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Abstract 32 

There is an increasing demand for evolutionary models to incorporate relatively realistic 33 

dynamics, ranging from selection at many genomic sites to complex demography, population 34 

structure, and ecological interactions.  Such models can generally be implemented as individual-35 

based forward simulations, but the large computational overhead of these models often makes 36 

simulation of whole chromosome sequences in large populations infeasible.  This situation 37 

presents an important obstacle to the field that requires conceptual advances to overcome.  The 38 

recently developed tree-sequence recording method (Kelleher et al., 2018), which stores the 39 

genealogical history of all genomes in the simulated population, could provide such an advance.  40 

This method has several benefits: (1) it allows neutral mutations to be omitted entirely from 41 

forward-time simulations and added later, thereby dramatically improving computational 42 

efficiency; (2) it allows neutral burn-in to be constructed extremely efficiently after the fact, using 43 

“recapitation”; (3) it allows direct examination and analysis of the genealogical trees along the 44 

genome; and (4) it provides a compact representation of a population’s genealogy that can be 45 

analyzed in Python using the msprime package.  We have implemented the tree-sequence 46 

recording method in SLiM 3 (a free, open-source evolutionary simulation software package) and 47 

extended it to allow the recording of non-neutral mutations, greatly broadening the utility of this 48 

method.  To demonstrate the versatility and performance of this approach, we showcase several 49 

practical applications that would have been beyond the reach of previously existing methods, 50 

opening up new horizons for the modeling and exploration of evolutionary processes. 51 

Keywords 52 

pedigree recording, coalescent, background selection, genealogical history, selective sweeps, tree 53 
sequences 54 
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Introduction 55 

Forward simulations are increasingly important in population genetics and evolutionary biology.  56 

For example, they can be useful for modeling the expected evolutionary dynamics of real-world 57 

systems (Fournier-Level et al., 2016; Cotto et al., 2017; Matz et al., 2018; Ryan et al., 2018), for 58 

discovering the ecological and evolutionary mechanisms that led to present-day genomic patterns 59 

in a species (Enard et al., 2014; Nowak et al., 2014; Arunkumar et al., 2015; Patel et al., 2018), 60 

for testing or validating empirical and statistical methods (Haller and Hendry, 2013; Caballero et 61 

al, 2015; Ewing et al., 2016; Haller and Messer, 2017a), and for exploring theoretical ideas about 62 

evolution (Haller et al., 2013; Assaf et al., 2015; Mafessoni and Lachmann, 2015; Champer et. al, 63 

2018), among other purposes.  Because of this broad utility, there is a growing desire to run 64 

simulations with increased realism in a variety of areas: longer genomic regions up to the scale of 65 

full genome sequences, large populations, selection at multiple loci with linkage effects, complex 66 

demography, ecological interactions with other organisms and the environment, explicit space 67 

with continuous landscapes, spatial variation in environmental variables, spatial interactions such 68 

as competition and mate choice between organisms, and so forth. 69 

However, this type of realism comes at a price, in both processing time and memory usage.  70 

Since computational resources are finite, this can often make it difficult or, in practical terms, 71 

impossible to run some models.  Advances in computing power have gradually extended the 72 

boundaries of what is possible, as have performance improvements due to improved forward 73 

simulation software (Messer, 2013; Thornton, 2014; Haller and Messer, 2017b), but 74 

computational overhead continues to hold back progress in the field by limiting the level of 75 

realism that can be attained in models. 76 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint 

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/


 

 

From this perspective, the recently developed pedigree recording or “tree-sequence recording” 77 

method (Kelleher et al., 2018) is potentially transformative.  Kelleher et al. (2018) have shown 78 

that, perhaps counterintuitively, the recording of all ancestry information for the entire population 79 

can actually improve the runtime by orders of magnitude.  These gains in efficiency are made 80 

possible by the succinct tree sequence data structure (or “tree sequence”, for brevity) that lies at 81 

the heart of the msprime coalescent simulator (Kelleher et al., 2016), subsequently refined in 82 

Kelleher et al. (2018).  The tree sequence data structure is a concise encoding of the correlated 83 

genealogies along a chromosome resulting from evolution in sexually reproducing populations 84 

(Figure 1).  The sequence of trees along a genome has been studied for some time (Hudson, 85 

1983), and is closely linked to the concept of an “Ancestral Recombination Graph” or ARG 86 

(Griffiths, 1991; Griffiths & Marjoram, 1997).  The use of the term “ARG” has historically been 87 

ambiguous, however, sometimes referring to the stochastic process generating these trees, rather 88 

than the resulting tree sequence itself, so we use the term “tree sequence” here to refer to this 89 

sequence of trees in the particular representation described by Kelleher et al. (2016, 2018).  90 

Precisely the same tree sequence data structure can be used to record each generation’s parent–91 

child relationships.  This data structure will then record who each individual inherited each 92 

section of chromosome from, for every individual that ever lived.  However, there is a massive 93 

amount of redundancy in this information, since many of the individuals simulated in the past 94 

will leave no descendants in the extant population.  The key insight of Kelleher et al. (2018) was 95 

to provide an efficient algorithm to remove this redundancy by periodically “simplifying” the tree 96 

sequence.  This combination – the tree sequence data structure and an efficient algorithm for 97 

simplifying it – allows complete genealogies for all extant individuals to be recorded efficiently 98 

in forward simulations for the first time. 99 
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The most immediate advantage of recording a tree sequence during forward simulation is that it 100 

allows neutral mutations to be omitted entirely; neutral mutations can simply be overlaid onto the 101 

tree sequence after forward simulation has completed, because by definition they do not affect the 102 

genealogies.  This provides an immense efficiency benefit, since neutral mutations then only need 103 

to be added along those branches of the tree from which the individuals of interest at the end of 104 

the simulation have inherited; all other ancestral branches, which typically comprise the vast 105 

majority of the full tree, can be ignored since they do not contribute to those individuals.  Given 106 

that many forward simulations spend the large majority of their time managing neutral mutations, 107 

with considerable bookkeeping overhead in each generation, neutral mutation overlay following 108 

forward simulation has been shown to improve performance by an order of magnitude or more 109 

while producing provably statistically identical results (Kelleher et al., 2018). 110 

A second advantage of recording genealogies is that the recorded tree sequence from a forward 111 

simulation can be used as the basis for the construction of a neutral “burn-in” history for the 112 

simulated population after forward simulation is complete, using (usually much faster) coalescent 113 

simulation.  The burn-in period of a simulation can be immensely time-consuming, often taking 114 

much longer than the simulation of the evolutionary dynamics that are actually of interest; the 115 

overhead of burn-in can therefore present a large obstacle for many models.  With a method that 116 

we call “recapitation”, we can leverage the information in the tree sequence to prepend a 117 

coalescent simulation of the burn-in period, speeding up the burn-in process by many orders of 118 

magnitude. 119 

A third important advantage is that the pattern of ancestry and inheritance is in itself very 120 

useful.  For many statistics of interest, and in particular for inferring specific events that occurred 121 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint 

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/


 

 

in the past, sequence-based data from mutations is essentially an extra layer of noise over the 122 

signal of interest contained in the genealogies.  Direct access to the precise genealogical history 123 

of the simulated population allows the signal to be analyzed without the noise, gaining significant 124 

statistical power.  An expanding set of open-source tools makes it possible to load, analyze, and 125 

even manipulate a recorded tree sequence using simple Python code, allowing open-ended 126 

flexibility in analysis. 127 

A fourth compelling advantage is that the recorded tree sequence files are very small and 128 

enable very efficient calculation of population-genetic statistics (Kelleher et al. 2016, 2018).  The 129 

files output from even the largest simulations are rarely bigger than a few hundred megabytes, 130 

and may be tens of thousands of times smaller than alternatives such as VCF and Newick.  131 

Despite this high level of compression, tree sequences can be processed very efficiently; statistics 132 

of interest such as allele frequencies within cohorts can often be computed incrementally, leading 133 

to very efficient algorithms (Kelleher et al. 2016).  Calculation of statistics of this sort from 134 

simulated data can be very time-consuming, especially when long genomes are involved and 135 

many replicate simulation runs have been performed, so the ability to speed up such calculations 136 

is quite important. 137 

Given these advantages, we have worked to integrate tree-sequence recording into SLiM 3, a 138 

new major release of the free, open-source SLiM simulation software package 139 

(http://messerlab.org/slim/).  It is now possible to enable tree-sequence recording in any SLiM 140 

model with a simple flag set in the model’s script, and then to output the recorded tree sequence 141 

at any point in the simulation.  In addition, we have extended the original tree-sequence recording 142 

method (Kelleher et al. 2018) to allow for the recording of mutations during forward simulation.  143 
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This allows the tree-sequence output format, a .trees file, to be used in SLiM as a way of saving 144 

and then restoring the state of a simulation while preserving information about ancestry, and 145 

allows the mutations that occurred during forward simulation to be accessed later in Python-based 146 

analyses. 147 

To illustrate the large advantages provided by tree-sequence recording, and to show how to 148 

take advantage of those benefits when using SLiM for forward simulation, we will present four 149 

practical examples of the method.  In the first example, we will show the impressive performance 150 

benefits that can be achieved with tree-sequence recording compared to a classical forward 151 

simulation.  The second example will use tree-sequence recording to efficiently simulate 152 

background selection near genes undergoing deleterious mutations, quantifying the expected 153 

effect of background selection on levels of neutral diversity by measuring the heights of trees in 154 

the recorded tree sequence.  Our third example will be a model of admixture between two 155 

subpopulations, showing how to use the recorded tree sequence in calculating the mean true local 156 

ancestry at every position along a chromosome.  Finally, the fourth example will illustrate how 157 

the “recapitation” method allows msprime to be used to extremely efficiently add a “neutral burn-158 

in” history to a completed SLiM simulation of a selective sweep, by coalescing the simulation’s 159 

initial population backward in time. 160 

Examples 161 

Examples were executed on a MacBook Pro (2.9 GHz Intel Core i7, 16 GB RAM) running 162 

macOS 10.13.5, using Python 3.4.8, R 3.5.0, SLiM 3.1, msprime 0.6.1, and pyslim 0.1.  Reported 163 

times were measured with the Python timeit package.  Peak memory usage for SLiM runs was 164 

assessed with SLiM’s -m command-line option.  The timing comparison (Figure 2) was executed 165 
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on the same hardware, with macOS 10.13.4, R 3.4.3, SLiM 3.0, and msprime 0.6.0, using the 166 

Un*x tool /usr/bin/time for timing (summing the reported user time and system time); we 167 

believe the times measured would not change significantly with the newer software versions.  The 168 

full source code for the examples and timing tests, including timing and plotting code that is 169 

omitted here, may be found at https://github.com/bhaller/SLiMTreeSeqPub.  These examples use 170 

the matplotlib (Hunter, 2007) and numpy (Oliphant, 2006) packages for Python. 171 

Example I: A simple neutral model 172 

Our first example is a model of a neutrally evolving chromosome of length L = 108 base 173 

positions, with uniform mutation rate µ = 10−7 and recombination rate r = 10−8 (both expressed as 174 

the event probability per base per generation), in a panmictic diploid population of size N = 500, 175 

running for a duration of 10N = 5000 non-overlapping generations.  The SLiM configuration 176 

script for this basic model is very simple: 177 

initialize() { 178 
 initializeMutationRate(1e-7); 179 
 initializeMutationType("m1", 0.5, "f", 0.0); 180 
 initializeGenomicElementType("g1", m1, 1.0); 181 
 initializeGenomicElement(g1, 0, 1e8-1); 182 
 initializeRecombinationRate(1e-8); 183 
} 184 
1 { 185 
 sim.addSubpop("p1", 500); 186 
} 187 
5000 late() { 188 
 sim.outputFull("ex1_noTS.slimbinary", binary=T); 189 
} 190 

This sets up a single “genomic element” spanning the full length of the chromosome, with 191 

neutral mutations of type m1 generated at the desired rate, and with the desired recombination 192 

rate.  In generation 1 a new subpopulation of the desired size is created, and the model runs to 193 

generation 5000, after which it outputs the full simulation state.  The SLiM manual provides 194 
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additional explanation of these concepts (Haller and Messer, 2016).  This model took 211.9 195 

seconds to run, and reached a peak memory usage of 443.8 MB. 196 

Tree-sequence recording can easily be enabled for this model with a call to 197 

initializeTreeSeq(): 198 

initialize() { 199 
 initializeTreeSeq(); 200 
 initializeMutationRate(0); 201 
 initializeMutationType("m1", 0.5, "f", 0.0); 202 
 initializeGenomicElementType("g1", m1, 1.0); 203 
 initializeGenomicElement(g1, 0, 1e8-1); 204 
 initializeRecombinationRate(1e-8); 205 
} 206 
1 { 207 
 sim.addSubpop("p1", 500); 208 
} 209 
5000 late() { 210 
 sim.treeSeqOutput("ex1_TS.trees"); 211 
} 212 

Note that we have now also set the mutation rate to zero; SLiM no longer needs to model 213 

neutral mutations because they can be overlaid in a later step more efficiently.  A .trees file is 214 

output at the end of the run, instead of calling SLiM’s outputFull() method, so that the recorded 215 

tree sequence is preserved.  In all other respects these models are identical.  This is typical of 216 

adapting a SLiM model to use tree-sequence recording: in general, the aim is to remove the 217 

modeling of neutral mutations while preserving other aspects of the model verbatim. 218 

After simulation has completed, neutral mutations are overlaid upon the saved tree sequence.  219 

The full model – running the SLiM model and then doing the final mutation overlay step – can be 220 

executed with a simple Python script: 221 

import subprocess, msprime, pyslim 222 
 223 
# Run the SLiM model 224 
subprocess.check_output(["slim", "-m", "-s", "0", "ex1_TS.slim"]) 225 
 226 
# Overlay neutral mutations 227 
ts = pyslim.load("ex1_TS.trees") 228 
mutated = msprime.mutate(ts, rate=1e-7, random_seed=1, keep=True) 229 
mutated.dump("ex1_TS_overlaid.trees") 230 
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This script uses the msprime Python package to overlay neutral mutations upon the recorded 231 

tree sequence.  The result is precisely the same, statistically, as if the neutral mutations were 232 

included in the forward simulation, except that the vast majority of the bookkeeping work in each 233 

generation is avoided because mutations only need to be overlaid upon the ancestral genomic 234 

regions that persisted to the end of the simulation. 235 

Note that pyslim is used to load the .trees file; this package provides a bridge between SLiM 236 

and msprime, and should generally be used to load and save .trees files in Python if the files are 237 

coming from or going to SLiM.  The pyslim package extends the msprime tree sequence class by 238 

adding support for SLiM’s metadata annotations to the tree sequence, providing an interface for 239 

reading or modifying that metadata as well as for generating SLiM-compliant .trees files that 240 

contain the required metadata.  The .trees files output by SliM can be read directly by msprime, 241 

but the returned object will have reduced functionality compared to those returned by pyslim. 242 

The total time to execute this Python code is 4.37 seconds, almost 50 times faster than the 243 

model without tree-sequence recording.  Most of the runtime (4.09 seconds) is spent running the 244 

SLiM model; the final mutation overlay by msprime is extremely fast.  The peak memory usage 245 

during the SLiM run is 145.8 MB, less than one-third of the memory usage of the model without 246 

tree-sequence recording.  Tree-sequence recording can often reduce memory usage, since the tree 247 

sequence data structure is quite compact compared to SLiM’s in-memory representation of the 248 

neutral mutations that would be segregating in such a model.  Tree sequences are also very 249 

compact on disk; the final .trees file here, with mutations overlaid, takes about 8.9 MB, as 250 

compared to 84.2 MB for the ex1_noTS.slimbinary file from the SLiM model without tree-251 

sequence recording, 559 MB for a Newick file, and 366 MB for a VCF file – even though the 252 
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.trees file contains ancestry information not included by the SLiM and VCF formats.  A VCF 253 

file containing the sequences of the final generation can be produced from a .trees file with 254 

msprime’s write_vcf() method, but the ancestry information is lost. 255 

The speedup produced by this tree-sequence recording method can vary dramatically 256 

depending upon the details of the simulation; all of the work to track neutral mutations is 257 

eliminated, but new work is added involving the recording of all the recombination events that go 258 

into producing the tree sequence.  In general, the largest speedup will be observed with very long 259 

chromosomes with many neutral mutations when the recombination rate is not too high; indeed, 260 

when modeling a very short chromosome the overhead of tree-sequence recording can outweigh 261 

the savings from omitting neutral mutations (see Discussion). 262 

To further illustrate the performance benefits of tree-sequence recording, we conducted a set of 263 

timing comparisons between SLiM without tree-sequence recording, SLiM with tree-sequence 264 

recording, and msprime’s coalescent simulation method.  These comparisons involved essentially 265 

the same model as shown above: a neutral panmictic model of diploids with non-overlapping 266 

generations, with a population size N = 500, recombination rate r = 10−8 per base position per 267 

generation, and mutation rate µ = 10−7 per base position per generation.  The chromosome length 268 

L was varied over {105, 106, 107, 108, 109, 1010}, with ten runs of each model at each value of L 269 

using different random seeds.  The number of generations varied with L (details below).  The 270 

msprime coalescent was run both with a final haploid sample size n equal to the full population 271 

size (n = 2N), and with a much smaller sample size (n = 2N/100); in both cases, Ne = N was used.  272 

To verify that tree-sequence recording produced results equivalent to the coalescent, we checked 273 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint 

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/


 

 

that the mean TMRCAs for the L = 1010 runs for the two methods did not differ significantly 274 

(p = 0.7791). 275 

The average runtimes obtained are shown in Figure 2.  As L increased, the benefit of tree-276 

sequence recording compared to SLiM without tree-sequence recording became increasingly 277 

large, topping out at a performance improvement of more than two orders of magnitude for 278 

L = 109 and L = 1010.  Coalescent simulations with msprime were much faster than the tree-279 

sequence recording method, as expected, except at L = 1010, where msprime’s speed was 280 

comparable to that of SLiM with tree-sequence recording.  It appears that SLiM with tree-281 

sequence recording would be faster for L larger than 1010.  The number of events the coalescent 282 

must simulate is quadratic in L, empirically, but with a small leading coefficient such that 283 

msprime is quite fast even for reasonably large chromosome sizes (Kelleher et al. 2016).  With 284 

very large values of L, however, this O(L2) term begins to dominate and SLiM with tree-sequence 285 

recording becomes faster.  This may be chiefly of theoretical interest, since L = 1010 is already a 286 

very long chromosome (approximately three times the length of the full human genome).  It is 287 

also noteworthy that the msprime coalescent is only marginally faster for a sample of n = 2N/100 288 

than for a full population sample of n = 2N; as more samples are added to a gene tree, the new 289 

samples tend to attach to already existing branches quite quickly (Kingman, 1982). 290 

Although the coalescent remains an order of magnitude faster for most practical purposes, it 291 

can only be used in a few simple scenarios such as this; for models that require forward 292 

simulation, tree-sequence recording offers large performance benefits over more traditional 293 

forward simulation techniques.  It is also worth noting that the coalescent is only an 294 

approximation of the Wright–Fisher model, and will diverge from it under certain conditions 295 
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(Wakeley et al., 2012; Bhaskar et al., 2014) – one such condition being a sample size that is no 296 

longer small compared to the population size, as is the case for our n = 2N msprime runs here.  297 

Forward simulation may therefore be preferable in order to obtain exact results under such 298 

conditions. 299 

How long do we run it?  In general, it is desirable to run forward-time simulations “until 300 

convergence” – until the effects of the starting configuration are forgotten.  This occurs (in most 301 

situations) when all genealogical trees have coalesced, meaning that at every position in the 302 

genome a common ancestor to the entire final generation has appeared.  In practice, models are 303 

often run for 10N generations, a rule of thumb that is thought to suffice in most cases.  However, 304 

this is a thorny problem: longer chromosomes tend to require longer for coalescence, simply 305 

because with more sites it is more likely that coalescence takes exceptionally long at some site.  306 

In the simulations of Figure 2, we ran each simulation for the expected number of generations 307 

required for coalescence at that value of L, which increased linearly with log(L), from about 3N 308 

for L = 1e5 to 15N for L = 1e10.  This sufficed to make the comparison between SLiM and 309 

msprime “fair”, but a better practical solution, recapitation, will be shown in Example 4.  We 310 

determined the expected number of generations empirically by running the same model 500 times 311 

at each value of L with “coalescence detection” enabled (by passing checkCoalescence=T to 312 

initializeTreeSeq()). The mean and other summary statistics for each value of L (Table S1) 313 

agree with expectations from extreme value theory (Berman, 1964), with the expected time until 314 

coalescence growing roughly as 1000 log(L) − 10000. 315 
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Example II: Background selection 316 

Our second example is a model of background selection, a term which describes the effect that 317 

purifying selection against deleterious mutations imposes on genetic variation at linked sites.  318 

Such purifying selection should be particularly common in genic regions, where many genomic 319 

positions should be subject to selective constraints.  This background selection, like many types 320 

of linked selection more generally, is expected to produce a “dip in diversity” in the surrounding 321 

non-coding regions, with a signature of decreasing genetic diversity with decreasing distance to 322 

the nearest gene (Charlesworth et al. 1993; Hudson 1994; Sattath et al., 2011; Elyashiv et al., 323 

2016).  Here is a SLiM model that uses tree-sequence recording to model this scenario: 324 

initialize() { 325 
 defineConstant("N", 10000);  // pop size 326 
 defineConstant("L", 1e8);    // total chromosome length 327 
 defineConstant("L0", 200e3); // between genes 328 
 defineConstant("L1", 1e3);   // gene length 329 
 initializeTreeSeq(); 330 
 initializeMutationRate(1e-7); 331 
 initializeRecombinationRate(1e-8, L-1); 332 
 initializeMutationType("m2", 0.5, "g", -(5/N), 1.0); 333 
 initializeGenomicElementType("g2", m2, 1.0); 334 
  335 
 for (start in seq(from=L0, to=L-(L0+L1), by=(L0+L1))) 336 
  initializeGenomicElement(g2, start, (start+L1)-1); 337 
} 338 
1 { 339 
 sim.addSubpop("p1", N); 340 
 sim.rescheduleScriptBlock(s1, 10*N, 10*N); 341 
} 342 
s1 10 late() { 343 
 sim.treeSeqOutput("ex2_TS.trees"); 344 
} 345 

This model sets up a chromosome that consists of genes of length L1 = 1 kb, separated by non-346 

coding regions of length L0 = 200 kb.  The total chromosome length is L = 108 bases, and 496 347 

genes fit within it.  The model uses a mutation rate of µ = 10−7 for deleterious mutations that can 348 

arise within the genes; no other mutations are modeled.  The deleterious mutations are given 349 

selection coefficients drawn from a Gamma distribution with mean −5/N and shape parameter 350 

α = 1 (modeling a scenario of moderately deleterious mutations with 2Ns = −10 on average).  We 351 
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assume co-dominance with h = 0.5.  A population of size N = 10000 is started in generation 1, 352 

and the model runs until generation G = 10N (the output event, s1, is rescheduled dynamically to 353 

that generation). 354 

We can run this model and then conduct post-run analysis with a Python script: 355 

import os, subprocess, msprime, statistics, pyslim 356 
import matplotlib.pyplot as plt 357 
import numpy as np 358 
 359 
# Run the SLiM model and load the resulting .trees file 360 
subprocess.check_output(["slim", "-m", "-s", "0", "ex2_TS.slim"]) 361 
ts = pyslim.load("ex2_TS.trees").simplify() 362 
 363 
# Measure the tree height at each base position 364 
height_for_pos = np.zeros(int(ts.sequence_length)) 365 
for tree in ts.trees(): 366 
    mean_height = statistics.mean([tree.time(root) for root in tree.roots]) 367 
    left, right = map(int, tree.interval) 368 
    height_for_pos[left: right] = mean_height 369 
 370 
# Convert heights along the chromosome into heights at distances from a gene 371 
height_for_pos = height_for_pos - np.min(height_for_pos) 372 
L, L0, L1 = int(1e8), int(200e3), int(1e3) 373 
gene_starts = np.arange(L0, L - (L0 + L1) + 1, L0 + L1) 374 
gene_ends = gene_starts + L1 - 1 375 
max_distance = L0 // 4 376 
height_for_left_distance = np.zeros(max_distance) 377 
height_for_right_distance = np.zeros(max_distance) 378 
for d in range(max_distance): 379 
    height_for_left_distance[d] = np.mean(height_for_pos[gene_starts - d - 1]) 380 
    height_for_right_distance[d] = np.mean(height_for_pos[gene_ends + d + 1]) 381 
height_for_distance = np.hstack([height_for_left_distance[::-1], 382 
        height_for_right_distance]) 383 
distances = np.hstack([np.arange(-max_distance, 0), np.arange(1, max_distance + 1)]) 384 
 385 
# Make a simple plot 386 
plt.plot(distances, height_for_distance) 387 
plt.show() 388 

The first line after the import statement runs the SLiM model; this took 15643 seconds (4.35 389 

hours) to execute.  This is not short – it is still a fairly complex model! – but it is far shorter than 390 

the alternative, a SLiM model without tree-sequence recording and including neutral mutations in 391 

the non-coding regions.  That alternative model would take ~83 hours, by extrapolation – 392 

probably a conservative estimate, since the model had not yet reached mutation–selection balance 393 

and was still slowing down when its timing was measured.  The use of tree-sequence recording 394 
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here results, then, in a relatively modest speedup of 19 times.  This makes sense, since the model 395 

with tree-sequence recording still must keep track of a very large number of segregating 396 

deleterious mutations.  However, it is worth noting that the final result from this alternative 397 

model would provide far less statistical power, since inference from it would be based only upon 398 

the observed pattern of neutral mutations in one run, rather than the actual pattern of ancestry at 399 

each chromosome position; to provide the same power, this alternative model would likely have 400 

to be run many times or use a much higher mutation rate.  If more performance gains were 401 

needed, the model could perhaps be rescaled as well (see Discussion). 402 

The rest of the code conducts post-run analyses.  First, the .trees file from the SLiM run is 403 

read in with pyslim.load() as in the previous example; here, however, we call simplify() 404 

(Kelleher et al. 2018) upon the loaded tree sequence, which requires some explanation.  SLiM 405 

automatically retains, in the tree sequence, nodes corresponding to the original ancestors of each 406 

subpopulation that was created with addSubpop().  This is done for various reasons, including 407 

allowing ancestry to be more easily traced and enabling recapitation (see Example 4).  When 408 

SLiM saves a .trees file, these ancestors are present in the tree sequence but are not marked as 409 

“samples”, and will therefore disappear after a simplify() operation.  In many cases these 410 

ancestors are harmless, as in Example 1; in fact, in Example 1, calling simplify() to remove 411 

them would mean that mutations would be overlaid only back to the point of coalescence, rather 412 

than to the beginning of forward simulation.  Here, however, since we want to measure the 413 

heights of trees in the tree sequence, these ancestors would complicate things for us; all trees 414 

would be rooted in those ancestors, at the beginning of forward simulation.  We therefore call 415 
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simplify() to remove them (when the model has coalesced below them; they are retained when 416 

still in use by the tree sequence).  Example 4 will delve into this matter further. 417 

Next, a vector containing the mean tree height at each base position (height_for_pos) is 418 

constructed by walking through the tree sequence to find the set of trees representing the ancestry 419 

of every individual in the final generation at a given position.  The mean tree height is a metric of 420 

the time to the most recent common ancestor at a given base position, and thus of diversity at that 421 

base position; background selection will tend to reduce the mean tree height, thereby lowering the 422 

expected levels of diversity at a locus. 423 

An aside: there can be a set of trees for a given position, rather than just a single tree, if the 424 

forward simulation was not run sufficiently long for coalescence to have occurred at every 425 

position in the genome.  In msprime this is modelled by allowing trees to have multiple roots. 426 

Each root represents the most recent common ancestor of some subset of the extant population at 427 

that location in the genome; if coalescence has not occurred, then the final population should still 428 

contain genetic variation that was segregating in the initial population, since different individuals 429 

inherit from different roots of the ancestry tree.  Since the model here ran for 10N generations, we 430 

can hope that it has coalesced at most or all positions; but unless a model is explicitly run out to 431 

coalescence (or recapitated), it is always possible that multiple roots will exist, and so robust code 432 

ought to handle that case by looping over the roots for each tree as we do here. 433 

These mean tree heights along the chromosome are then converted to mean tree heights at 434 

distances from the nearest gene (height_for_distance), taking into account the somewhat 435 

complex genetic structure of the model.  Finally, the relationship between distance to the nearest 436 

gene and tree height is plotted.  These analyses took 12.39 seconds to complete.  Note that neutral 437 
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mutations were never simulated at all; the analysis is based upon the tree sequence itself, not 438 

upon the distribution of neutral mutations. 439 

A plot of the results can be seen in Figure 3, showing the well-known “dip in diversity” 440 

realized here through simulation.  As the distance to the nearest gene decreases, diversity dips due 441 

to the background selection exerted by selection against deleterious mutations within the gene. 442 

Example III: True local ancestry mapping 443 

Our third example involves mapping the true local ancestry at every position along a 444 

chromosome in a two-subpopulation admixture model with adaptive introgression at two partially 445 

linked loci.  This is an important dynamic in all sorts of biological systems, from human–446 

Neanderthal admixture to hybrid zones between divergent bird populations; one often wishes to 447 

be able to find which ancestral population each chromosomal region traces back to.  The SLiM 448 

model looks like this: 449 

initialize() { 450 
 defineConstant("L", 1e8); 451 
 initializeTreeSeq(); 452 
 initializeMutationRate(0); 453 
 initializeMutationType("m1", 0.5, "f", 0.1); 454 
 initializeGenomicElementType("g1", m1, 1.0); 455 
 initializeGenomicElement(g1, 0, L-1); 456 
 initializeRecombinationRate(1e-8); 457 
} 458 
1 late() { 459 
 sim.addSubpop("p1", 500); 460 
 sim.addSubpop("p2", 500); 461 
 sim.treeSeqRememberIndividuals(sim.subpopulations.individuals); 462 
  463 
 p1.genomes.addNewDrawnMutation(m1, asInteger(L * 0.2)); 464 
 p2.genomes.addNewDrawnMutation(m1, asInteger(L * 0.8)); 465 
  466 
 sim.addSubpop("p3", 1000); 467 
 p3.setMigrationRates(c(p1, p2), c(0.5, 0.5)); 468 
} 469 
2 late() { 470 
 p3.setMigrationRates(c(p1, p2), c(0.0, 0.0)); 471 
 p1.setSubpopulationSize(0); 472 
 p2.setSubpopulationSize(0); 473 
} 474 
2: late() { 475 
 if (sim.mutationsOfType(m1).size() == 0) 476 
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 { 477 
  sim.treeSeqOutput("ex3_TS.trees"); 478 
  sim.simulationFinished(); 479 
 } 480 
} 481 
10000 late() { 482 
 stop("Did not reach fixation of beneficial alleles."); 483 
} 484 

The initialize() callback sets up tree-sequence recording with a mutation rate of µ = 0 and a 485 

recombination rate of r = 10−8 along a chromosome of length L = 108.  Although the mutation rate 486 

is zero, a mutation type m1 is defined representing beneficial mutations with a selection 487 

coefficient of s = 0.1; mutations of this type will be added in generation 1. 488 

In generation 1 we create two subpopulations, p1 and p2, of 500 individuals each; these are the 489 

original subpopulations that will admix.  We tell SLiM to remember these individuals forever as 490 

ancestors in the tree sequence, with treeSeqRememberIndividuals(), because we want them to 491 

act as the roots of all recorded trees so that we can establish local ancestry using them.  Note that 492 

this is not strictly necessary, since (as discussed in Example 2) SLiM automatically retains the 493 

root ancestors for each population; we could rely upon that, and we would be fine as long as we 494 

did not simplify() after loading the tree sequence in Python.  The use of 495 

treeSeqRememberIndividuals() has been shown here for purposes of illustration, however, 496 

since some models may wish to remember non-root individuals for analysis.  Next, we add a 497 

beneficial mutation at 0.2L in p1, and another at 0.8L in p2; the expectation is that by the end of 498 

the run all individuals will be recombinants that carry both of these mutations.  Finally, we create 499 

subpopulation p3 and tell SLiM that it will be composed entirely of migrants from p1 and p2 in 500 

equal measure. 501 

By the end of generation 2, subpopulation p3 has received its offspring generation from p1 and 502 

p2 as intended, so we can now remove p1 and p2 from the model and allow p3 to evolve.  At this 503 
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stage, all individuals in p3 are still unmixed, having been generated from parents in either p1 or 504 

p2, but beginning in generation 3 they will start to mix. 505 

Finally, we have some output and termination code.  If both m1 mutations fix, they are 506 

converted to Substitution objects by SLiM, and when that is detected the model writes out a 507 

final .trees file and terminates.  If we reach generation 10000 without that happening, the 508 

admixture failed, and we stop with an error.  This model is conceptually similar to recipe 13.9 in 509 

the SLiM manual (Haller and Messer, 2016), but has been converted to use tree-sequence 510 

recording, so you can refer to the manual’s recipe for additional commentary. 511 

We can run this model from a Python script and do post-run analysis, as we did in Example 2: 512 

import os, subprocess, msprime, pyslim 513 
import matplotlib.pyplot as plt 514 
import numpy as np 515 
 516 
# Run the SLiM model and load the resulting .trees file 517 
subprocess.check_output(["slim", "-m", "-s", "0", "ex3_TS.slim"]) 518 
ts = pyslim.load("ex3_TS.trees").simplify() 519 
 520 
# Assess the true local ancestry at each base position 521 
breaks = np.zeros(ts.num_trees + 1) 522 
ancestry = np.zeros(ts.num_trees + 1) 523 
for tree in ts.trees(sample_counts=True): 524 
    subpop_sum, subpop_weights = 0, 0 525 
    for root in tree.roots: 526 
        leaves_count = tree.num_samples(root) - 1  # subtract one for the root 527 
        subpop_sum += tree.population(root) * leaves_count 528 
        subpop_weights += leaves_count 529 
    breaks[tree.index] = tree.interval[0] 530 
    ancestry[tree.index] = subpop_sum / subpop_weights 531 
breaks[-1] = ts.sequence_length 532 
ancestry[-1] = ancestry[-2] 533 
 534 
# Make a simple plot 535 
plt.plot(breaks, ancestry) 536 
plt.show() 537 

The first line after the import statements runs the SLiM model, which completes in just 0.416 538 

seconds, with peak memory usage of 55.6 MB; since it tracks only two mutations, and typically 539 

terminates by generation 150 or so, it is very quick. 540 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint 

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/


 

 

The equivalent SLiM model to achieve true local ancestry mapping without tree-sequence 541 

recording has to model a mutation at each base position, as can be seen in recipe 13.9 in the SLiM 542 

manual (Haller and Messer, 2016).  A direct comparison is not possible, because recipe 13.9 543 

scaled up to a chromosome length of L = 108 would take an estimated 7.2 days to run, and worse, 544 

would require 8.1 TB (terabytes) of memory.  Those estimates are derived from the pattern of 545 

performance observed for recipe 13.9 with L = 5×105, L = 106, and L = 2×106 (the upper limit on 546 

our test machine due to memory usage), extrapolated out to L = 108.  Implementing this model 547 

with tree-sequence recording therefore reduces the runtime by a factor of more than 1.35 million, 548 

and reduces the memory usage by a factor of more than 160,000. 549 

Similar to Example 2, the post-run analysis walks through the tree sequence, but in this case, 550 

computes the mean true local ancestry (the fractional ancestry from subpopulation p1 versus p2) 551 

for each tree.  This is done by finding the roots for the tree, assessing the subpopulations of origin 552 

of those root individuals, and averaging those together weighted by the number of descendants 553 

from each root.  A simple plot is then produced.  In this example, the analysis took 62.2 seconds; 554 

the analysis runtime is relatively long because the trees here typically have many roots, so the 555 

inner loop is executed a great many times. 556 

The final plot of true local ancestry by chromosome position is shown in Figure 4.  The mean 557 

true local ancestry at the points where the beneficial mutations were introduced into p1 and p2 has 558 

to be 100% p1 and 100% p2, respectively, since both beneficial mutations fixed by the end of the 559 

run.  At other points along the genome there is more variation, but with a general pattern of being 560 

more completely admixed at the chromosome ends and middle, with gradations toward the 561 

absolute p1 and p2 points.  Since this is a single run of the model, the pattern is quite stochastic; 562 
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an average across many runs of this model could produce a smooth plot if desired, and since it 563 

takes only a couple of minutes to execute the pipeline here, that would be very quick to do.  This 564 

method of calculating true local ancestry could be used by any SLiM model with tree-sequence 565 

recording, so models with more complex demography, under any scenario of selection and 566 

mating, with any recombination map, etc., could just as easily be explored. 567 

Example IV: Neutral burn-in for a non-neutral model 568 

Our final example illustrates a solution to the problem of neutral burn-in.  In many applications 569 

one wishes to execute a non-neutral forward simulation beginning with an equilibrium amount of 570 

extant neutral genetic diversity, and the simulation needed to generate that pre-existing diversity, 571 

typically called the model “burn-in”, can take quite a long time – often much longer than it takes 572 

to execute the non-neutral portion of the simulation.  For a model with a long chromosome or 573 

large population size, this burn-in can be so long as to limit the practical scale of the simulations 574 

that can be conducted. One solution to this is a “hybrid” approach, in which a forward simulation 575 

is initialized with the result of a (much faster) coalescent simulation (similar to Bhaskar 2014).  576 

This is now possible using tree sequences in SLiM, but we go a step further: even a great deal of 577 

the work done in a coalescent simulation of this burn-in period is unnecessary.  All of the 578 

genealogical branches that go extinct are irrelevant; all that matters are those segments of 579 

ancestral genomes from which the final generation inherits.  With tree-sequence recording, one 580 

can simulate only the histories of those segments, saving an immense amount of computation 581 

relative to a forward-time burn-in simulation. 582 

Here we will look at a fairly large model (N = 105; L = 106) that evolves under neutral 583 

dynamics until coalescence (the neutral burn-in), after which follows some relatively brief non-584 
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neutral dynamics (a selective sweep).  Running the burn-in period for this model in SLiM would 585 

take an exceedingly long time, given the scale of the model, as we will see below.  A better idea 586 

is to use what we call “recapitation”: we can run the SLiM model forward from an initial state 587 

that conceptually follows burn-in, and then use msprime to generate after the fact the coalescent 588 

history for the initial individuals of the forward simulation.  This can be done without simulating 589 

neutral mutations, but if neutral mutations are desired as an end product of the simulation, they 590 

can be overlaid at the end as in Example 1. 591 

We begin with the SLiM model, which simulates the introduction and sweep to fixation of a 592 

beneficial mutation.  For simplicity, we will select a run of the model that happens to result in 593 

fixation, rather than using a recipe that is conditional upon fixation; the random number seed 594 

specified in the Python script below should produce that outcome.  The SLiM model: 595 

initialize() { 596 
 initializeTreeSeq(simplificationRatio=INF); 597 
 initializeMutationRate(0); 598 
 initializeMutationType("m2", 0.5, "f", 1.0); 599 
 m2.convertToSubstitution = F; 600 
 initializeGenomicElementType("g1", m2, 1); 601 
 initializeGenomicElement(g1, 0, 1e6 - 1); 602 
 initializeRecombinationRate(3e-10); 603 
} 604 
1 late() { 605 
 sim.addSubpop("p1", 100000); 606 
} 607 
100 late() { 608 
 sample(p1.genomes, 1).addNewDrawnMutation(m2, 5e5); 609 
} 610 
100:10000 late() { 611 
 mut = sim.mutationsOfType(m2); 612 
 if (mut.size() != 1) 613 
  stop(sim.generation + ": LOST"); 614 
 else if (sum(sim.mutationFrequencies(NULL, mut)) == 1.0) 615 
 { 616 
  sim.treeSeqOutput("ex4_TS_decap.trees"); 617 
  sim.simulationFinished(); 618 
 } 619 
} 620 

This specifies a simple model with population size N = 105 diploid individuals, chromosome 621 

length L = 106 base positions, and a recombination rate of r = 3×10−10 per base position per 622 
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generation, without mutation.  It runs to generation 100 and then introduces the sweep mutation 623 

(the delay before introduction is just to provide separation between the simulation start and the 624 

start of the sweep in the plot produced below).  When the sweep mutation is found to have fixed, 625 

it then outputs a .trees file and stops.  It specifies an infinite “simplification ratio” in the call to 626 

initializeTreeSeq() so that simplification happens only once, at the point when the .trees file 627 

is written out at the end; with this large of a model simplification takes a significant amount of 628 

time, so this optional setting speeds the model up somewhat at the price of a higher peak memory 629 

footprint. 630 

As in previous examples, we will run this from a Python script that does post-run analysis: 631 

import os, subprocess, msprime, pyslim 632 
import numpy as np 633 
import matplotlib.pyplot as plt 634 
 635 
# Run the SLiM model and load the resulting .trees file 636 
subprocess.check_output(["slim", "-m", "-s", "2", "ex4_TS.slim"]) 637 
ts = pyslim.load("ex4_TS_decap.trees")    # no simplify! 638 
 639 
# Calculate tree heights 640 
def tree_heights(ts): 641 
    heights = np.zeros(ts.num_trees + 1) 642 
    for tree in ts.trees(): 643 
        if tree.num_roots > 1:  # not fully coalesced 644 
            heights[tree.index] = ts.slim_generation 645 
        else: 646 
            root_children = tree.children(tree.root) 647 
            real_root = tree.root if len(root_children) > 1 else root_children[0] 648 
            heights[tree.index] = tree.time(real_root) 649 
    heights[-1] = heights[-2]  # repeat the last entry for plotting with step 650 
    return heights 651 
 652 
# Plot tree heights before recapitation 653 
breakpoints = list(ts.breakpoints()) 654 
heights = tree_heights(ts) 655 
plt.step(breakpoints, heights, where='post') 656 
plt.show() 657 
 658 
# Recapitate 659 
recap = ts.recapitate(recombination_rate=3e-10, Ne=1e5, random_seed=1) 660 
recap.dump("ex4_TS_recap.trees") 661 
 662 
# Plot tree heights after recapitation 663 
breakpoints = list(recap.breakpoints()) 664 
heights = tree_heights(recap) 665 
plt.step(breakpoints, heights, where='post') 666 
plt.show() 667 
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After the import, we run the SLiM model (which takes 46.05 seconds) and load the .trees file 668 

it saves out.  We then immediately make a plot of mean tree heights along the chromosome.  This 669 

is similar to what we did in Example 2, but here it requires some extra finesse because we did not 670 

simplify the tree sequence after loading it as we did then.  To perform recapitation, we cannot 671 

first simplify – we need the ancestral individuals that started the SLiM simulation to remain in the 672 

tree sequence, so that recapitation can build upon them correctly.  For this reason, every root in 673 

the loaded tree sequence has the same time, corresponding to the beginning of the forward 674 

simulation.  The code in the tree_heights() function corrects for that, getting the height of the 675 

child of the root if the forward simulation has coalesced below the original ancestor.  This 676 

provides the red line in Figure 5, showing that the area immediately around the introduced 677 

mutation has coalesced at the time of the introduction (due to hitchhiking), but that the remainder 678 

of the chromosome has not yet coalesced and thus has a tree height corresponding to the start of 679 

forward simulation.  These uncoalesced plateaus are what we will fix with recapitation. 680 

The next step, then, is to perform the recapitation.  This process works backwards from the tree 681 

sequence information recorded by SLiM, constructing a full coalescent history for all of the 682 

individuals alive at the end of the run.  Since the non-neutral dynamics eliminated much of the 683 

genetic diversity from the population as it existed at the beginning of forward simulation, this 684 

coalescence requires very little work – much less than even a normal coalescent simulation for 685 

this population size would require.  In the example run discussed here, the process took 0.41 686 

seconds.  If neutral mutations are desired, they can then be overlaid on the recapitated tree 687 

sequence following the method of Example 1; that code is not shown again here, but that 688 

operation took another 0.58 seconds (with µ = 10−7). 689 
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Finally, we plot the mean tree heights for the recapitated tree sequence; this produces the black 690 

line in Figure 5.  The uncoalesced plateaus have now coalesced to times as far as a million 691 

generations in the past.  This plot nicely illustrates the classical sweep pattern in which regions 692 

closer to the position of the sweep tend to coalesce more recently, due to hitchhiking, than 693 

regions farther away (Maynard-Smith and Haigh, 1974). 694 

Simulating the neutral burn-in period in SLiM instead, with neutral mutations occurring at a 695 

rate of µ = 10−7, would take an estimated 114.7 hours (from extrapolation; this is a very 696 

conservative estimate since the model was nowhere near mutation–drift balance when times were 697 

measured).  Recapitation and neutral mutation overlay, with a total time of 0.99 seconds, 698 

therefore sped up the burn-in process in this example by more than 400,000 times. 699 

Recapitation is clearly much faster than conducting burn-in with forward simulation, then; it 700 

should be faster than a rescaled forward simulation model too (since rescaling can generally not 701 

be taken that far without introducing problematic artifacts; see Discussion), and faster even than 702 

constructing the burn-in state with the coalescent (since recapitation is based upon the coalescent 703 

but handles far fewer events).  Recapitation provides other benefits as well, since it means that 704 

neutral burn-in can be deferred until after forward simulation is complete, and can even be 705 

conducted as an afterthought on existing model output.  It also allows the non-neutral forward 706 

simulation to run without a burn-in history needing to be loaded (likely making it faster and 707 

leaner), and allows one to avoid the question of how many generations must be simulated for 708 

complete burn-in.  It is worth noting that the coalescent (and thus recapitation) does not produce 709 

identical results to forward simulation of a Wright–Fisher model, but the differences are small 710 

and are mostly in the pattern of the most recent branches (Wakeley et al., 2012; Bhaskar et al., 711 
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2014); using recapitation as an approximation for neutral forward simulation should therefore 712 

produce practically identical results as long as the forward portion of the simulation runs for at 713 

least a few generations.  Similarly, although spatial models differ substantially from the standard 714 

coalescent, this difference is mostly seen in the more recent portion of the trees; lineages that 715 

have “mixed” across the species range without coalescing behave statistically like lineages in a 716 

randomly mating population (Wilkins, 2004; Matsen and Wakeley, 2006). Recapitation with an 717 

unstructured coalescent should therefore be a good approximation to pre-existing diversity in a 718 

spatial simulation as well. 719 

Note that constructing a burn-in history with recapitation is only equivalent to a period of 720 

forward simulation if the burn-in period is completely neutral.  If a non-neutral burn-in to 721 

equilibrium is needed, the best approach is probably to run the burn-in period in SLiM with tree-722 

sequence recording turned on and neutral mutations turned off (thus avoiding the cost of 723 

simulating the neutral mutations during burn-in, as in Example 1).  If a neutral burn-in is desired, 724 

but the neutral mutations are then needed by the non-neutral portion of the simulation (perhaps 725 

because some of the neutral mutations become non-neutral due to an environmental change), one 726 

might simulate the burn-in period with the coalescent in msprime (including mutation), and then 727 

save the result as a .trees file using pyslim; one could then read that .trees file into SLiM to 728 

provide the initial state for further simulation.  These techniques go beyond what we have space 729 

to illustrate here, but the manual for SLiM 3 provides further recipes showing the use of tree-730 

sequence recording.  Since it is possible to move simulation data with full ancestry records back 731 

and forth between msprime and SLiM, one can imagine many ways to combine the two to 732 

leverage their strengths while avoiding their weaknesses. 733 
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Discussion 734 

We have integrated support for tree-sequence recording (Kelleher et al., 2018) into the popular 735 

SLiM forward simulation software package.  Tree-sequence recording can now be enabled in any 736 

SLiM simulation, and the results output to a .trees file that can be loaded into Python for further 737 

simulation or analysis using the msprime package (a part of the tskit framework).  We have also 738 

extended the tree-sequence recording method to allow the recording and output of mutations that 739 

arise during forward simulation. 740 

We provided four examples demonstrating the power of the tree-sequence recording method.  741 

The first example, of a simple neutral model, showed how to enable tree-sequence recording with 742 

a few trivial modifications to a SLiM model’s script.  The second example illustrated the use of 743 

recorded tree sequences in post-simulation analysis in Python to estimate the characteristic 744 

reduction in neutral diversity expected around functional regions due to background selection.  745 

The third example mapped the mean true local ancestry along the chromosome in a model of the 746 

admixture of two subpopulations, again using post-simulation Python analysis.  Finally, our 747 

fourth example illustrated the use of msprime to “recapitate” a SLiM run, using the coalescent to 748 

construct a neutral burn-in period after the completion of forward simulation. 749 

All of these examples illustrated the large performance benefits that can be achieved with tree-750 

sequence recording.  Indeed, for very large neutral simulations our timing comparison indicated 751 

that the speedup due to tree-sequence recording can exceed two orders of magnitude, and can put 752 

the performance of forward simulation on par with an efficient coalescent-based simulation such 753 

as msprime (Example 1).  For a large simulation with many non-neutral mutations, we still 754 

observed a speedup of more than an order of magnitude (Example 2); simulations with a lower 755 

density of non-neutral mutations should benefit even more.  Similarly, compared to standard 756 
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forward simulation methods, using recapitation to construct a neutral burn-in period provided a 757 

speedup of more than five orders of magnitude (Example 4), and using the tree sequence to obtain 758 

true local ancestry information provided a speedup of more than six orders of magnitude 759 

(Example 3).  Memory savings observed in these models were also quite substantial. 760 

Although we have not made use of it in these examples, SLiM records substantial metadata in 761 

the tree sequence it outputs about genomes, individuals, and mutations.  This includes sex, age, 762 

and spatial location of remembered individuals, and times of origination and selection 763 

coefficients of mutations.  This information, along with the tree sequence, could enable 764 

substantially more detailed dissection of evolutionary trajectories.  Access to this SLiM metadata 765 

is mediated by the new pyslim package that bridges SLiM and msprime.  Furthermore, the 766 

.trees file contains all of the information necessary to reconstruct the internal state of the 767 

simulation in SLiM, so it can be loaded back into SLiM, examined graphically using SLiMgui, 768 

and even used as a starting point for further simulation (with some caveats; see the manual). 769 

Tree-sequence recording is not a panacea.  Models that do not involve neutral mutations will 770 

not realize a speed benefit from tree-sequence recording’s ability to defer neutral mutation 771 

overlay; in fact, they will run more slowly, since the overhead of recording will not be 772 

compensated by eliminating neutral mutation simulation.  Models that involve a very high 773 

recombination rate relative to the mutation rate may also not see a speed benefit from tree-774 

sequence recording, since tracking the recombination breakpoints can become very time-775 

consuming; informal tests indicate that this becomes important, for neutral simulations, when the 776 

recombination rate is two or more orders of magnitude larger than the mutation rate, however, so 777 

it may not be a practical concern for most models.  Even if simulation performance is not 778 
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improved by tree-sequence recording, the ancestry information provided by the tree sequence 779 

may still speed up analysis or provide additional statistical power, which can also be quite 780 

important in reducing total runtimes.  The benefit of tree-sequence recording also depends upon 781 

factors such as the proportion of neutral to non-neutral mutations, the distribution of fitness 782 

effects from which the non-neutral mutations are drawn, the genetic architecture, the frequency 783 

with which tree-sequence simplification is performed, and many other factors.  In practice, it may 784 

be worthwhile to simply compare the performance of both methods for a particular model; it is 785 

difficult to distill any reliable rule of thumb.  These considerations were discussed further in 786 

Kelleher et al. (2018). 787 

A commonly used technique for speeding up large forward simulations is model rescaling.  788 

This involves scaling down the population size (N) by some factor Q, while scaling up the 789 

mutation rate (µ), the recombination rate (r), and selection coefficients (s) by the same factor; this 790 

holds many common population-genetic parameters constant, since they involve products of these 791 

variables (e.g., Nµ, Nr, and Ns).  Since these factors (as well as genetic drift) are rates, one 792 

generation in the rescaled model corresponds to Q generations in the original model.  Therefore, 793 

rescaling by a factor Q can provide a speedup of up to a factor of Q2 due to the Q-times smaller 794 

population size and the Q-times smaller number of generations that need to be simulated.  795 

However, this technique has important limitations, because it can introduce artifacts due to the 796 

discretization of mutation frequencies and of time.  For example, if a model with an original 797 

population size of N = 10,000 were rescaled to a model with N = 100, the smallest possible 798 

mutation frequency will also have increased from 0.00005 to 0.005, which could severely affect 799 

studies in which one is concerned about the behavior of low-frequency polymorphisms. There are 800 
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more serious issues related to the process of adaptation; since rescaled values of s are larger, 801 

rescaling has the net effect of substituting many mutations of small effect with a single one of 802 

large effect (with Q=100, replacing 100 mutations with s=0.001 by a single one of s=0.1). Thus, 803 

rescaling must not be taken too far, and careful comparisons are needed between the unscaled and 804 

the rescaled model to ensure that results are not altered by rescaling artifacts.  The SLiM manual 805 

(Haller and Messer, 2016) has an extended discussion of model rescaling and provides instructive 806 

examples.  Since tree-sequence recording does not introduce such artifacts, it probably ought to 807 

be used to full advantage before any model rescaling is applied.  If that does not bring the desired 808 

simulation within practical computational bounds, rescaling may be used in conjunction with 809 

tree-sequence recording, but with the same caveats mentioned above.  Note, however, that the 810 

effectiveness of combining both strategies is hard to predict, since the increased recombination 811 

rate in the scaled model means that roughly the same number of recombination events must be 812 

recorded. 813 

Although tree-sequence recording is not appropriate in every model, the examples we have 814 

presented demonstrate that the performance gains it provides can make simulations possible that 815 

would previously have been beyond reach, opening up new horizons for exploration.  The 816 

software packages used here – SLiM, msprime, Python, R – are all free and open-source, and the 817 

examples and analyses shown here are all available on GitHub.  We hope that the practical 818 

examples we have provided will raise the level of awareness among evolutionary biologists 819 

regarding this exciting new method. 820 
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Figures 940 

 941 
Figure 1. An example tree sequence for a model of five extant genomes, with a chromosome 942 

ten base positions long.  Each interval between x axis ticks is a genomic interval with a 943 
distinct ancestry tree.  The leaves of each tree [0–4] represent the extant genomes, 944 
whereas the internal nodes [5–12] represent ancestral genomes from which the extant 945 
genomes descend.  The pattern of ancestry at adjacent sites is typically highly correlated, 946 
as seen here.  Full coalescence has been achieved for the first, second, and fourth 947 
intervals, but the third interval has not yet fully coalesced; the tree for that interval 948 
therefore has multiple roots.  See Kelleher et al. (2016, 2018) for further discussion of the 949 
tree sequence data structure. 950 
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 951 
Figure 2. A speed comparison between SLiM without tree-sequence recording, SLiM with 952 

tree-sequence recording and mutation overlay, and msprime’s coalescent simulation for a 953 
simple neutral model (Example 1; see text for model description).  Each point represents 954 
the mean runtime across 10 replicates using different random number seeds; bars showing 955 
standard error of the mean would be smaller than the size of the plotted points in all cases.  956 
Runs for SLiM without tree-sequence recording (filled blue diamonds) were not 957 
conducted for L = 1010 because the memory usage was prohibitive, so a linear 958 
extrapolation is shown (hollow blue diamond).  Runs for SLiM with tree-sequence 959 
recording and mutation overlay (filled green circles) are subdivided here to show the 960 
runtime for SLiM alone, prior to mutation overlay (hollow green circles), illustrating that 961 
the time for mutation overlay is negligible.  The runtimes for the msprime coalescent for a 962 
full population sample of n = 2N = 1000 (filled red squares) and for a sample of size 963 
n = 2N/100 = 10 (hollow red squares) are both shown.  Note that the x and y axes are both 964 
on a log scale. 965 
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 966 
Figure 3. Mean diversity (as measured by mean tree height) as a function of distance from the 967 

nearest gene (Example 2).  The center of the x-axis (red line) represents a distance of zero, 968 
immediately adjacent to a gene; moving away from the x-axis center to the left/right 969 
represents moving away from the nearest gene to the left/right respectively.  The pattern 970 
of decreased diversity near a gene is the “dip in diversity” due to background selection. 971 

 972 
Figure 4. Mean true local ancestry at each position along the chromosome (Example 3).  The 973 

red vertical bars indicate the positions at which beneficial mutations were originally 974 
introduced into p1 and p2.  The beneficial mutations, which both fixed, are points where 975 
the true local ancestry is 100% p1 or p2.  True local ancestry regresses toward equal 976 
admixture with increasing distance from those fixed points. 977 
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 978 
Figure 5. Mean tree height (on a cube-root-scaled y-axis) at each position along the 979 

chromosome, before and after recapitation (Example 4).  The red line shows mean tree 980 
heights prior to recapitation; the region surrounding the introduced sweep mutation 981 
coalesces at the start of the sweep, whereas the plateaus outside that region are 982 
uncoalesced and have a height corresponding to the start of forward simulation (100 983 
generations earlier).  The black line shows heights after recapitation; the uncoalesced 984 
plateaus have now been coalesced backward in time, producing tree heights as long as a 985 
million generations in the past. 986 
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