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Abstract 

Measuring whole-brain functional connectivity patterns based on task-free (‘resting-

state’) spontaneous fluctuations in the functional MRI (fMRI) signal is a standard 

approach to probing habitual brain states, independent of task-specific context. This 

view is supported by spatial correspondence between task- and rest-derived 

connectivity networks. Yet, it remains unclear whether intrinsic connectivity observed 

in a resting-state acquisitions is persistent during task. Here, we sought to determine 

how changes in ongoing brain activation, elicited by task performance, impact the 

integrity of whole-brain functional connectivity patterns. We employed a ‘steady-

states’ paradigm, in which participants continuously executed a specific task (without 
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baseline periods). Participants underwent separate task-based (visual, motor and 

visuomotor) or task-free (resting) steady-state scans, each performed over a 5-minute 

period. This unique design allowed us to apply a set of traditional resting-state analyses 

to various task-states. In addition, a classical fMRI block-design was employed to 

identify individualized brain activation patterns for each task, allowing to characterize 

how differing activation patterns across the steady-states impact whole-brain intrinsic 

connectivity patterns. By examining correlations across segregated brain regions 

(nodes) and the whole brain (using independent component analysis), we show that the 

whole-brain network architecture characteristic of the resting-state is robustly 

preserved across different steady-task states, despite striking inter-task changes in brain 

activation (signal amplitude). Subtler changes in functional connectivity were detected 

locally, within the active networks. Together, we show that intrinsic connectivity 

underlying the canonical resting-state networks is relatively stable even when 

participants are engaged in different tasks and is not limited to the resting-state. 

 

New and Noteworthy 

Does intrinsic functional connectivity (FC) reflect the canonical or transient state of the 

brain? We tested the consistency of the intrinsic connectivity networks across different 

task-conditions. We show that despite local changes in connectivity, at the whole-brain 

level there is little modulation in FC patterns, despite profound and large-scale 

activation changes. We therefore conclude that intrinsic FC largely reflects the a priori 

habitual state of the brain, independent of the specific cognitive context.  

 

Keywords: functional connectivity, resting state, steady-states, fMRI, ICA  
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Introduction 

Functional connectivity (FC) is a powerful and widely used tool for probing brain 

network organization and function in healthy (Biswal et al. 2010; Fair et al. 2007; Fox 

and Raichle 2007; Greicius and Menon 2004; Van Dijk et al. 2010) and clinical 

populations (Eippert et al. 2017; Filippini et al. 2009; Fox and Greicius 2010; Gilaie-

Dotan et al. 2013; Hahamy et al. 2015a; Hahamy et al. 2015b). Many studies focus on 

FC measured during rest, which can be accurately described by a relatively small 

number of spatiotemporal patterns that remain consistent across different participants 

and datasets (Damoiseaux et al. 2006). The spatial composition of these resting-state 

patterns, often referred to as intrinsic connectivity networks (ICNs), have been shown 

to mirror the respective brain states during task execution (Gilaie-Dotan et al. 2013; 

Hahamy et al. 2017; Smith et al. 2009; Tavor et al. 2016; Wilf et al. 2017). 

 

The high correspondence between rest- and task-based FC patterns (Cole et al. 2014; 

Fox et al. 2006; Greicius and Menon 2004; Moeller et al. 2009; Smith et al. 2009), as 

well as the changes in FC patterns between neurotypical and abnormal individuals, have 

led researchers to suggest that resting-state FC reflects the underlying synaptic 

efficacies in cortical networks (Guerra-Carrillo et al. 2014; Harmelech and Malach 

2013; Kelly and Castellanos 2014; Sadaghiani and Kleinschmidt 2013). That is, 

intrinsic FC is suggested to reflect the habitual state of the brain, independent of the 

specific context. However, many new studies, such as those employing 

psychophysiological interactions (PPI; O'Reilly et al. 2012), emphasize the differences 

in FC patterns resulting from dynamic changes in task demands (Buckner et al. 2013; 

Hermundstad et al. 2013; Mennes et al. 2013; Shirer et al. 2012; Spadone et al. 2015). 

These divergent observations raise the question of whether FC, as measured using 
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fMRI, is sensitive to changes in brain activation. Does intrinsic FC reflect the canonical 

(default, activation-independent), or current (transient, activation-dependent) state of 

the brain? 

 

In this study, we sought to shed some light on this matter by testing the consistency of 

the ICN patterns across various well-defined steady-state tasks. We hypothesized that 

if intrinsic FC represents the canonical state of functional brain organization (i.e. 

synaptic efficacy; Harmelech and Malach 2013), it should remain relatively stable 

across changing tasks. Alternatively, if fMRI FC represented the transient task-

dependent organization of the brain (Buckner et al. 2013; Hermundstad et al. 2013), 

intrinsic connectivity would be expected to change, depending on activation changes 

within the networks. We analyzed four steady-state conditions, collected either during 

rest or during three continuous tasks (without rest periods), allowing us to make 

inferences about resting and task-derived FC patterns based on the entire scan, rather 

than on brief rest and task periods, used in traditional block designs. This unique design 

also allowed us to employ multiple fMRI analyses developed for studying resting-state 

FC (otherwise not suitable for the more standard block-design), to study task-state FC 

and minimized the influence of rest on the task-based ICNs. Note that steady-state scans 

have been previously shown to be less susceptible to confounding factors than block 

designs (Hampson et al. 2006) and to produce more consistent FC results (Fair et al. 

2007).  

 

Previous studies have highlighted high degree of spatial overlap between rest and task-

derived FC networks (Smith et al. 2009). Here we took a step further and interrogated 

connectivity strength between distinct brain regions to determine whether intrinsic 
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connectivity remains stable across both task and rest. The different active steady-states 

used in our study were chosen based on a factorial design (motor/visual on/off) and 

were designed to target well-characterized and robust activation profiles in distinct sets 

of brain areas, with high consistency within and across participants. The natural vision 

condition was designed to activate the entirety of the Occipital- and Lateral Visual 

canonical ICNs. The motor task was performed with the right hand and was thus 

designed to only activate the left sensorimotor cortex, which comprised a portion of the 

bilateral sensorimotor ICN. The visuomotor condition was designed to simultaneously 

activate both visual and motor nodes. In addition to the 5-minute steady-state scans, we 

also used a traditional task-activation localizer (30 second blocks interleaved with 

baseline periods, see further details in the Methods) to measure changes in mean brain 

activation (BOLD signal level) induced by each of the tasks employed in the steady-

state scans, and in each participant, allowing for participant-specific customized 

analysis.  

 

We first used these data to determine the relationship between steady-state task-induced 

activation (based on the localizer task) and the FC profile (based on the various steady 

state scans) across brain nodes. We then employed a data driven approach based on 

independent components analysis (ICA) to investigate the stability of the ICNs, given 

the changed input induced by each steady-state task. For this purpose, we utilized the 

resting-state dataset collected by the Human Connectome Project as a model of the 

resting state ICNs (Smith et al. 2013). Both of these analyses showed little modulation 

in whole-brain FC patterns based on changed task activation. Finally, we used dual-

regression analysis (Filippini et al. 2009) to isolate network-specific local changes in 

connectivity. By demonstrating that the overall architecture of the ICNs is highly robust 
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despite changing task demands and specific, localized changes in FC, we conclude that 

intrinsic FC largely reflects the a priori habitual state of the brain, independent of the 

specific context.   
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Methods 

 

Participants and Experimental Design 

15 healthy volunteers (7 females, 8 males, age=27.25±4.4yr, all right handed) 

without any previous neurological disorders participated in the study after providing 

written informed consent. Participants were recruited in accordance with NHS 

national research ethics service approval (10/H0707/29). All participants underwent 

steady-state fMRI along with task localizer fMRI, with the order of the scans 

randomly determined. One participant was discarded from final analysis, due to an 

error in the block design acquisition. We note that the group ICNs in our dataset were 

comparable to those obtain using large datasets (HCP, see below), indicating 

adequate statistical power for the FC analysis. This dataset has been previously used 

to investigate related research questions (Costa et al. 2015; Duff et al. 2013; Duff et 

al. 2017). 

 

Participants were scanned under four separate, five-minute continuous steady-state 

conditions (with no baseline epochs): rest, motor only, visual only, and simultaneous 

(but independent) visual and motor tasks (Figure 1A). The motor condition involved 

continuous sequential finger tapping against the thumb, using the right hand. 

Participants were asked to maintain a tapping frequency of 1Hz, and tapping pace 

was practiced prior to the scan. The natural vision condition consisted of videos of 

colorful abstract shapes in motion (Supplementary Video 1), modified from the work 

of the artist Len Lyn (circa 1930’s). During the combined visuomotor condition 

participants viewed the aforementioned videos while simultaneously performing the 

self-paced motor tapping task. The usage of ecologically-valid “low-level” tasks 
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allowed us to construct a factorial design for activation profiles (i.e. 

orthogonal/additive activation in visual and motor areas across steady-states). In an 

additional fifth scan, described in the Supporting Information section, participants 

repeated the combined visuomotor condition, but were asked to change the finger-

tapping direction (index-to-pinkie and reverse) whenever they noticed monochrome 

frames inserted in the video. This task was designed to explore the role of attentional 

load on the ICNs’ integrity. The order of scans was counterbalanced across 

participants, such that different participants were presented with the various scans 

using different, but complementary, order. A fixation cross was presented in all 

conditions and participants were asked to keep their eyes on the cross throughout the 

study.  

 

An additional task-activation localizer scan was performed under the same 

conditions to identify participant-specific changes in average activation levels during 

each of the tasks. This scan used pseudo-randomized block design consisting of 30 

second task intervals separated by 15 second baseline periods. During the localizer 

scan, each of the three main study tasks (visual only, motor only, visuomotor) was 

repeated four times for a total scan time of 9 minutes and 15 seconds (Fig. 1A). 
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Fig. 1. Steady-states design and localizer of activated brain areas. (A) Participants 

underwent a set of separate task-based (visual, motor and visuomotor) or task-free 

(resting) steady-state scans, each acquisition lasting five minutes. In addition, a task-

localizer scan was employed to identify brain activation induced by each of the steady-

state tasks. (B) Group activation maps during each of the steady-states employed in the 

localizer scan. All activation foci are projected onto the inflated surface of a template 

brain as well as on three anatomical planes. 

 

Data Acquisition 

Functional data were acquired in a Siemens Vario 3T scanner, using a 32-channel 

head coil and a high-resolution multiband (factor 6) sequence with the following 

parameters: voxel size=2mm isotropic, TR=1300ms, TE=40ms, flip angle=66° 

(Feinberg et al. 2010; Moeller et al. 2010). 72 slices with 2mm thickness and no slice 

gap were acquired in the oblique axial plane, covering the whole cortex and 

cerebellum. Total number of volumes acquired: 230. For the task-localizer, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/407205doi: bioRxiv preprint 

https://doi.org/10.1101/407205
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

blood-oxygenation level dependent (BOLD) fMRI signal was acquired using a 

multiple gradient echo-planar T2*-weighted pulse sequence, with the parameters: 

voxel size= 3mm isotropic, TR=3000ms; TE=30ms; flip angle=90°; imaging 

matrix=64×64; FOV=192mm axial slices. Forty-six slices with slice thickness of 

3mm and no gap were acquired in the oblique axial plane, covering the whole cortex, 

with partial coverage of the cerebellum. Total number of volumes acquired: 185. 

Anatomical data were acquired using a T1-weighted magnetization prepared rapid 

acquisition gradient echo sequence (MPRAGE) with parameters: TR: 2040ms; TE: 

4.7ms; flip angle 8°; 1mm isotropic resolution. Field maps were obtained in order to 

reduce spatial distortion of the EPI images.  

 

Data pre-processing 

All imaging data were processed using FSL-FEAT (version 6.00; Smith, 2004). Pre-

processing included motion correction, field-map correction (Jenkinson et al. 2002) 

and brain extraction (Smith, 2002). Localizer scans only were subjected to spatial 

smoothing using a Gaussian kernel of FWHM of 5mm. Following the Human 

Connectome Project’s (HCP, http://www.humanconnectomeproject.org) minimal 

processing protocol, no spatial smoothing was applied to the steady-states data 

(Glasser et al. 2013). To account for the influence of any non-neuronal contribution 

to the BOLD signal, steady-state data were additionally cleaned using FIX (FMRIB's 

ICA-based Xnoiseifier) (Griffanti et al. 2014) automated denoising. EPI volumes 

were spatially realigned to the mean image and co-registered with the structural T1-

weighted image using Boundary-Based Registration (Greve and Fischl, 2009). Time-

course pre-whitening was carried out using FILM (FMRIB's Improved Linear 

Model) with local autocorrelation correction (Smith et al. 2004). All structural and 
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functional images were registered to standard MNI using both linear (FLIRT) and 

non-linear (FNIRT) registration. Images underwent mean-based intensity 

normalization and high-pass temporal filtering (0.01Hz for steady-state scans; 

0.005Hz for localizer scans). 

 

Task localizer  

A multi-level general linear model (GLM) analysis of the pre-processed localizer 

scans was used to identify regions that activated during one or more of the conditions, 

relative to rest (Jenkinson et al. 2012). The block design time-course of each of the 

four steady-state conditions was convolved with the gamma function, and together 

with its temporal derivative used to model the activation time-course in individual 

participants. Two participant-level contrasts were defined for each of the task 

conditions (motor, visual, visuomotor) vs rest (task>rest and rest>task), resulting in 

a total of 6 contrasts (2 per each task condition). A high-level group analysis was 

performed using a mixed effects model (Figure 1B). Z (Gaussianised T/F) statistic 

images were thresholded using clusters determined by Z>3.1 and a family-wise-error 

corrected cluster significance threshold of p<0.05 was applied to the suprathreshold 

clusters. 

 

To verify that the regions activated during the task localizer were also activated 

during the steady-state scans we performed a region of interest (ROI) analysis, driven 

by the task-localizer results. The group task-localizer maps from motor, visual and 

visuomotor (task>rest) task conditions were thresholded (Z>3.1), binarized and used 

as the ROIs. The steady-states time-courses of the rest, motor, visual and visuomotor 

conditions were extracted from under the corresponding task-based ROI separately 
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for each participant. The average amplitude of the time-course was compared 

between the rest and task-steady states using paired t-tests. Note that here a different 

pre-processing procedure was applied, including head-motion correction, field map 

correction, brain extraction, high-pass filtering, and spatial smoothing with 5 FWHM 

kernel.  

 

Node parcellation and network matrix generation 

To measure inter-regional FC changes across the entire brain in each steady-state 

condition, an automatic brain parcellation was used. We used a multi-modal surface-

based parcellation provided within the HCP, including 180 cortical regions in each 

hemisphere (Glasser et al. 2016). To generate participant- and condition-specific 

parcellations, the HCP parcellations were further dissected based on individual 

participants’ thresholded (Z>2.3) and binarized localizer scans (task>baseline). In 

other words, if the HCP ROI was found to be partially overlapping with a task 

activation cluster, that ROI was split into two separate nodes, each containing only 

activated/not activated voxels. This allowed us to generate nodes that are either task-

relevant or task-irrelevant for each participant and condition (motor, visual, 

visuomotor). Functional connectivity matrices were then created by correlating the 

average time-course of each ROI with the average time-course of each of the other 

ROIs, separately for each individual participant and for each condition. Defining the 

nodes individually for each participant (based on their activation maps in conjugation 

with HCP parcellation) allowed us to take into account the inter-participant 

functional variability. Note that the activation maps used for node definition (task-

localizer) were not used in the node analysis, therefore avoiding circularity. 
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Next, we investigated whether changes in correlations between nodes during rest and 

each of the steady-state tasks were associated with local changes in task-related 

activation. Specifically, we tested whether the changes in FC between a pair of nodes 

were associated with one or both of those nodes being activated (Zuo et al. 2018). 

First, to classify nodes based on their level of task-activation the following criteria 

ware applied: A single node was classified as task-relevant (activated) if, based on a 

given individual participant’s task-localizer (task>baseline), the average z-statistic 

value (across all voxels within that node) was above 2.3. A node was labelled as task 

irrelevant (not activated) if, based on the same criterion, the mean z-statistic value 

was higher than -1 and lower than 1. Nodes producing values outside these criteria 

(including the deactivated nodes) were discarded from this analysis (Zuo et al. 2018). 

Note that the deactivated nodes were not analyzed as, to date, the physiological 

interpretations of negative BOLD modulations remain controversial (Shih et al. 

2009; Bianciardi et al. 2011; Hu & Huang 2015). Below we report results involving 

all of the study participants. Note, however, that the same pattern of results was 

observed when excluding participants with low number of activated nodes in a given 

condition (if their number of activated nodes was lower than 1.5 interquartile range 

(IQR) below the lower quartile (Q1) of number of activated nodes across all 

participants).  

 

Next, the correlation coefficients across each of the steady-state time-courses were 

calculated across all pair-combinations of the nodes. Each pair of nodes was then 

sorted based on whether both nodes, one node, or neither of the nodes were activated 

during the visual, motor or visuomotor conditions. The correlation values across 

those node-pairs were Fisher’s z-transformed and displayed in a histogram, 
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separately for each participant, task (visual, motor and visuomotor) and number of 

activated nodes (no nodes activated/one node activated/two nodes activated, see Fig. 

2A and Supp. Fig. 1-8). Within each pair-category (none/one/two nodes activated) 

the average correlation coefficient (Fisher’s z-transformed) was further calculated 

for each participant and condition, and the mean values were analyzed using 

repeated-measures ANOVA and Bayesian repeated-measures ANOVA with number 

of task-related nodes in the pairwise correlation (none/one/two) and steady-state task 

(task/rest) as within-subject factors. This analysis was carried out in JASP (The JASP 

Team 2017), separately for motor, visual and visuomotor conditions. We note that 

averaging the FC across nodes may potentially mask subtler connectivity changes 

within each node category, which was the focus of an additional specialized analysis 

(dual regression approach, see below).  

 

Correlations across intrinsic connectivity networks 

Individual steady-state scans were temporally concatenated for each task condition 

(rest, motor, visual, visuomotor) to create task-specific 4D datasets. Each of the 

datasets was decomposed to 50 independent components using MELODIC 

(Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components, part of FSL software). Group-level MELODIC output was matched, 

using spatial cross-correlations, to 10 canonical networks (Smith et al. 2009) 

obtained from the resting-state HCP data. The components with the highest 

correlation values from each task-specific MELODIC output were selected in a 

winner-takes all paradigm, to obtain 10 networks of interest independently for each 

of the 4 steady-state conditions (Fig. 3A, Supp. Fig. 9-12).  
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Upon inspection, the steady-state networks corresponding to the HCP cerebellum 

network were spatially diffuse in all four conditions, with its mean spatial correlation 

strength to the canonical cerebellum network being always under 0.2. The 

cerebellum network was therefore discarded from further analysis. Within each 

condition, the remaining 9 components were correlated against the HCP-derived 

networks across the entire brain (Fig. 3B).  

 

Next, for each steady-states condition, we investigated the spatial consistency of the 

9 identified networks with the HCP resting-state networks. To this extend, the 

individual participants’ datasets were combined into surrogate group fMRI datasets 

using a bootstrapping procedure (i.e. random sampling with replacement). For each 

steady-state condition 100 surrogate datasets per condition were created 

(Damoiseaux et al. 2006). Each surrogate dataset contained data from ten randomly 

selected participants, drawn from the given steady-state. For each surrogate dataset, 

50 independent components were extracted using MELODIC and based on the 

spatial cross-correlations matched to the 10 canonical networks (Smith et al. 2009) 

obtained from the HCP’s data, resulting in 100 maps per condition for each of the 9 

networks of interest. The obtained maps were spatially cross-correlated with the 

HCP-derived networks and for each network and each condition a bootstrapped 

sampling distribution of the r-values was built (Fig. 3C).  

 

To quantify the differences in spatial correspondence of rest- and task-based ICNs to 

the resting-state HCP-derived networks, we built bootstrapped distributions of 

difference between r-values corresponding to the rest and motor; rest and visual; and 

rest and visuomotor steady-states. For each of those difference distributions, r-values 
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were normalized using Fisher’s z-transform and bootstrap percentile confidence 

intervals were calculated. Confidence intervals not overlapping with zero indicated 

significant difference between networks derived from rest and a given task condition 

in their spatial correspondence to the canonical ICNs. 

 

Dual regression analysis  

Finally, we quantified the differences in mean connectivity within the ICNs for each 

of the four steady-state conditions based on voxel-wise measures. We focused our 

analysis on four networks that overlapped with task-related activation changes 

during at least one of the employed steady-state conditions, as observed in the 

localizer: Default Mode Network ICN, Sensorimotor ICN, Occipital Visual ICN and 

Medial Visual ICN, as derived from the HCP dataset (Fig. 3A). To uncover network-

specific functional connectivity differences we used the dual regression approach 

(Filippini et al. 2009). The main regressor of interest was the averaged time-course 

underlying the resting-state HCP component of interest, derived from each individual 

participant’s steady-state time-course, with individual voxels weighted based on 

their contribution to the group IC. The weighted ICA time-courses of the remaining 

HCP components of interest were also calculated within each individual participant, 

using the same procedure, and included as regressors of no interest, in a voxel-wise 

first-level GLM. The output values of this analysis are voxel-wise beta values, for 

each individual participant and in each steady-state, representing the strength of 

connectivity with the HCP components of interest, after accounting for partial 

contribution of all other ICs, for each individual participant and in each steady-state. 

For group statistical analysis, these beta maps were compared between the steady-

state conditions using a 2 (motor task on/off) by 2 (visual task on/off) ANOVA 
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design. This analysis was carried out using FSL randomize non-parametric 

permutation testing, with 5000 permutations, using a threshold-free cluster 

enhancement approach (Smith and Nichols 2009). This analysis was repeated 

independently for each of the four components of interest (Default Mode Network 

ICN, Sensorimotor ICN, Occipital Visual ICN and Medial Visual ICN), to identify 

the strength of connectivity between individual voxels and the given network. Since 

none of the interactions were significant, the analysis was restricted to two main 

effects per network of interest, resulting in 8 comparisons. To account for multiple 

comparisons, we adjusted the alpha value to 0.00625 (Bonferroni correction, see Fig. 

4 for results).   
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Results 

 

Task localizer 

To evaluate changes in mean BOLD signal amplitude induced by each of the steady-

state conditions (activation), we first examined group contrast maps for each of the 

task conditions versus rest, derived from the block-design localizer scan. As shown 

in Figure 1B, the visual and motor conditions resulted in the canonical visual/motor 

fMRI activation patterns (Allison et al. 2000). Since the finger-tapping motor task 

was performed using the right hand, during the motor condition positive activation 

could be observed in the left primary motor and pre-motor cortices (overlapping the 

Sensorimotor ICN), right cerebellum and the posterior part of the left putamen. As 

such, the activation profile only engaged a part of the canonical Sensorimotor ICN. 

In this condition, visual areas in the occipital cortex were associated with negative 

BOLD modulation (hereafter deactivation). The motor condition also resulted in 

deactivation, partially overlapping with areas formally known as comprising 

posterior regions of the Default Mode Network (e.g. posterior cingulate cortex, 

precuneus). The natural visual condition, involving abstract videos, activated low-

level (foveal) and mid-level visual areas in the occipital and occipitotemporal cortex 

(overlapping with the Occipital Visual ICN) as well as higher-level visual areas in 

the occipitotemporal cortex (e.g. V4, hMT). This visual condition also resulted in 

deactivation in the low-level (peripheral) medial visual area (overlapping with the 

Medial Visual ICN) and in supplementary motor area. The combined visuomotor 

condition, involving both abstract videos and right-hand finger tapping, activated 

similar motor and visual areas as described for each condition separately, thereby 

providing an opportunity to study the combined activation impact across the 
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individual visual and motor conditions. A comparison of the average time-course in 

the task-based and resting steady-state scans confirmed that the areas activated 

during the localizer were also activated during the steady state (motor vs. rest: 

t(13)=6.659; p<0.0001; visual vs. rest: t(13)=3.906; p=0.0018; visuomotor vs. rest: 

t(13)=2.159; p=0.05). The localizer data will be made available online at the Open 

Science Framework upon publication of the manuscript. 

 

Functional connectivity between nodes is not directly associated with 

changes in BOLD activation 

This analysis aimed to determine whether changes in the intrinsic connectivity 

between task-related and task-unrelated nodes are associated with task-induced 

changes in mean fMRI activation across nodes. To examine the large-scale 

relationship between activation and connectivity, we parcellated the brain of each 

individual participant into functional nodes (see Methods). For each of the conditions 

(rest, motor, visual, visuomotor), we calculated a pairwise correlation between these 

nodes' time-courses, which yielded a connectivity matrix. For each task-condition, 

pairs of nodes were then sorted based on whether both nodes, one node or neither of 

the nodes in each pair were positively activated during the visual, motor or 

visuomotor task localizer. The correlation values were Fisher Z-transformed and 

displayed in a histogram, separately for each of the participants (See Fig. 2A for 

motor condition, one node activated; see Supp. Fig. 1-8 for the other conditions).  

If intrinsic FC is modulated by task demands (dependent on changes in node 

activation levels), then it should be increased/decreased in the task-state, when 

both/one of the nodes are activated by the task, respectively. This should result in a 

significant interaction between the number of nodes activated (zero, one, two) and 
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the steady-state condition (task, rest). Conversely, we found that substantial 

proportion of FC changes is not significantly associated with activation. This was 

exemplified by a nonsignificant interaction between the number of activated nodes 

and the task (motor vs rest: F(1.076,13.987)=0.258, p=0.637; visual vs rest: 

F(1.266,16.458)=1.666, p=0.219; visuomotor vs rest: F(1.083,14.074)=0.357, p=0.576). The 

Bayes Factor (BF) for the interaction was below 0.33 for all three conditions (motor 

vs rest BF: 0.285, visual vs rest BF: 0.282, visuomotor vs rest BF: 0.182; all versus 

rest), providing positive evidence in favor of the null hypothesis (no interaction; 

Dienes 2014; Wetzels et al. 2011). We also found a significant main effect of the 

number of activated nodes in a pair (zero, one or two) on FC (Fig. 2B), indicating 

that nodes that usually activate together tend to show increased connectivity 

independent of the steady state (motor vs rest: F(1.268,16.485)=44.643, p<0.001; visual 

vs rest: F(1.07,13.908)=50.267, p<0.001; visuomotor vs rest: F(1.131,14.703)=46.374, 

p<0.001). Finally, we found no significant main effect of task, showing that 

connectivity was not significantly different between task- and rest-states (motor vs 

rest: F(1,13)=1.327, p=0.27; visual vs rest: F(1,13)=1.1688, p=0.299; visuomotor vs rest: 

F(1,13)=0.477, p=0.502). These null results were further examined using Bayesian 

statistics, where a threshold of Bayes factor (BF) < 1/3 was taken as positive 

(substantial) evidence in favor of the null hypothesis (no differences across networks; 

Kass & Raftery 1995; Wetzels et al. 2011). We found that the null hypothesis was 

supported for the visual (BF=0.272) and visuomotor conditions (BF=0.193), whereas 

the differences between the motor and rest conditions were ambiguous (BF=0.46).  
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Fig. 2. Relationship between task-evoked activation and differences between task-

based and resting state FC. (A) Fisher z-transformed correlation coefficients between 

pairs of nodes, where only one of the nodes is activated during the motor steady-state 

condition, are displayed separately for each participant in the form of a histogram (y-

axis depicting the number of node pairs in each bin). If intrinsic connectivity changes 

with task activation, then FC should consistently decrease in the task-state, when only 

one of the nodes is activated, as compared to the resting-state. Although this is true for 

some participants (e.g. Participants 9 and 10), others show an opposite trend 

(connectivity increased in the motor condition, see e.g. Participants 1-3). (B) 

Relationship between number of activated nodes and mean FC for the three task 

comparisons (motor – pink, visual – blue, visuomotor - green). Note that while a 

significant main effect of the factor "number of activated nodes" (x-axis) can be 

observed, no significant interaction between activated nodes and task was found. Error 

bars indicate standard error of the mean.  
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Spatial Consistency of ICNs across steady-state tasks 

In the node analysis described above, we examined the local relationship between 

task-induced activation and FC. Although we found that the average FC between 

nodes was not reliably dependent on the activation changes between those nodes, it 

is possible that subtler changes in connectivity within each nodes category, impacting 

the overall spatial distribution of the intrinsic networks, were left undetected.  

 

In our next analysis, we thus aimed to examine the stability of the ICNs across 

different steady-state conditions. In other words, we investigated whether the spatial 

patterns of the resting-state connectivity networks correspond with those found 

during task states. For this purpose, we decomposed each of the steady-state datasets 

to identify 9 canonical networks of interests, based on the resting-state HCP dataset 

(see Methods). All of the canonical ICNs were found in the ICA decomposition of 

each of the steady-state datasets. Moreover, spatial maps of both rest- and task-state 

networks showed high levels of consistency with the HCP-derived resting-state ICNs 

(see Fig. 3A for task-relevant networks resolved from motor steady-state;  see Supp. 

Fig. 9-12 for all of the networks and conditions). Spatial correlations between 

congruent networks of the HCP and steady-state tasks were found to be considerably 

stronger than the correlations between incongruent networks (Fig. 3B) (average r-

value for the intra-network correlations: 0.54-0.55, average r-value for the inter-

network correlations: 0.01-0.02), demonstrating that the spatial distribution of the 

networks is largely preserved across task-states.  

 

To quantify the spatial overlap of the data-driven ICNs across steady-states with their 

HCP-counterpart, we ran a bootstrapping analysis (see Methods, Fig. 3C), allowing 
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us to quantify confidence intervals of spatial correlation values. In addition, this 

analysis provides an important opportunity to validate the quality of our data, 

considering our sample size was much smaller than that of the HCP. Despite the fact 

that HCP-derived ICNs were acquired during resting state while the task-based 

steady-states were acquired during activation of a range of brain areas (see Task 

localizer results), all of the networks showed similar levels of spatial overlap with 

the congruent HCP-networks. The exception was the Occipital Visual network which 

was more strongly correlated with its HCP-counterpart during visually related 

conditions (visual and visuomotor) than during rest (visual-rest difference score CI: 

-0.2173 to -0.0469, visuomotor-rest difference score CI: -0.2170 to -0.0464). 

Together these findings show that all ICNs, not only those activated by the 

experimental tasks (Smith et al. 2009), are remarkably preserved across steady-

states, despite the changes in brain activation.  
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Fig. 3. Spatial variability of ICNs between different steady-states (A) Spatial 

maps of four task-related ICNs extracted from the motor condition (depicted in red-

yellow scale) overlaid on the same ICNs extracted from the HCP data (depicted as 

black contours). (B) Whole brain correlation matrices of 9 major ICNs from the HCP 

data and their counterparts found in the steady-states data. Each ICN is correlated 

with all other ICNs. (C) Bar graph depicting mean spatial correlation coefficients 

(calculated from 100 bootstrapped ICA decomposition) of 9 major ICNs extracted 

from each of the steady-states conditions to their HCP counterparts. Note that only 

the Occipital Visual ICN (Occ) shows significant differences in its spatial 

correspondence to the HCP’s Occipital Network. Asterisks denote significance as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/407205doi: bioRxiv preprint 

https://doi.org/10.1101/407205
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

determined using bootstrap percentile confidence intervals (see Methods). MedVis 

stands for Medial Visual ICN, Occ – Occipital Visual ICN, LatVis – Lateral Visual 

ICN, DMN – Default Mode Network, SM – Sensorimotor ICN, Temp – Temporal 

ICN, Exec – Executive ICN, RLat – Right Lateral ICN, LLat – Left Lateral ICN. 

 

Local differences in connectivity profiles  

While our previous analysis showed that the ICNs are stable across different steady-

state conditions, it is still possible that the task demands have a more localized impact 

on FC, which is insufficient to disrupt the ICNs global stability. It has previously 

been suggested that activation-driven changes in FC during a task-based block design 

are masked by the network's intrinsic connectivity properties (Cole et al. 2014; Xie 

et al. 2017). To uncover potentially more subtle differences across the connectivity 

profiles of task-relevant networks, we employed a dual regression analysis. This 

analysis allowed us to look at differences in voxel-wise connectivity strengths within 

the networks of interest in each steady-state task condition. Importantly, unlike 

commonly used seed-based FC analyses, this approach allowed us to characterize the 

unique distribution of each of the networks while accounting for variability shared 

with other networks. Here we focused on four main networks, most relevant for the 

tasks we used (i.e. spatially overlapping with task-related activation changes, as 

found in the task-localizer; see Fig. 1B): The Medial and Occipital Visual networks, 

the Sensorimotor network and the Default Mode Network. We took advantage of our 

parametric design (visual activation on/off, motor activation on/off) to calculate one 

2x2 ANOVA for each network. As no significant interactions were identified, we 

focused our analysis on the two main effects (see Methods). The Occipital Visual 

network overlapped with areas that were activated during the visual and visuomotor 
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tasks. Accordingly, we found that the areas within the Occipital Visual network 

showed increase intra-network connectivity during those tasks, as compared to rest 

(Fig. 4). In other words, the Occipital Visual network becomes more strongly 

connected to itself in the visual conditions, which may potentially underlie its 

stronger correspondence to its HCP-derived counterpart during visual and 

visuomotor steady-states (Fig. 3C). The Medial Visual network overlapped with 

brain areas that were deactivated during the visual task. Accordingly, areas of this 

network showed reduced connectivity to the Occipital Visual ICN, which was 

activated during the visual conditions (Fig. 4). Finally, our motor tasks required the 

movement of only one hand, resulting in unilateral activation in the sensorimotor 

hand area contralateral to the task-related hand. Though the bilateral hand areas are 

typically coupled during resting state (Hahamy et al. 2015b) the inactive hand 

(ipsilateral) area showed decreased connectivity with the sensorimotor network 

during the motor conditions. No other significant results were found for other 

contrasts and networks under the adjusted threshold (alpha<0.00625). Note that 

similar results were also found under higher attentional load in the visuomotor 

condition (see Supporting Information), with additional FC modulations present in 

the Executive network. As such, it seems that areas that are activated/deactivated 

during the task may show increases/decreases in network coupling during task 

compared to rest, although these changes are contained within the relevant intrinsic 

connectivity networks and may thus be attributed to changes in the amplitude of 

variance of the driving signal (Duff et al. 2017; Nir et al. 2006).  
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Fig. 4. Intra-network FC differences between task and rest. (A) Brain regions 

activated by the motor condition overlap with the Sensorimotor ICN; brain regions 

activated during the visual condition overlap with the Occipital Visual ICN; and, 

brain regions deactivated during the visual condition overlap with the Medial Visual 

ICN. Brain (de)activation is shown in blue and red, the boundaries of the ICNs is 

illustrated by the black contour line. (B) Results of the dual regression analysis 

reveal: lower FC to the ipsilateral part of the Sensorimotor ICN during motor task; 

increased FC within the Occipital Visual ICN during visual task; and decreased 

connectivity between Medial Visual ICN and Occipital Visual ICN during the visual 

task.  
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4. Discussion 

 

In the present study, we investigated the effects of regional steady-state brain 

activation on FC, by comparing resting-state FC measurements to steady-state task 

FC measurements. We used fMRI data from four steady-state tasks (Fig. 1A) to 

investigate modulations of FC due to changing task demands. In our first analysis, 

we looked at whole-brain changes in connectivity strength based on subject-specific 

activation profiles across nodes (Fig. 2). Here we benefitted from using naturalistic 

visual and motor tasks that result in robust and consistent activation in sensorimotor 

cortex. For example, a similar motor task has been recently shown to produce the 

largest effect sizes for changes in BOLD activation, as compared to cognitive tasks 

(Poldrack et al. 2017). Despite the fact that the activation was increased in a 

synchronized manner across task-specific nodes, we found no large-scale relation 

between FC and activation, suggesting that most FC changes may be better explained 

by network affiliation. To look at changes in the spatial attributes of FC we employed 

a data-driven approach based on ICA decomposition. We found that the resulting 

ICNs remain mostly undiminished during motor, visual, and visuomotor task 

conditions (Fig. 3). This was also the case when we examined an additional task, 

designed to increase attentional load and to better integrate across the visual and 

motor conditions (Supp. Fig. 14). This analysis demonstrates that the ICNs are not 

specific to resting state only but rather reflect the general state of functional brain 

organization. This observation is in accordance with previous studies postulating 

continuous intrinsic activity (Fox and Raichle 2007; Sadaghiani et al. 2010; Smith et 

al. 2009) and provides additional support for the idea that ICNs remain coupled 

within themselves even during task conditions (Calhoun et al. 2008; Greicius and 
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Menon 2004; Hampson et al. 2006). Importantly, we show that even those networks 

that are partially (or not at all) activated by the task largely maintain their functional 

integrity during the steady-states. Together, our findings suggest that functional brain 

structure is defined by a set of stable intrinsic networks that are present across both 

low-level tasks and rest. 

 

A number of previous studies have shown that FC of ICNs can still be measured 

during both sensorimotor and cognitive tasks in addition to rest (Calhoun et al. 2004; 

Calhoun et al. 2008; Moeller et al. 2009; Shirer et al. 2012; Smith et al. 2009; Sun et 

al. 2004). For instance, Sun et al. (2004) seeded certain areas of the motor cortex 

during a bimanual motor task and found that they could reproduce a FC pattern 

similar to the sensorimotor ICN seen during rest. Similarly, in macaques, Moeller et 

al. (2009) showed that independent component analyses of fMRI data acquired 

during movie-watching, rest and various visual tasks revealed FC networks that were 

highly similar across conditions. However, note that in these examples, the task-

activation pattern corresponded with the spatial properties of the related ICNs. In our 

experimental design, we varied the extent of activation within and across ICNs: the 

visual task, comprised of colorful and slowly moving shapes, was designed to 

activate the entire Occipital Visual network; the motor task, comprised of unilateral 

hand movements, was designed to only activate parts of the bilateral sensorimotor 

ICN; the combined visual and motor condition was designed to evoke a summation 

of visual and motor activations (an effect previously observed by Calhoun et al. 

2004), providing opportunity to observe inter-network interactions. Despite this 

diversified experimental design, we found that the ICNs were largely invariant to 

changed activation (see below for a discussion of induced task-changes, as identified 
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in our final analysis). The exception to this rule was the Occipital Visual ICN, where 

spatial changes in the connectivity pattern were identified in the visual task 

conditions, compared to non-visual conditions (Fig. 3C). Our findings therefore 

demonstrate that the ICNs are robust to change, at least due to low task demands. 

This observation is consistent with recent evidence from cognitive tasks, which have 

been shown to introduce little variability to the gross structure of the FC networks 

(Gratton et al. 2018). Note however that other studies should determine whether these 

results can be replicated in a range of other steady-state tasks and paradigms, e.g. 

while activating only a proportion of the visual network and in tasks involving higher 

cognitive loads and/or fine motor precision.  

 

One of the most prominent explanations of the immutability of the ICNs across task 

conditions is that the resting state fluctuations are stable and linearly superimposed 

on the task activation, as first postulated by e.g. Arieli (1996) and Fox et al. (2005). 

More recent studies (Cole et al. 2014; Gratton et al. 2016; Kimm et al. 2017; Xie et 

al. 2017) suggested that the functional brain architecture during both rest and task 

performance is dominated by the ICNs that are superimposed on any potential task-

evoked FC changes. In other words, task-evoked FC changes occur in the presence 

of an intrinsic functional network architecture that extends across many or all brain 

states. Thus, the activation-driven changes can only be resolved after removing the 

intrinsic connectivity components from the data (Kim et al. 2017; Xie et al. 2017 

though see also Dvir et al. 2017). Indeed, using the dual regression procedure, we 

found significant differences in connectivity profiles arising from different steady-

state tasks. In summary, we found that some brain areas activated by the task (i.e. 

within the Occipital Visual ICN during visual task) tended to become more 
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connected to the network. Areas that become deactivated by a task (Medial Visual 

ICN in visual, viusomotor and attention tasks; ipsilateral hand area in motor, 

visuomotor and attention tasks) become decoupled from the activated network. The 

observed decrease in FC within the motor system was previously reported by Shah 

et al. (2016) and Morgan and Price (2004). These authors hypothesized that this 

decrease in FC can be caused by the increased noise in the signal, induced by the 

finger tapping task. However, as those FC changes involve mainly the ipsilateral 

hemisphere (which does not activate during the task) rather than the entire 

sensorimotor network, we believe that the observed FC decrease originates from the 

lateralized activation characteristic of finger tapping (though we note that under 

higher attentional load the suppression was more extensive, see Supp. Fig. 14). All 

reported FC differences were, however, relatively localized to the 

activated/deactivated networks, suggesting that activation changes due to task 

demands only affect local connectivity within the network (as shown in Fig. 4). 

Exploring the linearity of the addition of the visual task to the motor task, we saw 

that there was relatively little interaction between the two conditions with respect to 

changes in connectivity, despite the fact that activation has been induced across both 

networks (see Supp. Fig. 15 for inter-network changes in the attention task). These 

findings resonate with our previous conclusion, that network affiliation may be the 

most important aspect of functional connectivity. Indeed, a likely framework for 

explaining the differences in the ICN’s task-specific connectivity profile may be the 

changes in the amplitude of the driving signal (Duff et al. 2017). Regardless, 

although relatively small, those connectivity changes are functionally meaningful 

and can potentially be used to distinguish between different cognitive tasks (Shirer 

et al. 2012) and participants (Tavor et al. 2016). 
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Despite widely established correspondence in rest-task network topography, recent 

studies have emphasized differences in FC patterns evoked by resting and task states 

(Betti et al. 2013; Buckner et al. 2013; Kim et al. 2017; Mennes et al. 2013). A 

common characteristic of most of the studies looking at activation-based changes in 

FC is that they use a block design and base their analyses on Psychophysiological 

Interactions (PPI). This procedure is based on the assumption that the global FC 

patterns can be initiated and stabilized within an order of seconds. However, it has 

been demonstrated that the characteristics of the spontaneous fluctuations change 

with time (Duff et al. 2008; Hutchison et al. 2013; see also Beckmann et al. 2005; 

Biswal et al. 1995; Cordes et al. 2000 for considerations of the FC frequency band 

and Hutchison et al. 2013 for dynamic functional connectivity). Here, we offer a 

paradigm that can help to ameliorate those confounds by using steady-state designs 

in which cognitive state is expected to be constant over time. Steady-state scans have 

been shown to be less susceptible to confounding factors than the block designs 

(Hampson et al. 2006) and to produce more consistent FC results (Fair et al. 2007). 

In the current study, we thus employed a set of simple yet extensively studied motor 

and visual tasks, allowing us to examine the interaction between BOLD responses to 

a particular stimulus and FC changes. By varying the visual stimulus and moving 

fingers across each scan, our steady-state tasks were specifically designed to 

minimize effects of fMRI adaptation (also known as repetition suppression) which 

regardless, usually contributes to only a very small proportion of the BOLD signal 

(Grill-Spector et al. 2006). Although performed continuously over a period of 5 

minutes, we have found the steady-state tasks to be a good approximation of the task-

localizer, in terms of reliably activating the same brain regions. Overall, we confirm 

previous observations that the intrinsic network architecture appears to be a 
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canonical (default) state of the human brain’s functional network (Harmelech and 

Malach 2013), with task demands having a small effect on this state when considered 

in terms of overall brain organization. 

 

Our results provide two opportunities for methodological impact. First, we show that 

node-to-node correlations are insensitive to localized task-based changes in FC. 

Those changes were only significantly observed when utilizing a dual regression 

approach that effectively regresses out any contributions to the FC time-course that 

are shared by the other networks and conditions. This suggests that dual regression 

can be effectively used for unmasking local FC changes, providing alternative means 

to previously used approaches (e.g. inter-subject functional correlations, Kimm et al. 

2017; Ren et al. 2017). Second, our findings suggest that steady-state designs can be 

used to study ICNs. Many studies have shown that motion is a major source of 

variability in FC studies that can lead to erroneous results when comparing groups 

of participants (Power et al. 2012; Satterthwaite et al. 2012; Van Dijk et al. 2012). 

Moreover, it has been reported that task-based scans are associated with less head 

motion than classical resting-state scans (Vanderwal et al. 2015; Huijbers et al. 

2017). Despite these methodological benefits, task-based scans have been avoided in 

FC studies due to the assumption that intrinsic connectivity cannot be robustly 

measured under task conditions. Our data challenge this assumption: we show that 

the intrinsic connectivity structure dominates over task-evoked FC and is thus 

reliably present across multiple types of task-based brain states. Our findings 

therefore demonstrate that the intrinsic functional network structure can be reliably 

assessed, and compared between different populations, during various steady-states; 

and potentially even when different participants are engaged in different minimally 
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demanding steady-state tasks. As suggested by Vanderwal et al. (2015), this finding 

can facilitate data collection as it lowers the chances of participants falling asleep 

and significantly reduces their head movements. Furthermore, whereas resting state 

scans are largely uncontrolled (the final FC results can be altered by uncontrollable 

activations), steady-states paradigms offer a greater level of cognitive and 

experimental control, which may help to reduce variability in results or circumvent 

other confounds.  
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