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Abstract 
Constitutive heterochromatin is commonly associated with high levels of repressive epigenetic marks and is 

stably maintained transcriptionally silent by the concerted action of different, yet convergent, silencing 

pathways. Reactivation of heterochromatin transcription is generally associated with alterations in levels of 
these epigenetic marks. However, in mutants for particular epigenetic regulators, or upon particular 

environmental changes such as heat stress, heterochromatin-associated silencing is destabilized without 

noticeable changes in epigenetic marks. This suggests that transcription can occur in a non-permissive 

chromatin context, yet the factors involved remain poorly known. Here, we show that heat stress-induced 

transcription of heterochromatin depends on the TFIIH component UVH6 and the Mediator subunit MED14. 

Mutants for these two factors exhibit hypersensitivity to heat stress, and under these conditions, UVH6 and 

MED14 are required for transcription of a high number of loci. We further show that MED14, but not UVH6, is 
required for transcription when heterochromatin silencing is destabilized in the absence of stress. In this 

case, MED14 requires proper chromatin patterns of repressive epigenetic marks for its function. We also 

uncover that MED14 regulates non-CG DNA methylation at a subset of RNA-directed DNA methylation 

target loci. These findings provide insight into the control of heterochromatin transcription upon silencing 

destabilization and identify MED14 as a regulator of DNA methylation.  
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Introduction 
In eukaryotic cells, DNA associates with proteins to form chromatin, which is organized in two main states, 

namely euchromatin and heterochromatin. Compared with the gene-rich euchromatin, heterochromatin is a 

highly compacted organization of chromatin and mostly comprises different types of repeated sequences, 

notably transposable elements (TEs). Heterochromatin generally associates with high levels of cytosine DNA 

methylation and specific histone post-translational modifications, which in Arabidopsis thaliana are 

dimethylation at histone H3 lysine 9 (H3K9me2) or monomethylation of H3K27 (H3K27me1) (Feng and 

Michaels, 2015). These epigenetic marks typically contribute to maintaining heterochromatin compacted and 

transcriptionally inactive. In Arabidopsis, H3K27me1 is catalyzed by the histone methyltransferases 
ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6 (Jacob et al., 2009). H3K9me2 is 

deposited by the histone methyltransferases KRYPTONITE (KYP)/SU(VAR)3–9 HOMOLOG 4 (SUVH4), 

SUVH5, and SUVH6. In plants, cytosine DNA methylation occurs in three sequence contexts: CG, CHG and 

CHH, where H is any base but a guanine. CG methylation is maintained during DNA replication, where 

METHYLTRANSFERASE 1 (MET1) reproduces the CG methylation pattern from the template strand to the 

neo-synthetized strand (Law and Jacobsen, 2010). CHG methylation is predominantly mediated by 

CHROMOMETHYLTRANSFERASE 3 (CMT3), which is recruited to its target sites by binding to H3K9me2 

(Du et al., 2012). CHH methylation depends on the activity of both CMT2 and a complex pathway termed 
RNA-directed DNA Methylation (RdDM), which is notably operated by the plant specific RNA polymerases IV 

(Pol IV) and V (Pol V) (Law and Jacobsen, 2010; Stroud et al., 2014; Zemach et al., 2013). RdDM relies on 

small siRNA precursors generated by Pol IV, maturated by RNA DEPENDENT RNA POLYMERASE 2 

(RDR2) and processed by DICER-LIKE 3 (DCL3) in 24-nucleotide siRNAs that are loaded into ARGONAUTE 

4 (AGO4) (Matzke and Mosher, 2014). In the canonical model, base pairing of Pol V-dependent scaffold 

transcripts with AGO4-bound siRNAs recruits DOMAINS REARRANGED METHYLTRANSFERASE 2 

(DRM2) to its target sites (Wendte and Pikaard, 2017). Chromatin remodelers also participate in DNA 
methylation, with DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) promoting CHH 

methylation at RdDM-dependent loci, while DECREASE IN DNA METHYLATION 1 (DDM1) would allow all 

methyltransferases to access heterochromatin thereby contributing to DNA methylation in all sequence 

contexts (Kanno et al., 2004; Stroud et al., 2013; Vongs et al., 1993; Zemach et al., 2013). 

Although a certain level of transcription of some heterochromatin sequences is required for establishing or 

maintaining heterochromatin structure, DNA methylation and histone modifications contribute different layers 

of silencing that largely repress heterochromatin transcription. Additional factors appear to ensure 

transcriptional silencing at subsets of heterochromatin loci largely independently of these marks. The best 
described are MORPHEUS’ MOLECULE 1 (MOM1), REPLICATION PROTEIN A2 (RPA2), BRUSHY1 

(BRU1), proteins of the Arabidopsis MICRORCHIDIA family (AtMORC), and the MAINTENANCE OF 

MERISTEMS (MAIN) and MAIN-LIKE 1 (MAIL1) proteins that likely act in complex (Amedeo et al., 2000; 

Elmayan et al., 2005; Han et al., 2016; Ikeda et al., 2017; Kapoor et al., 2005; Moissiard et al., 2012, 2014; 

Takeda et al., 2004). Although little is known about the mode of action of these proteins, MAIL1/MAIN and 

AtMORC6 appear to contribute to heterochromatin compaction, while MOM1 does not in spite of its 

heterochromatic localization (Feng et al., 2014; Ikeda et al., 2017; Probst et al., 2003; Wang et al., 2015).  

Some environmental challenges such as heat stress can also transiently alleviate heterochromatin silencing 
without disturbing epigenetic marks (Lang-Mladek et al., 2010; Pecinka et al., 2010; Tittel-Elmer et al., 2010). 

Importantly, heat-induced release of silencing does not occur through inhibition of known silencing pathways 
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nor does it depend on the master regulator of the heat stress transcriptional response HsfA2 (Pecinka et al., 

2010; Tittel-Elmer et al., 2010). The H2A.Z histone variant is involved in ambient temperature sensing 

(Kumar and Wigge, 2010), but its role in heat-induced heterochromatin transcription is unknown. Recent 

reports suggest that DDM1 and MOM1 act redundantly to re-establish silencing after heat stress, while heat-

induced expression of the silenced gene SDC participates in heat stress tolerance (Iwasaki and Paszkowski, 

2014; Sanchez and Paszkowski, 2014). Interestingly, HIT4 is localized at heterochromatin and is required for 
its transcription in heat stress but not in the mom1 mutant (Wang et al., 2013, 2015). 

Heterochromatin transcription has been observed in a variety of model organisms under various conditions 

(Castel and Martienssen, 2013; Chan and Wong, 2012; Negi et al., 2016; Saksouk et al., 2015; 

Valgardsdottir et al., 2008). Despite its prevalence, heterochromatin transcription is a rather poorly 

understood process. Notably, how the transcriptional machinery can access to a repressive chromatin 

environment remains a largely unsolved question (Feng and Michaels, 2015). To gain insight into this 

mechanism, we used forwards genetics with a reporter-based system and identified the evolutionary 

conserved factors XPD/UVH6 and MED14 as required for heterochromatin transcription during heat stress in 
Arabidopsis thaliana. When heterochromatin silencing is destabilized by mutations in silencing factors, UVH6 

is dispensable for transcription, while MED14 participates in transcription specifically if proper patterns of 

repressive epigenetic marks are preserved. MED14 also targets highly methylated TEs under normal growth 

conditions, suggesting a role for the repressive chromatin environment in recruiting MED14. We further show 

that MED14 regulates non-CG methylation at a subset of loci, likely through RdDM, indicating that MED14 is 

simultaneously involved in the transcription and the formation of heterochromatin.  

 

Results 
AtMORC6 and H2A.Z are not involved in release of silencing triggered by heat stress 
We and others previously demonstrated that destabilization of silencing by heat stress does not rely on 
compromising DNA methylation maintenance, RNA-directed DNA methylation, histone deacetylation, HsfA2 

or MOM1 functions (Lang-Mladek et al., 2010; Pecinka et al., 2010; Tittel-Elmer et al., 2010). We assessed 

the possible involvement of AtMORC6 and H2A.Z in this process by submitting atmorc6-3 and arp6-1 

mutants to our previously published heat-stress conditions (Tittel-Elmer et al., 2010). AtMORC6 is required 

for transcriptional silencing of several repeats and TEs mostly independently of DNA methylation (Moissiard 

et al., 2012). ARP6 is involved in assembling H2A.Z-containing nucleosomes, which were shown to be 

essential to perceiving ambient temperature (Kumar and Wigge, 2010). Reverse transcription followed by 

quantitative PCR (RT-qPCR) assays at five selected TEs showed transcript over-accumulation under heat 
stress in WT plants and this over-accumulation was not significantly affected in atmorc6-3 and arp6-1 mutant 

backgrounds (supplementary figure 1). This suggests that AtMORC6 and deposition of H2A.Z are not 

necessary for destabilization of silencing induced by heat stress.   
 
Heat stress-induced release of heterochromatin transcriptional silencing is independent of genome-
wide changes in DNA methylation patterns 
The Arabidopsis L5 transgenic line contains tandem-repetitions of a transcriptionally silent ß-glucuronidase 

(GUS) transgene under control of the cauliflower mosaic virus 35S promoter (Elmayan et al., 2005; Morel et 

al., 2000). Exposing L5 plants to various heat stress regimes leads to transcriptional de-repression of the L5-
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GUS transgene as well as numerous endogenous heterochromatin loci (Lang-Mladek et al., 2010; Pecinka 

et al., 2010; Tittel-Elmer et al., 2010).  
We sought to identify genes required for heat stress-induced activation of heterochromatin 

transcription using a forward genetics approach, by screening a mutagenized L5 population for reduced L5-

GUS expression following heat stress treatment. Because such mutants may potentially be hypersensitive to 

heat stress and because plants do not survive histochemical detection of GUS accumulation, we set up a 

screening strategy that consisted in performing GUS staining on isolated leaves from 2-week-old seedlings 

after incubation at either 23°C or 37°C for 24h (figure 1A). Similar to whole seedlings submitted to a 4°C / 

37°C temperature shift (Tittel-Elmer et al., 2010), incubating isolated leaves at 37°C led to a robust silencing 

release of the L5-GUS transgene and endogenous repeats and TEs (figure 1A, B, C). To further validate the 

screening method, we defined the impact of this heat stress on gene expression genome-wide, comparing 
transcriptomes generated by mRNA sequencing (mRNA-seq) in leaves of L5 seedlings (hereafter referred as 

to WT) following incubation at either 23°C or 37°C. Consistent with previous results from ATH1 microarray 

analysis of whole seedlings exposed to a 4°C-37°C temperature shift (Tittel-Elmer et al., 2010), we found 

that regions of constitutive heterochromatin, including centromeric, pericentromeric DNA and the 

heterochromatin knob on chromosome 4, were overall transcriptionally activated following incubation at 37°C 

(figure 1D). Our mRNA-seq analysis identified a total of 116 up-regulated TEs, mostly located in 

pericentromeric heterochromatin, confirming that these stress conditions alleviate heterochromatin-
associated silencing (figure 1D). ONSEN elements represented notable exceptions amongst TEs in that they 

are predominantly located on chromosome arms yet they are highly activated by heat stress (figure 1D). This 

is consistent with previous observations in seedlings exposed to heat stress (Ito et al., 2011; Pecinka et al., 

2010; Tittel-Elmer et al., 2010), and occurs owing to the presence of heat-responsive elements in ONSEN 

LTRs (Cavrak et al., 2014). Conversely, transcripts originating from loci located on chromosome arms tended 

to be downregulated after 37°C treatment (figure 1D). Accordingly, protein-coding genes (PCGs) with 

downregulated transcript levels were more abundant than upregulated ones (4308 vs. 1487, respectively), a 

tendency we also previously reported when applying stress on seedlings (Tittel-Elmer et al., 2010). 
Therefore, applying heat stress to isolated leaves largely mimics the transcriptional response occurring in 

stressed whole seedlings.  

Previous analyses of DNA methylation levels at selected heterochromatin repeats and TEs using 

methylation-sensitive restriction enzymes have suggested that heat stress-induced alleviation of silencing 

does not correlate with changes in DNA methylation (Pecinka et al., 2010; Tittel-Elmer et al., 2010). To 

determine with high resolution whether our heat stress procedure impacts DNA methylation, we profiled 

cytosine methylation patterns in WT leaves at 23°C and 37°C by whole-genome bisulfite sequencing (BS-

seq). Comparison of methylation levels along chromosomes and along all PCGs and TEs revealed no overall 
impact of heat stress exposure on DNA methylation (figure 1E and supplementary figure 2A). Furthermore, 

TEs and PCGs transcriptionally upregulated by heat stress displayed similar DNA methylation profiles at 

23°C and 37°C (figure 1F). Notably, PCGs upregulated by heat stress showed higher average WT DNA 

methylation levels at CG sites than downregulated PCGs (supplementary figure 2B). Together, these results 

indicate that heat stress-induced transcriptional changes occur largely independently of detectable variation 

in DNA methylation patterns.  

 
Mutants for UVH6 and MED14 are deficient for heat stress-induced release of silencing 
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From the ethyl methanesulfonate (EMS)-mutagenized L5 population, we isolated two mutants that we named 

zen1 and zen2, which leaves showed reduced GUS staining following incubation at 37°C compared to 

stressed leaves of the non-mutagenized progenitor L5 line (figure 2A). RT-qPCR analyses indicated that 

decreased GUS staining was associated with reduced transcriptional activation of the L5-GUS transgene 

(figure 2B). Likewise, transcript accumulation from the heterochromatic endogenous loci TSI, 106B and 

MULE was drastically reduced following heat stress in zen1 and zen2 compared to the WT (figure 2C), 
demonstrating that suppression of heat stress-mediated release of TGS in zen1 and zen2 is not restricted to 

the L5 transgene.  
The reduced silencing release in stressed zen mutants followed a 1:3 (mutant:WT) segregation ratio 

in F2 populations of zen1 x L5 and zen2 x L5 backcrosses, indicating that zen1 and zen2 are single, nuclear, 

recessive mutations. F1 plants from complementation tests between zen mutants showed a WT-like 

response to heat stress, demonstrating that zen1 and zen2 mutations affect distinct genes (supplementary 

figure 3A). Under normal growth conditions, zen1 plants showed reduced leaf size, altered color and late 

flowering, whereas zen2 seedlings displayed no obvious developmental phenotype (figure 2D). Survival 
assays revealed that both mutants were hypersensitive to heat stress relative to the WT (figure 2E). We 

identified candidate mutations in zen1 and zen2 using mapping-by-sequencing from outcross F2 populations 

(supplementary figure 3B, C). zen1 plants contained a G to A transition in the MED14 (AT3G04740) gene, 

changing tryptophan for a stop codon at amino acid position 1090 (figure 2G). We identified a C to T 

mutation in the UVH6 (AT1G03190) gene in zen2 plants, causing a proline to leucine substitution at amino 

acid 320 (figure 2G). Complementation of zen1 and zen2 phenotypes with transgenes encoding WT versions 

of MED14 and UVH6 confirmed that MED14 and UVH6 mutations were responsible for the phenotypes 
observed in zen1 and zen2, respectively (figure 2F). Hence, zen1 and zen2 were renamed med14-3 and 

uvh6-3, respectively.  

MED14 is the central subunit of the MEDIATOR complex, a large protein complex required for early 

steps of transcription initiation (Cevher et al., 2014; Soutourina, 2018). In Arabidopsis, MED14 function has 

been involved in cell proliferation and expression regulation of some cold-regulated or biotic stress-induced 

genes (Autran et al., 2002; Gonzalez et al., 2007; Hemsley et al., 2014; Wang et al., 2016; Zhang et al., 

2013). UVH6 is the Arabidopsis ortholog of the human XPD and yeast RAD3 proteins (Liu et al., 2003), 

which are part of the transcription factor IIH (TFIIH) complex involved in transcription initiation and nucleotide 
excision repair (Compe and Egly, 2012). XPD is an ATP-dependent 5’->3’ helicase and all amino acids 

required for XPD functions in yeast and human show remarkable conservation in UVH6 (Kunz et al., 2005). 

Interestingly, all the mutations identified in UVH6 disrupt conserved residues (supplementary figure 4). In 

Arabidopsis, the UVH6 function was first described as necessary for tolerance to UV damage and heat 

stress (Jenkins et al., 1995, 1997). Failure to isolate homozygous mutants for uvh6-2, a transfer-DNA (T-

DNA) insertion line, suggested UVH6 to be an essential gene (Liu et al., 2003). Supporting this conclusion, 

we also failed to obtain homozygous plants for another uvh6 T-DNA insertion line (uvh6-5) (figure 2G). 

 
Transcriptomic analysis of uhv6 and med14 mutants in the absence of stress 
To investigate the impact of med14-3 and uvh6-3 mutations on transcription genome-wide, we determined 

mRNA profiles of mutant leaves following incubation at either 23°C (med14-3_23, uvh6-3_23) or 37°C 

(med14-3_37, uvh6-3_37) by mRNA-seq. In this analysis, we also profiled the transcriptome at 23°C of 

another mutant allele of UVH6 (uvh6-4), which we isolated later while pursuing screening our L5 mutant 
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population (supplementary figure 5A, B). The uvh6-4 mutation replaces a proline for a leucine at amino acid 

position 532 (figure 2G). Unlike uvh6-3, uvh6-4 mutants showed yellow-green leaves and reduced stature, a 

phenotype similar to the one previously described for the uvh6-1 mutant (supplementary figure 5C) (Jenkins 

et al., 1997). Suppression of heat stress-induced release of silencing was stronger in uvh6-4 than in uvh6-3 

(supplementary figure 5B), and survival assays showed that uvh6-4 and uvh6-1 plants were more sensitive 

to heat stress than uvh6-3 plants (figure 2E). This indicates that uvh6-4 is a stronger mutant allele of UVH6 
than uvh6-3. 

We first compared the mutant transcriptomes with that of the WT in the absence of heat stress. By 

applying stringent thresholds (fold change ≥ 4, false discovery rate < 0.01), we identified 628 differentially 

expressed genes (DEGs) in med14-3_23 (figure 3A), predominantly PCGs (597). As expected for a mutation 

of a protein required for transcription, the majority of med14-3 DEGs (385), including 23 TEs, showed 

decreased transcript accumulation. Only 7 DEGs were detected in uvh6-3_23, while 218 loci show 

differential transcript accumulation in uvh6-4_23, in agreement with uvh6-4 being a stronger mutant allele of 

UVH6. Unexpectedly, out of the 218 uvh6-4_23 DEGs, 156 were upregulated, suggesting that UVH6 mainly 
represses transcription at a subset of genomic loci at 23°C (figure 3A). Loci downregulated in uvh6-4 (62) 

also show reduced transcript accumulation in uvh6-3 (supplementary figure 6A). The med14 and uvh6 

mutations affect transcript accumulation at largely independent sets of loci (figure 3B). 

Gene ontology analysis indicated that genes upregulated in med14-3_23 were enriched for biotic 

stress response genes (supplementary table 1). A similar enrichment was observed in uvh6-4_23 

upregulated genes and in genes commonly upregulated in med14-3_23 and uvh6-4_23, indicating that 

MED14 and UVH6 repress genes involved in pathogen response. PCGs downregulated in med14-3_23 were 
enriched for genes associated with “positive regulation of transcription from RNA polymerase II promoter in 

response to heat stress”. These included HsfB2A, HsfA4A, HsfA6b and HsfA3. HsfA6b, HsfA3 and another 

med14-3_23 downregulated gene, DREB2A, are partially required for thermotolerance (Huang et al., 2016; 

Sakuma et al., 2006; Schramm et al., 2007), suggesting that downregulation of these genes might be 

responsible for med14-3 hypersensitivity to heat stress (figure 2E). PCGs downregulated in uvh6-4_23 were 

enriched for genes associated with “response to UV” as well as genes involved in processes such as 

“anthocyanin biosynthesis”, “regulation of flavonoids”, “phenylpropanoid metabolism”, which protect plants 

against UV radiation (Jansen et al., 1998). Therefore, downregulation of these genes likely plays a role in 
uvh6 mutant UV hypersensitivity (supplementary figure 6B) (Jenkins et al., 1995). 
 
Genome-wide suppression of heat-stress-induced transcriptional activation in uvh6 and med14 
To assess the impact of med14 and uvh6 on transcript levels following heat stress, we compared med14-

3_37 and uvh6-3_37 with WT-37 mRNA-seq datasets. Overall, heat stress-induced transcriptional activation 
of pericentromeric sequences was diminished in med14 and uvh6 mutant backgrounds, and transcripts from 

loci located on chromosome arms tended to accumulate at a lower level than in stressed WT plants (figure 

4A). Compared with med14, the impact of the uvh6 mutation on stress-induced transcriptional changes 

appeared more global (figure 4A, supplementary figure 7). Accordingly, the number of DEGs was higher in 

uvh6-3_37 than in med14-3_37. We defined 1631 DEGs in med14-3_37, with the vast majority (1239) 

showing downregulation (figure 4B). Downregulated loci included 1124 PCGs and 115 TEs. While we 

detected only 7 DEGs in uvh6-3_23 (figure 3A), more than 6200 loci were differentially expressed in uvh6-

3_37, with 80% of these (4949) being downregulated. A total of 4711 PCGs and 238 TEs displayed less 
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transcript accumulation in uvh6-3_37 relative to WT-37 (figure 4B). The higher number of DEGs at 37°C 

relative to 23°C in the mutants indicates that MED14 and UVH6 functions are required for efficient 

transcription of a higher number of loci under heat stress.   

PCGs upregulated by heat stress showed overall reduced transcript levels in uvh6-3 and med14-3, while 

transcript accumulation of PCGs downregulated by heat stress showed limited changes in med14-3 

compared with uvh6-3 (supplementary figure 8A, B), suggesting again a more global impact of the uvh6 
mutation on stress-induced transcriptional changes.  

In the absence of stress, the med14 and uvh6 mutations affect transcript accumulation at rather few, 

largely independent set of loci (figure 3B). Under heat stress, many loci downregulated in med14-3 were 

similarly affected in uvh6-3 (figure 4C). Even though this could be expected given the large number of genes 

downregulated in uvh6-3, we also observed that loci upregulated in one mutant also showed a similar 

tendency in the other (figure 4C, supplementary figure 8C). This is remarkable as in both mutants, 

upregulation events are rare relative to downregulation events. These data suggest that MED14 and UVH6 

have converging functions at many overlapping loci under heat-stress conditions. 
TEs transcriptionally upregulated by heat stress showed overall reduced transcriptional activation in 

the mutant backgrounds (figure 4D). Heat stress predominantly destabilized silencing at TEs of the DNA/En-

Spm, DNA/MuDR, LTR/Copia and LTR/Gypsy superfamilies (supplementary figure 8D). Among these stress-

induced TEs, TEs downregulated in uvh6-3_37 showed comparable proportions. Noticeably, TEs 

downregulated in med14-3_37 were enriched in LTR/Copia and LTR/Gypsy elements, suggesting that 

MED14 is preferentially required for heat-induced release of silencing at LTR retrotransposons. 

We generated med14-3 uvh6-3 double mutants and assessed transcript accumulation from L5-GUS 
and selected TEs using RT-qPCR (supplementary figure 9). We found no synergy between the two 

mutations; at a given locus, the transcript levels in med14-3 uvh6-3 were similar to the ones detected in the 

mutant showing the strongest downregulation. These results suggest that, at least at these TEs, MED14 and 

UVH6 function in the same molecular pathway to promote transcription.  

Together, our results indicate that MED14 and UVH6 are required for proper heat stress-induced 

transcriptional activation of heterochromatic TEs, and more generally play an important role in controlling 

transcription at a high number of genomic loci under stress conditions.  

 
Transcription of methylated TEs requires MED14 but not UVH6 
Given that UVH6 and MED14 are involved in transcriptional activation induced by heat-stress, we questioned 

whether their functions are also required for heterochromatin transcription occurring in mutants for epigenetic 

regulators. To address this question, we introduced uvh6-4 and med14-3 in the mom1-2 and ddm1-2 mutant 

backgrounds, which display constitutive release of transcriptional silencing at heterochromatic loci, and 

performed mRNA-seq. In ddm1, loss of silencing is associated with a strong reduction in DNA, H3K9me2 

and H3K27me1 methylation levels (Ikeda et al., 2017; Vongs et al., 1993; Zemach et al., 2013), whereas 

silencing defects in mom1 mutants occur without major changes in these epigenetic marks (Amedeo et al., 
2000; Habu et al., 2006; Han et al., 2016; Moissiard et al., 2014; Vaillant et al., 2006). 

We identified 1909 and 94 TEs significantly upregulated in ddm1-2 and mom1-2, respectively. Most 

TEs derepressed in mom1-2 overlapped with those derepressed in the ddm1-2 mutants (figure 5A), 

consistent with MOM1 targeting a subset of methylated TEs for silencing. Overall, TEs upregulated in ddm1-

2 accumulated slightly decreased transcript levels in med14-3 ddm1-2 and weakly increased transcript levels 
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in uvh6-4 ddm1-2 (supplementary figure 10A). Interestingly, TEs derepressed by the mom1-2 mutation 

showed strong reduction of transcript levels in med14-3 mom1-2 (supplementary figure 10B). Although not 

statistically significant, TE upregulation tend to be stronger in uvh6-4 mom1-2. This suggests a strong 

dependency over MED14 for TE transcription in mom1-2, whereas TE transcription in the ddm1-2 

background is mostly independent of MED14. To strengthen this conclusion, we narrowed down the analysis 

to the TEs commonly derepressed by both ddm1-2 and mom1-2 mutations. Again, at these 78 TEs, med14-3 
and uvh6-4 mutations had no significant impact on ddm1-induced release of silencing, whereas transcript 

levels in med14-3 mom1-2 were strongly reduced relative to mom1-2 but not in uvh6-4 mom1-2 (figure 5B). 

Because DNA and H3K9me2/K27me1 methylation levels are largely reduced in ddm1-2, while being mostly 

unaltered in mom1-2 (supplementary figure 10C) (Amedeo et al., 2000; Habu et al., 2006; Han et al., 2016; 

Moissiard et al., 2014; Vaillant et al., 2006), our data suggest that, upon silencing destabilization, MED14 is 

involved in transcription at a subset of heterochromatic TEs and requires DDM1-mediated epigenetic marks 

for its function. Supporting a role for DNA methylation in MED14 function, RT-qPCR assays showed that 

silencing release of MULE and TSI in the DNA hypomethylated met1-3 background was not suppressed by 
the med14-3 mutation (figure 5C). Remarkably, when considering TEs upregulated by heat stress, TEs 

depending on MED14 for transcriptional upregulation showed higher DNA methylation levels at all cytosine 

contexts compared to those independent of the med14-3 mutation (figure 5D, supplementary figure 10D). 

Such strong bias for highly methylated elements was not observed at TEs that depended on UVH6 for heat 

stress-induced transcriptional upregulation (supplementary figure 10E). Furthermore, TEs transcribed in the 

WT in the absence of stress and downregulated by med14-3 were more methylated than those unaffected by 

the med14-3 mutation (figure 5E). 
Therefore, we conclude that MED14 promotes transcript accumulation at a set of highly methylated 

TEs and requires proper DNA methylation patterns for this function. On the other hand, UVH6 is required for 

transcription in a heat stress-specific manner and appears to show a less pronounced preference than 

MED14 for highly methylated TEs. 

 

MED14 regulates non-CG DNA methylation 
We sought to determine whether med14 mutation affect DNA methylation by profiling genome-wide DNA 

methylation levels in WT and med14-3 seedlings by BS-seq. Overall, DNA methylation levels were mostly 
unaltered at CG sites, and showed a moderate reduction at non-CG sites in med14 compared with the WT 

(figure 6A). Calculating average methylation levels along all genomic PCGs, euchromatic TEs and 

pericentromeric TEs revealed that non-CG methylation was specifically decreased at pericentromeric TEs in 

med14-3 (supplementary figure 11A, B). Because low variations on average methylation levels could mask 

strong changes at a limited number of loci, we divided the genome in 100-bp bins and determined 

differentially methylation regions (DMRs) in med14-3 relative to the WT. This analysis confirmed that the 

med14-3 mutation predominantly induced a decrease in DNA methylation at non-CG sites, and preferentially 

alters methylation of pericentromeric regions of the chromosomes (figure 6B, C). CHG and CHH 
hypomethylation occurred concurrently (supplementary figure 11C) indicating that MED14 regulates non-CG 

methylation at these loci. 

The Mediator complex is involved in initiation of Pol II transcription and Pol II has been reported to 

be involved in a pathway that regulates DNA methylation (Stroud et al., 2013). Furthermore, at several 

heterochromatic loci, Mediator promotes Pol II-mediated production of long noncoding scaffold RNAs, which 
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serve to recruit Pol V to these loci (Kim et al., 2011). To assess whether MED14 and Pol II regulate DNA 

methylation at the same loci, we determined DNA methylation levels of med14 hypomethylated DMRs in the 

nrpb2-3 Pol II mutant allele using previously published data (Zhai et al., 2015). For the vast majority of these 

genomic regions, DNA methylation levels were unaltered in nrpb2-3 (supplementary figure 12A), indicating 

that MED14 regulates DNA methylation largely independently of Pol II. 

In the Arabidopsis genome, CHG methylation is mostly mediated by the H3K9me2-directed CMT3 
chromomethylase, while CHH methylation is maintained by CMT2 and the RdDM pathway at largely distinct 

genomic regions (Stroud et al., 2014; Zemach et al., 2013). RdDM requires the production of noncoding 

RNAs by Pol IV and Pol V, which are eventually required to target and recruit the RdDM effector complex 

containing the DRM2 de novo methyltransferase to its genomic targets (Matzke and Mosher, 2014). We 

used published data (Stroud et al., 2013) to determine non-CG methylation levels at med14 non-CG 

hypomethylated DMRs in mutants for CMT3, CMT2, Pol IV (NRPD1), Pol V (NRPE1) and DRM1/2. med14 

CHG hypomethylated DMRs showed nearly WT methylation levels in cmt2, whereas they were largely 

hypomethylated in cmt3 (supplementary figure 12B), in agreement with the prominent role of CMT3 over 
CMT2 in controlling CHG methylation (Stroud et al., 2014). Interestingly, many med14 CHG hypo DMRs 

showed reduced DNA methylation level in the nrpd1, nrpe1 and drm1/2 RdDM mutants (supplementary 

figure 12B). Strikingly, med14 CHH hypomethylated DMRs showed strongly reduced DNA methylation level 

in these RdDM mutants (figure 6D). This was not merely due to a genome-wide impact of RdDM deficiency 

on CHH methylation since the same number of randomly selected genomic regions showed much less 

reduction in CHH methylation in the RdDM mutants (figure 6E). Conversely, loci with reduced CHH 

methylation in drm1/2, nrpd1 or nrpe1 all showed lower CHH methylation in med14-3 (supplementary figure 
12C). Together, these results indicate that MED14 regulates non-CG methylation at a subset of loci, likely 

through RdDM. 

 

Discussion 
Previous studies have shown that heat stress or mutations in certain silencing factors can trigger 

heterochromatin transcription without modifying levels of repressive epigenetic marks (Amedeo et al., 2000; 

Lang-Mladek et al., 2010; Moissiard et al., 2012; Pecinka et al., 2010; Tittel-Elmer et al., 2010). That 

transcription could occur in an otherwise repressive environment suggested that specific mechanisms were 

involved (Tittel-Elmer et al., 2010). Here, we identified MED14 and UVH6 as critical factors for 

heterochromatin transcription during heat stress.  We showed that UVH6 is dispensable for heterochromatin 

transcription in silencing mutants such as mom1 and ddm1, while MED14 is solely required when 
heterochromatic marks are not altered. Additionally, we showed that MED14 participates in maintenance of 

DNA methylation at a subset of RdDM-dependent loci. 

 

XPD, the human UVH6 ortholog, is the central subunit of the TFIIH complex, which is crucial for nucleotide 

exchange repair and is considered a global transcription factor (Compe and Egly, 2016). Our data show that 

uvh6 mutations impair transcription of many genes and TEs specifically at elevated temperature. This 

suggests that UVH6 is not generally required for transcription initiation in Arabidopsis, but is rather involved 

in a stress-specific transcription mechanism. Previous studies showed that UVH6 belongs to the most 
essential factors regarding thermotolerance (Jenkins et al., 1997; Larkindale et al., 2005), although the 

molecular pathway involved is not known. Interestingly, heat-induced accumulation of the canonical heat-
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responsive factors HSFs and HSPs is independent of UVH6 (Hu et al., 2015; Larkindale et al., 2005), 

reinforcing the notion that UVH6 is not required for transcription of all genes during heat stress. Human 

TFIIH has been shown to be involved in selective transcriptional responses to various stimuli through post-

translational modifications or recruitment of transcription factors (Chen et al., 2000; Chymkowitch et al., 

2011; Compe et al., 2007; Keriel et al., 2002; Sano et al., 2007; Traboulsi et al., 2014). Therefore, UVH6 

may cooperate with HSFs or other transcription factors during heat stress. In human, XPD is involved in 
many functions on top of its well-established roles in transcription and repair, sometimes in other complex 

than TFIIH (Compe and Egly, 2016). To get a better understanding of UVH6-dependent transcription in heat 

stress, futures efforts should try to determine if UVH6 acts as a component of the TFIIH complex or 

separately. 

 

Mediator is a large protein complex organized in a head, middle and tail modules, with a transiently 

associated CDK8 kinase module (Soutourina, 2018). MED14 connects the three main modules and is critical 

for Mediator architecture and its function as a co-activator of Pol II transcription (Cevher et al., 2014). We 
found that MED14 preferentially stimulates transcription of highly methylated TEs in control and stressed 

conditions. TEs derepressed in mom1 mutants require MED14 for transcription, and importantly, the same 

subset of TEs loose MED14 dependency in the DNA hypomethylated ddm1 background. Similarly, MED14 

did not stimulate transcription in a hypomethylated met1 background. These results suggest that DNA 

methylation is required for MED14 targeting to heterochromatin. In yeast, the Mediator complex interacts with 

nucleosomes (Liu and Myers, 2012; Lorch et al., 2000; Zhu et al., 2011a) and the interaction is mediated by 

histone modifications, although it is not clear how (Uthe et al., 2017; Zhu et al., 2011b). Our data further 
indicate that MED14 controls DNA methylation at loci where DNA methylation depends on RdDM. RdDM 

relies on the combined production of non-coding RNAs by the Pol II-related Pol IV and Pol V (Matzke and 

Mosher, 2014). Compared with transcription initiation by Pol II, less is known about the factors involved in 

transcription initiation by Pol IV and Pol V. However, epigenetic information appears also crucial for Pol IV 

and Pol V targeting. Recruitment of Pol IV involves SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), a 

Pol IV-interacting protein that binds to the repressive histone modification H3K9me2 (Law et al., 2013). The 

SU(VAR)3-9 homologues SUVH2 and SUVH9 are capable of binding methylated DNA and recruit Pol V to 

DNA methylation (Johnson et al., 2014). Similar to med14, shh1 and suvh2/9 mutations also reduce non-CG 
DNA methylation at a subset RdDM targets. Previous studies proposed that Pol II is required for proper DNA 

methylation patterns (Stroud et al., 2013) and that Mediator stimulates Pol II-mediated production of non-

coding scaffold RNAs that recruits Pol V (Kim et al., 2011). However, we found that DNA methylation at 

MED14-controlled regions is largely independent of Pol II. Therefore, we propose that MED14 is involved in 

RdDM at a subset of genomic loci where it might be involved in the early steps of RdDM by acting as a co-

activator of Pol IV and/or Pol V.  

 Although MED14 makes multiple contacts with the different Mediator modules, the C-terminal part of 

yeast and human MED14 has been mapped to the tail module (Nozawa et al., 2017; Tsai et al., 2014). 
Accordingly, C-terminal truncations of MED14 led to dissociation of the tail module in yeast (Li et al., 1995; 

Liu and Myers, 2012). The med14-3 mutation isolated in our study induces a stop codon at amino acid 1090 

of MED14, truncating 614 amino acids at the C-terminal end. The Mediator subunits are relatively well 

conserved between yeast, human and Arabidopsis (Bäckström et al., 2007). By analogy, the med14-3 

mutation reported here may be expected to lead to tail module dissociation. Interestingly, the tail module 
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seems important for recruiting the Mediator complex to chromatin (Jeronimo and Robert, 2017; Soutourina, 

2018). Thus, the Mediator tail module may mediate the preference of MED14 for DNA methylated loci. 

 

In fission yeast, mutations of some subunits from the Mediator head and middle modules induce defects in 

heterochromatin silencing at pericentromeres and concomitant loss of the heterochromatic mark H3K9me2 

(Carlsten et al., 2012; Oya et al., 2013; Thorsen et al., 2012). Our transcriptomic data do not support a role 
for Arabidopsis Mediator in heterochromatin silencing. Heterochromatin formation in S. pombe is dependent 

on RNAi-dependent and -independent pathways that both rely on RNA molecules (Martienssen and Moazed, 

2015); however, pathways that maintain heterochromatin in Arabidopsis seem largely independent of 

heterochromatin transcription (Law and Jacobsen, 2010). Therefore, it is possible that Mediator stimulates 

heterochromatin transcription in both model organisms, where it would feed heterochromatin silencing in 

yeast and RdDM in Arabidopsis. Interestingly, in a yeast mutant background where silencing is compromised 

but heterochromatin is maintained, the Med18 Mediator subunit is required for heterochromatin transcription 

of the silent mating-type locus (Oya et al., 2013). This is reminiscent of our observation that MED14 is 
required for heterochromatin transcription only when heterochromatic marks are maintained. Altogether, 

these findings are in agreement with a conserved role of Mediator in stimulating heterochromatin 

transcription.  

 

Heterochromatin transcription, albeit originally counter-intuitive, is a widely reported phenomenon in plants, 

yeast, drosophila and mammals. It occurs during specific cell cycle or developmental stages and in stress 

conditions (Hall et al., 2012; Negi et al., 2016; Saksouk et al., 2015; Valgardsdottir et al., 2008). A well-
established function of heterochromatin-derived transcripts is to stimulate heterochromatin formation and/or 

direct deposition of repressive epigenetic marks (Grewal and Elgin, 2007; Martienssen and Moazed, 2015). 

Transcripts from heterochromatic regions serve to guide the RdDM pathway in plants, the RNA-induced 

transcriptional silencing complex in fission yeast (Martienssen and Moazed, 2015) or the piRNA pathway in 

drosophila (Andersen et al., 2017; Guzzardo et al., 2013). In mammals, the role of heterochromatin 

transcripts in heterochromatin formation is not clear (Saksouk et al., 2015). Despite its prevalence, the 

mechanism of heterochromatin transcription remains poorly characterized. Our study uncovers an important 

role of the conserved proteins XPD/UVH6 and MED14 in this process in Arabidopsis.  
 

Methods 
Plant material 
The ddm1-2 (Vongs et al., 1993), mom1-2 (SAIL_610_G01), arp6-1 (Kumar and Wigge, 2010) and atmorc6-

3 (Moissiard et al., 2012) mutants are in the Columbia (Col-0) background. The uvh6-1 mutant is in a 

Columbia gl1 background (gl1) (Jenkins et al., 1995). The transgenic L5 line was kindly provided by Hervé 

Vaucheret (Morel et al., 2000). Plants were grown in soil or in vitro in a growth cabinet at 23°C, 50% 

humidity, using long day conditions (16h light, 8h dark). For in vitro conditions, seeds were surface sterilized 

with calcium hypochlorite and sowed on solid Murashige and Skoog medium containing 1% sucrose (w/v). 

The RNA-seq data for med14-3 (figure 3, 4) was generated with med14-3 mutants backcrossed five times. 

For all other molecular data presented in this study, we used lines backcrossed six times for med14-3 and 
uvh6-3 and five times for uvh6-4. Point mutations were genotyped by dCAPS. 
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GUS assay 

Following heat or control treatment, rosette leaves were transferred to 3ml of a staining solution composed of 

400 µg/ml 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid, 10 mM EDTA, 50 mM sodium phosphate buffer 

pH 7.2, 0.2% triton X-100. Leaves were placed in a desiccator, subjected to void for 5 minutes two times, 

and subsequently incubated 20h to 24h at 37°C. Chlorophyll was then repeatedly dissolved in ethanol to 

allow proper staining visualization. 
 

Mutagenesis, screening and mapping 

We used EMS-mutagenized seeds from a previously described study (Ikeda et al., 2017). To screen for 

mutants deficient in heat stress-induced release of silencing of the L5-GUS transgene, one leaf per M2 plant 

was dissected, and leaves from four plants were heat-stressed together with a 24h incubation at 37°C in 

dH2O. Leaves were subsequently subjected to GUS staining as described above. To isolate mutant 

candidates, a second round of screening was applied to each individual of M2 pools that contained leaves 

with reduced GUS signal relative to the non-mutagenized progenitor L5 line. 
Mapping by sequencing was performed as previously reported (Ikeda et al., 2017). Briefly, we crossed zen 

mutants with Ler, selected F2 segregants with a mutant phenotype (reduced GUS staining after heat stress 

relative to the L5 line) and bulk-extracted DNA. Libraries were sequenced on a Illumina HiSeq 2500 

instrument at Fasteris S.A. (Geneva, Switzerland), generating 100 bp paired-end reads. Sequencing analysis 

(Ikeda et al., 2017) revealed a locus depleted in genetic markers associated with Ler, on chromosome 3 for 

med14-3 and on chromosome 1 for uvh6-3. Candidate genes with EMS-induced non-synonymous mutations 

were identified in the mapping interval. Available mutant lines for the candidate genes were analyzed for 
impaired release of gene silencing upon heat stress, allowing identification of MED14 and UVH6. As 

indicated in the result section, the uvh6-4 mutation was identified by complementation test and Sanger 

sequencing. 

 

Cloning and complementation 

For the pMED14::MED14-GFP construct, the MED14 promoter was PCR amplified from Col-0 genomic DNA 

from positions -1311 to -205, where +1 is the adenine of the ATG start codon; the MED14 full-length 

complementary DNA (cDNA) was purchased from the plant genome project of RIKEN Genomic Sciences 
Center (Seki et al., 1998, 2002) and its stop codon was removed by PCR. The promoter and cDNA were 

cloned into a pBluescript SK plasmid supplemented with attP sites by BP recombination, and subsequently 

introduced into pB7FWG2 by LR recombination. For the p35S::MED14 construct, the MED14 cDNA was 

introduced by LR recombination into a pBINHygTX plasmid supplemented with attR sequences. For 

p35S::UVH6-GFP construct, the UVH6 cDNA without stop codon was amplified from Col-0 RNA and 

introduced by BP recombination into the pDONR/ZEO vector (Invitrogen). The fragment was introduced into 

pH7FWG2 by LR recombination. The med14-3 and uvh6-3 mutants were complemented by Agrobacterium-

mediated transformation (Clough and Bent, 1998). 
 

Protein sequence alignments and protein domains 

Amino acid sequences were aligned with Clustal Omega v1.2.4. To determine the position of MED14 

domains (figure 2G), A. thaliana MED14 was aligned with S. pombe MED14 and the domains were 

determined according to a S. pombe structural study (Tsai et al., 2017). The positions of LXXLL motifs 
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(where X is any amino acid), typical of transcriptional co-activators, have been represented for indicative 

purpose only. A. thaliana UVH6 was aligned with S. cerevisiae RAD3, H. sapiens XPD (supplementary figure 

4) and domains were infered from a joint analysis of RAD3 and XPD (Luo et al., 2015) whereas helicase 

motifs coordinates sourced from a comparative study of eukaryotic and archeal XPD proteins (Wolski et al., 

2008).  

 
Heat stress and UV-C irradiation 

Rosette leaves were cut with forceps and transferred to 6-well tissue culture plates containing 3ml dH2O. 

They were subsequently incubated for 24h in a 23°C or 37°C growth cabinet with otherwise standard 

conditions. For molecular analysis, nine to twelve rosette leaves from three to four seedlings were pooled for 

heat or control treatment. Rosette leaves were then dried on absorbent paper, flash-frozen in liquid nitrogen 

and stored at -80°C or directly processed. 

For survival assays, seeds were sowed in vitro, stratified for 72h in the dark at 4°C and grown 7 days in 

standard conditions before heat or UV treatment. Heat stress was applied for 24h or 48h. UV-irradiation was 
performed in an Et-OH sterilized UV chamber (GS Gene Linker, Bio-Rad) equipped with 254 nm bulbs. Plate 

lids were removed before irradiation at 10 000 J / m2 and placed back immediately. Irradiated seedlings 

were transferred to a dark growth cabinet with standard conditions for 24h to block photoreactivation before 

recovering in light for five days. 

 

RNA analysis 

Total RNA was extracted in TRIzol reagent, precipitated with isopropanol and washed two times in ethanol 
70%. Integrity was assessed by running 1ug of RNA through an agarose gel after RNA denaturation in 1X 

MOPS 4% formaldehyde for 15 minutes at 65°C. 2ug of RNA were then DNase treated using 2 unit of RQ1 

DNAse (Promega) in 15ul, following manufacturer's instructions. DNase-treated RNAs were further diluted to 

40ul in RNase-free H2O before subsequent analysis. 50ng of RNA was used as input for reverse 

transcription PCR (RT-PCR). End-point RT-PCR was performed with the one-step RT-PCR kit (Qiagen) 

following manufacturer's instructions in a final volume of 10ul. For 18S rRNA, MULE, 106B, TSI and 180bp, 

we respectively performed 20, 26, 35, 28 and 37 cycles. RT-qPCR were performed in a final volume of 10ul 

with the SensiFASTTM SYBR® No-ROX One-Step Kit (Bioline) in an Eco Real-time PCR system (Illumina). 
Quantification cycle (Cq or Ct) values were analyzed following the 2-ΔΔCT method (Livak and Schmittgen, 

2001). The mean of biological replicates from the control condition was subtracted to each ΔCq value to 

calculate ΔΔCq. Means and standard errors from biological replicates were calculated from 2-ΔΔCq values. 

 

mRNA-sequencing 

Total RNA was extracted and treated as indicated above except that following DNase treatment, RNAs were 

further purified in phenol-chloroform. Sequencing libraries were generated and sequenced as 50bp single-

end reads at Fasteris S.A. (Geneva, Switzerland). Read mapping and quantification of gene expression were 
performed as previously reported (Ikeda et al., 2017). To allow comparisons between uvh6-3, med14-3 and 

uvh6-4 (figure 3 and supplementary figure 6), the uvh6-4 sample and its corresponding WT were artificially 

converted to non-stranded libraries by merging sense and antisense reads and re-calculating RPKM values 

at each locus.  For comparisons of WT at 37°C versus (vs) WT at 23°C, ddm1-2 vs WT and mom1-2 vs WT, 

differentially expressed loci (PCGs and TEs) were defined by a log2 fold change >= 1 or <= -1, a false 
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discovery rate (FDR) < 0.01 and only loci defined as differentially expressed in both replicates were retained. 

When reads could be assigned to a specific strand (ddm1-2 and mom1-2 libraries), differential expression 

was tested in both orientations for each annotation, and only loci that were differentially expressed on the 

same orientation in both replicates were retained. For all other comparisons, since a single replicate was 

analyzed, the log2 fold change threshold was increased to >= 2 or <= -2. Gene ontology analysis was 

performed using Panther Overrepresentation Test (05/12/2017 release) using the 27/12/2017 Gene 
Ontology database (Ashburner et al., 2000). 

To analyze TE transcription in WT and med14-3 in standard conditions (23°C) (figure 5E), we aligned reads 

from WT and med14-3 with STAR (Dobin et al., 2013) and retained multi-mapped reads randomly assigned. 

We counted reads on TAIR10 transposon annotations and selected TEs with a minimum RPKM value of one 

in WT, a minimum length of 200 bp and that had at most 10% of their length intersecting a protein coding 

gene annotation, regardless of their orientation. 

For transcriptomic studies of med14-3 in the ddm1-2 background, we compared med14-3 ddm1-2 double 

mutants with ddm1-2 mutants, both isolated from the F2 progeny of a med14-3/+ ddm1-2/+ F1 plant. We 
followed the same method for uvh6-4 ddm1-2. For med14-3 in the mom1-2 background, we compared 

med14-3 mom1-2 double mutants with mom1-2 mutants, both isolated from the F3 progeny of a med14-3/+ 

mom1-2 F2 plant, and followed the same method for uvh6-4 mom1-2. 

 

Whole-genome bisulfite sequencing 

After 24h incubation at 23°C in dH2O of 16-day-old rosette leaves from L5 and med14-3, genomic DNA was 

extracted using the Wizard® Genomic DNA Purification Kit (Promega) following manufacturer's instructions. 
One microgram of DNA was used for bisulfite treatment, library preparation and sequencing on a Hiseq2000 

at the Beijing Genomics Institute (Shenzhen, China), producing paired 91-bp oriented reads. We used and 

re-analyzed previously published BS-seq datasets for ddm1-2 (GSM981009), cmt2-7 (GSM981002), cmt3-11 

(GSM981003), drm1/2 (drm1-2 drm2-2; GSM981015), nrpd1a-4 (GSM981039), nrpe1-11 (GSM981040) and 

WT (GSM980986) (Stroud et al., 2013); mom1-2 (GSM1375964) and WT (GSM1375966) (Moissiard et al., 

2014); nrpb2-3 (GSM1848705, GSM1848706) and WT (GSM1848703, GSM1848704) (Zhai et al., 2015). 

PCR duplicates were removed using a custom program: a read pair was considered duplicated if both reads 

from a pair were identical to both reads of another read pair. We utilized BS-Seeker2 v2.1.5 (Guo et al., 
2013) to map libraries on the TAIR10 reference genome using the Bowtie2 aligner with 4% mismatches and 

call methylation values from uniquely-mapped reads. 100kb-window average methylation levels and 

metaplots of average methylation levels over PCGs or subgroups of TEs were generated in CG, CHG and 

CHH contexts with CGmapTools v0.1.0 (Guo et al., 2018). For metaplots, regions of interest were divided in 

40 bins of equal length while upstream and downstream regions extended for 30 bins of 100 base pairs.  

DMRs were calculated as previously reported (Stroud et al., 2013), except that contiguous DMRs were not 

merged, and that the thresholds for minimum methylation differences were 0.4, 0.2 and 0.2 for respectively 

CG, CHG and CHH contexts. To extract methylation levels at specific regions (e.g. figure 5D, 6D), we first 
calculated the methylation level of individual cytosines in the region and extracted the average. For all 

calculations of methylation levels or DMRs, only cytosines with a minimum coverage of 6 reads were 

considered. 

 

Statistical analysis 
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Means and standard errors of the mean were calculated from independent biological samples. All analysis 

were conducted with R version 3.4.0 (R Core Team, 2017). All boxplots had whiskers extend to the furthest 

data point that is less than 1.5 fold interquartile range from the box (Tukey’s definition). Heatmaps were 

generated using the heatmap.2 function of the gplots package with euclidean distance, complete clustering 

and without scaling (Warnes et al., 2005). Differences in mean for RT-qPCR data were tested using an 

unpaired Student’s t-test with Welch’s correction with the t.test function. For RT-qPCR data in supplementary 
figure 9, because of the interaction between the temperature treatments and genotypes, the data was split 

between 23°C and 37°C. Subsequent analysis of variance was performed with the aov function, and post-

hoc analysis was performed with Tukey's Honest Significant Difference (HSD) test, using the TukeyHSD 

function with a 95% confidence level. Since the strong absolute variance of WT at 37°C prohibited the 

assessment of differences between mutants, this sample was excluded. Differences in distributions of RPKM 

values (figure 5B; supplementary figure 6A, 10A, 10B) and methylation values (figure 5D, 5E; supplementary 

figure 12C) were tested with an unpaired two-sided Mann-Whitney test using the wilcox.test function. 
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Figure legends 
Figure 1 
A. Scheme representing the method used to submit rosette leaves to a control stress (23°C) or a heat stress 

(37°C). The L5-GUS transgene is reactivated in leaves subjected to heat stress. 

B. RT-qPCR analysis of transcripts from MULE-AT2G15810 and the L5-GUS transgene in L5 transgenic 

plants at 23°C or 37°C, normalized to the reference gene AT5G12240 and further normalized to the mean of 

L5 samples at 23°C. Error bars represent standard error of the mean across three biological replicates.   

C. RT-PCR analysis of transcripts from endogenous repeats in L5 transgenic plants at 23°C or 37°C. 

Amplification of 18S rRNAs was used as a loading control. PCR in the absence of reverse transcription (RT-) 

was performed to control for genomic DNA contamination. 
D. (top) Transcriptional changes in WT plants subjected to heat stress represented along chromosomes by 

log2 ratios (37°C / 23°C) of mean RPKM values in 100kb windows. (bottom) Density of TEs detected as 

significantly upregulated in WT plants subjected to heat stress is plotted in red (left y axis) with total TE 

density in grey (right y axis), both calculated by 100 kb windows. Windows containing upregulated ONSEN 

elements (AtCOPIA78) are marked with an asterisk. 

E. Average cytosine methylation levels by 500kb windows calculated in CG, CHG and CHH contexts in a WT 

subjected to a control stress (23°C) or to heat stress (37°C). 
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F. PCGs or TEs upregulated in heat-stressed WT plants were aligned at their 5’-end or 3’-end and average 

cytosine methylation levels in the indicated nucleotide contexts were calculated from 3 kb upstream to 3 kb 

downstream in a WT subjected to a control stress (23°C) or to heat stress (37°C). Upstream and 

downstream regions were divided in 100bp bins, while annotations were divided in 40 bins of equal length. 

 

Figure 2  
A. Heat stress-induced activation of the L5-GUS transgene in rosette leaves of the indicated genotypes after 

24h at 23°C or 37°C detected by X-Gluc staining. 

B. RT-qPCR analysis of transcripts from the L5-GUS transgene, normalized to the reference gene 

AT5G12240 and further normalized to the mean of L5 samples at 23°C. Error bars represent standard error 

of the mean across three biological replicates.   

C. RT-PCR analysis of transcripts from endogenous repeats. Amplification of 18S rRNAs was used as a 

loading control. PCR in the absence of reverse transcription (RT-) was performed to control for genomic DNA 

contamination. 
D. Representative pictures of 16-day-old seedlings of the indicated genotypes grown in soil and in long day 

conditions. Scale bar: 1cm. 

E. Heat survival assays. Seven-day-old seedlings of the indicated genotypes were subjected to a 37°C heat 

stress for 24h or 48h and returned to standard conditions for nine days. Pictures are representative of five 

replicates (24h 37°C) and two replicates (48h 37°C). 

F. Heat stress-induced activation of the L5-GUS transgene in rosette leaves of the indicated genotypes after 

24h at 37°C detected by X-Gluc staining. 
G. Top: Gene models for MED14 and UVH6, to scale. Punctual mutations (in orange) and their 

corresponding amino acid changes are indicated by vertical lines, their position relative to the transcriptional 

start site (+1) is given. Insertional transfer-DNA mutations are indicated by triangles. Location of the med14-1 

mutation is reported according to Autran et al. (2002). Bottom: Representation of MED14 and UVH6 proteins 

and their domains. The relative length of MED14 and UVH6 are not to scale. Point mutations and their 

corresponding amino acid changes are indicated by vertical lines. In MED14, LXXLL motifs have been 

indicated by black boxes. In UVH6, helicase motifs I, Ia, II, III, IV, V and VI are indicated by transparent white 

boxes, respectively from left to right. The positions of the domains were inferred from studies in other model 
organisms (see methods). KID : Knob Interaction Domain, RM1 and RM2 : Repeat Motif 1 and 2, TID : Tail 

Interaction Domain. HD1a, HD1b, HD1c, HD2 : Helicase domain 1a, 1b, 1c, 2. 

 

Figure 3 

A. Number of PCGs and TEs detected as differentially expressed in med14-3, uvh6-3 and uvh6-4 relative to 

the WT at 23°C. 

B. Venn diagrams showing the extent of the overlap between upregulated and downregulated loci 

determined in med14-3 and uvh6-4. 
 

Figure 4 
A. Transcriptional changes in WT plants subjected to heat stress (top), in med14-3_37 (middle) and 

uvh6-3_37 (bottom) relative to heat-stressed WT, represented along the chromosome five by log2 
ratios of mean RPKM values in 100kb windows. 
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B. Number of PCGs and TEs detected as differentially expressed in med14-3_37 and uvh6-3_37 

relative to the WT at 37°C. 
C. Venn diagrams showing the extent of the overlap between upregulated and downregulated loci 

determined in med14-3_37 and uvh6-3_37 
D. Log2 RPKM values in the WT at 37°C, med14-3_37 (left) and uvh6-3_37 (right) of TEs upregulated 

in heat-stressed WT plants. 
 
Figure 5     

A. Venn diagrams showing the upregulated TEs in ddm1 and mom1 and their overlap. 
B. Reads per million per kilobase (RPKM) values in the indicated genotypes of transposable elements 

(TEs) commonly upregulated between ddm1 and mom1. Progenies from sister plants were identically 
colored. Statistical differences between distributions of single mutants (ddm1 and mom1) versus double 

mutants (med14 ddm1, uvh6 ddm1, med14 mom1, uvh6 mom1) were tested by unpaired two-sided 
Mann-Whitney test. 

C. Transcripts from TSI and MULE loci were analyzed by RT-qPCR in rosette leaves from indicated 
genotypes at control temperature (23°C). Data were normalized to the reference gene AT5G12240 and 

further normalized to the mean of L5 samples at 23°C. Error bars illustrate standard errors of the mean 
across three biological replicates. Statistically significant differences between means of mom1, ddm1, 

met1 and combinations of these mutations with med14-3 were tested by unpaired bilateral Student’s t-
test. 

D. DNA methylation levels at CG, CHG and CHH contexts of TEs upregulated in heat-stressed WT 
samples, distinguishing TEs downregulated in med14-3 from TEs not downregulated in med14-3, were 
calculated in WT samples subjected to a control stress at 23°C. Statistical differences between data 

sets were tested by unpaired two-sided Mann-Whitney test. 
E. RPKM values at TEs were calculated using multi- and uniquely-mapped reads in WT and med14-3 in 

control conditions (23°C) (see methods). TEs above one RPKM in WT were grouped according to their 
log2 fold change in med14-3 and DNA methylation levels at CG, CHG and CHH contexts in WT at 23°C 

were calculated for each group. Statistical differences between data sets were tested by unpaired two-
sided Mann-Whitney test. 

 
Figure 6 

A. Kernel density plot of DNA methylation differences between med14-3 and WT at CG, CHG and CHH 
contexts. 

B. Number of 100-bp differentially methylated regions (DMRs) detected in med14-3 at CG, CHG and 
CHH contexts with a minimum DNA methylation difference of 0.4, 0.2 and 0.2, respectively. 
C. Chromosomal density of hypo-CHG (blue) and hypo-CHH DMRs (red) identified in med14-3 (top) 

with total TE density in grey (bottom), both calculated by 100 kb windows on chromosome 3. 
D. DNA methylation levels in CHH context in the indicated genotypes at med14-3 hypo-CHH DMRs. 

E. DNA methylation levels in CHH context in the indicated genotypes at 1200 randomly selected 
regions of 100 bp. 
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Supplementary figure 1 
Transcript accumulation in rosette leaves from Col-0 wild type (WT), arp6-1 and atmorc6-3 mutants was 

quantified by RT-qPCR at five loci overexpressed in heat-stress. Samples had been subjected to a 
control stress at 23°C or a heat stress treatment at 37°C. Data were normalized to the geometric mean 

of the reference genes AT5G12240 and ACT2. Values were further normalized to the mean of L5 
samples at 23°C. Error bars indicate standard errors of the mean across three biological replicates. For 
each locus, differences in mean at 37°C between the WT and the mutants was tested by unpaired two-

tailed Student’s t-test, but did not reveal any significant difference (P > 0.05). 
 

Supplementary figure 2 
A. PCGs or TEs were aligned at their 5’-end or 3’-end and average cytosine methylation levels in the 

indicated nucleotide contexts were calculated from 3 kb upstream to 3 kb downstream in WT subjected 
to a control stress (23°C) or to heat stress (37°C). Upstream and downstream regions were divided in 

100bp bins, while annotations were divided in 40 bins of equal length. 
B. Average cytosine methylation levels at PCGs or TEs upregulated or downregulated in heat-stressed 

WT plants were calculated and represented as in A. 
 

Supplementary figure 3 
A. X-Gluc staining of heat-stressed rosette leaves from a complementation tests between zen1 and 

zen2 mutants. 
B, C. Segregants with a suppressor phenotype in a F2 population from a mutant (Col-0) x Ler-0 cross 
were sequenced in bulk. Y axis indicates SNP frequencies along 20kb windows. The SNP-depleted 

chromosomal region encompasses homozygous candidate mutations, as indicated by an orange 
rectangle. B. zen1 mapping C. zen2 mapping 

 
Supplementary figure 4 

Protein sequence alignment of XPD orthologs from Saccharomyces cerevisiae (Sc_RAD3), Homo 

sapiens (Hs_XPD) and Arabidopsis thaliana UVH6 (At_UVH6). The alignment was performed with 

Clustal Omega  (v1.2.4). UVH6 point mutations and their corresponding amino acid changes are 
indicated. 

 
Supplementary figure 5 

A. Heat stress-induced activation of the L5-GUS transgene in rosette leaves of the indicated genotypes 
after 24h at 37°C was detected by X-Gluc staining. 
B. RT-qPCR analysis of transcripts from L5-GUS and MULE, normalized to the reference gene 

AT5G12240 and further normalized to the mean of L5 samples at 23°C. Errors bars represent standard 
error of the mean across two biological replicates. Statistically significant differences between means of 

uvh6-3 and uvh6-4 samples at 37°C were tested by unpaired unilateral Student’s t-test (*: p-value < 
0.05, **: p-value < 0.005). 
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C. Representative pictures of 16-day-old seedlings of the indicated genotypes grown in soil and in long 

day conditions. Scale bar: 1cm. 
 

Supplementary figure 6 
A. Reads per million per kilobase (RPKM) values in the WT and uvh6-3 mutants of loci significantly 

upregulated and downregulated in uvh6-4 at 23°C. Statistical differences between distributions in WT 
and uvh6-3 were tested by unpaired two-sided Mann-Whitney test. 
B. UV survival assays. Seven-day-old seedlings of the indicated genotypes were UV irradiated at 10kJ / 

m2, returned to standard conditions with 24h of dark followed by five days recovery in light. 
 

Supplementary figure 7 
Transcriptional changes in WT plants subjected to heat stress (top), in med14-3_37 (middle) and uvh6-

3_37 (bottom) relative to heat-stressed WT, represented along chromosomes one to four by log2 ratios 
of mean RPKM values in 100kb windows. 

 
Supplementary figure 8 

A. Log2 RPKM values in the WT at 37°C, med14-3_37 (left) and uvh6-3_37 (right) of PCGs upregulated 
in heat-stressed WT plants. 

B. Log2 RPKM values in the WT at 37°C, med14-3_37 (left) and uvh6-3_37 (right) of PCGs 
downregulated in heat-stressed WT plants. 

C. RPKM log2 fold change (log2FC) of loci (PCGs and TEs) differentially expressed in med14-3_37 
(left) and uvh6-3_37 (right) showed for both med14-3_37 and uvh6-3_37 relative to heat-stressed WT 
plants. 

D. Relative frequency of TE superfamilies in the Arabidopsis genome (TAIR10, white) and the following 
datasets: TEs upregulated in WT plants subjected to heat stress (red), among these, TEs 

downregulated in med14-3_37 (dark blue) or in uvh6-3_37 (green) relative to a WT at 37°C. 
 

Supplementary figure 9 
Transcripts from six loci were analyzed by RT-qPCR in L5 control plants, med14-3, uvh6-3 mutants and 

med14-3 uvh6-3 double mutants at 23°C and 37°C. Data were normalized to the reference gene 
AT5G12240 and further normalized to the mean of L5 samples at 23°C. Error bars illustrate standard 

errors of the mean across three biological replicates. For each temperature treatment, statistical 
differences between means of mutant conditions were tested by ANOVA followed by post-hoc analysis 

using Tukey's Honest Significant Difference test (*: p-value < 0.05, **: p-value < 0.005, ***: p-value < 
0.0001). See methods. Data for the L5-GUS transgene was already displayed in figure 2B. 
 

Supplementary figure 10 
A, B. Reads per million per kilobase (RPKM) values in the indicated genotypes of transposable 

elements (TEs) upregulated in ddm1 (A) or mom1 (B). Sister plants were identically colored. Statistical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 3, 2018. ; https://doi.org/10.1101/407015doi: bioRxiv preprint 

https://doi.org/10.1101/407015
http://creativecommons.org/licenses/by-nc-nd/4.0/


differences between distributions of single mutants (ddm1 and mom1) versus double mutants (med14 

ddm1, uvh6 ddm1, med14 mom1, uvh6 mom1) were tested by unpaired two-sided Mann-Whitney test. 
C. TEs commonly upregulated in ddm1 and mom1 were aligned at their 5’-end or 3’-end and average 

cytosine methylation levels in the indicated nucleotide contexts were calculated from 3 kb upstream to 3 
kb downstream in WT, ddm1 and mom1. Upstream and downstream regions were divided in 100bp 

bins, while annotations were divided in 40 bins of equal length. 
D. DNA methylation levels at CG, CHG and CHH contexts were calculated for TEs upregulated in heat-
stressed WT samples, distinguishing TEs downregulated in med14-3 from TEs not downregulated in 

med14-3. DNA methylation levels were calculated in WT at 23°C and 37°C. 
E. DNA methylation levels at CG, CHG and CHH contexts were calculated for TEs upregulated in heat-

stressed WT samples, distinguishing TEs downregulated in uvh6-3 from TEs not downregulated in 
uvh6-3. DNA methylation levels were calculated in WT at 23°C and 37°C. 

 
Supplementary figure 11 

A. TEs localized in chromosome arms or pericentromeres were aligned at their 5’-end or 3’-end and 
average cytosine methylation levels in the indicated nucleotide contexts were calculated from 3 kb 

upstream to 3 kb downstream in WT and med14-3. Upstream and downstream regions were divided in 
100bp bins, while annotations were divided in 40 bins of equal length. 

B. Average DNA methylation levels were calculated at protein coding genes as in A. 
C. DNA methylation levels in CG, CHG and CHH contexts in WT and med14-3 at med14-3 hypo-CHG 

DMRs (left) and med14-3 hypo-CHH DMRs (right). 
 
Supplementary figure 12 

A. DNA methylation levels in CHG context in WT and nrpb2-3 at med14-3 hypo-CHG DMRs (left). DNA 
methylation in CHH context in WT and nrpb2-3 at med14-3 hypo-CHH DMRs (right). Two replicates are 

shown for each genotype. 
B. DNA methylation levels in CHG context in the indicated genotypes at med14-3 hypo-CHG DMRs. 

C. DNA methylation levels in CHH context in WT and med14-3 at hypo-CHH DMRs identified in drm1/2, 
nrpd1 and nrpe1. Statistically significant differences between distributions in WT and med14-3 were 

tested by unpaired two-sided Mann-Whitney test. 
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