant individuals to be recorded efficiently 98

in forward simulations for the first time. 99

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

The most immediate advantage of recording a tree sequence during forward simulation is that it 100

allows neutral mutations to be omitted entirely; neutral mutations can simply be overlaid onto the 101

tree sequence after forward simulation has completed, because by definition they do not affect the 102

genealogies. This provides an immense efficiency benefit, since neutral mutations then only need 103

to be added along those branches of the tree from which the individuals of interest at the end of 104

the simulation have inherited; all other ancestral branches, which typically comprise the vast 105

majority of the full tree, can be ignored since they do not contribute to those individuals. Given 106

that many forward simulations spend the large majority of their time managing neutral mutations, 107

with considerable bookkeeping overhead in each generation, neutral mutation overlay following 108

forward simulation has been shown to improve performance by an order of magnitude or more 109

while producing provably statistically identical results (Kelleher et al., 2018). 110

A second advantage of recording genealogies is that the recorded tree sequence from a forward 111

simulation can be used as the basis for the construction of a neutral “burn-in” history for the 112

simulated population after forward simulation is complete, using (usually much faster) coalescent 113

simulation. The burn-in period of a simulation can be immensely time-consuming, often taking 114

much longer than the simulation of the evolutionary dynamics that are actually of interest; the 115

overhead of burn-in can therefore present a large obstacle for many models. With a method that 116

we call “recapitation”, we can leverage the information in the tree sequence to prepend a 117

coalescent simulation of the burn-in period, speeding up the burn-in process by many orders of 118

magnitude. 119

A third important advantage is that the pattern of ancestry and inheritance is in itself very 120

useful. For many statistics of interest, and in particular for inferring specific events that occurred 121

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

in the past, sequence-based data from mutations is essentially an extra layer of noise over the 122

signal of interest contained in the genealogies. Direct access to the precise genealogical history 123

of the simulated population allows the signal to be analyzed without the noise, gaining significant 124

statistical power. An expanding set of open-source tools makes it possible to load, analyze, and 125

even manipulate a recorded tree sequence using simple Python code, allowing open-ended 126

flexibility in analysis. 127

A fourth compelling advantage is that the recorded tree sequence files are very small and 128

enable very efficient calculation of population-genetic statistics (Kelleher et al. 2016, 2018). The 129

files output from even the largest simulations are rarely bigger than a few hundred megabytes, 130

and may be tens of thousands of times smaller than alternatives such as VCF and Newick. 131

Despite this high level of compression, tree sequences can be processed very efficiently; statistics 132

of interest such as allele frequencies within cohorts can often be computed incrementally, leading 133

to very efficient algorithms (Kelleher et al. 2016). Calculation of statistics of this sort from 134

simulated data can be very time-consuming, especially when long genomes are involved and 135

many replicate simulation runs have been performed, so the ability to speed up such calculations 136

is quite important. 137

Given these advantages, we have worked to integrate tree-sequence recording into SLiM 3, a 138

new major release of the free, open-source SLiM simulation software package 139

(http://messerlab.org/slim/). It is now possible to enable tree-sequence recording in any SLiM 140

model with a simple flag set in the model’s script, and then to output the recorded tree sequence 141

at any point in the simulation. In addition, we have extended the original tree-sequence recording 142

method (Kelleher et al. 2018) to allow for the recording of mutations during forward simulation. 143

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

This allows the tree-sequence output format, a .trees file, to be used in SLiM as a way of saving 144

and then restoring the state of a simulation while preserving information about ancestry, and 145

allows the mutations that occurred during forward simulation to be accessed later in Python-based 146

analyses. 147

To illustrate the large advantages provided by tree-sequence recording, and to show how to 148

take advantage of those benefits when using SLiM for forward simulation, we will present four 149

practical examples of the method. In the first example, we will show the impressive performance 150

benefits that can be achieved with tree-sequence recording compared to a classical forward 151

simulation. The second example will use tree-sequence recording to efficiently simulate 152

background selection near genes undergoing deleterious mutations, quantifying the expected 153

effect of background selection on levels of neutral diversity by measuring the heights of trees in 154

the recorded tree sequence. Our third example will be a model of admixture between two 155

subpopulations, showing how to use the recorded tree sequence in calculating the mean true local 156

ancestry at every position along a chromosome. Finally, the fourth example will illustrate how 157

the “recapitation” method allows msprime to be used to extremely efficiently add a “neutral burn-158

in” history to a completed SLiM simulation of a selective sweep, by coalescing the simulation’s 159

initial population backward in time. 160

Examples 161

Examples were executed on a MacBook Pro (2.9 GHz Intel Core i7, 16 GB RAM) running 162

macOS 10.13.5, using Python 3.4.8, R 3.5.0, SLiM 3.1, msprime 0.6.1, and pyslim 0.1. Reported 163

times were measured with the Python timeit package. Peak memory usage for SLiM runs was 164

assessed with SLiM’s -m command-line option. The timing comparison (Figure 2) was executed 165

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

on the same hardware, with macOS 10.13.4, R 3.4.3, SLiM 3.0, and msprime 0.6.0, using the 166

Un*x tool /usr/bin/time for timing (summing the reported user time and system time); we 167

believe the times measured would not change significantly with the newer software versions. The 168

full source code for the examples and timing tests, including timing and plotting code that is 169

omitted here, may be found at https://github.com/bhaller/SLiMTreeSeqPub. These examples use 170

the matplotlib (Hunter, 2007) and numpy (Oliphant, 2006) packages for Python. 171

Example I: A simple neutral model 172

Our first example is a model of a neutrally evolving chromosome of length L = 108 base 173

positions, with uniform mutation rate µ = 10−7 and recombination rate r = 10−8 (both expressed as 174

the event probability per base per generation), in a panmictic diploid population of size N = 500, 175

running for a duration of 10N = 5000 non-overlapping generations. The SLiM configuration 176

script for this basic model is very simple: 177

initialize() { 178
 initializeMutationRate(1e-7); 179
 initializeMutationType("m1", 0.5, "f", 0.0); 180
 initializeGenomicElementType("g1", m1, 1.0); 181
 initializeGenomicElement(g1, 0, 1e8-1); 182
 initializeRecombinationRate(1e-8); 183
} 184
1 { 185
 sim.addSubpop("p1", 500); 186
} 187
5000 late() { 188
 sim.outputFull("ex1_noTS.slimbinary", binary=T); 189
} 190

This sets up a single “genomic element” spanning the full length of the chromosome, with 191

neutral mutations of type m1 generated at the desired rate, and with the desired recombination 192

rate. In generation 1 a new subpopulation of the desired size is created, and the model runs to 193

generation 5000, after which it outputs the full simulation state. The SLiM manual provides 194

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

additional explanation of these concepts (Haller and Messer, 2016). This model took 211.9 195

seconds to run, and reached a peak memory usage of 443.8 MB. 196

Tree-sequence recording can easily be enabled for this model with a call to 197

initializeTreeSeq(): 198

initialize() { 199
 initializeTreeSeq(); 200
 initializeMutationRate(0); 201
 initializeMutationType("m1", 0.5, "f", 0.0); 202
 initializeGenomicElementType("g1", m1, 1.0); 203
 initializeGenomicElement(g1, 0, 1e8-1); 204
 initializeRecombinationRate(1e-8); 205
} 206
1 { 207
 sim.addSubpop("p1", 500); 208
} 209
5000 late() { 210
 sim.treeSeqOutput("ex1_TS.trees"); 211
} 212

Note that we have now also set the mutation rate to zero; SLiM no longer needs to model 213

neutral mutations because they can be overlaid in a later step more efficiently. A .trees file is 214

output at the end of the run, instead of calling SLiM’s outputFull() method, so that the recorded 215

tree sequence is preserved. In all other respects these models are identical. This is typical of 216

adapting a SLiM model to use tree-sequence recording: in general, the aim is to remove the 217

modeling of neutral mutations while preserving other aspects of the model verbatim. 218

After simulation has completed, neutral mutations are overlaid upon the saved tree sequence. 219

The full model – running the SLiM model and then doing the final mutation overlay step – can be 220

executed with a simple Python script: 221

import subprocess, msprime, pyslim 222
 223
Run the SLiM model 224
subprocess.check_output(["slim", "-m", "-s", "0", "ex1_TS.slim"]) 225
 226
Overlay neutral mutations 227
ts = pyslim.load("ex1_TS.trees") 228
mutated = msprime.mutate(ts, rate=1e-7, random_seed=1, keep=True) 229
mutated.dump("ex1_TS_overlaid.trees") 230

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

This script uses the msprime Python package to overlay neutral mutations upon the recorded 231

tree sequence. The result is precisely the same, statistically, as if the neutral mutations were 232

included in the forward simulation, except that the vast majority of the bookkeeping work in each 233

generation is avoided because mutations only need to be overlaid upon the ancestral genomic 234

regions that persisted to the end of the simulation. 235

Note that pyslim is used to load the .trees file; this package provides a bridge between SLiM 236

and msprime, and should generally be used to load and save .trees files in Python if the files are 237

coming from or going to SLiM. The pyslim package extends the msprime tree sequence class by 238

adding support for SLiM’s metadata annotations to the tree sequence, providing an interface for 239

reading or modifying that metadata as well as for generating SLiM-compliant .trees files that 240

contain the required metadata. The .trees files output by SliM can be read directly by msprime, 241

but the returned object will have reduced functionality compared to those returned by pyslim. 242

The total time to execute this Python code is 4.37 seconds, almost 50 times faster than the 243

model without tree-sequence recording. Most of the runtime (4.09 seconds) is spent running the 244

SLiM model; the final mutation overlay by msprime is extremely fast. The peak memory usage 245

during the SLiM run is 145.8 MB, less than one-third of the memory usage of the model without 246

tree-sequence recording. Tree-sequence recording can often reduce memory usage, since the tree 247

sequence data structure is quite compact compared to SLiM’s in-memory representation of the 248

neutral mutations that would be segregating in such a model. Tree sequences are also very 249

compact on disk; the final .trees file here, with mutations overlaid, takes about 8.9 MB, as 250

compared to 84.2 MB for the ex1_noTS.slimbinary file from the SLiM model without tree-251

sequence recording, 559 MB for a Newick file, and 366 MB for a VCF file – even though the 252

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

.trees file contains ancestry information not included by the SLiM and VCF formats. A VCF 253

file containing the sequences of the final generation can be produced from a .trees file with 254

msprime’s write_vcf() method, but the ancestry information is lost. 255

The speedup produced by this tree-sequence recording method can vary dramatically 256

depending upon the details of the simulation; all of the work to track neutral mutations is 257

eliminated, but new work is added involving the recording of all the recombination events that go 258

into producing the tree sequence. In general, the largest speedup will be observed with very long 259

chromosomes with many neutral mutations when the recombination rate is not too high; indeed, 260

when modeling a very short chromosome the overhead of tree-sequence recording can outweigh 261

the savings from omitting neutral mutations (see Discussion). 262

To further illustrate the performance benefits of tree-sequence recording, we conducted a set of 263

timing comparisons between SLiM without tree-sequence recording, SLiM with tree-sequence 264

recording, and msprime’s coalescent simulation method. These comparisons involved essentially 265

the same model as shown above: a neutral panmictic model of diploids with non-overlapping 266

generations, with a population size N = 500, recombination rate r = 10−8 per base position per 267

generation, and mutation rate µ = 10−7 per base position per generation. The chromosome length 268

L was varied over {105, 106, 107, 108, 109, 1010}, with ten runs of each model at each value of L 269

using different random seeds. The number of generations varied with L (details below). The 270

msprime coalescent was run both with a final haploid sample size n equal to the full population 271

size (n = 2N), and with a much smaller sample size (n = 2N/100); in both cases, Ne = N was used. 272

To verify that tree-sequence recording produced results equivalent to the coalescent, we checked 273

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

that the mean TMRCAs for the L = 1010 runs for the two methods did not differ significantly 274

(p = 0.7791). 275

The average runtimes obtained are shown in Figure 2. As L increased, the benefit of tree-276

sequence recording compared to SLiM without tree-sequence recording became increasingly 277

large, topping out at a performance improvement of more than two orders of magnitude for 278

L = 109 and L = 1010. Coalescent simulations with msprime were much faster than the tree-279

sequence recording method, as expected, except at L = 1010, where msprime’s speed was 280

comparable to that of SLiM with tree-sequence recording. It appears that SLiM with tree-281

sequence recording would be faster for L larger than 1010. The number of events the coalescent 282

must simulate is quadratic in L, empirically, but with a small leading coefficient such that 283

msprime is quite fast even for reasonably large chromosome sizes (Kelleher et al. 2016). With 284

very large values of L, however, this O(L2) term begins to dominate and SLiM with tree-sequence 285

recording becomes faster. This may be chiefly of theoretical interest, since L = 1010 is already a 286

very long chromosome (approximately three times the length of the full human genome). It is 287

also noteworthy that the msprime coalescent is only marginally faster for a sample of n = 2N/100 288

than for a full population sample of n = 2N; as more samples are added to a gene tree, the new 289

samples tend to attach to already existing branches quite quickly (Kingman, 1982). 290

Although the coalescent remains an order of magnitude faster for most practical purposes, it 291

can only be used in a few simple scenarios such as this; for models that require forward 292

simulation, tree-sequence recording offers large performance benefits over more traditional 293

forward simulation techniques. It is also worth noting that the coalescent is only an 294

approximation of the Wright–Fisher model, and will diverge from it under certain conditions 295

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

(Wakeley et al., 2012; Bhaskar et al., 2014) – one such condition being a sample size that is no 296

longer small compared to the population size, as is the case for our n = 2N msprime runs here. 297

Forward simulation may therefore be preferable in order to obtain exact results under such 298

conditions. 299

How long do we run it? In general, it is desirable to run forward-time simulations “until 300

convergence” – until the effects of the starting configuration are forgotten. This occurs (in most 301

situations) when all genealogical trees have coalesced, meaning that at every position in the 302

genome a common ancestor to the entire final generation has appeared. In practice, models are 303

often run for 10N generations, a rule of thumb that is thought to suffice in most cases. However, 304

this is a thorny problem: longer chromosomes tend to require longer for coalescence, simply 305

because with more sites it is more likely that coalescence takes exceptionally long at some site. 306

In the simulations of Figure 2, we ran each simulation for the expected number of generations 307

required for coalescence at that value of L, which increased linearly with log(L), from about 3N 308

for L = 1e5 to 15N for L = 1e10. This sufficed to make the comparison between SLiM and 309

msprime “fair”, but a better practical solution, recapitation, will be shown in Example 4. We 310

determined the expected number of generations empirically by running the same model 500 times 311

at each value of L with “coalescence detection” enabled (by passing checkCoalescence=T to 312

initializeTreeSeq()). The mean and other summary statistics for each value of L (Table S1) 313

agree with expectations from extreme value theory (Berman, 1964), with the expected time until 314

coalescence growing roughly as 1000 log(L) − 10000. 315

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Example II: Background selection 316

Our second example is a model of background selection, a term which describes the effect that 317

purifying selection against deleterious mutations imposes on genetic variation at linked sites. 318

Such purifying selection should be particularly common in genic regions, where many genomic 319

positions should be subject to selective constraints. This background selection, like many types 320

of linked selection more generally, is expected to produce a “dip in diversity” in the surrounding 321

non-coding regions, with a signature of decreasing genetic diversity with decreasing distance to 322

the nearest gene (Charlesworth et al. 1993; Hudson 1994; Sattath et al., 2011; Elyashiv et al., 323

2016). Here is a SLiM model that uses tree-sequence recording to model this scenario: 324

initialize() { 325
 defineConstant("N", 10000); // pop size 326
 defineConstant("L", 1e8); // total chromosome length 327
 defineConstant("L0", 200e3); // between genes 328
 defineConstant("L1", 1e3); // gene length 329
 initializeTreeSeq(); 330
 initializeMutationRate(1e-7); 331
 initializeRecombinationRate(1e-8, L-1); 332
 initializeMutationType("m2", 0.5, "g", -(5/N), 1.0); 333
 initializeGenomicElementType("g2", m2, 1.0); 334
 335
 for (start in seq(from=L0, to=L-(L0+L1), by=(L0+L1))) 336
 initializeGenomicElement(g2, start, (start+L1)-1); 337
} 338
1 { 339
 sim.addSubpop("p1", N); 340
 sim.rescheduleScriptBlock(s1, 10*N, 10*N); 341
} 342
s1 10 late() { 343
 sim.treeSeqOutput("ex2_TS.trees"); 344
} 345

This model sets up a chromosome that consists of genes of length L1 = 1 kb, separated by non-346

coding regions of length L0 = 200 kb. The total chromosome length is L = 108 bases, and 496 347

genes fit within it. The model uses a mutation rate of µ = 10−7 for deleterious mutations that can 348

arise within the genes; no other mutations are modeled. The deleterious mutations are given 349

selection coefficients drawn from a Gamma distribution with mean −5/N and shape parameter 350

α = 1 (modeling a scenario of moderately deleterious mutations with 2Ns = −10 on average). We 351

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

assume co-dominance with h = 0.5. A population of size N = 10000 is started in generation 1, 352

and the model runs until generation G = 10N (the output event, s1, is rescheduled dynamically to 353

that generation). 354

We can run this model and then conduct post-run analysis with a Python script: 355

import os, subprocess, msprime, statistics, pyslim 356
import matplotlib.pyplot as plt 357
import numpy as np 358
 359
Run the SLiM model and load the resulting .trees file 360
subprocess.check_output(["slim", "-m", "-s", "0", "ex2_TS.slim"]) 361
ts = pyslim.load("ex2_TS.trees").simplify() 362
 363
Measure the tree height at each base position 364
height_for_pos = np.zeros(int(ts.sequence_length)) 365
for tree in ts.trees(): 366
 mean_height = statistics.mean([tree.time(root) for root in tree.roots]) 367
 left, right = map(int, tree.interval) 368
 height_for_pos[left: right] = mean_height 369
 370
Convert heights along the chromosome into heights at distances from a gene 371
height_for_pos = height_for_pos - np.min(height_for_pos) 372
L, L0, L1 = int(1e8), int(200e3), int(1e3) 373
gene_starts = np.arange(L0, L - (L0 + L1) + 1, L0 + L1) 374
gene_ends = gene_starts + L1 - 1 375
max_distance = L0 // 4 376
height_for_left_distance = np.zeros(max_distance) 377
height_for_right_distance = np.zeros(max_distance) 378
for d in range(max_distance): 379
 height_for_left_distance[d] = np.mean(height_for_pos[gene_starts - d - 1]) 380
 height_for_right_distance[d] = np.mean(height_for_pos[gene_ends + d + 1]) 381
height_for_distance = np.hstack([height_for_left_distance[::-1], 382
 height_for_right_distance]) 383
distances = np.hstack([np.arange(-max_distance, 0), np.arange(1, max_distance + 1)]) 384
 385
Make a simple plot 386
plt.plot(distances, height_for_distance) 387
plt.show() 388

The first line after the import statement runs the SLiM model; this took 15643 seconds (4.35 389

hours) to execute. This is not short – it is still a fairly complex model! – but it is far shorter than 390

the alternative, a SLiM model without tree-sequence recording and including neutral mutations in 391

the non-coding regions. That alternative model would take ~83 hours, by extrapolation – 392

probably a conservative estimate, since the model had not yet reached mutation–selection balance 393

and was still slowing down when its timing was measured. The use of tree-sequence recording 394

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

here results, then, in a relatively modest speedup of 19 times. This makes sense, since the model 395

with tree-sequence recording still must keep track of a very large number of segregating 396

deleterious mutations. However, it is worth noting that the final result from this alternative 397

model would provide far less statistical power, since inference from it would be based only upon 398

the observed pattern of neutral mutations in one run, rather than the actual pattern of ancestry at 399

each chromosome position; to provide the same power, this alternative model would likely have 400

to be run many times or use a much higher mutation rate. If more performance gains were 401

needed, the model could perhaps be rescaled as well (see Discussion). 402

The rest of the code conducts post-run analyses. First, the .trees file from the SLiM run is 403

read in with pyslim.load() as in the previous example; here, however, we call simplify() 404

(Kelleher et al. 2018) upon the loaded tree sequence, which requires some explanation. SLiM 405

automatically retains, in the tree sequence, nodes corresponding to the original ancestors of each 406

subpopulation that was created with addSubpop(). This is done for various reasons, including 407

allowing ancestry to be more easily traced and enabling recapitation (see Example 4). When 408

SLiM saves a .trees file, these ancestors are present in the tree sequence but are not marked as 409

“samples”, and will therefore disappear after a simplify() operation. In many cases these 410

ancestors are harmless, as in Example 1; in fact, in Example 1, calling simplify() to remove 411

them would mean that mutations would be overlaid only back to the point of coalescence, rather 412

than to the beginning of forward simulation. Here, however, since we want to measure the 413

heights of trees in the tree sequence, these ancestors would complicate things for us; all trees 414

would be rooted in those ancestors, at the beginning of forward simulation. We therefore call 415

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

simplify() to remove them (when the model has coalesced below them; they are retained when 416

still in use by the tree sequence). Example 4 will delve into this matter further. 417

Next, a vector containing the mean tree height at each base position (height_for_pos) is 418

constructed by walking through the tree sequence to find the set of trees representing the ancestry 419

of every individual in the final generation at a given position. The mean tree height is a metric of 420

the time to the most recent common ancestor at a given base position, and thus of diversity at that 421

base position; background selection will tend to reduce the mean tree height, thereby lowering the 422

expected levels of diversity at a locus. 423

An aside: there can be a set of trees for a given position, rather than just a single tree, if the 424

forward simulation was not run sufficiently long for coalescence to have occurred at every 425

position in the genome. In msprime this is modelled by allowing trees to have multiple roots. 426

Each root represents the most recent common ancestor of some subset of the extant population at 427

that location in the genome; if coalescence has not occurred, then the final population should still 428

contain genetic variation that was segregating in the initial population, since different individuals 429

inherit from different roots of the ancestry tree. Since the model here ran for 10N generations, we 430

can hope that it has coalesced at most or all positions; but unless a model is explicitly run out to 431

coalescence (or recapitated), it is always possible that multiple roots will exist, and so robust code 432

ought to handle that case by looping over the roots for each tree as we do here. 433

These mean tree heights along the chromosome are then converted to mean tree heights at 434

distances from the nearest gene (height_for_distance), taking into account the somewhat 435

complex genetic structure of the model. Finally, the relationship between distance to the nearest 436

gene and tree height is plotted. These analyses took 12.39 seconds to complete. Note that neutral 437

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

mutations were never simulated at all; the analysis is based upon the tree sequence itself, not 438

upon the distribution of neutral mutations. 439

A plot of the results can be seen in Figure 3, showing the well-known “dip in diversity” 440

realized here through simulation. As the distance to the nearest gene decreases, diversity dips due 441

to the background selection exerted by selection against deleterious mutations within the gene. 442

Example III: True local ancestry mapping 443

Our third example involves mapping the true local ancestry at every position along a 444

chromosome in a two-subpopulation admixture model with adaptive introgression at two partially 445

linked loci. This is an important dynamic in all sorts of biological systems, from human–446

Neanderthal admixture to hybrid zones between divergent bird populations; one often wishes to 447

be able to find which ancestral population each chromosomal region traces back to. The SLiM 448

model looks like this: 449

initialize() { 450
 defineConstant("L", 1e8); 451
 initializeTreeSeq(); 452
 initializeMutationRate(0); 453
 initializeMutationType("m1", 0.5, "f", 0.1); 454
 initializeGenomicElementType("g1", m1, 1.0); 455
 initializeGenomicElement(g1, 0, L-1); 456
 initializeRecombinationRate(1e-8); 457
} 458
1 late() { 459
 sim.addSubpop("p1", 500); 460
 sim.addSubpop("p2", 500); 461
 sim.treeSeqRememberIndividuals(sim.subpopulations.individuals); 462
 463
 p1.genomes.addNewDrawnMutation(m1, asInteger(L * 0.2)); 464
 p2.genomes.addNewDrawnMutation(m1, asInteger(L * 0.8)); 465
 466
 sim.addSubpop("p3", 1000); 467
 p3.setMigrationRates(c(p1, p2), c(0.5, 0.5)); 468
} 469
2 late() { 470
 p3.setMigrationRates(c(p1, p2), c(0.0, 0.0)); 471
 p1.setSubpopulationSize(0); 472
 p2.setSubpopulationSize(0); 473
} 474
2: late() { 475
 if (sim.mutationsOfType(m1).size() == 0) 476

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

 { 477
 sim.treeSeqOutput("ex3_TS.trees"); 478
 sim.simulationFinished(); 479
 } 480
} 481
10000 late() { 482
 stop("Did not reach fixation of beneficial alleles."); 483
} 484

The initialize() callback sets up tree-sequence recording with a mutation rate of µ = 0 and a 485

recombination rate of r = 10−8 along a chromosome of length L = 108. Although the mutation rate 486

is zero, a mutation type m1 is defined representing beneficial mutations with a selection 487

coefficient of s = 0.1; mutations of this type will be added in generation 1. 488

In generation 1 we create two subpopulations, p1 and p2, of 500 individuals each; these are the 489

original subpopulations that will admix. We tell SLiM to remember these individuals forever as 490

ancestors in the tree sequence, with treeSeqRememberIndividuals(), because we want them to 491

act as the roots of all recorded trees so that we can establish local ancestry using them. Note that 492

this is not strictly necessary, since (as discussed in Example 2) SLiM automatically retains the 493

root ancestors for each population; we could rely upon that, and we would be fine as long as we 494

did not simplify() after loading the tree sequence in Python. The use of 495

treeSeqRememberIndividuals() has been shown here for purposes of illustration, however, 496

since some models may wish to remember non-root individuals for analysis. Next, we add a 497

beneficial mutation at 0.2L in p1, and another at 0.8L in p2; the expectation is that by the end of 498

the run all individuals will be recombinants that carry both of these mutations. Finally, we create 499

subpopulation p3 and tell SLiM that it will be composed entirely of migrants from p1 and p2 in 500

equal measure. 501

By the end of generation 2, subpopulation p3 has received its offspring generation from p1 and 502

p2 as intended, so we can now remove p1 and p2 from the model and allow p3 to evolve. At this 503

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

stage, all individuals in p3 are still unmixed, having been generated from parents in either p1 or 504

p2, but beginning in generation 3 they will start to mix. 505

Finally, we have some output and termination code. If both m1 mutations fix, they are 506

converted to Substitution objects by SLiM, and when that is detected the model writes out a 507

final .trees file and terminates. If we reach generation 10000 without that happening, the 508

admixture failed, and we stop with an error. This model is conceptually similar to recipe 13.9 in 509

the SLiM manual (Haller and Messer, 2016), but has been converted to use tree-sequence 510

recording, so you can refer to the manual’s recipe for additional commentary. 511

We can run this model from a Python script and do post-run analysis, as we did in Example 2: 512

import os, subprocess, msprime, pyslim 513
import matplotlib.pyplot as plt 514
import numpy as np 515
 516
Run the SLiM model and load the resulting .trees file 517
subprocess.check_output(["slim", "-m", "-s", "0", "ex3_TS.slim"]) 518
ts = pyslim.load("ex3_TS.trees").simplify() 519
 520
Assess the true local ancestry at each base position 521
breaks = np.zeros(ts.num_trees + 1) 522
ancestry = np.zeros(ts.num_trees + 1) 523
for tree in ts.trees(sample_counts=True): 524
 subpop_sum, subpop_weights = 0, 0 525
 for root in tree.roots: 526
 leaves_count = tree.num_samples(root) - 1 # subtract one for the root 527
 subpop_sum += tree.population(root) * leaves_count 528
 subpop_weights += leaves_count 529
 breaks[tree.index] = tree.interval[0] 530
 ancestry[tree.index] = subpop_sum / subpop_weights 531
breaks[-1] = ts.sequence_length 532
ancestry[-1] = ancestry[-2] 533
 534
Make a simple plot 535
plt.plot(breaks, ancestry) 536
plt.show() 537

The first line after the import statements runs the SLiM model, which completes in just 0.416 538

seconds, with peak memory usage of 55.6 MB; since it tracks only two mutations, and typically 539

terminates by generation 150 or so, it is very quick. 540

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

The equivalent SLiM model to achieve true local ancestry mapping without tree-sequence 541

recording has to model a mutation at each base position, as can be seen in recipe 13.9 in the SLiM 542

manual (Haller and Messer, 2016). A direct comparison is not possible, because recipe 13.9 543

scaled up to a chromosome length of L = 108 would take an estimated 7.2 days to run, and worse, 544

would require 8.1 TB (terabytes) of memory. Those estimates are derived from the pattern of 545

performance observed for recipe 13.9 with L = 5×105, L = 106, and L = 2×106 (the upper limit on 546

our test machine due to memory usage), extrapolated out to L = 108. Implementing this model 547

with tree-sequence recording therefore reduces the runtime by a factor of more than 1.35 million, 548

and reduces the memory usage by a factor of more than 160,000. 549

Similar to Example 2, the post-run analysis walks through the tree sequence, but in this case, 550

computes the mean true local ancestry (the fractional ancestry from subpopulation p1 versus p2) 551

for each tree. This is done by finding the roots for the tree, assessing the subpopulations of origin 552

of those root individuals, and averaging those together weighted by the number of descendants 553

from each root. A simple plot is then produced. In this example, the analysis took 62.2 seconds; 554

the analysis runtime is relatively long because the trees here typically have many roots, so the 555

inner loop is executed a great many times. 556

The final plot of true local ancestry by chromosome position is shown in Figure 4. The mean 557

true local ancestry at the points where the beneficial mutations were introduced into p1 and p2 has 558

to be 100% p1 and 100% p2, respectively, since both beneficial mutations fixed by the end of the 559

run. At other points along the genome there is more variation, but with a general pattern of being 560

more completely admixed at the chromosome ends and middle, with gradations toward the 561

absolute p1 and p2 points. Since this is a single run of the model, the pattern is quite stochastic; 562

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

an average across many runs of this model could produce a smooth plot if desired, and since it 563

takes only a couple of minutes to execute the pipeline here, that would be very quick to do. This 564

method of calculating true local ancestry could be used by any SLiM model with tree-sequence 565

recording, so models with more complex demography, under any scenario of selection and 566

mating, with any recombination map, etc., could just as easily be explored. 567

Example IV: Neutral burn-in for a non-neutral model 568

Our final example illustrates a solution to the problem of neutral burn-in. In many applications 569

one wishes to execute a non-neutral forward simulation beginning with an equilibrium amount of 570

extant neutral genetic diversity, and the simulation needed to generate that pre-existing diversity, 571

typically called the model “burn-in”, can take quite a long time – often much longer than it takes 572

to execute the non-neutral portion of the simulation. For a model with a long chromosome or 573

large population size, this burn-in can be so long as to limit the practical scale of the simulations 574

that can be conducted. One solution to this is a “hybrid” approach, in which a forward simulation 575

is initialized with the result of a (much faster) coalescent simulation (similar to Bhaskar 2014). 576

This is now possible using tree sequences in SLiM, but we go a step further: even a great deal of 577

the work done in a coalescent simulation of this burn-in period is unnecessary. All of the 578

genealogical branches that go extinct are irrelevant; all that matters are those segments of 579

ancestral genomes from which the final generation inherits. With tree-sequence recording, one 580

can simulate only the histories of those segments, saving an immense amount of computation 581

relative to a forward-time burn-in simulation. 582

Here we will look at a fairly large model (N = 105; L = 106) that evolves under neutral 583

dynamics until coalescence (the neutral burn-in), after which follows some relatively brief non-584

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

neutral dynamics (a selective sweep). Running the burn-in period for this model in SLiM would 585

take an exceedingly long time, given the scale of the model, as we will see below. A better idea 586

is to use what we call “recapitation”: we can run the SLiM model forward from an initial state 587

that conceptually follows burn-in, and then use msprime to generate after the fact the coalescent 588

history for the initial individuals of the forward simulation. This can be done without simulating 589

neutral mutations, but if neutral mutations are desired as an end product of the simulation, they 590

can be overlaid at the end as in Example 1. 591

We begin with the SLiM model, which simulates the introduction and sweep to fixation of a 592

beneficial mutation. For simplicity, we will select a run of the model that happens to result in 593

fixation, rather than using a recipe that is conditional upon fixation; the random number seed 594

specified in the Python script below should produce that outcome. The SLiM model: 595

initialize() { 596
 initializeTreeSeq(simplificationRatio=INF); 597
 initializeMutationRate(0); 598
 initializeMutationType("m2", 0.5, "f", 1.0); 599
 m2.convertToSubstitution = F; 600
 initializeGenomicElementType("g1", m2, 1); 601
 initializeGenomicElement(g1, 0, 1e6 - 1); 602
 initializeRecombinationRate(3e-10); 603
} 604
1 late() { 605
 sim.addSubpop("p1", 100000); 606
} 607
100 late() { 608
 sample(p1.genomes, 1).addNewDrawnMutation(m2, 5e5); 609
} 610
100:10000 late() { 611
 mut = sim.mutationsOfType(m2); 612
 if (mut.size() != 1) 613
 stop(sim.generation + ": LOST"); 614
 else if (sum(sim.mutationFrequencies(NULL, mut)) == 1.0) 615
 { 616
 sim.treeSeqOutput("ex4_TS_decap.trees"); 617
 sim.simulationFinished(); 618
 } 619
} 620

This specifies a simple model with population size N = 105 diploid individuals, chromosome 621

length L = 106 base positions, and a recombination rate of r = 3×10−10 per base position per 622

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

generation, without mutation. It runs to generation 100 and then introduces the sweep mutation 623

(the delay before introduction is just to provide separation between the simulation start and the 624

start of the sweep in the plot produced below). When the sweep mutation is found to have fixed, 625

it then outputs a .trees file and stops. It specifies an infinite “simplification ratio” in the call to 626

initializeTreeSeq() so that simplification happens only once, at the point when the .trees file 627

is written out at the end; with this large of a model simplification takes a significant amount of 628

time, so this optional setting speeds the model up somewhat at the price of a higher peak memory 629

footprint. 630

As in previous examples, we will run this from a Python script that does post-run analysis: 631

import os, subprocess, msprime, pyslim 632
import numpy as np 633
import matplotlib.pyplot as plt 634
 635
Run the SLiM model and load the resulting .trees file 636
subprocess.check_output(["slim", "-m", "-s", "2", "ex4_TS.slim"]) 637
ts = pyslim.load("ex4_TS_decap.trees") # no simplify! 638
 639
Calculate tree heights 640
def tree_heights(ts): 641
 heights = np.zeros(ts.num_trees + 1) 642
 for tree in ts.trees(): 643
 if tree.num_roots > 1: # not fully coalesced 644
 heights[tree.index] = ts.slim_generation 645
 else: 646
 root_children = tree.children(tree.root) 647
 real_root = tree.root if len(root_children) > 1 else root_children[0] 648
 heights[tree.index] = tree.time(real_root) 649
 heights[-1] = heights[-2] # repeat the last entry for plotting with step 650
 return heights 651
 652
Plot tree heights before recapitation 653
breakpoints = list(ts.breakpoints()) 654
heights = tree_heights(ts) 655
plt.step(breakpoints, heights, where='post') 656
plt.show() 657
 658
Recapitate 659
recap = ts.recapitate(recombination_rate=3e-10, Ne=1e5, random_seed=1) 660
recap.dump("ex4_TS_recap.trees") 661
 662
Plot tree heights after recapitation 663
breakpoints = list(recap.breakpoints()) 664
heights = tree_heights(recap) 665
plt.step(breakpoints, heights, where='post') 666
plt.show() 667

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

After the import, we run the SLiM model (which takes 46.05 seconds) and load the .trees file 668

it saves out. We then immediately make a plot of mean tree heights along the chromosome. This 669

is similar to what we did in Example 2, but here it requires some extra finesse because we did not 670

simplify the tree sequence after loading it as we did then. To perform recapitation, we cannot 671

first simplify – we need the ancestral individuals that started the SLiM simulation to remain in the 672

tree sequence, so that recapitation can build upon them correctly. For this reason, every root in 673

the loaded tree sequence has the same time, corresponding to the beginning of the forward 674

simulation. The code in the tree_heights() function corrects for that, getting the height of the 675

child of the root if the forward simulation has coalesced below the original ancestor. This 676

provides the red line in Figure 5, showing that the area immediately around the introduced 677

mutation has coalesced at the time of the introduction (due to hitchhiking), but that the remainder 678

of the chromosome has not yet coalesced and thus has a tree height corresponding to the start of 679

forward simulation. These uncoalesced plateaus are what we will fix with recapitation. 680

The next step, then, is to perform the recapitation. This process works backwards from the tree 681

sequence information recorded by SLiM, constructing a full coalescent history for all of the 682

individuals alive at the end of the run. Since the non-neutral dynamics eliminated much of the 683

genetic diversity from the population as it existed at the beginning of forward simulation, this 684

coalescence requires very little work – much less than even a normal coalescent simulation for 685

this population size would require. In the example run discussed here, the process took 0.41 686

seconds. If neutral mutations are desired, they can then be overlaid on the recapitated tree 687

sequence following the method of Example 1; that code is not shown again here, but that 688

operation took another 0.58 seconds (with µ = 10−7). 689

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Finally, we plot the mean tree heights for the recapitated tree sequence; this produces the black 690

line in Figure 5. The uncoalesced plateaus have now coalesced to times as far as a million 691

generations in the past. This plot nicely illustrates the classical sweep pattern in which regions 692

closer to the position of the sweep tend to coalesce more recently, due to hitchhiking, than 693

regions farther away (Maynard-Smith and Haigh, 1974). 694

Simulating the neutral burn-in period in SLiM instead, with neutral mutations occurring at a 695

rate of µ = 10−7, would take an estimated 114.7 hours (from extrapolation; this is a very 696

conservative estimate since the model was nowhere near mutation–drift balance when times were 697

measured). Recapitation and neutral mutation overlay, with a total time of 0.99 seconds, 698

therefore sped up the burn-in process in this example by more than 400,000 times. 699

Recapitation is clearly much faster than conducting burn-in with forward simulation, then; it 700

should be faster than a rescaled forward simulation model too (since rescaling can generally not 701

be taken that far without introducing problematic artifacts; see Discussion), and faster even than 702

constructing the burn-in state with the coalescent (since recapitation is based upon the coalescent 703

but handles far fewer events). Recapitation provides other benefits as well, since it means that 704

neutral burn-in can be deferred until after forward simulation is complete, and can even be 705

conducted as an afterthought on existing model output. It also allows the non-neutral forward 706

simulation to run without a burn-in history needing to be loaded (likely making it faster and 707

leaner), and allows one to avoid the question of how many generations must be simulated for 708

complete burn-in. It is worth noting that the coalescent (and thus recapitation) does not produce 709

identical results to forward simulation of a Wright–Fisher model, but the differences are small 710

and are mostly in the pattern of the most recent branches (Wakeley et al., 2012; Bhaskar et al., 711

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

2014); using recapitation as an approximation for neutral forward simulation should therefore 712

produce practically identical results as long as the forward portion of the simulation runs for at 713

least a few generations. Similarly, although spatial models differ substantially from the standard 714

coalescent, this difference is mostly seen in the more recent portion of the trees; lineages that 715

have “mixed” across the species range without coalescing behave statistically like lineages in a 716

randomly mating population (Wilkins, 2004; Matsen and Wakeley, 2006). Recapitation with an 717

unstructured coalescent should therefore be a good approximation to pre-existing diversity in a 718

spatial simulation as well. 719

Note that constructing a burn-in history with recapitation is only equivalent to a period of 720

forward simulation if the burn-in period is completely neutral. If a non-neutral burn-in to 721

equilibrium is needed, the best approach is probably to run the burn-in period in SLiM with tree-722

sequence recording turned on and neutral mutations turned off (thus avoiding the cost of 723

simulating the neutral mutations during burn-in, as in Example 1). If a neutral burn-in is desired, 724

but the neutral mutations are then needed by the non-neutral portion of the simulation (perhaps 725

because some of the neutral mutations become non-neutral due to an environmental change), one 726

might simulate the burn-in period with the coalescent in msprime (including mutation), and then 727

save the result as a .trees file using pyslim; one could then read that .trees file into SLiM to 728

provide the initial state for further simulation. These techniques go beyond what we have space 729

to illustrate here, but the manual for SLiM 3 provides further recipes showing the use of tree-730

sequence recording. Since it is possible to move simulation data with full ancestry records back 731

and forth between msprime and SLiM, one can imagine many ways to combine the two to 732

leverage their strengths while avoiding their weaknesses. 733

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Discussion 734

We have integrated support for tree-sequence recording (Kelleher et al., 2018) into the popular 735

SLiM forward simulation software package. Tree-sequence recording can now be enabled in any 736

SLiM simulation, and the results output to a .trees file that can be loaded into Python for further 737

simulation or analysis using the msprime package (a part of the tskit framework). We have also 738

extended the tree-sequence recording method to allow the recording and output of mutations that 739

arise during forward simulation. 740

We provided four examples demonstrating the power of the tree-sequence recording method. 741

The first example, of a simple neutral model, showed how to enable tree-sequence recording with 742

a few trivial modifications to a SLiM model’s script. The second example illustrated the use of 743

recorded tree sequences in post-simulation analysis in Python to estimate the characteristic 744

reduction in neutral diversity expected around functional regions due to background selection. 745

The third example mapped the mean true local ancestry along the chromosome in a model of the 746

admixture of two subpopulations, again using post-simulation Python analysis. Finally, our 747

fourth example illustrated the use of msprime to “recapitate” a SLiM run, using the coalescent to 748

construct a neutral burn-in period after the completion of forward simulation. 749

All of these examples illustrated the large performance benefits that can be achieved with tree-750

sequence recording. Indeed, for very large neutral simulations our timing comparison indicated 751

that the speedup due to tree-sequence recording can exceed two orders of magnitude, and can put 752

the performance of forward simulation on par with an efficient coalescent-based simulation such 753

as msprime (Example 1). For a large simulation with many non-neutral mutations, we still 754

observed a speedup of more than an order of magnitude (Example 2); simulations with a lower 755

density of non-neutral mutations should benefit even more. Similarly, compared to standard 756

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

forward simulation methods, using recapitation to construct a neutral burn-in period provided a 757

speedup of more than five orders of magnitude (Example 4), and using the tree sequence to obtain 758

true local ancestry information provided a speedup of more than six orders of magnitude 759

(Example 3). Memory savings observed in these models were also quite substantial. 760

Although we have not made use of it in these examples, SLiM records substantial metadata in 761

the tree sequence it outputs about genomes, individuals, and mutations. This includes sex, age, 762

and spatial location of remembered individuals, and times of origination and selection 763

coefficients of mutations. This information, along with the tree sequence, could enable 764

substantially more detailed dissection of evolutionary trajectories. Access to this SLiM metadata 765

is mediated by the new pyslim package that bridges SLiM and msprime. Furthermore, the 766

.trees file contains all of the information necessary to reconstruct the internal state of the 767

simulation in SLiM, so it can be loaded back into SLiM, examined graphically using SLiMgui, 768

and even used as a starting point for further simulation (with some caveats; see the manual). 769

Tree-sequence recording is not a panacea. Models that do not involve neutral mutations will 770

not realize a speed benefit from tree-sequence recording’s ability to defer neutral mutation 771

overlay; in fact, they will run more slowly, since the overhead of recording will not be 772

compensated by eliminating neutral mutation simulation. Models that involve a very high 773

recombination rate relative to the mutation rate may also not see a speed benefit from tree-774

sequence recording, since tracking the recombination breakpoints can become very time-775

consuming; informal tests indicate that this becomes important, for neutral simulations, when the 776

recombination rate is two or more orders of magnitude larger than the mutation rate, however, so 777

it may not be a practical concern for most models. Even if simulation performance is not 778

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

improved by tree-sequence recording, the ancestry information provided by the tree sequence 779

may still speed up analysis or provide additional statistical power, which can also be quite 780

important in reducing total runtimes. The benefit of tree-sequence recording also depends upon 781

factors such as the proportion of neutral to non-neutral mutations, the distribution of fitness 782

effects from which the non-neutral mutations are drawn, the genetic architecture, the frequency 783

with which tree-sequence simplification is performed, and many other factors. In practice, it may 784

be worthwhile to simply compare the performance of both methods for a particular model; it is 785

difficult to distill any reliable rule of thumb. These considerations were discussed further in 786

Kelleher et al. (2018). 787

A commonly used technique for speeding up large forward simulations is model rescaling. 788

This involves scaling down the population size (N) by some factor Q, while scaling up the 789

mutation rate (µ), the recombination rate (r), and selection coefficients (s) by the same factor; this 790

holds many common population-genetic parameters constant, since they involve products of these 791

variables (e.g., Nµ, Nr, and Ns). Since these factors (as well as genetic drift) are rates, one 792

generation in the rescaled model corresponds to Q generations in the original model. Therefore, 793

rescaling by a factor Q can provide a speedup of up to a factor of Q2 due to the Q-times smaller 794

population size and the Q-times smaller number of generations that need to be simulated. 795

However, this technique has important limitations, because it can introduce artifacts due to the 796

discretization of mutation frequencies and of time. For example, if a model with an original 797

population size of N = 10,000 were rescaled to a model with N = 100, the smallest possible 798

mutation frequency will also have increased from 0.00005 to 0.005, which could severely affect 799

studies in which one is concerned about the behavior of low-frequency polymorphisms. There are 800

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

more serious issues related to the process of adaptation; since rescaled values of s are larger, 801

rescaling has the net effect of substituting many mutations of small effect with a single one of 802

large effect (with Q=100, replacing 100 mutations with s=0.001 by a single one of s=0.1). Thus, 803

rescaling must not be taken too far, and careful comparisons are needed between the unscaled and 804

the rescaled model to ensure that results are not altered by rescaling artifacts. The SLiM manual 805

(Haller and Messer, 2016) has an extended discussion of model rescaling and provides instructive 806

examples. Since tree-sequence recording does not introduce such artifacts, it probably ought to 807

be used to full advantage before any model rescaling is applied. If that does not bring the desired 808

simulation within practical computational bounds, rescaling may be used in conjunction with 809

tree-sequence recording, but with the same caveats mentioned above. Note, however, that the 810

effectiveness of combining both strategies is hard to predict, since the increased recombination 811

rate in the scaled model means that roughly the same number of recombination events must be 812

recorded. 813

Although tree-sequence recording is not appropriate in every model, the examples we have 814

presented demonstrate that the performance gains it provides can make simulations possible that 815

would previously have been beyond reach, opening up new horizons for exploration. The 816

software packages used here – SLiM, msprime, Python, R – are all free and open-source, and the 817

examples and analyses shown here are all available on GitHub. We hope that the practical 818

examples we have provided will raise the level of awareness among evolutionary biologists 819

regarding this exciting new method. 820

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Acknowledgements 821

Thanks to Kevin Thornton and Dom Nelson for helpful discussions. This work was supported by 822

funding from the College of Agriculture and Life Sciences at Cornell University, Predator Free 823

2050 (grant SS/05/01), and the NIH (grants R21AI130635 and R01GM127418) to PWM; by 824

funding from the Sloan Foundation and the NSF (under DBI-1262645) to PLR; and by the 825

Wellcome Trust (grant 100956/Z/13/Z) to Gil McVean for JK. 826

References 827

Arunkumar, R., Ness, R.W., Wright, S.I., and Barrett, S.C. (2015). The evolution of selfing is 828
accompanied by reduced efficacy of selection and purging of deleterious mutations. 829
Genetics 199(3), 817-829. 830

Assaf, Z.J., Petrov, D.A., and Blundell, J.R. (2015). Obstruction of adaptation in diploids by 831
recessive, strongly deleterious alleles. PNAS 112(20), E2658-E2666. 832

Berman, S.M. (1964). Limit theorems for the maximum term in stationary sequences. Ann. Math. 833
Statist. 35(2), 502–516. 834

Bhaskar, A., Clark, A.G., and Song, Y.S. (2014). Distortion of genealogical properties when the 835
sample is very large. PNAS 111(6), 2385–2390. 836

Caballero, A., Tenesa, A., & Keightley, P.D. (2015). The nature of genetic variation for complex 837
traits revealed by GWAS and regional heritability mapping analyses. Genetics 201(4), 838
1601–1613. 839

Charlesworth, B., Morgan, M.T., and Charlesworth, D. (1993). The effect of deleterious 840
mutations on neutral molecular variation. Genetics 134(4), 1289–1303. 841

Champer, J., Liu, J., Oh, S.Y., Reeves, R., Luthra, A., Oakes, N., Clark, A.G., and Messer, P.W. 842
(2018). Reducing resistance allele formation in CRISPR gene drive. PNAS (early access), 843
1–6. DOI: https://doi.org/10.1073/pnas.1720354115 844

Cotto, O., Wessely, J., Georges, D., Klonner, G., Schmid, M., Dullinger, S., Thuiller, W., and 845
Guillaume, F. (2017). A dynamic eco-evolutionary model predicts slow response of alpine 846
plants to climate warming. Nature Communications 8, 15399. 847

Elyashiv, E., Sattath, S., Hu, T. T., Strutsovsky, A., McVicker, G., Andolfatto, P., Coop, G. & 848
Sella, G. (2016). A genomic map of the effects of linked selection in Drosophila. PLoS 849
Genetics 12(8), e1006130. 850

Ewing, G.B., and Jensen, J.D. (2016). The consequences of not accounting for background 851
selection in demographic inference. Molecular Ecology 25(1), 135–141. 852

Enard, D., Messer, P.W., and Petrov, D.A. (2014). Genome-wide signals of positive selection in 853
human evolution. Genome Research 24(6), 885–895. 854

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Fournier-Level, A., Perry, E.O., Wang, J.A., Braun, P.T., Migneault, A., Cooper, M.D., Metcalf, 855
C.J.E., and Schmitt, J. (2016). Predicting the evolutionary dynamics of seasonal 856
adaptation to novel climates in Arabidopsis thaliana. PNAS 113(20), E2812–E2821. 857

Griffiths, R.C. The two-locus ancestral graph. In: Basawa, I.V., Taylor, R.L., eds. Selected 858
Proceedings of the Sheffield Symposium on Applied Probability, 1989. Hayward, 859
California: Institute of Mathematical Statistics, 1991: 100–117. 860

Griffiths, R.C., and Marjoram, P. (1997). An ancestral recombination graph. In: Donnelly P., 861
Tavare S., eds. Progress in Population Genetics and Human Evolution. Berlin, Germany: 862
Springer-Verlag, 1997: 257–270. 863

Haller, B.C., and Hendry, A.P. (2013). Solving the paradox of stasis: Squashed stabilizing 864
selection and the limits of detection. Evolution 68(2), 483–500. 865

Haller, B.C., R Mazzucco, R., and Dieckmann, U. (2013). Evolutionary branching in complex 866
landscapes. American Naturalist 182(4), E127-E141. 867

Haller, B.C., and Messer, P. W. (2016). SLiM: An Evolutionary Simulation Framework. URL: 868
http://benhaller.com/slim/SLiM_Manual.pdf 869

Haller, B.C., and Messer, P.W. (2017a). asymptoticMK: A web-based tool for the asymptotic 870
McDonald–Kreitman test. G3: Genes, Genomes, Genetics 7(5), 1569–1575. 871

Haller, B.C., and Messer, P.W. (2017b). SLiM 2: Flexible, interactive forward genetic 872
simulations. Molecular Biology and Evolution 34(1), 230–240. DOI: 873
http://dx.doi.org/10.1093/molbev/msw211 874

Hudson, R.R. (1983). Properties of a neutral allele model with intragenic recombination. 875
Theoretical Population Biology 23(2), 183–201. 876

Hudson, R.R. (1994). How can the low levels of DNA sequence variation in regions of the 877
Drosophila genome with low recombination rates be explained? PNAS 91(15), 6815–878
6818. 879

Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. Computing In Science & 880
Engineering 9(3), 90–95. 881

Kelleher, J, Etheridge, A.M., and McVean, G. (2016). Efficient coalescent simulation and 882
genealogical analysis for large sample sizes. PLoS Computational Biology 12(5): 883
e1004842. DOI: https://doi.org/10.1371/journal.pcbi.1004842 884

Kelleher, J., Thornton, K.R., Ashander, J., and Ralph, P.L. (2018). Efficient pedigree recording 885
for fast population genetics simulation. PLoS Computational Biology 14(11): e1006581. 886
DOI: https://doi.org/10.1371/journal.pcbi.1006581 887

Kingman, J.F.C. (1982). On the genealogy of large populations. Journal of Applied Probability 888
19, 27–43. 889

Mafessoni, F., and Lachmann, M. (2015). Selective strolls: fixation and extinction in diploids are 890
slower for weakly selected mutations than for neutral ones. Genetics 201(4), 1581–1589. 891

Matsen, F.A., and Wakeley, J. (2006). Convergence to the island-model coalescent process in 892
populations with restricted migration. Genetics 172(1), 701–708. 893

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Matz, M.V., Treml, E.A., Aglyamova, G.V., and Bay, L.K. (2018). Potential and limits for rapid 894
genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genetics 14(4), 895
e1007220. 896

Maynard-Smith, J., and Haigh, J. (1974). The hitch-hiking effect of a favourable gene. Genetics 897
Research 23(1), 23–35. 898

Messer, P.W. (2013). SLiM: Simulating evolution with selection and linkage. Genetics 194(4), 899
1037–1039. 900

Nowak, M.D., Haller, B.C., and Yoder, A.D. (2014). The founding of Mauritian endemic coffee 901
trees by a synchronous long-distance dispersal event. Journal of Evolutionary Biology 902
27(6), 1229–1239. 903

Oliphant, T.E. (2006). A guide to NumPy. U.S.A.: Trelgol Publishing. 904
Patel, R., Scheinfeldt, L.B., Sanderford, M.D., Lanham, T.R., Tamura, K., Platt, A., Glicksberg, 905

B.S., Xu, K., Dudley, J.T., and Kumar, S. (2018). Adaptive landscape of protein variation 906
in human exomes. Molecular Biology and Evolution 35(8): 2015–2025. DOI: 907
https://doi.org/10.1093/molbev/msy107 908

Ryan, S.F., Deines, J.M., Scriber, J.M., Pfrender, M.E., Jones, S.E., Emrich, S.J., and Hellmann, 909
J.J. (2018). Climate-mediated hybrid zone movement revealed with genomics, museum 910
collection, and simulation modeling. PNAS 115(10) E2284-E2291. 911

Sattath, S., Elyashiv, E., Kolodny, O., Rinott, Y., and Sella, G. (2011). Pervasive adaptive protein 912
evolution apparent in diversity patterns around amino acid substitutions in Drosophila 913
simulans. PLoS Genetics 7(2), e1001302. 914

Thornton, K.R. (2014). A C++ template library for efficient forward-time population genetic 915
simulation of large populations. Genetics 198(1), 157–166. 916

Wakeley, J., King, L., Low, B.S., and Ramachandran, S. (2012). Gene genealogies within a fixed 917
pedigree, and the robustness of Kingman’s coalescent. Genetics 190(4), 1433–1445. 918

Wilkins, J.F. (2004). A separation-of-timescales approach to the coalescent in a continuous 919
population. Genetics 168(4), 2227–2244. 920

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Data Accessibility 921

SLiM 3 is available online at https://messerlab.org/slim/. It is open source, under the GPL 3.0 922

license, and its source code is on GitHub at https://github.com/MesserLab/SLiM. 923

msprime is available online at https://pypi.org/project/msprime/. It is open source, under the GPL 924

3.0 license, and its source code is on GitHub at https://github.com/tskit-dev/msprime. 925

pyslim is open source, under the MIT license, and is available on GitHub at 926

https://github.com/tskit-dev/pyslim. 927

The examples and performance assessments presented in this paper are available on GitHub at 928

https://github.com/bhaller/SLiMTreeSeqPub. 929

Author Contributions 930

We have used the CRediT taxonomy for contributions (https://casrai.org/credit/). 931

BCH: Conceptualization, Investigation, Methodology, Software, Validation, Visualization, 932

Writing – Original Draft Preparation, Writing – Review & Editing. 933

JG: Conceptualization, Methodology, Software, Writing – Review & Editing. 934

JK: Conceptualization, Methodology, Software, Validation, Visualization, Writing – Review & 935

Editing. 936

PWM: Conceptualization, Funding Acquisition, Supervision, Writing – Review & Editing. 937

PLR: Conceptualization, Funding Acquisition, Methodology, Software, Supervision, Validation, 938

Writing – Review & Editing. 939

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Figures 940

 941
Figure 1. An example tree sequence for a model of five extant genomes, with a chromosome 942

ten base positions long. Each interval between x axis ticks is a genomic interval with a 943
distinct ancestry tree. The leaves of each tree [0–4] represent the extant genomes, 944
whereas the internal nodes [5–12] represent ancestral genomes from which the extant 945
genomes descend. The pattern of ancestry at adjacent sites is typically highly correlated, 946
as seen here. Full coalescence has been achieved for the first, second, and fourth 947
intervals, but the third interval has not yet fully coalesced; the tree for that interval 948
therefore has multiple roots. See Kelleher et al. (2016, 2018) for further discussion of the 949
tree sequence data structure. 950

9

75

12

1 0 4 2 3

8
75

9

0 4 1 2 3

75

0 4

8

1 2 3

10

56

11

3 1 4 0 2

10530

Genome coordinates
8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

 951
Figure 2. A speed comparison between SLiM without tree-sequence recording, SLiM with 952

tree-sequence recording and mutation overlay, and msprime’s coalescent simulation for a 953
simple neutral model (Example 1; see text for model description). Each point represents 954
the mean runtime across 10 replicates using different random number seeds; bars showing 955
standard error of the mean would be smaller than the size of the plotted points in all cases. 956
Runs for SLiM without tree-sequence recording (filled blue diamonds) were not 957
conducted for L = 1010 because the memory usage was prohibitive, so a linear 958
extrapolation is shown (hollow blue diamond). Runs for SLiM with tree-sequence 959
recording and mutation overlay (filled green circles) are subdivided here to show the 960
runtime for SLiM alone, prior to mutation overlay (hollow green circles), illustrating that 961
the time for mutation overlay is negligible. The runtimes for the msprime coalescent for a 962
full population sample of n = 2N = 1000 (filled red squares) and for a sample of size 963
n = 2N/100 = 10 (hollow red squares) are both shown. Note that the x and y axes are both 964
on a log scale. 965

chromosome length

tim
e

(s
ec

on
ds

)

105 106 107 108 109 1010

10
−1
10
0
10

10
2
10
3
10
4
10
5
10
6

SLiM (extrapolated)
SLiM treeSeq
SLiM treeSeq (pre-overlay)
msprime coalescent (n = 2N)
msprime coalescent (n = 2N /100)

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

 966
Figure 3. Mean diversity (as measured by mean tree height) as a function of distance from the 967

nearest gene (Example 2). The center of the x-axis (red line) represents a distance of zero, 968
immediately adjacent to a gene; moving away from the x-axis center to the left/right 969
represents moving away from the nearest gene to the left/right respectively. The pattern 970
of decreased diversity near a gene is the “dip in diversity” due to background selection. 971

 972
Figure 4. Mean true local ancestry at each position along the chromosome (Example 3). The 973

red vertical bars indicate the positions at which beneficial mutations were originally 974
introduced into p1 and p2. The beneficial mutations, which both fixed, are points where 975
the true local ancestry is 100% p1 or p2. True local ancestry regresses toward equal 976
admixture with increasing distance from those fixed points. 977

-50000 0 50000

25
00
0

35
00
0

distance from gene

m
ea

n
tre

e
he

ig
ht

 (g
en

er
at

io
ns

)

0e+00 1e+08

chromosome position

an
ce

st
ry

 p
ro

po
rti

on

p1
p2

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

 978
Figure 5. Mean tree height (on a cube-root-scaled y-axis) at each position along the 979

chromosome, before and after recapitation (Example 4). The red line shows mean tree 980
heights prior to recapitation; the region surrounding the introduced sweep mutation 981
coalesces at the start of the sweep, whereas the plateaus outside that region are 982
uncoalesced and have a height corresponding to the start of forward simulation (100 983
generations earlier). The black line shows heights after recapitation; the uncoalesced 984
plateaus have now been coalesced backward in time, producing tree heights as long as a 985
million generations in the past. 986

0e+00 1e+06

chromosome position

m
ea

n
tre

e
he

ig
ht

 (g
en

er
at

io
ns

)

1
1e
4

1e
5

1e
6

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

